WO2021103655A1 - 换热器及空调器 - Google Patents

换热器及空调器 Download PDF

Info

Publication number
WO2021103655A1
WO2021103655A1 PCT/CN2020/108449 CN2020108449W WO2021103655A1 WO 2021103655 A1 WO2021103655 A1 WO 2021103655A1 CN 2020108449 W CN2020108449 W CN 2020108449W WO 2021103655 A1 WO2021103655 A1 WO 2021103655A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
liquid
manifold
heat exchanger
pipe
Prior art date
Application number
PCT/CN2020/108449
Other languages
English (en)
French (fr)
Inventor
谭雪艳
任滔
刘景升
刘江彬
宋强
李文波
李守俊
张韵
Original Assignee
青岛海尔空调电子有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调电子有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调电子有限公司
Publication of WO2021103655A1 publication Critical patent/WO2021103655A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/30Arrangement or mounting of heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers

Definitions

  • the invention relates to the technical field of air conditioners, in particular to a heat exchanger and an air conditioner.
  • the outdoor heat exchanger acts as a condenser for condensation and heat release, and the indoor heat exchanger acts as an evaporator to evaporate and absorb heat to reduce the indoor temperature; when the air conditioner is heating, the outdoor heat exchanger acts as an evaporator to evaporate and absorb heat. Heat effect, the indoor heat exchanger acts as a condenser to condense and release heat to increase the indoor temperature. In this way, the temperature adjustment of the indoor air is realized.
  • the condenser when the condenser is working, due to the uneven flow rate of wind or water on the surface of the condenser, the condensation effect of different flow paths in the condenser is different, and it is difficult to ensure that the gaseous refrigerant is completely liquefied in the condenser. If the condenser flows out The refrigerant in the mixed gas-liquid state directly enters the evaporator for heat exchange, which greatly reduces the heat exchange efficiency. Therefore, the refrigerant outlet of the refrigerant coil of the existing condenser needs to be connected with a supercooling pipeline to perform secondary cooling of the refrigerant to ensure that all the refrigerant entering the evaporator is liquid.
  • the length of the subcooling pipeline is generally set to be very long.
  • the installation of a longer subcooling pipeline in the condenser will cause the volume of the condenser to be larger, making the heat exchange efficiency of the condenser per unit volume higher. low.
  • the present invention provides a heat exchanger and an air conditioner.
  • a heat exchanger provided by the present invention includes a first manifold, a second manifold, a third manifold, and a liquid sealing module; the bottom end of the first manifold is connected to the first end of the liquid sealing module
  • the first interface of the second manifold can communicate with the outer tube for gaseous refrigerant to circulate, and the second interface of the second manifold is close to one end of the liquid sealing module through the first refrigerant pipe and the first manifold Connection
  • the first interface of the third manifold is connected to the end of the first manifold away from the liquid-sealed module through the second refrigerant tube, and the second interface of the third manifold can be connected to the outer tube for liquid refrigerant to circulate Connected
  • the third interface of the third manifold is connected to the second end of the liquid sealing module through a connecting pipe, and a reversing module is provided on the connecting pipe; the reversing module is configured to only allow liquid refrigerant to pass through
  • the liquid-sealed module includes a first container and a U-shaped tube; a part of the inner cavity of the first container contains a liquid refrigerant, and the first The upper end of the container is provided with a first through hole and a second through hole communicating with the inner cavity; the first through hole is used to form the first end of the liquid sealing module; the first end of the U-shaped tube It extends into the inner cavity through the second through hole, and the first end of the U-shaped tube is set below the liquid level of the refrigerant in the inner cavity, and the second end of the U-shaped tube is used to form the The second end of the liquid seal module.
  • the liquid-sealed module includes a second container and a branch pipe; a part of the inner cavity of the second container contains a liquid refrigerant; The upper end is provided with an interface end communicating with the inner cavity, and the interface end forms the first end of the liquid sealing module; one end of the branch pipe extends from the bottom of the second container into the inside of the second container The cavity and the opening are located above the liquid level of the liquid refrigerant, and the other end of the branch pipe is used to form the second end of the liquid sealing module.
  • the second manifold is connected to the first manifold through a plurality of the first refrigerant pipes connected in parallel.
  • the third manifold is connected to the first manifold through a plurality of the second refrigerant pipes connected in parallel.
  • the third confluence pipe communicates with the outer pipe through which the liquid refrigerant circulates through the third refrigerant pipe.
  • the reversing module is a reversing valve.
  • the reversing module includes a first one-way valve and a second one-way valve arranged in parallel, and the first one-way valve and the second one-way valve The direction of conduction of the valve is opposite.
  • the flow path section of the first refrigerant tube is u-shaped, n-shaped or N-shaped.
  • the present invention also provides an air conditioner, which includes any of the heat exchangers described above.
  • the second manifold is in communication with the first manifold through the first refrigerant pipe
  • the third manifold is in communication with the first manifold through the second refrigerant pipe
  • the first confluence The liquid sealing module provided at the lower end of the tube communicates with the upper end of the third manifold through a connecting pipe.
  • the second manifold also exchanges gaseous refrigerant with an external heat exchanger
  • the third manifold also communicates with an external heat exchanger in a liquid state. Exchange of refrigerants.
  • the heat exchanger provided by the present invention increases the gas-liquid separation of the refrigerant during use, thereby improving the flow pattern of the refrigerant during heat exchange, so as to facilitate the heat exchange of the refrigerant; and the refrigerant flows through the first refrigerant
  • the tube and the second refrigerant tube form a two-stage heat exchange process, which further ensures the heat exchange efficiency of the refrigerant and improves the heat exchange coefficient of the heat exchanger.
  • the heat exchanger of the present invention has a smaller volume, so that the heat exchange efficiency of the condenser per unit volume is higher.
  • the heat exchanger and air conditioner provided by the present invention are provided with a reversing module on the connecting pipe.
  • the reversing module is adjusted to allow only liquid refrigerant to pass through the connecting pipe. Flow from the liquid-sealed module to the third manifold; when the heat exchanger of the present invention is used as an evaporator, adjust the reversing module to only allow gaseous refrigerant to flow from the third manifold to the liquid-sealed module through the connecting pipe, so that the cooling and The gas-liquid separation of refrigerant can be realized in the heating process.
  • Figure 1 is a schematic diagram of the refrigerant circulation route when the heat exchanger of this embodiment is used as a condenser;
  • Figure 2 is a schematic diagram of the refrigerant circulation route when the heat exchanger of this embodiment is used as an evaporator;
  • Figure 3 is a schematic structural diagram of the first liquid-sealed module in the heat exchanger of this embodiment
  • Figure 4 is a schematic structural diagram of a second liquid-sealed module in the heat exchanger of this embodiment.
  • the terms “installed”, “connected”, and “connected” should be interpreted in a broad sense, for example, it may be a fixed connection or It is a detachable connection or an integral connection; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • installed e.g., it may be a fixed connection or It is a detachable connection or an integral connection; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • the present invention provides a heat exchanger and an air conditioner.
  • the heat exchanger provided by this embodiment includes a first manifold 1, a second manifold 2, and a third manifold 3, and a liquid sealing module 4;
  • the bottom end is connected to the first end 401 of the liquid-sealed module;
  • the first port of the second manifold 2 can communicate with the outer tube for the gaseous refrigerant to circulate, and the second port of the second manifold 2 is connected to the second port through the first refrigerant pipe 7
  • One end of the manifold 1 close to the liquid sealing module 4 is connected;
  • the first interface of the third manifold 3 is connected to the end of the first manifold 1 away from the liquid sealing module 4 through the second refrigerant pipe 8, and the end of the third manifold 3
  • the second interface can be communicated with the outer tube for the liquid refrigerant to circulate;
  • the third interface of the third manifold 3 is connected to the second end 402 of the liquid sealing module through the connecting tube 5, and the connecting tube 5 is provided with a
  • the outer tube for gaseous refrigerant flow is connected to the gaseous refrigerant outlet of the external evaporator; the outer tube for liquid refrigerant is connected to the liquid refrigerant inlet of the external evaporator. through.
  • the liquid sealing module 4 only allows the liquid refrigerant to flow from its first end to the second end; the reversing module 6 only allows the liquid refrigerant to flow from the liquid sealing module 4 to the third manifold 3 through the connecting pipe 5.
  • the refrigerant first enters the second manifold 2, and the refrigerant first undergoes condensation and heat exchange in the first refrigerant pipe 7 to form a gas-liquid mixed refrigerant , And then the first manifold 1 separates the gas-liquid mixed refrigerant, where the liquid refrigerant enters the third manifold 3 through the liquid-sealed module 4 and the connecting pipe 5 in turn, and the gaseous refrigerant continues to flow into the second refrigerant pipe 8 for condensation and heat exchange After becoming a liquid refrigerant, it enters the third manifold 3 to mix with the separated liquid refrigerant, and then flows out of the heat exchanger.
  • the heat exchanger provided in this embodiment when used as a condenser, the refrigerant undergoes a gas-liquid separation, thereby improving the flow state of the refrigerant in the condensation process, so as to facilitate the condensation and heat exchange of the refrigerant; and the refrigerant passes through two
  • the stage of condensation heat exchange process further ensures the condensation efficiency of the refrigerant and improves the heat exchange coefficient of the heat exchanger.
  • first manifold 1 and the third manifold 3 in FIG. 1 and FIG. 2 are both vertically arranged, the implementation of this embodiment is not limited to that shown in the figure.
  • the pipe 1 and the third manifold 3 can also be arranged at a certain angle to the horizontal direction, as long as the gas can move upward and the liquid can drop.
  • the outer tube for gaseous refrigerant flow is connected to the gaseous refrigerant inlet of the external condenser; the outer tube for liquid refrigerant is connected to the liquid refrigerant outlet of the external condenser .
  • the liquid sealing module 4 is adjusted to only allow gaseous refrigerant to flow from its second end to the first end; the reversing module 6 is adjusted to only allow gaseous refrigerant to flow from the third manifold 3 to the liquid sealing module 4 through the connecting pipe 5.
  • the refrigerant first enters the third manifold 3, and the third manifold 3 first separates the refrigerant from gas and liquid, and the gaseous refrigerant passes through the connecting pipe in turn 5 and the liquid-sealed module 4 enter the first manifold 1.
  • the liquid refrigerant flows into the second refrigerant pipe 8
  • it will evaporate and absorb heat to become a gaseous refrigerant, and mix with the separated gaseous refrigerant in the first manifold 1, and then the refrigerant enters the second refrigerant pipe.
  • a refrigerant tube 7 undergoes evaporative heat exchange again, enters the second manifold 2 and then flows out of the heat exchanger.
  • the heat exchanger provided in this embodiment is used as an evaporator
  • the refrigerant undergoes a gas-liquid separation, thereby improving the flow state of the refrigerant during the evaporation process, so that the refrigerant evaporates and exchanges heat; and the refrigerant passes through two
  • the stage of evaporative heat exchange process further ensures the evaporation efficiency of the refrigerant and improves the heat exchange coefficient of the heat exchanger.
  • the second manifold 2 is in communication with the first manifold 1 through the first refrigerant pipe 7, and the third manifold 3 passes through the second refrigerant pipe 8. It communicates with the first manifold 1, and the liquid sealing module 4 provided at the lower end of the first manifold 1 communicates with the upper end of the third manifold 3 through the connecting pipe 5, wherein the second manifold 2 also communicates with an external heat exchanger in a gaseous state.
  • the third manifold 3 also exchanges liquid refrigerant with an external heat exchanger.
  • the process of gas-liquid separation of the refrigerant is added, which can improve the flow pattern of the refrigerant in the heat exchange process to facilitate the heat exchange of the refrigerant; and the refrigerant flows through the first
  • the refrigerant pipe 7 and the second refrigerant pipe 8 form a two-stage heat exchange process, which further ensures the heat exchange efficiency of the refrigerant and improves the heat exchange coefficient of the heat exchanger.
  • the heat exchanger of this embodiment has a smaller volume, so that the heat exchange efficiency of the heat exchanger per unit volume is higher.
  • the liquid sealing module 4 includes a first container 411 and a U-shaped tube 412; part of the inner cavity of the first container 411 is provided with Liquid refrigerant, the upper end of the first container 411 is provided with a first through hole and a second through hole communicating with the inner cavity; the first through hole is used to form the first end 401 of the liquid-sealed module; the first end of the U-shaped tube 412 It extends into the inner cavity through the second through hole, and the first end of the U-shaped tube 412 is set below the liquid level of the refrigerant in the inner cavity, and the second end of the U-shaped tube 412 is used to form the second end 402 of the liquid-sealed module .
  • a seal needs to be formed between the U-shaped tube 412 of this embodiment and the second through hole of the first container 411, or the entire first container 411 needs to be sealed, so that the pressure inside the first container 411 remains unchanged .
  • the liquid refrigerant located at the lower end of the first manifold 1 enters the inner cavity of the first container 411 from the first end 401 of the liquid-sealed module, and the pressure in the first container 411 Increase, because the first end of the U-shaped tube 412 is set below the liquid level of the refrigerant in the inner cavity, the refrigerant will enter the U-shaped tube 412 from the first end of the U-shaped tube 412, and then the second end of the liquid-sealed module
  • the end 402 is discharged into the connecting pipe 5; and the gaseous refrigerant in the first manifold 1 enters the second refrigerant pipe 8 for condensation and heat exchange again, thereby realizing the gas-liquid separation of the refrigerant.
  • the gaseous refrigerant located at the upper end of the third manifold 3 passes through the connecting pipe 5 and enters the first container 411 from the second end 402 of the liquid sealing module.
  • the pressure of the first container 411 increases, and the first through hole provided at the upper end of the first container 411 is located above the liquid level of the refrigerant, so the gaseous refrigerant can enter the first manifold 1 through the first end 401 of the liquid-sealed module; and the third confluence
  • the liquid refrigerant in the tube 3 enters the second refrigerant tube 2 to continue to evaporate and exchange heat, thereby realizing the gas-liquid separation of the refrigerant.
  • the liquid-sealed module 4 includes a second container 421 and a branch pipe 422; a part of the inner cavity of the second container 421 contains a liquid refrigerant
  • the upper end of the second container 421 is provided with an interface end communicating with the inner cavity, and the interface end forms the first end 401 of the liquid-sealed module;
  • one end of the branch pipe 422 extends from the bottom of the second container 421 into the inner cavity of the second container 421 and The opening is located above the liquid level of the liquid refrigerant, and the other end of the branch pipe 422 is used to form the second end 402 of the liquid-sealed module.
  • the liquid refrigerant at the lower end of the first manifold 1 enters the inner cavity of the second container 421 from the first end 401 of the liquid-sealed module, and when the branch pipe 422 When one end of is below the liquid level of the refrigerant, the refrigerant can enter the branch pipe 422 and be discharged from the second end 402 of the liquid-sealed module to the connecting pipe 5; while the gaseous refrigerant in the first manifold 1 enters the second refrigerant pipe In 8 again, condensation and heat exchange are carried out to realize the gas-liquid separation of the refrigerant.
  • the gaseous refrigerant located at the upper end of the third manifold 3 passes through the connecting pipe 5 and enters the second container 421 from the second end 402 of the liquid-sealed module.
  • the pressure at the upper end of the second container 421 is located above the liquid level of the refrigerant, so the gaseous refrigerant can enter the first manifold 1 through the first end 401 of the liquid-sealed module; and the third manifold 3
  • the liquid refrigerant in the refrigerant enters the second refrigerant pipe 2 to continue to evaporate and exchange heat, thereby realizing the gas-liquid separation of the refrigerant.
  • liquid sealing module 4 in this embodiment is not limited to the above two types, as long as it can realize the functions and principles that the liquid sealing module 4 described above should have. It belongs to the protection scope of the present invention.
  • the second manifold 2 is connected to the first manifold 1 through a plurality of first refrigerant pipes 7 connected in parallel.
  • the third manifold 3 is connected to the first manifold 1 through a plurality of second refrigerant pipes 8 connected in parallel.
  • first refrigerant pipes 7 are used in parallel, or multiple second refrigerant pipes 8 are used in parallel, different refrigerant pipes do not interfere with each other, and the heat transfer coefficient of one refrigerant pipe will not affect the other refrigerant pipes.
  • the heat transfer coefficient of the refrigerant tube can improve the flow pattern of the refrigerant; and when multiple refrigerant tubes are used in parallel, the heat exchange area with air or water increases, which is also conducive to improving the heat exchange efficiency of the heat exchanger.
  • the third manifold 3 communicates with the outer tube through which the liquid refrigerant circulates through the third refrigerant tube 9.
  • the heat exchanger of this embodiment when the third manifold 3 communicates with the outer tube for liquid refrigerant through the third refrigerant pipe 9, when the heat exchanger of this embodiment is used as a condenser or an evaporator, the refrigerant can be increased.
  • the heat exchange link further improves the heat exchange efficiency of the heat exchanger.
  • the reversing module 6 is a reversing valve.
  • the heat exchanger when used as a condenser, adjust the reversing valve to only allow liquid refrigerant to flow from the liquid-sealed module 4 to the third manifold 3 through the connecting pipe 5; when the heat exchanger is used as an evaporator, adjust The reversing valve only allows gaseous refrigerant to flow from the third manifold 3 to the liquid sealing module 4 through the connecting pipe 5.
  • rotary valve type and slide valve type and those skilled in the art can choose and use them according to actual conditions.
  • the reversing module 6 includes a first one-way valve and a second one-way valve arranged in parallel, and the first one-way valve and the second one-way valve The conduction direction is opposite.
  • the first one-way valve when the heat exchanger is used as a condenser, the first one-way valve is turned on and the second one-way valve is blocked, so that only liquid refrigerant is allowed to flow from the liquid-sealed module 4 to the third manifold through the connecting pipe 5 3 function; when the heat exchanger is used as an evaporator, the first one-way valve is blocked, and the second one-way valve is turned on, so as to allow only gaseous refrigerant to flow from the third manifold 3 to the liquid-sealed module through the connecting pipe 5 4 functions.
  • the flow path section of the first refrigerant tube 7 is u-shaped, n-shaped or N-shaped.
  • the flow path section of the refrigerant tube in the existing heat exchanger includes u-type, n-type, or N-type, etc.
  • the flow path section of the refrigerant tube in the heat exchanger of this embodiment can be specific to the above types. Choose to use. As shown in FIG. 1, the flow path cross section of the first refrigerant pipe 7 is u-shaped, and the flow path interface of the second refrigerant pipe 8 is n-shaped. It should be noted that this is only used as an exemplary description of the flow path section type of the first refrigerant pipe 7 of this embodiment, but the flow path section type of the first refrigerant pipe 7 of this embodiment is not limited to this.
  • this embodiment also provides an air conditioner, and the air conditioner includes any of the above heat exchangers.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

本发明涉及空调技术领域,具体涉及一种换热器及空调器。本发明旨在解决现有的冷凝器单位体积的换热效率较低问题。为此目的,本发明提供的换热器中,第二汇流管通过第一冷媒管与第一汇流管连通,第三汇流管通过第二冷媒管与第一汇流管连通,且第一汇流管下端设置的液封模块通过连接管与第三汇流管的上端连通,其中第二汇流管还与外部的换热器进行气态冷媒的交换,第三汇流管还与外部的换热器进行液态冷媒的交换。如此,增加了对冷媒进行气液分离的环节,且冷媒流过第一冷媒管和第二冷媒管,形成了两个阶段的换热过程,从而保证了冷媒的换热效率和提高了换热器的换热系数。此外,还提高了单位体积的换热器的换热效率。

Description

换热器及空调器 技术领域
本发明涉及空调技术领域,具体涉及一种换热器及空调器。
背景技术
空调制冷时,室外换热器作为冷凝器起冷凝放热作用,室内换热器作为蒸发器起蒸发吸热作用,以降低室内温度;空调制热时,室外换热器作为蒸发器起蒸发吸热作用,室内换热器作为冷凝器起冷凝放热作用,以提升室内温度。如此,实现对室内空气的温度调节。
目前,冷凝器在工作时,由于冷凝器表面的风或者水的流速不均,导致冷凝器中不同流路的冷凝效果存在差异,难以保证气态的冷媒在冷凝器中完全液化,若冷凝器流出的气液混合状态的冷媒直接进入蒸发器进行换热则会很大程度上降低换热效率。所以现有的冷凝器的冷媒盘管的冷媒出口还需连接过冷管路,以对冷媒进行二次冷却,来保证进入蒸发器时的冷媒全部为液态。
但是,为保证冷凝效果,一般过冷管路的长度都设置很长,冷凝器中设置较长的过冷管路会导致冷凝器的体积较大,使得单位体积的冷凝器的换热效率较低。
相应地,本领域需要一种新的换热器及空调器来解决上述问题。
发明内容
为了解决现有技术中的上述问题,即为了解决现有的冷凝器单位体积的换热效率较低问题,本发明提供了一种换热器及空调器。
本发明提供的一种换热器,包括第一汇流管、第二汇流管和第三汇流管和液封模块;所述第一汇流管的底端与所述液封模块的第一端连接;所述第二汇流管的第一接口能够与供气态冷媒流通的外管连通,所述第二汇流管的第二接口通过第一冷媒管与第一汇流管靠近所述液封模块的一端连接;所述第三汇流管的第一接口通过第二冷媒管与第一汇 流管的远离液封模块的一端连接,所述第三汇流管的第二接口能够与供液态冷媒流通的外管连通;所述第三汇流管的第三接口通过连接管与液封模块的第二端连接,且所述连接管上设置有换向模块;所述换向模块设置成仅允许液态冷媒通过所述连接管由所述液封模块流向所述第三汇流管,气态冷媒通过所述连接管由所述第三汇流管流向所述液封模块;所述液封模块设置为仅允许液态冷媒由其第一端流向第二端,且气态冷媒由其第二端流向第一端。
作为本发明提供的上述换热器的一种优选的技术方案,所述液封模块包括第一容器和U形管;所述第一容器的部分内腔存设有液态冷媒,所述第一容器的上端设置有与所述内腔连通的第一通孔和第二通孔;所述第一通孔用于形成所述液封模块的第一端;所述U形管的第一端通过第二通孔伸入所述内腔,且所述U形管的第一端设置于所述内腔中的冷媒的液面以下,所述U形管的第二端用于形成所述液封模块的第二端。
作为本发明提供的上述换热器的一种优选的技术方案,所述液封模块包括第二容器和支管;所述第二容器的部分内腔存设有液态冷媒;所述第二容器的上端设置有与所述内腔连通的接口端,所述接口端形成所述液封模块的第一端;所述支管的一端由所述第二容器的底部伸入所述第二容器的内腔且开口位于所述液态冷媒的液面以上,所述支管的另一端用于形成所述液封模块的第二端。
作为本发明提供的上述换热器的一种优选的技术方案,所述第二汇流管通过多个并联的所述第一冷媒管与所述第一汇流管连接。
作为本发明提供的上述换热器的一种优选的技术方案,所述第三汇流管通过多个并联的所述第二冷媒管与所述第一汇流管连接。
作为本发明提供的上述换热器的一种优选的技术方案,所述第三汇流管通过第三冷媒管与供液态冷媒流通的外管连通。
作为本发明提供的上述换热器的一种优选的技术方案,所述换向模块为换向阀。
作为本发明提供的上述换热器的一种优选的技术方案,所述换向模块包括并联设置的第一单向阀和第二单向阀,且所述第一单向阀和第二单向阀的导通方向相反。
作为本发明提供的上述换热器的一种优选的技术方案,所述第一冷媒管的流路截面为u型、n型或N型。
此外,本发明还提供了一种空调器,所述空调器包括如上所述的任一种换热器。
本发明提供的一种换热器及空调器中,第二汇流管通过第一冷媒管与第一汇流管连通,第三汇流管通过第二冷媒管与第一汇流管连通,且第一汇流管下端设置的液封模块通过连接管与第三汇流管的上端连通,其中第二汇流管还与外部的换热器进行气态冷媒的交换,第三汇流管还与外部的换热器进行液态冷媒的交换。如此,本发明提供的换热器在使用时,增加了对冷媒进行气液分离的环节,从而可以改善冷媒换热过程中的流态,以利于冷媒进行换热;且冷媒流过第一冷媒管和第二冷媒管,形成了两个阶段的换热过程,进一步的保证了冷媒的换热效率和提高了换热器的换热系数。相比于设置有过冷管路的冷凝器,本发明的换热器的体积更小,使得单位体积的冷凝器的换热效率较高。
此外,本发明提供的一种换热器及空调器,通过在连接管上设置换向模块,当本发明的换热器作为冷凝器使用时,调整换向模块为仅允许液态冷媒通过连接管由液封模块流向第三汇流管;当本发明的换热器作为蒸发器使用时,调整换向模块为仅允许气态冷媒通过连接管由第三汇流管流向液封模块,从而使得在制冷和制热过程中均可实现冷媒的气液分离。
附图说明
下面参照附图来描述本发明的换热器。附图中:
图1为本实施例的换热器作为冷凝器使用时冷媒流通路线的示意图;
图2为本实施例的换热器作为蒸发器使用时冷媒流通路线的示意图;
图3为本实施例的换热器中第一个液封模块的结构示意图;
图4为本实施例的换热器中第二个液封模块的结构示意图。
附图标记列表
1-第一汇流管;2-第二汇流管;3-第三汇流管;4-液封模块;401-液封模块的第一端;402-液封模块的第二端;411-第一容器;412-U形管;421-第二容器;422-支管;5-连接管;6-换向模块;7-第一冷媒管;8-第二冷媒管;9-第三冷媒管。
具体实施方式
下面参照附图来描述本发明的优选实施方式。本领域技术人员应当理解的是,这些实施方式仅仅用于解释本发明的技术原理,并非旨在限制本发明的保护范围。例如,虽然本实施方式的换热器是结合空调进行介绍的,但是这并非旨在于限制本发明的保护范围,在不偏离本发明原理的条件下,本领域技术人员可以将本发明应用于其他应用场景。例如,可将本发明的换热器用于热泵。
需要说明的是,在本发明的描述中,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方向或位置关系的术语是基于附图所示的方向或位置关系,这仅仅是为了便于描述,而不是指示或暗示所述装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
此外,还需要说明的是,在本发明的描述中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域技术人员而言,可根据具体情况理解上述术语在本发明中的具体含义。
为了解决现有技术中的上述问题,即为了解决现有的冷凝器单位体积的换热效率较低问题,本发明提供了一种换热器及空调器。
如图1和图2所示,本实施例提供的一种换热器,包括第一汇流管1、第二汇流管2和第三汇流管3和液封模块4;第一汇流管1的底端与液封模块的第一端401连接;第二汇流管2的第一接口能够与供气态冷媒流通的外管连通,第二汇流管2的第二接口通过第一冷媒管7与第一汇流管1靠近液封模块4的一端连接;第三汇流管3的第一接口通过第二冷媒管 8与第一汇流管1的远离液封模块4的一端连接,第三汇流管3的第二接口能够与供液态冷媒流通的外管连通;第三汇流管3的第三接口通过连接管5与液封模块的第二端402连接,且连接管5上设置有换向模块6;换向模块6设置成仅允许液态冷媒通过连接管5由液封模块4流向第三汇流管3,气态冷媒通过连接管5由第三汇流管3流向液封模块4;液封模块4设置为仅允许液态冷媒由其第一端流向第二端,且气态冷媒由其第二端流向第一端。
示例性地,当换热器作为冷凝器使用时,将供气态冷媒流通的外管与外部蒸发器的气态冷媒出口导通;将供液态冷媒流通的外管与外部蒸发器的液态冷媒进口导通。这时,液封模块4仅允许液态冷媒由其第一端流向第二端;调整换向模块6为仅允许液态冷媒通过连接管5由液封模块4流向第三汇流管3。
按照图1所示方位,当本实施例提供的换热器作为冷凝器使用时,冷媒先进入第二汇流管2,冷媒先在第一冷媒管7中进行冷凝换热形成气液混合的冷媒,然后第一汇流管1对气液混合的冷媒进行分离,其中,液态冷媒依次通过液封模块4及连接管5进入第三汇流管3,气态冷媒继续流入第二冷媒管8进行冷凝换热成为液态冷媒后进入第三汇流管3与分离出的液态冷媒混合,然后流出该换热器。如此,本实施例提供的换热器在作为冷凝器使用时,对冷媒进行了一次气液分离,从而改善了冷媒冷凝过程中的流态,以利于冷媒进行冷凝换热;且冷媒经过两个阶段的冷凝换热过程,进一步的保证了冷媒的冷凝效率和提高了换热器的换热系数。
需要说明的是,虽然图1和图2中的第一汇流管1、第三汇流管3均竖直设置,但是,本实施例的实施方式并不限于图中所示的那样,第一汇流管1、第三汇流管3也可以与水平方向成一定角度设置,只要能实现气体上移,液体下降即可。
进一步地,当换热器作为蒸发器使用时,将供气态冷媒流通的外管与外部冷凝器的气态冷媒进口导通;将供液态冷媒流通的外管与外部冷凝器的液态冷媒出口导通。这时,液封模块4调整为仅允许气态冷媒由其第二端流向第一端;调整换向模块6为仅允许气态冷媒通过连接管5由第三汇流管3流向液封模块4。
按照图2所示方位,当本实施例提供的换热器作为蒸发器使用时,冷媒先进入第三汇流管3,第三汇流管3先对冷媒进行气液分离,气态冷媒依次通过连接管5和液封模块4进入第一汇流管1,液态冷媒流入第二冷媒管8时进行蒸发吸热成为气态冷媒,并与分离出的气态冷媒在第一汇流管1中混合,然后冷媒进入第一冷媒管7中再次进行蒸发换热后进入第二汇流管2,然后流出该换热器。如此,本实施例提供的换热器在作为蒸发器使用时,对冷媒进行了一次气液分离,从而改善了冷媒蒸发过程中的流态,以利于冷媒进行蒸发换热;且冷媒经过两个阶段的蒸发换热过程,进一步的保证了冷媒的蒸发效率和提高了换热器的换热系数。
综上所述,本实施例提供的一种换热器及空调器中,第二汇流管2通过第一冷媒管7与第一汇流管1连通,第三汇流管3通过第二冷媒管8与第一汇流管1连通,且第一汇流管1下端设置的液封模块4通过连接管5与第三汇流管3的上端连通,其中第二汇流管2还与外部的换热器进行气态冷媒的交换,第三汇流管3还与外部的换热器进行液态冷媒的交换。如此,本实施例提供的换热器在使用时,增加了对冷媒进行气液分离的环节,从而可以改善冷媒换热过程中的流态,以利于冷媒进行换热;且冷媒流过第一冷媒管7和第二冷媒管8,形成了两个阶段的换热过程,进一步的保证了冷媒的换热效率和提高了换热器的换热系数。相比于设置有过冷管路的冷凝器,本实施例的换热器的体积更小,使得单位体积的换热器的换热效率较高。
如图3所示,作为本实施例提供的上述换热器的一种优选的实施方式,液封模块4包括第一容器411和U形管412;第一容器411的部分内腔存设有液态冷媒,第一容器411的上端设置有与内腔连通的第一通孔和第二通孔;第一通孔用于形成液封模块的第一端401;U形管412的第一端通过第二通孔伸入内腔,且U形管412的第一端设置于内腔中的冷媒的液面以下,U形管412的第二端用于形成液封模块的第二端402。
示例性地,本实施例的U形管412与第一容器411的第二通孔之间需要形成密封,或者第一容器411整体需要形成密封,以使得第一容器411内部的压强保持不变。
本实施例的换热器作为冷凝器使用时,位于第一汇流管1的下端的液态冷媒由液封模块的第一端401进入第一容器411的内腔中,第 一容器411中的压强增大,由于U形管412的第一端设置于内腔中的冷媒的液面以下,这时冷媒会由U形管412的第一端进入U形管412并由液封模块的第二端402排到连接管5中;而第一汇流管1中的气态冷媒则进入第二冷媒管8中再次进行冷凝换热,从而实现对冷媒的气液分离。
本实施例的换热器作为蒸发器使用时,位于第三汇流管3的上端的气态冷媒通过连接管5并由液封模块的第二端402进入第一容器411中,第一容器411内部的压强增大,第一容器411的上端设置的第一通孔位于冷媒的液面上方,所以气态的冷媒可以通过液封模块的第一端401进入第一汇流管1中;而第三汇流管3中的液态冷媒则进入第二冷媒管2中继续进行蒸发换热,从而实现对冷媒的气液分离。如图4所示,作为本实施例提供的上述换热器的一种优选的实施方式,液封模块4包括第二容器421和支管422;第二容器421的部分内腔存设有液态冷媒;第二容器421的上端设置有与内腔连通的接口端,接口端形成液封模块的第一端401;支管422的一端由第二容器421的底部伸入第二容器421的内腔且开口位于液态冷媒的液面以上,支管422的另一端用于形成液封模块的第二端402。
示例性地,本实施例的换热器作为冷凝器使用时,位于第一汇流管1的下端的液态冷媒由液封模块的第一端401进入第二容器421的内腔中,当支管422的一端位于冷媒的液面以下时,冷媒可进入支管422中,并由液封模块的第二端402排到连接管5中;而第一汇流管1中的气态冷媒则进入第二冷媒管8中再次进行冷凝换热,从而实现对冷媒的气液分离。
本实施例的换热器作为蒸发器使用时,位于第三汇流管3的上端的气态冷媒通过连接管5并由液封模块的第二端402进入第二容器421中,第二容器421内部的压强增大,第二容器421的上端设置的接口端位于冷媒的液面上方,所以气态的冷媒可以通过液封模块的第一端401进入第一汇流管1中;而第三汇流管3中的液态冷媒则进入第二冷媒管2中继续进行蒸发换热,从而实现对冷媒的气液分离。
示例性地,本领域的技术人员可以理解的是,本实施例中的液封模块4并不仅限于上述两种类型,只要能实现上述说明的液封模块4应当具有的功能和原理,均应属于本发明的保护范围。
如图1和图2所示,作为本实施例提供的上述换热器的一种优选的实施方式,第二汇流管2通过多个并联的第一冷媒管7与第一汇流管1连接。
如图1和图2所示,作为本实施例提供的上述换热器的一种优选的实施方式,第三汇流管3通过多个并联的第二冷媒管8与第一汇流管1连接。
示例性地,当多个第一冷媒管7并联使用时,或者多个第二冷媒管8并联使用时,不同的冷媒管之间互不干扰,其中一个冷媒管的换热系数不会对其他的冷媒管的换热系数造成影响,从可以改善冷媒的流态;且多个冷媒管并联使用时,与空气或水的换热面积增大,也有利于提高换热器的换热效率。
如图1和图2所示,作为本实施例提供的上述换热器的一种优选的实施方式,第三汇流管3通过第三冷媒管9与供液态冷媒流通的外管连通。
示例性地,当第三汇流管3通过第三冷媒管9与供液态冷媒流通的外管连通时,在本实施例的换热器作为冷凝器或蒸发器进行使用时,均可以增加冷媒的换热环节,从而进一步地提高换热器的换热效率。
作为本实施例提供的上述换热器的一种优选的实施方式,换向模块6为换向阀。
示例性地,当换热器作为冷凝器使用时,调整换向阀为仅允许液态冷媒通过连接管5由液封模块4流向第三汇流管3;当换热器作为蒸发器使用时,调整换向阀为仅允许气态冷媒通过连接管5由第三汇流管3流向液封模块4。现有技术中的换向阀为有转阀式和滑阀式两种,本领域的技术人员可以根据实际情况进行选择使用。
作为本实施例提供的上述换热器的一种优选的实施方式,换向模块6包括并联设置的第一单向阀和第二单向阀,且第一单向阀和第二单向阀的导通方向相反。
示例性地,当换热器作为冷凝器使用时,第一单向阀导通,第二单向阀阻断,以实现仅允许液态冷媒通过连接管5由液封模块4流向第三汇流管3的功能;当换热器作为蒸发器使用时,第一单向阀阻断,第 二单向阀导通,以实现仅允许气态冷媒通过连接管5由第三汇流管3流向液封模块4的功能。
作为本实施例提供的上述换热器的一种优选的实施方式,第一冷媒管7的流路截面为u型、n型或N型。
示例性的,现有的换热器中冷媒管的流路截面包括为u型、n型或N型等,本实施例的换热器中冷媒管的流路截面可以对上述类型进行具体的选择使用。如图1所示,第一冷媒管7的流路截面为u型,第二冷媒管8的流路界面为n型。需要说明的是,在此仅作为对本实施例的第一冷媒管7的流路截面类型的示例性说明,但本实施例的第一冷媒管7的流路截面类型并不限于此。
此外,本实施例还提供了一种空调器,空调器包括如上的任一种换热器。
当然,上述可以替换的实施方式之间、以及可以替换的实施方式和优选的实施方式之间还可以交叉配合使用,从而组合出新的实施方式以适用于更加具体的应用场景。
此外,本领域的技术人员能够理解,尽管在此所述的一些实施例包括其它实施例中所包括的某些特征而不是其它特征,但是不同实施例的特征的组合意味着处于本发明的保护范围之内并且形成不同的实施例。例如,在本发明的权利要求书中,所要求保护的实施例的任意之一都可以以任意的组合方式来使用。
至此,已经结合附图所示的优选实施方式描述了本发明的技术方案,但是,本领域技术人员容易理解的是,本发明的保护范围显然不局限于这些具体实施方式。在不偏离本发明的原理的前提下,本领域技术人员可以对相关技术特征作出等同的更改或替换,这些更改或替换之后的技术方案都将落入本发明的保护范围之内。

Claims (10)

  1. 一种换热器,其特征在于:
    包括第一汇流管、第二汇流管和第三汇流管和液封模块;
    所述第一汇流管的底端与所述液封模块的第一端连接;
    所述第二汇流管的第一接口能够与供气态冷媒流通的外管连通,所述第二汇流管的第二接口通过第一冷媒管与第一汇流管靠近所述液封模块的一端连接;
    所述第三汇流管的第一接口通过第二冷媒管与第一汇流管的远离液封模块的一端连接,所述第三汇流管的第二接口能够与供液态冷媒流通的外管连通;所述第三汇流管的上端的第三接口通过连接管与液封模块的第二端连接,且所述连接管上设置有换向模块;
    所述换向模块设置成仅允许液态冷媒通过所述连接管由所述液封模块流向所述第三汇流管,气态冷媒通过所述连接管由所述第三汇流管流向所述液封模块;
    所述液封模块设置为仅允许液态冷媒由其第一端流向第二端,且气态冷媒由其第二端流向第一端。
  2. 根据权利要求1所述的换热器,其特征在于:
    所述液封模块包括第一容器和U形管;
    所述第一容器的部分内腔存设有液态冷媒,所述第一容器的上端设置有与所述内腔连通的第一通孔和第二通孔;
    所述第一通孔用于形成所述液封模块的第一端;
    所述U形管的第一端通过第二通孔伸入所述内腔,且所述U形管的第一端设置于所述内腔中的冷媒的液面以下,所述U形管的第二端用于形成所述液封模块的第二端。
  3. 根据权利要求1所述的换热器,其特征在于:
    所述液封模块包括第二容器和支管;
    所述第二容器的部分内腔存设有液态冷媒;所述第二容器的上端设置有与所述内腔连通的接口端,所述接口端形成所述液封模块的第一端;
    所述支管的一端由所述第二容器的底部伸入所述第二容器的内腔且开口位于所述液态冷媒的液面以上,所述支管的另一端用于形成所述液封模块的第二端。
  4. 根据权利要求1所述的换热器,其特征在于:
    所述第二汇流管通过多个并联的所述第一冷媒管与所述第一汇流管连接。
  5. 根据权利要求1所述的换热器,其特征在于:
    所述第三汇流管通过多个并联的所述第二冷媒管与所述第一汇流管连接。
  6. 根据权利要求1所述的换热器,其特征在于:
    所述第三汇流管通过第三冷媒管与供液态冷媒流通的外管连通。
  7. 根据权利要求1所述的换热器,其特征在于:
    所述换向模块为换向阀。
  8. 根据权利要求1所述的换热器,其特征在于:
    所述换向模块包括并联设置的第一单向阀和第二单向阀,且所述第一单向阀和第二单向阀的导通方向相反。
  9. 根据权利要求1所述的换热器,其特征在于:
    所述第一冷媒管的流路截面为u型、n型或N型。
  10. 一种空调器,其特征在于,所述空调器包括如权利要求1-9中任一项所述的换热器。
PCT/CN2020/108449 2019-11-25 2020-08-11 换热器及空调器 WO2021103655A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911166833.4 2019-11-25
CN201911166833.4A CN112833531A (zh) 2019-11-25 2019-11-25 换热器及空调器

Publications (1)

Publication Number Publication Date
WO2021103655A1 true WO2021103655A1 (zh) 2021-06-03

Family

ID=75922975

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/108449 WO2021103655A1 (zh) 2019-11-25 2020-08-11 换热器及空调器

Country Status (2)

Country Link
CN (1) CN112833531A (zh)
WO (1) WO2021103655A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11173770A (ja) * 1997-12-10 1999-07-02 Daikin Ind Ltd プレート式熱交換器
CN1434263A (zh) * 2002-12-30 2003-08-06 西安交通大学 低温两相流气液均匀分配板翅式相变换热器
JP2010281562A (ja) * 2010-07-29 2010-12-16 Sanyo Electric Co Ltd 熱交換装置
CN103983138A (zh) * 2014-05-16 2014-08-13 杭州杭氧股份有限公司 一种铝制板翅式换热器大气量两相流均布装置
CN204438360U (zh) * 2015-01-15 2015-07-01 华南理工大学 一种减少制冷剂充灌量的空调室外机
CN209371571U (zh) * 2018-12-29 2019-09-10 Tcl空调器(中山)有限公司 换热器流路结构及换热器、室外机、空调器
CN110307742A (zh) * 2019-07-26 2019-10-08 杭州中泰深冷技术股份有限公司 多级分离的板翅式换热器及换热方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4711094A (en) * 1986-11-12 1987-12-08 Hussmann Corporation Reverse cycle heat reclaim coil and subcooling method
JP4349430B2 (ja) * 2007-04-06 2009-10-21 ダイキン工業株式会社 熱交換器および空気調和装置
CN103604255B (zh) * 2013-08-26 2016-05-11 Tcl空调器(中山)有限公司 冷凝器及包括该冷凝器的空调器
CN109282537B (zh) * 2016-06-06 2019-10-29 珠海格力电器股份有限公司 换热器及空调器
CN108266925B (zh) * 2016-12-30 2021-05-18 杭州三花微通道换热器有限公司 换热器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11173770A (ja) * 1997-12-10 1999-07-02 Daikin Ind Ltd プレート式熱交換器
CN1434263A (zh) * 2002-12-30 2003-08-06 西安交通大学 低温两相流气液均匀分配板翅式相变换热器
JP2010281562A (ja) * 2010-07-29 2010-12-16 Sanyo Electric Co Ltd 熱交換装置
CN103983138A (zh) * 2014-05-16 2014-08-13 杭州杭氧股份有限公司 一种铝制板翅式换热器大气量两相流均布装置
CN204438360U (zh) * 2015-01-15 2015-07-01 华南理工大学 一种减少制冷剂充灌量的空调室外机
CN209371571U (zh) * 2018-12-29 2019-09-10 Tcl空调器(中山)有限公司 换热器流路结构及换热器、室外机、空调器
CN110307742A (zh) * 2019-07-26 2019-10-08 杭州中泰深冷技术股份有限公司 多级分离的板翅式换热器及换热方法

Also Published As

Publication number Publication date
CN112833531A (zh) 2021-05-25

Similar Documents

Publication Publication Date Title
US10760832B2 (en) Air-conditioning apparatus
TWI646288B (zh) 一種空調系統及其換熱器
WO2017092652A1 (zh) 过冷器及具有其的空调器
CN204438360U (zh) 一种减少制冷剂充灌量的空调室外机
JP6179414B2 (ja) 冷凍装置の熱源ユニットの熱交換器、および、それを備えた熱源ユニット
JP2012145271A (ja) 熱交換器
WO2022068950A1 (zh) 房间温度调节装置
WO2021103735A1 (zh) 冷凝器以及包括该冷凝器的空调器
CN210951945U (zh) 空调系统
CN109458748A (zh) 空调循环系统及空调器
WO2021114541A1 (zh) 用于冷水机组的液滴蒸发装置及冷水机组
WO2021103655A1 (zh) 换热器及空调器
WO2023115956A1 (zh) 蛇形管微通道换热器、空调器
KR101392856B1 (ko) 수냉식 열교환 구조를 갖는 실외기 없는 냉,난방장치
JPWO2019211893A1 (ja) 熱交換器及び冷凍サイクル装置
CN209672623U (zh) 一种对高温油液进行制冷降温机组
JP2014137172A (ja) 熱交換器及び冷凍装置
JP2013083420A (ja) 熱交換器および空気調和機
KR101423137B1 (ko) 실외기 없는 난방장치
CN105987542A (zh) 换热机组
CN111912261A (zh) 一种换热器
CN111256383B (zh) 复合换热器以及具有该复合换热器的换热系统
CN205580039U (zh) 换热机组
CN105526740A (zh) 蒸发器及包含该蒸发器的空调器
KR20190128408A (ko) 냉동장치의 액열기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20892474

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20892474

Country of ref document: EP

Kind code of ref document: A1