WO2021114541A1 - 用于冷水机组的液滴蒸发装置及冷水机组 - Google Patents

用于冷水机组的液滴蒸发装置及冷水机组 Download PDF

Info

Publication number
WO2021114541A1
WO2021114541A1 PCT/CN2020/086043 CN2020086043W WO2021114541A1 WO 2021114541 A1 WO2021114541 A1 WO 2021114541A1 CN 2020086043 W CN2020086043 W CN 2020086043W WO 2021114541 A1 WO2021114541 A1 WO 2021114541A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
heat
evaporation device
droplet evaporation
fin
Prior art date
Application number
PCT/CN2020/086043
Other languages
English (en)
French (fr)
Inventor
路则锋
郭鑫
Original Assignee
青岛海尔智能技术研发有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔智能技术研发有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔智能技术研发有限公司
Publication of WO2021114541A1 publication Critical patent/WO2021114541A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • F25B40/06Superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically

Definitions

  • This application relates to the field of air conditioning technology, for example, to a droplet evaporation device used in a water chiller and a water chiller.
  • chillers for example, falling film chillers
  • the unevaporated refrigerant droplets in the evaporator are easily carried into the suction pipe along with the evaporating airflow, and then into the compressor. This not only reduces the performance of the unit, but also easily causes the compressor to generate liquid due to suction. As a result, the unit will be damaged.
  • the refrigerant liquid enters the compressor, the amount of oil running out of the compressor will increase, which is likely to damage the compressor due to lack of oil.
  • the suction and liquid have seriously affected the operating reliability and performance of the unit.
  • the existing chillers have the phenomenon of suction and liquid, which reduces the operational reliability and performance of the chillers.
  • the embodiments of the present disclosure provide a droplet evaporation device and a water chiller for a water chiller, so as to solve the technical problem of the phenomenon of suction and liquid in the existing water chiller and reduce the operational reliability and performance of the chiller.
  • the droplet evaporation device for the chiller includes,
  • the first channel can be connected to the pipeline between the evaporator and the compressor of the chiller;
  • the second channel is set to exchange heat with the first channel and can be connected to the heat exchange medium.
  • the droplet evaporation device used in the chiller further includes:
  • the third channel is configured to exchange heat with the first channel; and can be connected to a heat exchange medium.
  • the chiller includes a compressor, an evaporator, a condenser, and a throttling device, which further includes the droplet evaporation device according to any one of claims 1 to 5;
  • the first channel of the droplet evaporation device is connected in series or in parallel to the pipeline between the gas phase outlet of the evaporator and the suction port of the compressor; the second channel of the droplet evaporation device is connected to heat exchange medium;
  • the third channel is connected to the heat exchange medium.
  • the embodiment of the present disclosure provides a droplet evaporation device for a water chiller and a water chiller, which can achieve the following technical effects:
  • the first channel can be connected to the pipeline between the evaporator and the compressor of the chiller, so that the refrigerant vapor discharged from the evaporator passes through the droplet evaporation device before entering the compressor In the first passage, it exchanges heat with the heat exchange medium in the second passage, absorbs the heat of the heat exchange medium in the second passage, evaporates the refrigerant droplets carried in the refrigerant vapor, and eliminates the suction of the compressor
  • the liquid-carrying problem also improves the operating reliability and performance of the unit.
  • FIG. 1 is a schematic structural diagram of a droplet evaporation device provided by an embodiment of the present disclosure
  • Figure 2 is a schematic diagram of the A-A cross-sectional structure in Figure 1;
  • Fig. 3 is a schematic structural diagram of a droplet evaporation device provided by an embodiment of the present disclosure
  • Fig. 4 is a schematic diagram of the sectional structure in the direction of B-B in Fig. 3;
  • FIG. 5 is a schematic cross-sectional structure diagram of a droplet evaporation device in the direction of B-B in FIG. 3 according to an embodiment of the present disclosure
  • FIG. 6 is a schematic structural diagram of a droplet evaporation device provided by an embodiment of the present disclosure.
  • Fig. 7 is a schematic diagram of the cross-sectional structure along the direction C-C in Fig. 6;
  • FIG. 8 is a schematic cross-sectional structure view taken along the C-C direction in FIG. 6 of a droplet evaporation device provided by an embodiment of the present disclosure
  • FIG. 9 is a schematic cross-sectional structure diagram of a droplet evaporation device in the direction of C-C in FIG. 6 according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of a droplet evaporation device provided by an embodiment of the present disclosure.
  • Fig. 11 is a schematic diagram of the cross-sectional structure along the direction D-D in Fig. 10;
  • FIG. 12 is a schematic cross-sectional structure view taken along the D-D direction in FIG. 10 of a droplet evaporation device provided by an embodiment of the present disclosure
  • FIG. 13 is a schematic longitudinal sectional view of a droplet evaporation device provided by an embodiment of the present disclosure
  • Figure 14 is a schematic structural diagram of a chiller provided by an embodiment of the present disclosure.
  • Figure 15 is a schematic structural diagram of a chiller provided by an embodiment of the present disclosure.
  • Figure 16 is a schematic structural diagram of a chiller provided by an embodiment of the present disclosure.
  • Figure 17 is a schematic structural diagram of a chiller provided by an embodiment of the present disclosure.
  • Figure 18 is a schematic diagram of the structure of an existing chiller
  • the dashed lines shown are structural lines of the internal structure.
  • Droplet evaporation device 101, first channel; 102, second channel; 103, third channel; 104, partition plate; 110, inner tube; 111, inlet end; 112, outlet end; 120, outer Tube; 121, medium inflow end; 122, medium outflow end; 130, sleeve; 131, second medium inflow end; 132, second medium outflow end; 140, first heat conduction fin; 150, second heat conduction fin 160, the third heat conduction fin; 170, the overall heat conduction fin; 200, compressor; 201, suction port; 202, exhaust port; 210, evaporator; 220, condenser; 230, throttling device; 240 , Valve; 241, the first pipeline; 242, the second pipeline; 243, the third pipeline.
  • connection should be understood in a broad sense, for example, they can be mechanically connected or electrically connected, or they can be inside two components.
  • the connection may be a direct connection or an indirect connection through an intermediary.
  • the embodiment of the present disclosure provides a droplet evaporation device for a chiller. 1 to 12, the droplet evaporation device 100 includes a first channel 101 and a second channel 102; the first channel 101 can be connected to the pipeline between the evaporator and the compressor of the chiller; the second The channel 102 is configured to exchange heat with the first channel 101 and can be connected to a heat exchange medium.
  • the existing chiller generally includes an evaporator 210 (for example, a falling film evaporator), a compressor 200, a condenser 220, and a throttling device 230 through the evaporator 210.
  • the evaporated refrigerant vapor enters the compressor 200 through the suction port 201 of the compressor 200, and is compressed by the compressor 200 to form high-temperature and high-pressure exhaust gas, which is discharged through the exhaust port 202 of the compressor 200 and enters the condenser 220 ,
  • the condenser 220 exchanges heat with the cooling water and condenses to form a higher temperature and higher pressure liquid refrigerant, and then enters the throttling device 230.
  • a low-temperature and low-pressure gas-liquid refrigerant After being throttled by the throttling device 230, a low-temperature and low-pressure gas-liquid refrigerant is formed.
  • the phase refrigerant enters the evaporator 210, exchanges heat with the refrigerant water in the evaporator 210, evaporates into refrigerant vapor, and enters the compressor through the suction port 201 of the compressor 200 to realize the entire refrigeration cycle/heating cycle.
  • the first channel 101 can be connected to the pipeline between the evaporator 210 of the chiller and the compressor 200, so that the refrigerant vapor discharged from the evaporator 210 before entering the compressor 200 , Through the first channel 101 of the droplet evaporator 100, it exchanges heat with the heat exchange medium in the second channel 102, absorbs the heat of the heat exchange medium in the second channel 102, and makes the refrigerant liquid carried in the refrigerant vapor Droplet evaporation eliminates the problem of compressor suction and liquid, and at the same time improves the reliability and performance of the unit.
  • the heat exchange medium inserted into the second channel 102 of the droplet evaporator 100 is a high-temperature heat exchange medium, specifically, it refers to a medium whose temperature is higher than that of the medium circulating in the first channel 101 (for example, refrigerant The temperature of the steam) is the heat exchange medium. This ensures that heat can be supplied to the refrigerant vapor circulating in the first passage 101, so that the refrigerant droplets carried therein absorb heat and evaporate. Therefore, the high-temperature heat exchange medium connected in the second channel 102 can be selected according to the actual situation.
  • the second passage 102 can be connected to the pipeline between the condenser 120 and the throttling device 130 of the chiller (the second pipeline 242 as described in FIG. 14 and FIG. 15 ). That is, the higher temperature and higher pressure liquid refrigerant discharged after being condensed by the condenser 120 is used as the heat exchange medium.
  • the higher temperature and higher pressure liquid refrigerant discharged after being condensed by the condenser 220 enters the second channel 102 of the droplet evaporator 100 before entering the throttling device 230, and flows through it.
  • the refrigerant vapor in the first passage 101 exchanges heat, and then flows into the throttle device 230.
  • the heat inside the refrigeration cycle itself is used to heat the refrigerant vapor to complete the heat exchange.
  • the subcooling degree of the liquid refrigerant is improved, so that the energy efficiency of the chiller is improved.
  • the second passage 102 can be connected to the return water pipeline (the third pipeline 243 as shown in FIG. 16) on the refrigerant return interface of the evaporator of the chiller. That is, the return water of the refrigerant from the central air conditioning system (the return water of the high-temperature refrigerant in the refrigeration cycle) is used as the heat exchange medium.
  • the refrigerant return water from the central air-conditioning system (the high-temperature refrigerant return water in the refrigeration cycle) is connected to the second channel 102, and the refrigerant vapor entering the first channel 101 enters into heat exchange, and the refrigerant vapor absorbs The heat takes away part of the heat in the return water of the high-temperature refrigerant; the temperature of the return water of the high-temperature refrigerant decreases, and then enters the evaporator. After further heat exchange with the gas-liquid two-phase refrigerant in the evaporator, the temperature of the refrigerant water further drops. After flowing out of the evaporator, it enters the central air-conditioning system. Improve the cooling capacity of the chiller.
  • the evaporator is a falling film evaporator.
  • heat exchange media that can be accessed in the second channel 102 of the droplet evaporation device 100 are not limited to the above two types, and other easily available high temperature heat exchange media can also be connected.
  • the specific structure of the first channel 101 and the second channel 102 of the droplet evaporation device 100 is not limited, as long as the two can realize heat exchange.
  • the first droplet evaporation device 100 includes an inner tube 110 and an outer tube 120; the inner tube 110 is configured with a first channel 101; and the outer tube 120 is sleeved in The inner tube 110 is outside; the outer annular channel between the outer tube 120 and the inner tube 110 serves as the second channel 102.
  • the inlet end 111 of the inner tube 110 and the first medium outlet end 122 of the outer tube 120 are located on the same side. That is, the outlet end 112 of the inner tube 110 and the second medium inflow end 121 of the outer tube 120 are located on the same side. Then, the flow directions of the medium in the first channel 101 and the second channel 102 are opposite, forming a countercurrent heat exchange and improving the heat exchange efficiency.
  • the droplet evaporation device 100 further includes a third channel 103; the third channel 103 is configured to exchange heat with the first channel 101; and, a heat exchange medium can be connected.
  • the heat exchange medium that can be accessed by the third channel 103 is the same as the heat exchange medium that can be accessed by the second channel 102 described above.
  • the heat exchange medium connected in the third channel 103 may be the same as or different from the heat exchange medium connected in the second channel 102.
  • the arrangement of the third channel 103 increases the heat exchange amount, evaporates more refrigerant droplets carried in the refrigerant vapor, eliminates the problem of liquid suction of the compressor, and improves the operating reliability and performance of the unit.
  • the second type of droplet evaporation device 100 includes an inner tube 110 and an outer tube 120; the inner tube 110 is configured with a first channel 101; and the outer tube 120 is sleeved in The inner tube 110 is outside; an outer annular channel is formed between the outer tube 120 and the inner tube 110.
  • the outer annular channel is divided into two channels in the axial direction, one channel is used as the second channel 102 and the other channel is used as the third channel 103.
  • a partition plate 104 is provided along the radial direction in the outer annular channel to divide the outer annular channel into two channels.
  • the partition plate 104 is made of heat insulating material. The heat exchange between the heat exchange medium in the second channel 102 and the third channel 103 is avoided.
  • the third droplet evaporation device 100 includes a sleeve 130, an inner tube 110, and an outer tube 120; the sleeve 130 is configured with a third channel 103; 130 is arranged in the inner tube 110, an inner annular channel is formed between the outer wall of the sleeve 130 and the inner tube 110, and the inner annular channel serves as the first channel 101; the outer tube 120 is sleeved outside the inner tube 110; the outer tube 120 and the inner tube An outer annular channel is formed between 110 and the outer annular channel serves as the second channel 102.
  • the inlet end 111 of the inner tube 110, the first medium outflow end 122 of the outer tube 120, and the second medium outflow end 132 of the sleeve 130 are located on the same side. That is, the outlet end 112 of the inner tube 110, the first medium inflow end 121 of the outer tube 120, and the second medium inflow end 131 of the sleeve 130 are located on the same side. Then, the flow direction of the heat exchange medium in the second channel 102 and the third channel 103 is the same, but is opposite to the flow direction of the medium in the first channel 101, forming a countercurrent heat exchange and improving heat exchange efficiency.
  • the droplet evaporation device 100 further includes a first heat-conducting fin 140 and/or a second heat-conducting fin 150.
  • the first heat conducting fin 140 is arranged in the first channel 101 and connected to the heat exchange wall between the first channel 101 and the second channel 102 (for example, the tube wall of the inner tube 110 as shown in FIG. 4) .
  • the second heat conducting fin 150 is disposed in the second channel 102 and connected to the heat exchange wall between the first channel 101 and the second channel 102 (for example, the tube wall of the inner tube 110 as shown in FIG. 4 ).
  • the first thermally conductive fin 140 may also interact with the heat exchange wall between the first channel 101 and the third channel 103 (for example, the inner tube shown in FIG. 8 110, or, as shown in Fig. 12, the pipe wall of the sleeve 130) is connected.
  • the arrangement of the first heat conducting fin 140 can increase the heat exchange area of the refrigerant vapor circulating in the first channel 101 and improve the heat exchange efficiency.
  • the droplets of refrigerant in the refrigerant vapor collide with the first heat-conducting fin 140, and can adhere to the wall surface of the first heat-conducting fin 140, and under the action of the heat conducted on the first heat-conducting fin 140 Evaporation and gasification improve the conversion rate of droplet refrigerant.
  • the second heat-conducting fin 150 can increase the heat exchange area of the heat exchange medium in the second channel 102 and improve the heat exchange efficiency.
  • the arrangement of the first thermally conductive fin 140 and the second thermally conductive fin 150 is not limited, and can be arranged in a manner parallel to the axial direction of the inner cylinder 110 (or the outer cylinder 120), or can be arranged in parallel with the axial direction. Set in a certain angle.
  • the first thermally conductive fin 140 is located between the gas phase inflow port and the gas phase out port of the first channel 101. Both ends of the first thermally conductive fin 140 do not exceed the interface of the first channel 101 on the side. In order to ensure that the refrigerant vapor can be filled into the entire first passage 101.
  • the second thermally conductive fin 150 is located between the medium inflow interface and the medium outflow interface of the second channel 101. Both ends of the second thermally conductive fin 150 do not exceed the interface of the second channel 102 on the side. In order to ensure that the heat exchange medium can be filled into the entire second channel 102.
  • a type of droplet evaporating device 100 provided with first heat conduction fins 140 and second heat conduction fins 150 is added.
  • One end of the first thermally conductive fin 140 is lower than the gas-phase inflow port of the first channel 101 (for example, the inlet end 111 of the inner tube 110), and the other end is lower than the gas-phase outflow port of the first channel 101 (for example, the gas-phase outflow port of the inner tube 110).
  • Out of air 112 is
  • the refrigerant vapor flowing in from the gas-phase inflow port of the first channel 101 can flow into all the sub-channels formed by the first heat conduction fins 140 after entering, and can all flow to the gas-phase outflow port and be discharged.
  • One end of the second thermally conductive fin 150 is lower than the medium outflow interface of the second channel 102 (for example, the first medium outflow end 122 of the outer tube 120), and the other end is lower than the medium inflow interface of the second channel 102 (for example, the outer tube
  • the first medium inflow end of 120 is 121). It is ensured that the heat exchange medium flowing in from the medium inflow interface of the second channel 102 can flow into all the sub-channels formed by the second heat conduction fins 150 after entering, and can all flow to the medium outflow interface and be discharged.
  • the first thermally conductive fin 140 is in the shape of a flat sheet and is arranged in a manner parallel to the axial direction.
  • the second heat conducting fin 150 is in the shape of a flat sheet and is arranged in a manner parallel to the axial direction.
  • first heat-conducting fin 140 and/or the second heat-conducting fin 150 are arranged at a certain angle with the axial direction of the inner cylinder 110 (or the outer cylinder 120), that is, the first heat-conducting fin 140 and/or The second heat conducting fin 150 is arranged around the heat exchange wall between the first channel 101 and the second channel 102.
  • the first heat conduction fin 140 is a spiral heat conduction fin, and the outer arc edge is arranged on the inner wall of the inner tube 110.
  • the first channel 101 is formed into a spiral channel.
  • the second heat-conducting fin 150 is a spiral heat-conducting fin, the inner arc edge is arranged on the outer wall of the inner tube 110, and the outer arc edge is arranged on the inner wall of the outer tube 120.
  • the second channel 102 is formed into a spiral channel.
  • the number of the first heat conduction fin 140 and the second heat conduction fin 150 is not limited, and can be determined according to actual conditions.
  • first thermally conductive fins 140 which are distributed in the first channel 101.
  • a plurality of flat sheet-shaped first heat conducting fins 140 are radially arranged in the first channel 101.
  • second thermally conductive fins 150 there are multiple second thermally conductive fins 150, which are distributed in the second channel 102.
  • a plurality of flat sheet-shaped second thermally conductive fins 150 are radially arranged in the second channel 102.
  • the droplet evaporating device 100 includes a first thermal conductive fin 140 and a second thermal conductive fin 150; the first thermal conductive fin 140 and the second thermal conductive fin 150 are arranged correspondingly; or, alternately arranged.
  • the first heat-conducting fin 140 is disposed on the inner wall of the inner cylinder 110
  • the second heat-conducting fin 150 is disposed on the outer wall of the inner cylinder 110. Therefore, the relative positional relationship between the first heat-conducting fin 140 and the second heat-conducting fin 150 is not limited, and may be staggered, that is, not located in the same radial direction; or correspondingly, that is, the first heat-conducting fin 140 and the inner
  • the connection position of the inner wall of the cylinder 110 corresponds to the connection position of the second heat conducting fin 150 and the outer wall of the inner cylinder 110.
  • the first thermally conductive fin 140 and the second thermally conductive fin 150 are located in the same radial direction.
  • the first heat conduction fin 140 and the second heat conduction fin 150 are both in the shape of a flat sheet, and a plurality of first heat conduction fins 140 and a plurality of second heat conduction fins 150 are arranged in one-to-one correspondence, and the whole is arranged radially. .
  • first heat-conducting fin 140 and the second heat-conducting fin 150 are both spiral-shaped, and they are correspondingly disposed on the inner wall and the outer wall of the inner cylinder 110, respectively.
  • the first heat-conducting fin 140 is in the shape of a flat sheet and is arranged in the radial direction; the second heat-conducting fin 150 is in the shape of a spiral sheet and is wound on the outer wall of the inner cylinder 110, and the second channel 102 is configured as a spiral channel .
  • the droplet evaporation device 100 includes a first thermally conductive fin 140 and a second thermally conductive fin 150; the first thermally conductive fin 140 and the second thermally conductive fin 150 are connected. Heat can be directly exchanged between the first heat-conducting fin 140 and the second heat-conducting fin 150, which reduces the conductive medium and improves the heat exchange efficiency. As shown in FIG. 5, the first thermally conductive fin 140 and the second thermally conductive fin 150 may be integrally connected to form an integral thermally conductive fin 170. It is also possible to realize the connection between the two through one or more connecting bridge structures.
  • an assembling hole is opened on the wall of the inner cylinder 110, and the integral heat-conducting fin is inserted and fixed through the assembling hole, or, After a heat-conducting fin 140 and a second heat-conducting fin 150 are plug-connected and fixed through the assembly hole, the assembly gap can be sealed.
  • first heat conduction fin 140 and the inner cylinder 110 are integrally formed; or, the second heat conduction fin 150 and the inner cylinder 110 are integrally formed; or, the first heat conduction fin 140 and the second heat conduction fin 150 are both integrally formed with the inner cylinder 110 one-piece molding.
  • the droplet evaporating device 100 includes a third channel 103; then, the droplet evaporating device 100 further includes a third thermally conductive fin 160 disposed in the third channel 103 and connected to the first channel 101
  • the heat exchange walls between the third channels 103 (for example, the tube wall of the inner tube 110 as shown in FIG. 8 or the tube wall of the sleeve 130 as shown in FIG. 12) are connected.
  • the third heat-conducting fin 160 can increase the heat exchange area of the heat exchange medium in the third channel 103 and improve the heat exchange efficiency.
  • the arrangement and number of the third heat-conducting fins 160 and the relative positional relationship with the first heat-conducting fins 140 are the same as those of the second heat-conducting fins 150, which will not be repeated here.
  • the third heat conducting fin 160 is located between the medium inflow interface and the medium outflow interface of the third channel 103. Both ends of the third thermally conductive fin 160 do not exceed the interface of the third channel 103 on the side. In order to ensure that the heat exchange medium can be filled into the entire third channel 103.
  • FIG. 13 a schematic longitudinal cross-sectional structure diagram of a third droplet evaporation device 100 including a third thermally conductive fin 160, one end of the third thermally conductive fin 160 is lower than the medium outflow interface (for example, sleeve of the third channel 103).
  • the second medium outflow end 132 of the tube 130), and the other end is lower than the medium inflow port of the third channel 103 (for example, the second medium inflow end 131 of the outer tube 130). It is ensured that the heat exchange medium flowing in from the medium inflow interface of the third channel 103 can flow into all the sub-channels formed by the third heat conducting fins 160 after entering, and can all flow to the medium outflow interface and be discharged.
  • the droplet evaporation device 100 includes a first heat conducting fin 140, a second heat conducting fin 150, and a third heat conducting fin 160; the three are arranged correspondingly; or, they are arranged alternately.
  • the relative positional relationship of the three is not limited, and may be staggered, that is, they are not located in the same radial direction. It can also be arranged correspondingly, that is, the connection positions of the first heat conduction fin 140 and the second heat conduction fin 150 on the heat exchange wall are the same, and the first heat conduction fin 140 and the third heat conduction fin 160 are on the heat exchange wall. The connection positions are the same.
  • the second heat-conducting fin 150 and the third heat-conducting fin 160 are respectively arranged in the second channel 102 and the second channel separated by the outer annular channel. Inside the third channel 103.
  • the first heat conduction fin 140 and the second heat conduction fin 150 are located in the same radial direction; the first heat conduction fin 140 and the third heat conduction fin 160 are located in the same radial direction.
  • the first heat-conducting fin 140, the second heat-conducting fin 150, and the third heat-conducting fin 160 are all in the shape of a flat sheet, and the whole is arranged radially.
  • the first heat conduction fin 140, the second heat conduction fin 150 and the third heat conduction fin 160 are located in the same radial direction.
  • the first thermally conductive fin 140, the second thermally conductive fin 150, and the third thermally conductive fin 160 are all in the shape of a flat sheet, and a plurality of first thermally conductive fins 140, a plurality of second thermally conductive fins 150, and The three third heat conducting fins 160 are arranged in one-to-one correspondence, and are arranged radially as a whole.
  • the first heat-conducting fin 140, the second heat-conducting fin 150, and the third heat-conducting fin 160 are all spiral-shaped, and the three are correspondingly disposed in the first channel that is an inner annular channel, and are in an outer ring shape.
  • the second channel and the third channel of the channel are all spiral-shaped, and the three are correspondingly disposed in the first channel that is an inner annular channel, and are in an outer ring shape.
  • the first heat-conducting fin 140 is in the shape of a flat sheet and is arranged in the radial direction;
  • the second heat-conducting fin 150 is in the shape of a spiral sheet and is wound on the outer wall of the inner cylinder 110, and the second channel 102 is configured as a spiral channel ;
  • the third heat conduction fin 160 is a spiral sheet, is provided on the inner wall of the sleeve 130, and the third channel 103 is configured as a spiral channel.
  • the droplet evaporation device 100 includes a first thermally conductive fin 140, a second thermally conductive fin 150, and a third thermally conductive fin 160; the first thermally conductive fin 140 and the second thermally conductive fin 150 are connected; the first The thermally conductive fin 140 and the third thermally conductive fin 160 are connected.
  • Heat can be directly exchanged between the first heat conducting fin 140 and the second heat conducting fin 150, and the first heat conducting fin 140 and the third heat conducting fin 160, thereby reducing the conductive medium and improving the heat exchange efficiency.
  • the first thermally conductive fin 140, the second thermally conductive fin 150 and the third thermally conductive fin 160 may be integrally connected to form an integral thermally conductive fin. It is also possible to realize the connection between the two through one or more connecting bridge structures. This embodiment is not shown, and the structure of this embodiment can be understood by combining the structures shown in FIG. 5, FIG. 9 and FIG. 12.
  • the wall of the inner cylinder 110 and the sleeve 130 are respectively provided with assembling holes, and the integral thermally conductive fins After being inserted and fixed through the assembling hole, or, the first heat conduction fin 140 and the second heat conduction fin 150 are plug-connected and fixed through the assembling hole, and the first heat conduction fin 140 and the third heat conduction fin 150 are inserted through the assembling hole. Connect and fix, and then seal the assembly gap.
  • first thermally conductive fin 140 and the inner cylinder 110 are integrally formed; or, the second thermally conductive fin 150 and the inner barrel 110 are integrally formed; or, the third thermally conductive fin 160 and the sleeve 130 are integrally formed.
  • first thermally conductive fin 140, the second thermally conductive fin 150, and the third thermally conductive fin 160 are integrally formed with the inner cylinder 110 and the sleeve 130.
  • the embodiment of the present disclosure discloses a chiller.
  • the chiller includes a compressor 200, an evaporator 210, a condenser 220, and a throttling device 230, which also includes a droplet evaporation device 100.
  • the first channel 101 of the droplet evaporation device 100 is connected in series or in parallel to the pipeline (defined as the first pipeline 241) between the gas phase outlet of the evaporator 210 and the suction port of the compressor 200; the second channel 102 is connected Heat exchange medium.
  • the third channel 103 is connected to the heat exchange medium.
  • the first channel 101 of the droplet evaporator 100 is connected to the pipeline between the gas phase outlet of the evaporator 210 and the suction port of the compressor 200, so that the evaporator 210 is discharged
  • the refrigerant vapor passes through the first passage 101 of the droplet evaporator 100, exchanges heat with the heat exchange medium in the second passage 102, and absorbs the heat of the heat exchange medium in the second passage 102 to make
  • the refrigerant droplets carried in the refrigerant vapor evaporate, which eliminates the problem of liquid suction in the compressor, and at the same time improves the operating reliability and performance of the unit.
  • the heat exchange medium inserted into the second channel 102 of the droplet evaporator 100 is a high-temperature heat exchange medium, specifically, it refers to a higher temperature than the refrigerant vapor circulating in the first channel 101 The temperature of the heat exchange medium. This ensures that heat can be supplied to the refrigerant vapor circulating in the first passage 101, so that the refrigerant droplets carried therein absorb heat and evaporate. Therefore, the high-temperature heat exchange medium connected in the second channel 102 can be selected according to the actual situation.
  • the second passage 102 is connected in series or in parallel to the pipeline (defined as the second pipeline 242) between the liquid phase outlet of the condenser 220 and the inlet end of the throttling device 230.
  • the second channel 102 is connected in series to the pipeline between the liquid phase outlet of the condenser 220 and the inlet end of the throttling device 230.
  • the second passage 102 is connected in parallel to the pipeline between the liquid phase outlet of the condenser 220 and the inlet end of the throttling device 230. That is, the higher temperature and higher pressure liquid refrigerant discharged after being condensed by the condenser 120 is used as the heat exchange medium.
  • the higher temperature and higher pressure liquid refrigerant discharged after being condensed by the condenser 220 enters the second channel 102 of the droplet evaporator 100 before entering the throttling device 230, and flows through it.
  • the refrigerant vapor in the first passage 101 exchanges heat, and then flows into the throttle device 230.
  • the heat inside the refrigeration cycle itself is used to heat the refrigerant vapor to complete the heat exchange.
  • the subcooling degree of the liquid refrigerant is improved, so that the energy efficiency of the chiller is improved.
  • the second channel 102 is connected in series or in parallel to a pipeline (defined as the third pipeline 243) connected to the refrigerant return port of the evaporator 210.
  • the second channel 102 is connected in series to the pipeline connected to the refrigerant return port of the evaporator 210. That is, the return water of the refrigerant from the central air conditioning system (the return water of the high-temperature refrigerant in the refrigeration cycle) is used as the heat exchange medium.
  • the refrigerant return water from the central air-conditioning system (the high-temperature refrigerant return water in the refrigeration cycle) is connected to the second channel 102, and the refrigerant vapor entering the first channel 101 enters into heat exchange, and the refrigerant vapor absorbs The heat takes away part of the heat in the return water of the high-temperature refrigerant; the temperature of the return water of the high-temperature refrigerant decreases, and then enters the evaporator. After further heat exchange with the gas-liquid two-phase refrigerant in the evaporator, the temperature of the refrigerant water further drops. After flowing out of the evaporator, it enters the central air-conditioning system. Improve the cooling capacity of the chiller.
  • the heat exchange medium connected in the third channel 103 of the droplet evaporator 100 is a high temperature heat exchange medium, which is the same as the high temperature heat exchange medium connected in the second channel 102 described above.
  • the droplet evaporation device 100 includes a third channel 103. Then, the third channel 103 is connected in series or in parallel to the pipeline between the liquid phase outlet of the condenser 220 and the inlet end of the throttling device 230 (the second pipeline 242); or, the third channel 103 is connected in series or in parallel to the evaporator
  • the pipeline (third pipeline 243) connected to the refrigerant return port of 210. Increase the amount of heat exchange, so that more refrigerant droplets carried in the refrigerant vapor evaporate, eliminate the problem of compressor suction and liquid, and at the same time improve the operating reliability and performance of the unit.
  • the heat exchange medium connected in the third channel 103 may be the same as or different from the heat exchange medium connected in the second channel 102.
  • the second channel 102 of the droplet evaporation device 100 is connected in series or in parallel to the second pipeline 242, and the third channel 103 is connected in series or in parallel to the second pipeline 242; the second channel 102 and the third channel 103 are connected in parallel .
  • the higher temperature and higher pressure liquid refrigerant discharged after being condensed by the condenser 220 enters the second channel 102 and the third channel 103 of the droplet evaporation device 100 before entering the throttling device 230.
  • the second channel 102 of the droplet evaporation device 100 is connected in series or in parallel to the third pipeline 243, and the third channel 103 is connected in series or in parallel to the third pipeline 243; the second channel 102 and the third channel 103 are connected in parallel .
  • the refrigerant return water from the central air-conditioning system (the high-temperature refrigerant return water in the refrigeration cycle) is simultaneously connected to the second channel 102 and the third pipe 103, and is exchanged with the refrigerant vapor entering the first channel 101.
  • the refrigerant vapor absorbs heat and takes away part of the heat in the return water of the high-temperature refrigerant; the temperature of the return water of the high-temperature refrigerant decreases, and then enters the evaporator, and further exchanges heat with the gas-liquid two-phase refrigerant in the evaporator.
  • the temperature of the water drops further, and after flowing out of the evaporator, it enters the central air-conditioning system. Improve the cooling capacity of the chiller.
  • the second channel 102 of the droplet evaporation device 100 is connected in series or in parallel to the second pipeline 242, and the third channel 103 is connected in series or in parallel to the third pipeline 243.
  • Increase the evaporation of liquid droplets in the refrigerant vapor further increase the subcooling degree of the liquid refrigerant, and further reduce the temperature of the refrigerant water, thereby improving the energy efficiency of the chiller.
  • the second channel 102 of the droplet evaporation device 100 is connected in series to the second pipeline 242, and the third channel 103 is connected in series to the third pipeline 243.
  • the second channel 102 of the droplet evaporator 100 can also be connected to other easily available pipelines with high-temperature heat exchange medium, and is not limited to the liquid phase refrigeration in the chiller.
  • the agent or refrigerant returns to the water.
  • the channels of the droplet evaporation device 100 (the second channel 102 and/or the third channel 103) are arranged in parallel on the second pipeline or the third pipeline, the second pipeline or the third pipeline On the parallel section, set a valve.
  • the path can be switched.
  • Valve 240 as described in FIG. 15.
  • the evaporator 210 adopts a falling film evaporator.
  • the droplet evaporator 100 of the embodiment of the present disclosure is not limited to being applied to a chiller, and can also be applied to other refrigeration/heating cycle systems, for example, a refrigeration/heating cycle system of a household air conditioner.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

本申请涉及空调技术领域,公开了一种用于冷水机组的液滴蒸发装置包括,第一通道,可接入冷水机组的蒸发器与压缩机之间的管路上;第二通道,设置为可与第一通道换热,且可接入换热介质。液滴蒸发装置的第一通道可接入冷水机组的蒸发器与压缩机之间的管路上,使制冷剂蒸气在经由第一通道内,与第二通道内的换热介质换热,吸收第二通道内的换热介质的热量,使制冷剂蒸气中携带的制冷剂液滴蒸发,消除了压缩机的吸气带液问题,同时提高了机组的运行可靠性和性能。还公开了一种冷水机组。

Description

用于冷水机组的液滴蒸发装置及冷水机组
本申请基于申请号为201911251028.1、申请日为2019年12月09日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及空调技术领域,例如涉及一种用于冷水机组的液滴蒸发装置及冷水机组。
背景技术
目前,冷水机组,例如,降膜式冷水机组,在中央空调领域具有广泛的应用前景。在实际应用中,蒸发器中未蒸发的制冷剂液滴很容易随蒸发气流被带入吸气管,然后进入压缩机,这不仅降低机组性能,而且容易因吸气带液使压缩机发生液击,使机组发生损坏,同时制冷剂液体进入压缩机后,压缩机跑油量增加,容易因缺油使压缩机损坏。吸气带液严重影响了机组的运行可靠性和性能。在实现本公开实施例的过程中,发现相关技术中至少存在如下问题:现有冷水机组中存在吸气带液现象,降低了机组的运行可靠性和性能。
发明内容
为了对披露的实施例的一些方面有基本的理解,下面给出了简单的概括。所述概括不是泛泛评述,也不是要确定关键/重要组成元素或描绘这些实施例的保护范围,而是作为后面的详细说明的序言。
本公开实施例提供了一种用于冷水机组的液滴蒸发装置及冷水机组,以解决现有冷水机组中存在吸气带液现象,降低了机组的运行可靠性和性能的技术问题。
在一些实施例中,用于冷水机组的液滴蒸发装置,包括,
第一通道,可接入冷水机组的蒸发器与压缩机之间的管路上;
第二通道,设置为可与第一通道换热,且可接入换热介质。
在一些实施例中,用于冷水机组的液滴蒸发装置,还包括,
第三通道,设置为可与所述第一通道换热;且,可接入换热介质。
在一些实施例中,冷水机组,包括压缩机、蒸发器、冷凝器和节流装置,其中,还包括,如权利要求1至5中任一项所述的液滴蒸发装置;
所述液滴蒸发装置的第一通道串联或并联至所述蒸发器的气相出口和所述压缩机的吸气口之间的管路;所述液滴蒸发装置的第二通道接入换热介质;
当所述液滴蒸发装置包括第三通道时,所述第三通道接入换热介质。
本公开实施例提供的一种用于冷水机组的液滴蒸发装置及冷水机组,可以实现以下技术效果:
本公开实施例的液滴蒸发装置,第一通道可接入冷水机组的蒸发器与压缩机之间的管路上,使由蒸发器排出的制冷剂蒸气在进入压缩机之前,经由液滴蒸发装置的第一通道内,与第二通道内的换热介质换热,吸收第二通道内的换热介质的热量,使制冷剂蒸气中携带的制冷剂液滴蒸发,消除了压缩机的吸气带液问题,同时提高了机组的运行可靠性和性能。
以上的总体描述和下文中的描述仅是示例性和解释性的,不用于限制本申请。
附图说明
一个或一个以上实施例通过与之对应的附图进行示例性说明,这些示例性说明和附图并不构成对实施例的限定,附图中具有相同参考数字标号的元件示为类似的元件,附图不构成比例限制,并且其中:
图1是本公开实施例提供的一种液滴蒸发装置的结构示意图;
图2是图1中A-A向剖面结构示意图;
图3是本公开实施例提供的一种液滴蒸发装置的结构示意图;
图4是图3中B-B向剖面结构示意图;
图5是本公开实施例提供的一种液滴蒸发装置的以图3中的B-B向的剖面结构示意图;
图6是本公开实施例提供的一种液滴蒸发装置的结构示意图;
图7是图6中C-C向剖面结构示意图;
图8是本公开实施例提供的一种液滴蒸发装置的以图6中的C-C向的剖面结构示意图;
图9是本公开实施例提供的一种液滴蒸发装置的以图6中的C-C向的剖面结构示意图;
图10是本公开实施例提供的一种液滴蒸发装置的结构示意图;
图11是图10中D-D向剖面结构示意图;
图12是本公开实施例提供的一种液滴蒸发装置的以图10中的D-D向的剖面结构示意图;
图13是本公开实施例提供的一种液滴蒸发装置的纵向剖视结构示意图;
图14是本公开实施例提供的一种冷水机组的结构示意图;
图15是本公开实施例提供的一种冷水机组的结构示意图;
图16是本公开实施例提供的一种冷水机组的结构示意图;
图17是本公开实施例提供的一种冷水机组的结构示意图;
图18是现有冷水机组的结构示意图;
其中,上述的结构示意图中,示出的虚线为内部结构的结构线。
附图标记:
100、液滴蒸发装置;101、第一通道;102、第二通道;103、第三通道;104、分隔 板;110、内管;111、进气端;112、出气端;120、外管;121、介质流入端;122、介质流出端;130、套管;131、第二介质流入端;132、第二介质流出端;140、第一导热肋片;150、第二导热肋片;160、第三导热肋片;170、整体导热肋片;200、压缩机;201、吸气口;202、排气口;210、蒸发器;220、冷凝器;230、节流装置;240、阀门;241、第一管路;242、第二管路;243、第三管路。
具体实施方式
为了能够更加详尽地了解本公开实施例的特点与技术内容,下面结合附图对本公开实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本公开实施例。在以下的技术描述中,为方便解释起见,通过多个细节以提供对所披露实施例的充分理解。然而,在没有这些细节的情况下,一个或一个以上实施例仍然可以实施。在其它情况下,为简化附图,熟知的结构和装置可以简化展示。
在本文中,需要理解的是,诸如第一和第二等之类的关系术语仅仅用于将一个实体或者结构与另一个实体或结构区分开来,而不要求或者暗示这些实体或结构之间存在任何实际的关系或者顺序。
在本文中,需要理解的是,术语“纵向”、“横向”、“上”、“下”、“前”、“后”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。
在本文中,除非另有规定和限定,需要说明的是,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是机械连接或电连接,也可以是两个元件内部的连通,可以是直接相连,也可以通过中间媒介间接相连,对于本领域的普通技术人员而言,可以根据具体情况理解上述术语的具体含义。
在本文中,需要理解的是,术语“多个”是指两个或两个以上。
本公开实施例提供了一种用于冷水机组的液滴蒸发装置。结合图1至图12所示,液滴蒸发装置100,包括,第一通道101和第二通道102;第一通道101可接入冷水机组的蒸发器与压缩机之间的管路上;第二通道102设置为可与第一通道101换热,且可接入换热介质。
本公开实施例中,如图18所示,现有冷水机组,一般包括,蒸发器210(例如,降膜式蒸发器)、压缩机200、冷凝器220和节流装置230,经由蒸发器210蒸发后的制冷剂蒸气经由压缩机200的吸气口201进入压缩机200,经压缩机200压缩后,形成高温高压的排气,并经由压缩机200的排气口202排出,进入冷凝器220,在冷凝器220中与冷却水换热后冷凝形成较高温度和较高压力的液态制冷剂,然后再进入节流装置230,经节流装置230节流后,形成低温低压的气液两相制冷剂,并进入蒸发器210,在蒸发器210内与冷媒水换热后蒸发为制冷剂蒸气,再经由压缩机200的吸气口201进入压缩机,实现 整个制冷循环/制热循环。
本公开实施例的液滴蒸发装置100,第一通道101可接入冷水机组的蒸发器210与压缩机200之间的管路上,使由蒸发器210排出的制冷剂蒸气在进入压缩机200之前,经由液滴蒸发装置100的第一通道101内,与第二通道102内的换热介质换热,吸收第二通道102内的换热介质的热量,使制冷剂蒸气中携带的制冷剂液滴蒸发,消除了压缩机的吸气带液问题,同时提高了机组的运行可靠性和性能。
本公开实施例中,液滴蒸发装置100的第二通道102内接入的换热介质为高温换热介质,具体地,是指温度高于第一通道101内流通的介质(例如,制冷剂蒸气)的温度的换热介质。以保证可以向第一通道101内流通的制冷剂蒸气供热,使其中携带的制冷剂液滴吸热蒸发。故,第二通道102内接入的高温换热介质依据实际情况选择即可。
可选地,第二通道102可接入冷水机组的冷凝器120和节流装置130之间的管路(如图14和图15所述的第二管路242)上。即,将由冷凝器120冷凝后排出的较高温度和较高压力的液态制冷剂作为换热介质。本实施例中,将经冷凝器220冷凝后排出的较高温度和较高压力的液态制冷剂在进入节流装置230之前,先进入液滴蒸发装置100的第二通道102中,与流经第一通道101的制冷剂蒸气进行换热后,再流入节流装置230。利用制冷循环本身内部的热量为制冷剂蒸气加热,完成换热。提升了液态制冷剂的过冷度,从而使冷水机组的能效提升。
可选地,第二通道102可接入冷水机组的蒸发器的冷媒回水接口上的回水管路(如图16所述的第三管路243)上。即,将来自中央空调系统的冷媒回水(制冷循环中的高温冷媒回水)作为换热介质。本实施例中,将来自中央空调系统的冷媒回水(制冷循环中的高温冷媒回水)接入第二通道102内,与进入第一通道101的制冷剂蒸气进入换热,制冷剂蒸气吸收热量,带走高温冷媒回水中的一部分热量;则高温冷媒回水的温度降低,再进入蒸发器内,进一步与蒸发器内的气液两相制冷剂换热后,冷媒水的温度进一步下降,流出蒸发器后,进入中央空调系统。提高了冷水机组的制冷量。
可选地,蒸发器为降膜式蒸发器。
当然,液滴蒸发装置100的第二通道102内可接入的换热介质不限于上述的两种,亦可接入其他易获取的高温换热介质。
本公开实施例中,液滴蒸发装置100的第一通道101和第二通道102的具体结构形式不限定,只要保证两者可以实现换热即可。
在一些实施例中,如图1和图2所示,第一种液滴蒸发装置100,包括,内管110和外管120;内管110构造有第一通道101;外管120套设于内管110外;外管120与内管110之间的外环形通道作为第二通道102。
可选地,内管110的进气端111与外管120的第一介质流出端122位于同侧。也即,内管110的出气端112与外管120的第二介质流入端121位于同侧。则,第一通道101和第二通道102内介质的流动方向相反,形成逆流换热,提高换热效率。
在一些实施例中,液滴蒸发装置100,还包括,第三通道103;第三通道103设置为可与第一通道101换热;且,可接入换热介质。
本公开实施例中,第三通道103可接入的换热介质同前述的第二通道102可接入的换热介质。第三通道103接入的换热介质可以与第二通道102内接入的换热介质相同,也可以不同。第三通道103的设置,增加换热量,使制冷剂蒸气中携带的更多的制冷剂液滴蒸发,消除了压缩机的吸气带液问题,同时提高了机组的运行可靠性和性能。
在一些实施例中,如图6和图7所示,第二种液滴蒸发装置100,包括,内管110和外管120;内管110构造有第一通道101;外管120套设于内管110外;外管120与内管110之间形成外环形通道。外环形通道沿轴向分隔为两个通道,其中一个通道作为第二通道102,另一个通道作为第三通道103。在外环形通道内沿径向设置有分隔板104,将外环形通道分隔为两个通道。
可选地,分隔板104采用绝热材料。避免第二通道102和第三通道103内的换热介质之间的换热。
在一些实施例中,如图10和图11所示,第三种液滴蒸发装置100,包括,套管130,内管110和外管120;套管130构造有第三通道103;套管130设置于内管110内,套管130的外壁与内管110之间形成内环形通道,内环形通道作为第一通道101;外管120套设于内管110外;外管120与内管110之间形成外环形通道,外环形通道作为第二通道102。
可选地,内管110的进气端111、外管120的第一介质流出端122和套管130的第二介质流出端132位于同侧。也即,内管110的出气端112、外管120的第一介质流入端121和套管130的第二介质流入端131位于同侧。则,第二通道102和第三通道103内的换热介质的流动方向相同,而与第一通道101内的介质的流动方向相反,形成逆流换热,提高换热效率。
在一些实施例中,结合图3至图12所示,液滴蒸发装置100,还包括,第一导热肋片140和/或第二导热肋片150。其中,第一导热肋片140设置于第一通道101内,并与第一通道101与第二通道102之间的换热壁(例如,如图4所示的内管110的管壁)连接。第二导热肋片150设置于第二通道102内,并与第一通道101与第二通道102之间的换热壁(例如,如图4所示的内管110的管壁)连接。
其中,当液滴蒸发装置100包括第三通道103时,第一导热肋片140还可与第一通道101与第三通道103之间的换热壁(例如,如图8所示的内管110的管壁,或者,如图12所示的套管130的管壁)连接。
本公开实施例中,第一导热肋片140的设置,可以增大第一通道101内流通的制冷剂蒸气的换热面积,提高换热效率。同时,制冷剂蒸气中的液滴制冷剂与第一导热肋片140碰撞后,可粘附在第一导热肋片140的壁面上,并在第一导热肋片140上传导的热量的作用下蒸发气化,提高液滴制冷剂的转换率。第二导热肋片150可以增加第二通道102内的 换热介质的换热面积,提高换热效率。
本公开实施例中,第一导热肋片140和第二导热肋片150的设置方式不限定,可以沿内筒110(或者外筒120)的轴向平行的方式设置,也可以与轴向呈一定夹角的方式设置。
可选地,第一导热肋片140位于第一通道101的气相流入接口与气相流出接口之间。第一导热肋片140的两端边沿均不超出所在侧的第一通道101的接口。以保证制冷剂蒸气可填充至整个第一通道101。
可选地,第二导热肋片150位于第二通道101的介质流入接口与介质流出接口之间。第二导热肋片150的两端边沿均不超出所在侧的第二通道102的接口。以保证换热介质可填充至整个第二通道102。
如图3所示,为在第一种液滴蒸发装置100的基础上,增加设置第一导热肋片140和第二导热肋片150的一种液滴蒸发装置100。第一导热肋片140的一端低于第一通道101的气相流入接口(例如,内管110的进气端111),另一端低于第一通道101的气相流出接口(例如,内管110的出气端112)。保证由第一通道101的气相流入接口流入的制冷剂蒸气进入后可流动至所有的由第一导热肋片140分隔形成的子通道内,并可全部流动至气相流出接口并排出。第二导热肋片150的一端低于第二通道102的介质流出接口(例如,外管120的第一介质流出端122),另一端低于第二通道102的介质流入接口(例如,外管120的第一介质流入端121)。保证由第二通道102的介质流入接口流入的换热介质进入后可流动至所有的由第二导热肋片150分隔形成的子通道内,并可全部流动至介质流出接口并排出。
可选地,如图3至图5所示,第一导热肋片140为平面片状,以与轴向平行的方式设置。第二导热肋片150为平面片状,以与轴向平行的方式设置。
当第一导热肋片140和/或第二导热肋片150以与内筒110(或者外筒120)的轴向呈一定夹角的方式设置时,即,第一导热肋片140和/或第二导热肋片150绕设在第一通道101与第二通道102之间的换热壁上。
可选地,第一导热肋片140为螺旋状导热肋片,外侧弧边设置在内管110的内壁上。使第一通道101形成螺旋状通道。
可选地,第二导热肋片150为螺旋状导热肋片,内侧弧边设置在内管110的外壁上,外侧弧边设置在外管120的内壁上。使第二通道102形成螺旋状通道。
本公开实施例中,第一导热肋片140和第二导热肋片150的数量不限定,依据实际情况确定即可。
可选地,如图4所示,第一导热肋片140为多个,分布设置在第一通道101内。可选地,多个平面片状的第一导热肋片140呈放射状设置于第一通道101内。
可选地,如图4所示,第二导热肋片150为多个,分布设置在第二通道102内。可选地,多个平面片状的第二导热肋片150呈放射状设置于第二通道102内。
在一些实施例中,液滴蒸发装置100包括第一导热肋片140和第二导热肋片150;第 一导热肋片140和第二导热肋片150相对应设置;或者,交错设置。
本实施例中,第一导热肋片140设置于内筒110的内壁上,第二导热肋片150设置于内筒110的外壁上。因此,第一导热肋片140和第二导热肋片150的相对位置关系不限定,可以是交错设置,即不位于同一径向上;也可以是相对应设置,即第一导热肋片140与内筒110的内壁的连接位置,与第二导热肋片150与内筒110的外壁的连接位置相对应。
可选地,如图4所示,第一导热肋片140和第二导热肋片150位于同一径向上。本实施例中,第一导热肋片140和第二导热肋片150均为平面片状,多个第一导热肋片140和多个第二导热肋片150一一对应设置,整体呈放射状设置。
可选地,第一导热肋片140和第二导热肋片150均为螺旋片状,两者相对应地分别设置于内筒110的内壁和外壁上。
可选地,第一导热肋片140为平面片状,沿径向设置;第二导热肋片150为螺旋片状,绕设于内筒110的外壁上,将第二通道102构造为螺旋通道。
在一些实施例中,液滴蒸发装置100包括第一导热肋片140和第二导热肋片150;第一导热肋片140和第二导热肋片150连接。热量可以直接在第一导热肋片140和第二导热肋片150之间交换,减少传导介质,提高换热效率。如图5所示,第一导热肋片140和第二导热肋片150可以整体连接形状一个整体导热肋片170。也可以是通过一个或多个连接桥结构实现两者的连接。
本实施例中,当第一导热肋片140和第二导热肋片150连接时,内筒110的筒壁上开设装配孔,将整体导热肋片通过该装配孔插设固定后,或者,第一导热肋片140和第二导热肋片150通过该装配孔插接连接并固定后,将装配缝隙密封处理即可。
可选地,第一导热肋片140与内筒110一体成型;或者,第二导热肋片150与内筒110一体成型;或者,第一导热肋片140第二导热肋片150均与内筒110一体成型。
在一些实施例中,液滴蒸发装置100包括第三通道103;则,液滴蒸发装置100,还包括,第三导热肋片160,设置于第三通道103内,并与第一通道101与第三通道103之间的换热壁(例如,如图8所示的内管110的管壁,或者,如图12所示的套管130的管壁)连接。
本实施例中,第三导热肋片160可以增加第三通道103内的换热介质的换热面积,提高换热效率。
本公开实施例中,第三导热肋片160的设置方式和数量,以及同第一导热肋片140的相对位置关系均可与第二导热肋片150相同,在此不再赘述。
可选地,第三导热肋片160位于第三通道103的介质流入接口与介质流出接口之间。第三导热肋片160的两端边沿均不超出所在侧的第三通道103的接口。以保证换热介质可填充至整个第三通道103。如图13所示的包括第三导热肋片160的第三种液滴蒸发装置100的纵向剖面结构示意图,第三导热肋片160的一端低于第三通道103的介质流出接口(例如,套管130的第二介质流出端132),另一端低于第三通道103的介质流入接口(例 如,外管130的第二介质流入端131)。保证由第三通道103的介质流入接口流入的换热介质进入后可流动至所有的由第三导热肋片160分隔形成的子通道内,并可全部流动至介质流出接口并排出。
在一些实施例中,液滴蒸发装置100包括第一导热肋片140、第二导热肋片150和第三导热肋片160;三者相对应设置;或者,相互交错设置。
本实施例中,三者的相对位置关系不限定,可以是交错设置,即不位于同一径向上。也可以是相对应设置,即第一导热肋片140与第二导热肋片150在换热壁上的连接位置一致,第一导热肋片140与第三导热肋片160在换热壁上的连接位置一致。
可选地,结合图6至图9所示,针对第二种液滴蒸发装置,第二导热肋片150和第三导热肋片160分别设置于由外环形通道分隔出来的第二通道102和第三通道103内。第一导热肋片140和第二导热肋片150位于同一径向上;第一导热肋片140和第三导热肋片160位于同一径向上。本实施例中,第一导热肋片140、第二导热肋片150和第三导热肋片160均为平面片状,整体呈放射状设置。
可选地,结合图10至图12所示,针对第三种液滴蒸发装置,第一导热肋片140、第二导热肋片150和第三导热肋片160位于同一径向上。本实施例中,第一导热肋片140、第二导热肋片150和第三导热肋片160均为平面片状,多个第一导热肋片140、多个第二导热肋片150以及多个第三导热肋片160一一对应设置,整体呈放射状设置。
可选地,第一导热肋片140、第二导热肋片150和第三导热肋片160均为螺旋片状,三者相对应地分别设置于呈内环形通道的第一通道、呈外环形通道的第二通道和第三通道内。
可选地,第一导热肋片140为平面片状,沿径向设置;第二导热肋片150为螺旋片状,绕设于内筒110的外壁上,将第二通道102构造为螺旋通道;第三导热肋片160为螺旋片状,设置于套筒130的内壁上,将第三通道103构造为螺旋通道。
在一些实施例中,液滴蒸发装置100包括第一导热肋片140、第二导热肋片150和第三导热肋片160;第一导热肋片140和第二导热肋片150连接;第一导热肋片140和第三导热肋片160连接。热量可以直接在第一导热肋片140和第二导热肋片150,以及第一导热肋片140和第三导热肋片160之间交换,减少传导介质,提高换热效率。第一导热肋片140、第二导热肋片150和第三导热肋片160可以整体连接形状一个整体导热肋片。也可以是通过一个或多个连接桥结构实现两者的连接。本实施例未图示,结合图5、图9和图12所示的结构,可以理解本实施例的结构。
本实施例中,当第一导热肋片140、第二导热肋片150和第三导热肋片160连接时,内筒110的筒壁和套筒130上分别开设装配孔,将整体导热肋片通过装配孔插设固定后,或者,第一导热肋片140和第二导热肋片150通过装配孔插接连接并固定,以及第一导热肋片140和第三导热肋片150通过装配孔插接连接并固定,然后再将装配缝隙密封处理即可。
可选地,第一导热肋片140与内筒110一体成型;或者,第二导热肋片150与内筒110一体成型;或者,第三导热肋片160与套筒130一体成型。或者,第一导热肋片140、第二导热肋片150和第三导热肋片160与内筒110、套筒130一体成型。
本公开实施例公开了一种冷水机组。结合图1至图17所示,冷水机组,包括压缩机200、蒸发器210、冷凝器220和节流装置230,其中,还包括,液滴蒸发装置100。液滴蒸发装置100的第一通道101串联或并联至蒸发器210的气相出口和压缩机200的吸气口之间的管路(定义为第一管路241);第二通道102中接入换热介质。
当液滴蒸发装置100包括第三通道103时,第三通道103接入换热介质。
本公开实施例的冷水机组中,在蒸发器210的气相出口和压缩机200的吸气口之间的管路上接入了液滴蒸发装置100的第一通道101,使由蒸发器210排出的制冷剂蒸气在进入压缩机200之前,经由液滴蒸发装置100的第一通道101内,与第二通道102内的换热介质换热,吸收第二通道102内的换热介质的热量,使制冷剂蒸气中携带的制冷剂液滴蒸发,消除了压缩机的吸气带液问题,同时提高了机组的运行可靠性和性能。
本公开实施例的冷水机组中,液滴蒸发装置100的第二通道102内接入的换热介质为高温换热介质,具体地,是指温度高于第一通道101内流通的制冷剂蒸气的温度的换热介质。以保证可以向第一通道101内流通的制冷剂蒸气供热,使其中携带的制冷剂液滴吸热蒸发。故,第二通道102内接入的高温换热介质依据实际情况选择即可。
可选地,第二通道102串联或并联至冷凝器220的液相出口和节流装置230的进口端之间的管路(定义为第二管路242)。如图14所示,第二通道102串联至冷凝器220的液相出口和节流装置230的进口端之间的管路。如图15所示,第二通道102并联至冷凝器220的液相出口和节流装置230的进口端之间的管路。即,将由冷凝器120冷凝后排出的较高温度和较高压力的液态制冷剂作为换热介质。本实施例中,将经冷凝器220冷凝后排出的较高温度和较高压力的液态制冷剂在进入节流装置230之前,先进入液滴蒸发装置100的第二通道102中,与流经第一通道101的制冷剂蒸气进行换热后,再流入节流装置230。利用制冷循环本身内部的热量为制冷剂蒸气加热,完成换热。提升了液态制冷剂的过冷度,从而使冷水机组的能效提升。
可选地,第二通道102串联或并联至蒸发器210的冷媒回水接口上连接的管路(定义为第三管路243)。如图16所示,第二通道102串联至蒸发器210的冷媒回水接口上连接的管路。即,将来自中央空调系统的冷媒回水(制冷循环中的高温冷媒回水)作为换热介质。本实施例中,将来自中央空调系统的冷媒回水(制冷循环中的高温冷媒回水)接入第二通道102内,与进入第一通道101的制冷剂蒸气进入换热,制冷剂蒸气吸收热量,带走高温冷媒回水中的一部分热量;则高温冷媒回水的温度降低,再进入蒸发器内,进一步与蒸发器内的气液两相制冷剂换热后,冷媒水的温度进一步下降,流出蒸发器后,进入中央空调系统。提高了冷水机组的制冷量。
本公开实施例的冷水机组中,液滴蒸发装置100的第三通道103内接入的换热介质为 高温换热介质,同前述的第二通道102内接入的高温换热介质。
在一些实施例中,液滴蒸发装置100包括第三通道103。则,第三通道103串联或并联至冷凝器220的液相出口和节流装置230的进口端之间的管路(第二管路242);或者,第三通道103串联或并联至蒸发器210的冷媒回水接口上连接的管路(第三管路243)。增加换热量,使制冷剂蒸气中携带的更多的制冷剂液滴蒸发,消除了压缩机的吸气带液问题,同时提高了机组的运行可靠性和性能。
本公开实施例中,第三通道103内接入的换热介质,可以与第二通道102内接入的换热介质相同,也可以不同。
可选地,液滴蒸发装置100的第二通道102串联或者并联至第二管路242上,第三通道103串联或者并联至第二管路242上;第二通道102与第三通道103并联。本实施例中,将经冷凝器220冷凝后排出的较高温度和较高压力的液态制冷剂在进入节流装置230之前,同时进入液滴蒸发装置100的第二通道102和第三通道103中,与流经第一通道101的制冷剂蒸气进行换热后,再流入节流装置230。提高制冷剂蒸气中的液滴的蒸发量,并进一步提升了液态制冷剂的过冷度,从而使冷水机组的能效提升。
可选地,液滴蒸发装置100的第二通道102串联或者并联至第三管路243上,第三通道103串联或者并联至第三管路243上;第二通道102与第三通道103并联。本实施例中,将来自中央空调系统的冷媒回水(制冷循环中的高温冷媒回水)同时接入第二通道102和第三管道103内,与进入第一通道101的制冷剂蒸气进入换热,制冷剂蒸气吸收热量,带走高温冷媒回水中的一部分热量;则高温冷媒回水的温度降低,再进入蒸发器内,进一步与蒸发器内的气液两相制冷剂换热后,冷媒水的温度进一步下降,流出蒸发器后,进入中央空调系统。提高了冷水机组的制冷量。
可选地,液滴蒸发装置100的第二通道102串联或者并联至第二管路242上,第三通道103串联或者并联至第三管路243上。提高制冷剂蒸气中的液滴的蒸发量,并进一步提升了液态制冷剂的过冷度,以及进一步降低冷媒水的温度,从而使冷水机组的能效提升。如图17所示,液滴蒸发装置100的第二通道102串联至第二管路242上,第三通道103串联至第三管路243上。
当然,本公开实施例的冷水机组中,液滴蒸发装置100的第二通道102也可以接入其他易得的具有高温换热介质的管路中,不限于接入冷水机组内的液相制冷剂或者冷媒回水。
本公开实施例中,当第二管路或第三管路上并联设置液滴蒸发装置100的通道(第二通道102和/第三通道103)时,在第二管路或第三管路的并联段上,设置阀门。可以切换通路。如图15中所述的阀门240。
可选地,蒸发器210采用降膜式蒸发器。
本公开实施例的液滴蒸发装置100不限于应用于冷水机组,也可应用于其他制冷/制热循环系统中,例如,家用空调的制冷/制热循环系统中。
本申请并不局限于上面已经描述并在附图中示出的结构,并且可以在不脱离其范围进行各种修改和改变。本申请的范围仅由所附的权利要求来限制。

Claims (11)

  1. 一种用于冷水机组的液滴蒸发装置,其特征在于,包括,
    第一通道,可接入冷水机组的蒸发器与压缩机之间的管路上;
    第二通道,设置为可与所述第一通道换热,且可接入换热介质。
  2. 根据权利要求1所述的液滴蒸发装置,其特征在于,所述液滴蒸发装置,包括,内管,构造有第一通道;
    外管,套设于所述内管外;所述外管与所述内管之间的外环形通道作为第二通道。
  3. 根据权利要求1所述的液滴蒸发装置,其特征在于,还包括,
    第三通道,设置为可与所述第一通道换热;且,可接入换热介质。
  4. 根据权利要求3所述的液滴蒸发装置,其特征在于,所述液滴蒸发装置,包括,
    内管,构造有第一通道;
    外管,套设于所述内管外;所述外管与所述内管之间形成外环形通道;
    所述外环形通道沿轴向分隔为两个通道,其中一个通道作为第二通道,另一个通道作为第三通道。
  5. 根据权利要求3所述的液滴蒸发装置,其特征在于,所述液滴蒸发装置,包括,套管,构造有第三通道;
    内管,所述套管设置于所述内管内,所述套管的外壁与所述内管之间形成内环形通道,所述内环形通道作为第一通道;
    外管,套设于所述内管外;所述外管与所述内管之间形成外环形通道,所述外环形通道作为第二通道。
  6. 根据权利要求1至5中任一项所述的液滴蒸发装置,其特征在于,还包括,
    第一导热肋片,设置于所述第一通道内,并与所述第一通道与所述第二通道之间的换热壁连接;和/或,
    第二导热肋片,设置于所述第二通道内,并与所述第一通道与所述第二通道之间的换热壁连接;
    当所述液滴蒸发装置包括第三通道时,所述第一导热肋片还可与所述第一通道与所述第三通道之间的换热壁连接。
  7. 根据权利要求6所述的液滴蒸发装置,其特征在于,所述液滴蒸发装置包括第一导热肋片和第二导热肋片;所述第一导热肋片和所述第二导热肋片相对应设置;或者,所述第一导热肋片和所述第二导热肋片交错设置。
  8. 根据权利要求7所述的液滴蒸发装置,其特征在于,所述第一导热肋片和所述第二导热肋片连接。
  9. 根据权利要求6所述的液滴蒸发装置,其特征在于,所述液滴蒸发装置包括第三通道;则,所述液滴蒸发装置,还包括,
    第三导热肋片,设置于所述第三通道内,并与所述第一通道与所述第三通道之间的换 热壁连接。
  10. 一种冷水机组,包括压缩机、蒸发器、冷凝器和节流装置,其特征在于,还包括,如权利要求1至9中任一项所述的液滴蒸发装置;
    所述液滴蒸发装置的第一通道串联或并联至所述蒸发器的气相出口和所述压缩机的吸气口之间的管路;所述液滴蒸发装置的第二通道接入换热介质;
    当所述液滴蒸发装置包括第三通道时,所述第三通道接入换热介质。
  11. 根据权利要求10所述的冷水机组,其特征在于,
    所述第二通道串联或并联至所述冷凝器的液相出口和所述节流装置的进口端之间的管路;
    或者,所述第二通道串联或并联至所述蒸发器的冷媒回水接口上连接的管路;
    当所述液滴蒸发装置包括第三通道时;所述第三通道串联或并联至所述冷凝器的液相出口和所述节流装置的进口端之间的管路;或者,所述第三通道串联或并联至所述蒸发器的冷媒回水接口上连接的管路。
PCT/CN2020/086043 2019-12-09 2020-04-22 用于冷水机组的液滴蒸发装置及冷水机组 WO2021114541A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911251028.1A CN112944741A (zh) 2019-12-09 2019-12-09 用于冷水机组的液滴蒸发装置及冷水机组
CN201911251028.1 2019-12-09

Publications (1)

Publication Number Publication Date
WO2021114541A1 true WO2021114541A1 (zh) 2021-06-17

Family

ID=76226173

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/086043 WO2021114541A1 (zh) 2019-12-09 2020-04-22 用于冷水机组的液滴蒸发装置及冷水机组

Country Status (2)

Country Link
CN (1) CN112944741A (zh)
WO (1) WO2021114541A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116136352A (zh) * 2021-11-16 2023-05-19 青岛海尔电冰箱有限公司 冰箱

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7514779B2 (ja) * 2021-02-15 2024-07-11 三菱重工業株式会社 熱交換器

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1862151A (zh) * 2005-05-12 2006-11-15 乐金电子(天津)电器有限公司 回热式制冷循环系统空调器
CN202254966U (zh) * 2011-08-08 2012-05-30 安徽达诺新能源科技有限公司 一种套管换热器
CN102778151A (zh) * 2011-05-06 2012-11-14 通用汽车环球科技运作有限责任公司 用于汽车空调设备的热交换器
DE102012007970A1 (de) * 2012-04-20 2013-10-24 Gm Global Technology Operations, Llc Wärmetauscher für eineKraftfahrzeug-Klimaanlage
WO2013168981A1 (ko) * 2012-05-08 2013-11-14 (주)휘일 나선형 리브를 구비하는 이중관식 열교환기 및 나선형 리브관의 제조 방법 및 장치
CN205066251U (zh) * 2015-10-13 2016-03-02 珠海格力电器股份有限公司 水冷冷风型空调设备
CN105485974A (zh) * 2015-12-14 2016-04-13 天津凯德实业有限公司 一种套管式回热器装置
CN207395531U (zh) * 2017-09-08 2018-05-22 苏宇贵 制冷机组及其热交换组件

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1195189C (zh) * 2003-03-21 2005-03-30 梁醒民 利用空气热能的蓄能式热水、冷水机组
CN104180562B (zh) * 2014-08-15 2016-07-06 同度能源科技(江苏)股份有限公司 套管式地埋管
CN211625782U (zh) * 2019-12-09 2020-10-02 青岛海尔智能技术研发有限公司 用于冷水机组的液滴蒸发装置及冷水机组

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1862151A (zh) * 2005-05-12 2006-11-15 乐金电子(天津)电器有限公司 回热式制冷循环系统空调器
CN102778151A (zh) * 2011-05-06 2012-11-14 通用汽车环球科技运作有限责任公司 用于汽车空调设备的热交换器
CN202254966U (zh) * 2011-08-08 2012-05-30 安徽达诺新能源科技有限公司 一种套管换热器
DE102012007970A1 (de) * 2012-04-20 2013-10-24 Gm Global Technology Operations, Llc Wärmetauscher für eineKraftfahrzeug-Klimaanlage
WO2013168981A1 (ko) * 2012-05-08 2013-11-14 (주)휘일 나선형 리브를 구비하는 이중관식 열교환기 및 나선형 리브관의 제조 방법 및 장치
CN205066251U (zh) * 2015-10-13 2016-03-02 珠海格力电器股份有限公司 水冷冷风型空调设备
CN105485974A (zh) * 2015-12-14 2016-04-13 天津凯德实业有限公司 一种套管式回热器装置
CN207395531U (zh) * 2017-09-08 2018-05-22 苏宇贵 制冷机组及其热交换组件

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116136352A (zh) * 2021-11-16 2023-05-19 青岛海尔电冰箱有限公司 冰箱

Also Published As

Publication number Publication date
CN112944741A (zh) 2021-06-11

Similar Documents

Publication Publication Date Title
US20140366571A1 (en) Heat exchanger
CN106196755B (zh) 壳管式冷凝器和空调系统
CN204438360U (zh) 一种减少制冷剂充灌量的空调室外机
WO2021114541A1 (zh) 用于冷水机组的液滴蒸发装置及冷水机组
CN113654132B (zh) 热泵机组
CN100580345C (zh) 空调的二次节流再冷却装置
CN202928179U (zh) 一种高效换热制冷系统
CN211625782U (zh) 用于冷水机组的液滴蒸发装置及冷水机组
CN112944770A (zh) 冰箱及其制冷系统
JP6784632B2 (ja) 熱交換器用接続装置
CN202928177U (zh) 一体式制冷剂热回收循环系统
JP2005214525A (ja) 冷凍機内蔵型ショーケース
WO2023115956A1 (zh) 蛇形管微通道换热器、空调器
CN205014667U (zh) 双制冷系统及超低温制冷设备
JP4423321B2 (ja) 冷凍機内蔵型ショーケース
CN105318596A (zh) 一种分离式热管室温磁制冷装置
CN202928225U (zh) 板式一体化制冷剂热回收循环系统
CN103851838A (zh) 板式一体化制冷剂热回收循环系统
CN211204576U (zh) 基于热管组合制冷系统的模块化冰箱
CN209672631U (zh) 单级压缩直接接触冷凝带喷射器的制冷系统
CN105444472A (zh) 一种冰箱用冷凝器组件、冰箱制冷系统及冰箱
CN103851813B (zh) 一体式制冷剂热回收循环系统
CN221005577U (zh) 冷凝器、冷媒循环系统
CN116907242B (zh) 一种二氧化碳热源塔热泵机组的换热器、系统及工作方法
CN219914034U (zh) 一种翅片式油气冷凝器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20898290

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20898290

Country of ref document: EP

Kind code of ref document: A1