WO2021103735A1 - 冷凝器以及包括该冷凝器的空调器 - Google Patents

冷凝器以及包括该冷凝器的空调器 Download PDF

Info

Publication number
WO2021103735A1
WO2021103735A1 PCT/CN2020/113546 CN2020113546W WO2021103735A1 WO 2021103735 A1 WO2021103735 A1 WO 2021103735A1 CN 2020113546 W CN2020113546 W CN 2020113546W WO 2021103735 A1 WO2021103735 A1 WO 2021103735A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
pipe
refrigerant
gas
tube
Prior art date
Application number
PCT/CN2020/113546
Other languages
English (en)
French (fr)
Inventor
谭雪艳
任滔
刘景升
刘江彬
宋强
李守俊
李文波
荣丹
王冰
李银银
Original Assignee
青岛海尔空调电子有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调电子有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调电子有限公司
Publication of WO2021103735A1 publication Critical patent/WO2021103735A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/30Arrangement or mounting of heat-exchangers

Definitions

  • the invention belongs to the technical field of air conditioners, and in particular relates to a condenser and an air conditioner including the condenser.
  • Air conditioners usually include a condenser, evaporator, compressor, and throttling device.
  • the condenser, evaporator, compressor and throttling device can jointly form a circulation loop so that the airflow can be exchanged by the way that the refrigerant flows in the circulation loop. Heat, so as to achieve the purpose of continuous cooling/heating.
  • the outflowing refrigerant is not a completely liquid refrigerant, but a mixed refrigerant of gas-liquid two-phase.
  • the unconverted part of the gaseous refrigerant can be converted into a liquid state by setting a supercooling section in the heat exchanger, so that the refrigerant coming out of the condenser is basically all liquid.
  • the arrangement of the supercooling section increases the overall size of the heat exchanger, so that the heat exchanger requires a larger installation space.
  • the present invention provides a Condenser, the condenser includes a gas flow tube, a heat exchange tube and a gas-liquid separation component, the gas flow tube is in communication with a gas refrigerant input pipe that supplies gas refrigerant, and the gas-liquid separation component is in communication with a liquid refrigerant output pipe that outputs liquid refrigerant ,
  • the heat exchange tube is connected between the airflow tube and the gas-liquid separation assembly, and the gas-liquid separation assembly is configured to only allow the liquid refrigerant inside to flow into the liquid refrigerant output tube and allow the gaseous state inside it The refrigerant flows back to the airflow pipe.
  • the gas-liquid separation assembly includes a mixed flow pipe, a gas return pipe and a liquid sealing member
  • the mixed flow pipe includes a liquid outlet and a gas outlet
  • the liquid outlet and the liquid refrigerant output The gas outlet is connected to the gas flow pipe through the gas return pipe
  • the heat exchange pipe is connected to the mixed flow pipe and is connected between the gas outlet and the liquid outlet
  • the liquid seal The member is arranged at the liquid outlet, and the liquid sealing member is arranged to only allow the liquid refrigerant in the mixed flow pipe to flow into the liquid refrigerant output pipe through the liquid outlet.
  • the gas-liquid separation assembly further includes a one-way valve arranged on the return pipe, and the one-way valve is arranged to only allow the gaseous refrigerant in the mixed flow pipe to flow back to the Airflow pipe.
  • the mixing tube is arranged vertically, the liquid outlet is located at the bottom end of the mixing tube, and the air outlet is located at the top end of the mixing tube.
  • the heat exchange tube includes a plurality of fin tubes, and the plurality of fin tubes are respectively connected between the airflow tube and the mixed flow tube.
  • the finned tube includes at least two U-shaped tubes connected in sections.
  • the air return pipe is connected to the upstream end of the airflow pipe, and the plurality of fin tubes are all connected to the downstream end of the airflow pipe.
  • the liquid sealing member is a filter element provided at the liquid outlet, and the filter element can seal a set amount of liquid refrigerant in the mixed flow tube.
  • the liquid sealing member is a U-shaped liquid storage tube arranged in a vertical direction, one nozzle of the U-shaped liquid storage tube is connected to the liquid outlet, and the U-shaped liquid storage tube is connected to the liquid outlet.
  • the other nozzle of the liquid storage tube is connected to the liquid refrigerant output tube.
  • the present invention also relates to an air conditioner, which includes any of the above-mentioned condensers.
  • the condenser of the present invention includes a gas flow tube, a heat exchange tube, and a gas-liquid separation component.
  • the gaseous refrigerant input tube transports the gaseous refrigerant to the gas flow tube
  • the gaseous refrigerant exchanges heat along the air flow tube.
  • the tube flows to the gas-liquid separation component and exchanges heat, and becomes a gas-liquid mixed refrigerant.
  • the gas-liquid separation component can separate the mixed refrigerant, transport the separated liquid refrigerant to the liquid refrigerant output pipe, and return the separated gas refrigerant to the airflow pipe for heat exchange again, so that the refrigerant delivered by the condenser is always Liquid refrigerant.
  • the condenser of the present invention can ensure that the outflowing refrigerant is completely liquid without having to set up a supercooling section.
  • the overall size of the condenser is greatly optimized, and the heat exchange tube can be increased.
  • the layout area improves the heat exchange performance of the condenser with the same volume.
  • the separated gas can be returned to the gas flow pipe for heat exchange again, which increases the refrigerant flow rate of the condenser per unit time to a certain extent, and further improves the heat exchange effect of the condenser.
  • the gas-liquid separation assembly includes a mixed flow pipe, a gas return pipe communicating with the mixed flow pipe, a one-way valve arranged on the gas return pipe, and a liquid sealing member arranged between the mixed flow pipe and the liquid refrigerant output pipe.
  • the mixed flow tube can contain the mixed refrigerant after heat exchange and separate the mixed refrigerant into gaseous refrigerant and liquid refrigerant before sending it out.
  • the one-way valve can restrict the flow direction of the gaseous refrigerant and restrict the gaseous refrigerant to flow back to the airflow pipe only in a reflux manner.
  • the liquid sealing member can prevent the gaseous refrigerant from flowing out while allowing the liquid refrigerant to flow out of the mixed flow tube.
  • the separation and output of gas-liquid refrigerant can be realized in a short process, which ensures that only liquid refrigerant flows out of the condenser and realizes the reflux and heat exchange of gaseous refrigerant while avoiding occupying the layout space of the condenser heat exchange tube, making the condenser The heat exchange performance is guaranteed.
  • the above-mentioned mixed flow pipe is arranged vertically, the liquid outlet is located at the bottom end of the mixed flow pipe, and the gas outlet is located at the top end of the mixed flow pipe, so as to accelerate the separation process of the liquid refrigerant and the gaseous refrigerant through the action of gravity and increase the mixing of the gas-liquid two-phase The separation efficiency of the state refrigerant.
  • the heat exchange tube includes a plurality of fin tubes, and the plurality of fin tubes are all connected to the downstream end of the airflow tube away from the return air tube, so that each fin tube can be connected to the gaseous refrigerant stabilization section of the airflow tube to avoid
  • the airflow of the refrigerant is highly turbulent, resulting in uneven distribution of the gaseous refrigerant in each fin tube.
  • the present invention also provides an air conditioner, which is equipped with any of the above-mentioned condensers, has all the beneficial effects of the above-mentioned condensers, has good heat exchange effect and high cooling/heating efficiency.
  • Fig. 1 is a schematic structural diagram of a first embodiment of the condenser of the present invention
  • Fig. 2 is a schematic structural diagram of a second embodiment of the condenser of the present invention.
  • Airflow pipe 2. Heat exchange pipe; 3. Gas-liquid separation assembly; 31. Mixed flow pipe; 32. Air return pipe; 33. Liquid sealing member; 34. One-way valve; 4. Gas refrigerant input pipe ; 5. Liquid refrigerant output pipe.
  • connection and “connected” should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection. , Or integrally connected; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • connection should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection. , Or integrally connected; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • the specific meaning of the above-mentioned terms in the present invention can be understood according to specific circumstances.
  • FIG. 1 is a schematic structural diagram of the first embodiment of the condenser of the present invention.
  • the condenser of the present invention includes a gas flow pipe 1, a heat exchange pipe 2 and a gas-liquid separation assembly 3.
  • the gaseous refrigerant input pipe 4 is a part of the refrigerant pipe of the air conditioner.
  • the gaseous refrigerant input pipe 4 communicates with the airflow pipe 1 and supplies the gaseous refrigerant into the airflow pipe 1.
  • the heat exchange tube 2 is connected between the airflow tube 1 and the gas-liquid separation assembly 3, and the gaseous refrigerant in the airflow tube 1 can flow through the heat exchange tube 2 into the gas-liquid separation assembly 3.
  • the gaseous refrigerant undergoes a condensation change and exchanges heat with the heat exchange medium, and the gas-liquid two-phase mixed refrigerant after the heat exchange flows into the gas-liquid separation assembly 3.
  • the liquid refrigerant output pipe 5 is also a part of the refrigerant pipeline of the air conditioner.
  • the gas-liquid separation assembly 3 is in communication with the liquid refrigerant output pipe 5, so that the liquid refrigerant flowing out of the gas-liquid separation assembly 3 is evaporated through the liquid refrigerant output pipe 5. ⁇ Delivery.
  • the gas-liquid separation assembly 3 is configured to only allow the liquid refrigerant inside it to flow into the liquid refrigerant output pipe 5 and allow the gaseous refrigerant inside to flow back to the gas flow pipe 1.
  • the gas-liquid separation component 3 can separate the liquid refrigerant in the gas-liquid two-phase mixed refrigerant inside and output to the liquid refrigerant, and the gas-liquid separation component 3 can also make the gaseous refrigerant retained therein Reflux into the gas flow pipe 1 so that the separated gaseous refrigerant can be condensed and exchanged again.
  • the refrigerant output from the gas-liquid separation assembly 3 to the liquid refrigerant output pipe 5 can be all liquid.
  • the gas-liquid separation assembly 3 includes a mixed flow pipe 31, a gas return pipe 32, a one-way valve 34 and a liquid sealing member 33.
  • the heat exchange tube 2 is connected between the airflow tube 1 and the mixed flow tube 31, and the mixed refrigerant after heat exchange flows into the mixed flow tube 31.
  • the heat exchange tube 2 includes a liquid outlet and an air outlet.
  • the liquid outlet is the outlet of the liquid refrigerant in the mixed flow tube 31, which is in communication with the liquid refrigerant output tube 5.
  • the gas outlet is the outlet of the gaseous refrigerant in the mixed flow pipe 31, which is connected to the airflow pipe 1 through the air return pipe 32, and the separated gaseous refrigerant can flow back into the airflow pipe 1 through the air return pipe 32.
  • the heat exchange tube 2 is connected between the gas outlet and the liquid outlet, so that the mixed refrigerant after the heat exchange can flow into the mixed flow tube 31 for gas and liquid refrigerant, and then flow out of the mixed flow tube 31 through the liquid outlet and the gas outlet respectively.
  • the liquid sealing member 33 is arranged at the position of the liquid outlet.
  • the liquid sealing member 33 is configured to only allow the liquid refrigerant in the mixed flow pipe 31 to flow into the liquid refrigerant output pipe 5 through the liquid outlet, thereby separating the gas and liquid refrigerant by blocking the gas refrigerant from flowing into the liquid refrigerant output pipe 5.
  • the one-way valve 34 is provided on the air return pipe 32. The one-way valve 34 is configured to only allow the gaseous refrigerant in the mixed flow pipe 31 to flow back to the airflow pipe 1 through the air outlet, so as to prevent the gaseous refrigerant in the airflow pipe 1 from directly entering the mixed flow pipe 31 through the return air pipe 32 without heat exchange.
  • the liquid sealing member 33 is provided at the liquid outlet of the mixed flow pipe 31, so that the liquid refrigerant in the mixed flow pipe 31 can be filtered out, so that the liquid refrigerant is delivered to the evaporator and the refrigerant circulation of the air conditioner is ensured.
  • the gaseous refrigerant can be separated and blocked in the mixed flow tube 31 through single-liquid refrigerant filtration, thereby separating the liquid refrigerant and the gaseous refrigerant in the mixed flow tube 31.
  • the gaseous refrigerant can be refluxed for heat exchange, which increases the flow rate of the gaseous refrigerant in the airflow pipe 1, so that the amount of gaseous refrigerant for heat exchange in the heat exchange pipe 2 is increased, and the heat exchange of the condenser is improved. effectiveness.
  • the setting of the one-way valve 34 can prevent the refrigerant in the airflow pipe 1 from flowing back into the return pipe 32, and the amount of gaseous refrigerant for heat exchange in the heat exchange pipe 2 is reduced, thereby ensuring that the airflow pipe 1 can only be supplied with refrigerant.
  • the gaseous refrigerant is increased, so that the overall gaseous refrigerant flow rate in the airflow pipe 1 only increases.
  • the gas-liquid separation assembly 3 may also only include the above-mentioned mixed flow pipe 31, the above-mentioned gas return pipe 32 and the above-mentioned liquid sealing member 33 instead of the above-mentioned one-way valve 34.
  • the mixed flow pipe 31, the air return pipe 32, and the liquid sealing member 33 are assembled together in the connection manner in the above-mentioned first embodiment.
  • the gas-liquid separation assembly 3 can also realize the function of gas-liquid separation, and when enough gaseous refrigerant is separated and accumulated in the mixed flow pipe 31, the increase in air pressure can also prevent part of the refrigerant in the airflow pipe 1 from flowing in along the air return pipe 32.
  • the gas-liquid separation function and basic heat exchange effect of the mixed flow tube 31 and the condenser can be guaranteed.
  • the above-mentioned liquid sealing member 33 is a filter element.
  • the filter element is blocked at the position of the liquid outlet, so that a set amount of liquid refrigerant is blocked in the mixed flow tube 31 to form a liquid sealing structure.
  • the extra set amount of liquid refrigerant causes the continued liquid refrigerant to permeate and pass through the filter element and flow into the liquid refrigerant output pipe 5.
  • the installation position of the filter element is not limited to the position of the liquid outlet. In fact, as long as the filter element is blocked between the liquid outlet and the liquid refrigerant output pipe 5.
  • the filter element can also be arranged outside the nozzle of the liquid outlet and at the position of the inlet of the liquid refrigerant output tube 5.
  • the mixed flow tube 31 is arranged in a vertical direction, the liquid outlet is located at the bottom end of the mixed flow tube 31, and the air outlet is located at the top end of the mixed flow tube 31. Since the density of the liquid refrigerant is greater than that of the gaseous refrigerant, when the mixed flow tube 31 is vertically arranged, the liquid refrigerant in the mixed flow tube 31 will sink and the gaseous refrigerant will rise, causing the gas and liquid refrigerant to be initially separated, which greatly improves the separation efficiency.
  • the heat exchange tube 2 includes a plurality of fin tubes, and the plurality of fin tubes are respectively connected between the airflow tube 1 and the mixed flow tube 31, and a plurality of parallel heat exchange branches are formed between the airflow tube 1 and the mixed flow tube 31. road.
  • each finned tube includes two U-shaped tubes. Two U-shaped tubes are arranged side by side. According to the orientation shown in Figure 1, the four groups of circles shown in the figure represent the nozzles of each group of two U-shaped tubes. For two U-shaped pipes in the same group, the same side ends (the lower end as shown in the figure) of the two U-shaped pipes are connected, and the other end of the U-shaped pipe close to the airflow pipe 1 is connected to the airflow pipe 1, which is close to The other end of the U-shaped tube of the mixed flow tube 31 is connected to the mixed flow tube 31 so that the two U-shaped tubes form a connected curved heat exchange branch.
  • the number and shape of the heat exchange branches are not limited to the above examples, as long as the arrangement of the heat exchange tubes 2 can meet the expected heat exchange demand.
  • the heat exchange tube 2 may also include more than four spiral finned tubes.
  • the air return pipe 32 is connected to the upstream end of the airflow pipe 1, and a plurality of fin tubes are all connected to the downstream end of the airflow pipe 1.
  • the output ends of the gaseous refrigerant output pipe and the return pipe 32 are both connected to the upper part of the airflow pipe 1, and the gaseous refrigerant enters the airflow pipe 1 and then moves down the pipe body.
  • each fin tube is connected to the lower part of the airflow tube 1.
  • the upper part of the airflow pipe 1 is the upstream end, and the lower part is the downstream end.
  • the liquid sealing member 33 is a U-shaped liquid storage tube arranged in a vertical direction.
  • One nozzle of the U-shaped liquid storage pipe is connected to the liquid outlet, and the other nozzle is connected to the liquid refrigerant output pipe 5.
  • the curved pipe section at the bottom of the U-shaped liquid storage pipe can retain a set amount of liquid refrigerant to form a liquid seal structure. When the accumulation amount of the liquid refrigerant is equal to the set amount, the liquid refrigerant rises from the bottom of the U-shaped liquid storage pipe and flows into the liquid refrigerant output pipe 5.
  • the structure of the above-mentioned liquid sealing member 33 is not limited.
  • the liquid sealing member 33 may also have other structures that can form a liquid seal and prevent the gaseous refrigerant from overflowing the liquid outlet.
  • the present invention also provides an air conditioner, which includes at least an evaporator, a compressor, a throttling device, and any of the above-mentioned condensers.
  • the refrigerant pipeline includes the gas refrigerant input pipe 4 and the liquid refrigerant output pipe 5 described above.
  • the air conditioner When the air conditioner is running, the refrigerant circulates in the refrigerant pipeline and continuously flows through the condenser and evaporator for heat exchange to achieve heating/cooling purposes.
  • the condenser of the present invention includes a gas flow tube 1, a heat exchange tube 2 and a gas-liquid separation assembly 3.
  • the gas-liquid separation assembly 3 includes a mixed flow pipe 31, a gas return pipe 32, a liquid sealing member 33 arranged at the liquid outlet of the mixed flow pipe 31, and a one-way valve 34 arranged on the gas return pipe 32.
  • the two ends of the air return pipe 32 are respectively connected to the air outlet of the mixed flow pipe 31 and the air flow pipe 1.
  • the heat exchange tube 2 includes a plurality of fin tubes, and two ends of each fin tube are respectively connected to the mixed flow tube 31 and the air flow tube 1.
  • the gaseous refrigerant When the gaseous refrigerant is supplied in the airflow pipe 1, the gaseous refrigerant flows through the finned tube for condensation and heat exchange, and then enters the mixed flow pipe 31. Under the action of the liquid sealing member 33, the cold refrigerant flows out from the liquid outlet, and the gas refrigerant is isolated in the mixed flow pipe 31 and flows through the air return pipe 32 into the air flow pipe 1 for re-heat exchange, so that the refrigerant delivered by the condenser Always liquid refrigerant. There is no need to set up a conventional supercooling structure to ensure that the outflowing refrigerant is completely liquid. The overall size of the condenser is greatly optimized, the area where the heat exchange tube 2 can be arranged is increased, and the condenser of the same volume is improved. The heat transfer performance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

一种冷凝器以及包括该冷凝器的空调器,旨在解决现有冷凝管需要设置过冷段才能使流出的冷媒完全液化、降低了换热器对安装环境的适应性的问题。冷凝器包括气流管(1)、换热管(2)和气液分离组件(3),在气态冷媒从气流管(1)中沿换热管(2)向气液分离组件(3)流动并进行换热、变成气液两相的混合态冷媒后,气液分离组件(3)能够将混合态冷媒分离,并将分离出的液态冷媒输出、将分离后的气态冷媒送回至气流管(1)再次进行换热,使得冷凝器输送出的冷媒始终为液态冷媒,无需设置常规的过冷结构即可保证流出的冷媒完全为液态,对冷凝器的整体尺寸进行了极大程度地优化,增大了换热管的可布置面积,提升了同体积冷凝器的换热性能。

Description

冷凝器以及包括该冷凝器的空调器 技术领域
本发明属于空调器技术领域,具体涉及一种冷凝器以及包括该冷凝器的空调器。
背景技术
空调器通常包括冷凝器、蒸发器、压缩机和节流装置,冷凝器、蒸发器、压缩机和节流装置能够共同构成循环回路,以便通过冷媒在该循环回路中流动的方式对气流进行换热,从而实现持续制冷/制热目的。
现有空调器的冷凝器大多采用风冷方式或水冷方式进行方式。在此情形下,由于气流或水在冷凝器的表面流速不均,因此很容易导致冷凝器的不同流路中的冷凝程度不同、部分流路的冷媒冷凝不完全,从而使得冷凝器换热后流出的冷媒不是完全的液态冷媒,而是气液两相的混合态冷媒。通常,可以通过在换热器设置过冷段来使未转化的部分气态冷媒转化为液态,以便使冷凝器出来的冷媒基本全部为液态。但是过冷段的设置增大了换热器的整体尺寸,使得换热器需要较大的安装空间。
相应地,本领域需要一种新的冷凝器以及包括该冷凝器的空调器来解决上述问题。
发明内容
为了解决现有技术中的上述问题,即为了解决现有冷凝管需要设置过冷段才能使流出的冷媒完全液化、降低了换热器对安装环境的适应性的问题,本发明提供了一种冷凝器,所述冷凝器包括气流管、换热管和气液分离组件,所述气流管与供应气态冷媒的气态冷媒输入管连通,所述气液分离组件与输出液态冷媒的液态冷媒输出管连通,所述换热管连接至所述气流管与所述气液分离组件之间,所述气 液分离组件设置为仅允许其内部的液态冷媒流入所述液态冷媒输出管以及允许其内部的气态冷媒回流至所述气流管。
在上述冷凝器的优选技术方案中,所述气液分离组件包括混流管、回气管和液封构件,所述混流管包括出液口和出气口,所述出液口与所述液态冷媒输出管连通,所述出气口通过所述回气管连通至所述气流管,所述换热管与所述混流管相连并且连接至所述出气口与所述出液口之间,所述液封构件设置于所述出液口,所述液封构件设置为仅允许所述混流管内的液态冷媒通过所述出液口流入所述液态冷媒输出管。
在上述冷凝器的优选技术方案中,所述气液分离组件还包括设置于所述回气管上的单向阀,所述单向阀设置为仅允许所述混流管内的气态冷媒回流至所述气流管。
在上述冷凝器的优选技术方案中,所述混流管沿竖向设置,所述出液口位于所述混流管的底端,所述出气口位于所述混流管的顶端。
在上述冷凝器的优选技术方案中,所述换热管包括多根翅片管,所述多根翅片管分别连接至所述气流管与所述混流管之间。
在上述冷凝器的优选技术方案中,所述翅片管包括至少两段相连的U型管。
在上述冷凝器的优选技术方案中,所述回气管连接至所述气流管的上游端,所述多根翅片管均连接至所述气流管的下游端。
在上述冷凝器的优选技术方案中,所述液封构件为设置于所述出液口的过滤芯,所述过滤芯能够将设定量的液态冷媒封堵于所述混流管内。
在上述冷凝器的优选技术方案中,所述液封构件为沿竖向设置的U型储液管,所述U型储液管的一个管口连接至所述出液口,所述U型储液管的另一个管口连接至所述液态冷媒输出管。
另外,本发明还涉及一种空调器,所述空调器包括上述任一种冷凝器。
本领域技术人员能够理解的是,本发明的冷凝器包括气流管、换热管和气液分离组件,在气态冷媒输入管向气流管输送气态冷 媒的情形下,气态冷媒从气流管中沿换热管向气液分离组件流动并进行换热、变成气液两相的混合态冷媒。气液分离组件能够将混合态冷媒分离,并将分离出的液态冷媒向液态冷媒输出管输送、将分离后的气态冷媒送回至气流管再次进行换热,使得冷凝器输送出的冷媒始终为液态冷媒。与常规冷凝器相比,本发明的冷凝器完全无需设置过冷段即可保证流出的冷媒完全为液态,对冷凝器的整体尺寸进行了极大程度地优化,增大了换热管的可布置面积,提升了同体积冷凝器的换热性能。此外,分离出的气体能够回流至气流管再次进行换热,在一定程度上增加了冷凝器在单位时间内的冷媒流量,进一步提升了冷凝器的换热效果。
优选地,气液分离组件包括混流管、与混流管连通的回气管、设置于回气管上的单向阀以及设置于混流管与液态冷媒输出管之间的液封构件。其中,混流管能够容纳换热后的混合态冷媒并且将混合态冷媒分离成气态冷媒和液态冷媒后送出,单向阀能够限制气态冷媒的流向、限制气态冷媒仅以回流方式流回气流管,液封构件能够在允许液态冷媒流出混流管的同时阻止气态冷媒流出。在较短的流程内即可实现气液冷媒的分离输出,在保证冷凝器仅流出液态冷媒、实现气态冷媒回流再换热的同时避免了占用冷凝器的换热管的布置空间,使得冷凝器的换热性能得到保障。
优选地,上述混流管沿竖向设置,出液口位于混流管的底端,出气口位于混流管的顶端,以便通过重力作用加快液态冷媒和气态冷媒的分离进程,增大气液两相的混合态冷媒的分离效率。
优选地,换热管包括多根翅片管且多根翅片管均连接至气流管远离回气管的下游端,使得各翅片管均能够连接至气流管的气态冷媒稳定段,避免因气态冷媒的气流扰动性较大而导致各翅片管内的气态冷媒分配不均。
另外,本发明还提供一种空调器,该空调器配置有上述任一种冷凝器,具备上述冷凝器的所有有益效果,换热效果好,制冷/制热效率高。
附图说明
下面参照附图来描述本发明的优选实施方式。附图为:
图1是本发明的冷凝器的第一实施方式的结构示意图;
图2是本发明的冷凝器的第二实施方式的结构示意图。
附图中:1、气流管;2、换热管;3、气液分离组件;31、混流管;32、回气管;33、液封构件;34、单向阀;4、气态冷媒输入管;5、液态冷媒输出管。
具体实施方式
首先,本领域技术人员应当理解的是,在本发明的描述中,术语“上”、“下”、“中”、“竖”等指示的方向或位置关系的术语是基于附图所示的方向或位置关系,这仅仅是为了便于描述,而不是指示或暗示所述装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
其次,还需要说明的是,在本发明的描述中,除非另有明确的规定和限定,术语“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域技术人员而言,可根据具体情况理解上述术语在本发明中的具体含义。
首先参阅图1,图1是本发明的冷凝器的第一实施方式的结构示意图。如图1所示,本发明的冷凝器包括气流管1、换热管2和气液分离组件3。气态冷媒输入管4为空调器的冷媒管道中的一部分,该气态冷媒输入管4与气流管1连通、向气流管1中供应气态冷媒。换热管2连接至气流管1与气液分离组件3之间,气流管1内的气态冷媒能够流经换热管2进入气液分离组件3内。在流经换热管2的过程中,气态冷媒会发生冷凝变化、与换热介质进行换热,换热后的气液两相混合态冷媒流入气液分离组件3内。液态冷媒输出管5也为空调器的冷媒管道中的一部分,气液分离组件3与该液态冷媒输出管5连通,以便通过液态冷媒输出管5将气液分离组件3内流出的液态冷媒向蒸发器输送。其中,气液分离组件3设置为仅允许其内部的液态冷媒流入液态冷媒输出管5以及允许其内部的气态冷媒回流至气流管 1。在此情形下,气液分离组件3能够将其内部的气液两相混合态冷媒中的液态冷媒分离出来并输出至液态冷媒,并且,气液分离组件3还能够使留存其内的气态冷媒回流至气流管1内,以便分离出的气态冷媒能够再次进行冷凝换热。通过不断地将未冷凝的气态冷媒与液态冷媒分离并输回气流管1进行再次换热,从而能够使气液分离组件3向液态冷媒输出管5输出的冷媒均为液态。
继续参阅图1,进一步地,作为本发明的第一优选实施例,气液分离组件3包括混流管31、回气管32、单向阀34和液封构件33。上述换热管2连接至气流管1与混流管31之间,换热后的混合态冷媒流入混流管31内。具体而言,换热管2包括出液口和出气口。其中,出液口为混流管31内的液态冷媒的出口,其与液态冷媒输出管5连通。出气口为混流管31内的气态冷媒的出口,其通过回气管32连通至气流管1,分离出的气态冷媒能够流经回气管32回到气流管1内。换热管2连接至出气口与出液口之间,使得换热后的混合态冷媒能够在流入混流管31内进行气、液态冷媒分流后再分别通过出液口和出气口流出混流管31。液封构件33设置于出液口位置。该液封构件33设置为仅允许混流管31内的液态冷媒通过出液口流入液态冷媒输出管5,从而以阻挡气态冷媒流入液态冷媒输出管5的方式向将气、液态冷媒分离。单向阀34设置于回气管32上。该单向阀34设置为仅允许混流管31内的气态冷媒通过出气口回流至气流管1,以便避免气流管1内的气态冷媒不经换热直接通过回气管32进入混流管31内。
在上述实施方式中,通过设置在混流管31的出液口设置液封构件33,实现了混流管31中的液态冷媒的滤出,以便在向蒸发器输送液态冷媒、保证空调器的冷媒循环的同时能够通过单液态冷媒过滤的方式将气态冷媒分离出来并阻隔在混流管31内,从而将混流管31内的液态冷媒和气态冷媒分离。通过设置回气管32,能够将气态冷媒回流再换热,增大了气流管1内的气态冷媒的流量,使得换热管2内进行换热的气态冷媒量增多,提升了冷凝器的换热效率。此外,单向阀34的设置能够避免气流管1中的冷媒倒流至回气管32内、换热管2内进行换热的气态冷媒量减少,从而保证气流管1内只能在被供应冷 媒的同时增加气态冷媒,使得气流管1内的整体气态冷媒流量只增不减。
在不考虑冷凝器换热初期混流管31内积蓄的气态冷媒较少、气流管1中的少量气态冷媒可能会通过回气管32倒流至混流管31内的情形时,作为一种可替代的实施方式,气液分离组件3还可以仅包括上述混流管31、上述回气管32和上述液封构件33,而不包括上述单向阀34。混流管31、回气管32和液封构件33以上述第一实施方式中的连接方式装配在一起。该套气液分离组件3也能够实现气液分离的功能,并且在混流管31中分离积蓄出的气态冷媒足够多时,气压的增大也能够阻止气流管1内的部分冷媒沿回气管32流入混流管31,冷凝器的气液分离功能和基本换热效果均能得到保障。
下面结合上述第一实施方式对本发明的优选实施例作进一步阐述。
优选地,上述液封构件33为过滤芯。该过滤芯封堵于出液口位置,以便使设定量的液态冷媒封堵于混流管31内进而形成液封结构。当多于设定量的液态冷媒积蓄于过滤芯位置时,多出设定量部分的液态冷媒促使继续的液态冷媒渗透并穿过过滤芯、流入液态冷媒输出管5内。
在上述实施方式中,过滤芯的设置位置并不局限于出液口位置。实际上,只要过滤芯封堵于出液口与液态冷媒输出管5之间即可。例如,过滤芯还可以设置于出液口的管口外侧、液态冷媒输出管5的输入口位置。
进一步地,混流管31沿竖向设置,出液口位于混流管31的底端,出气口位于所述混流管31的顶端。由于液态冷媒的密度大于气态冷媒,因此在混流管31竖直设置时,混流管31内的液态冷媒会下沉,气态冷媒上升,使得气、液态冷媒初步分离,极大地提升了分离效率。
作为示例,换热管2包括多根翅片管,多根翅片管分别连接至气流管1与混流管31之间,在气流管1与混流管31之间形成多条并联的换热支路。
具体地,翅片管的数量为四根。每根翅片管均包括两个U型管。两个U型管并列设置。按照图1方位所示,图中示出的四组圆圈分别代表每组两个U型管的管口。对于同一组并列的两个U型管而言,其二者的同侧端(如图示的下侧端)相连通,靠近气流管1的U型管的另一端连通至气流管1,靠近混流管31的U型管的另一端连通至混流管31,以便两个U型管形成一条连通的弯曲换热支路。当然,在实际设置中,换热支路的数量和形状均不局限于上述示例,只要换热管2的设置方案能够满足预期的换热需求即可。例如,换热管2还可以包括多于四根的螺旋型翅片管。
优选地,回气管32连接至气流管1的上游端,多根翅片管均连接至气流管1的下游端。如图1所示,在气流管1也竖向设置的情形下,气态冷媒输出管与回气管32的输出端均连通至气流管1的上部,气态冷媒进入气流管1后沿管体向下流动,各翅片管均连通至气流管1的下部。气流管1的上部为上游端,下部为下游端。通过上述设置,能够将回气的气态冷媒与分流进入翅片管的气态冷媒的分布区域分隔开,避免回气管32向气流管1注入气态冷媒时气流管1内部的气态冷媒的流动状态不稳定进而导致气态冷媒进入翅片管时分流不均。
接下来参阅图2,图2是本发明的冷凝器的第二实施方式的结构示意图。如图2所示,在本发明的第二实施方式中,液封构件33为沿竖向设置的U型储液管。该U型储液管的一个管口连接至出液口,另一个管口连接至液态冷媒输出管5。U型储液管底部的弯曲管段能够留存设定量的液态冷媒以形成液封结构。在液态冷媒的积蓄量对于设定量时,液态冷媒从U型储液管的管底上涨后流入液态冷媒输出管5。
本领域技术人员能够理解的是,上述液封构件33的结构并不是限定的。除上述过滤芯和U型储液管以外,该液封构件33还可以是其他能够形成液封、阻止气态冷媒溢出出液口的结构。
另外,本发明还提供一种空调器,该空调器至少包括蒸发器、压缩机、节流装置和上述任一种冷凝器。该冷媒管路包括上述气态冷媒输入管4和液态冷媒输出管5。在空调器运行的情形下,冷媒在 冷媒管路中循环流动,不断流经冷凝器和蒸发器进行换热以实现制热/制冷目的。
综上所述,本发明的冷凝器包括气流管1、换热管2和气液分离组件3。其中,气液分离组件3包括混流管31、回气管32、设置于混流管31的出液口的液封构件33以及设置于回气管32上的单向阀34。回气管32的两端分别连通至混流管31的出气口和气流管1。换热管2包括多根翅片管,每根翅片管的两端分别连通至混流管31和气流管1。在气流管1中供应气态冷媒时,气态冷媒流经翅片管进行冷凝换热后进入混流管31。在液封构件33的作用下,冷态冷媒从出液口流出,气态冷媒被隔离在混流管31中并流经回气管32进入气流管1内进行再次换热,使得冷凝器输送出的冷媒始终为液态冷媒。无需设置过常规的过冷结构即可保证流出的冷媒完全为液态,对冷凝器的整体尺寸进行了极大程度地优化,增大了换热管2的可布置面积,提升了同体积冷凝器的换热性能。
至此,已经结合附图所示的优选实施方式描述了本发明的技术方案,但是,本领域技术人员容易理解的是,本发明的保护范围显然不局限于这些具体实施方式。在不偏离本发明的原理的前提下,本领域技术人员可以对相关技术特征作出等同的更改或替换,这些更改或替换之后的技术方案都将落入本发明的保护范围之内。

Claims (10)

  1. 一种冷凝器,其特征在于,所述冷凝器包括气流管、换热管和气液分离组件,
    所述气流管与供应气态冷媒的气态冷媒输入管连通,所述气液分离组件与输出液态冷媒的液态冷媒输出管连通,所述换热管连接至所述气流管与所述气液分离组件之间,
    所述气液分离组件设置为仅允许其内部的液态冷媒流入所述液态冷媒输出管以及允许其内部的气态冷媒回流至所述气流管。
  2. 根据权利要求1所述的冷凝器,其特征在于,所述气液分离组件包括混流管、回气管和液封构件,
    所述混流管包括出液口和出气口,所述出液口与所述液态冷媒输出管连通,所述出气口通过所述回气管连通至所述气流管,所述换热管与所述混流管相连并且连接至所述出气口与所述出液口之间,
    所述液封构件设置于所述出液口,所述液封构件设置为仅允许所述混流管内的液态冷媒通过所述出液口流入所述液态冷媒输出管。
  3. 根据权利要求2所述的冷凝器,其特征在于,所述气液分离组件还包括设置于所述回气管上的单向阀,所述单向阀设置为仅允许所述混流管内的气态冷媒回流至所述气流管。
  4. 根据权利要求2所述的冷凝器,其特征在于,所述混流管沿竖向设置,所述出液口位于所述混流管的底端,所述出气口位于所述混流管的顶端。
  5. 根据权利要求2所述的冷凝器,其特征在于,所述换热管包括多根翅片管,所述多根翅片管分别连接至所述气流管与所述混流管之间。
  6. 根据权利要求5所述的冷凝器,其特征在于,所述翅片管包括 至少两段相连的U型管。
  7. 根据权利要求5所述的冷凝器,其特征在于,所述回气管连接至所述气流管的上游端,所述多根翅片管均连接至所述气流管的下游端。
  8. 根据权利要求2所述的冷凝器,其特征在于,所述液封构件为设置于所述出液口的过滤芯,所述过滤芯能够将设定量的液态冷媒封堵于所述混流管内。
  9. 根据权利要求2所述的冷凝器,其特征在于,所述液封构件为沿竖向设置的U型储液管,所述U型储液管的一个管口连接至所述出液口,所述U型储液管的另一个管口连接至所述液态冷媒输出管。
  10. 一种空调器,其特征在于,所述空调器包括权利要求1至9中任一项所述的冷凝器。
PCT/CN2020/113546 2019-11-25 2020-09-04 冷凝器以及包括该冷凝器的空调器 WO2021103735A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911168371.XA CN112833589B (zh) 2019-11-25 2019-11-25 冷凝器以及包括该冷凝器的空调器
CN201911168371.X 2019-11-25

Publications (1)

Publication Number Publication Date
WO2021103735A1 true WO2021103735A1 (zh) 2021-06-03

Family

ID=75922428

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/113546 WO2021103735A1 (zh) 2019-11-25 2020-09-04 冷凝器以及包括该冷凝器的空调器

Country Status (2)

Country Link
CN (1) CN112833589B (zh)
WO (1) WO2021103735A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114165946A (zh) * 2021-09-19 2022-03-11 青岛海尔空调器有限总公司 换热器和空调器
CN117848093A (zh) * 2024-01-13 2024-04-09 广东博益空调配套设备有限公司 一种翅片式液化器

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117906316A (zh) * 2022-10-17 2024-04-19 青岛海尔智能技术研发有限公司 一种换热器结构、冷媒系统及制冷设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030065616A (ko) * 2002-01-30 2003-08-09 한라공조주식회사 수액기 일체형 응축기
CN1975311A (zh) * 2006-09-22 2007-06-06 清华大学 分液式空气冷凝器
CN201415071Y (zh) * 2009-06-18 2010-03-03 中芯国际集成电路制造(上海)有限公司 用于气液分离的管路组件
CN103604255A (zh) * 2013-08-26 2014-02-26 Tcl空调器(中山)有限公司 冷凝器及包括该冷凝器的空调器
CN205505509U (zh) * 2016-03-15 2016-08-24 珠海格力电器股份有限公司 换热器组件及具有其的空调系统
CN106196749A (zh) * 2016-07-08 2016-12-07 南昌大学 一种气液分离式冷凝器
CN108266925A (zh) * 2016-12-30 2018-07-10 杭州三花微通道换热器有限公司 换热器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0395368A (ja) * 1989-09-06 1991-04-19 Nippondenso Co Ltd 凝縮器
US8801925B2 (en) * 2006-02-09 2014-08-12 Emd Millipore Corporation Filter alignment device
CN100480194C (zh) * 2007-01-22 2009-04-22 浙江大学 好氧型内循环回流式固定化微生物流化床反应器
CN101464077A (zh) * 2009-01-09 2009-06-24 广东美的电器股份有限公司 一种空调翅片管换热器
CN106546021A (zh) * 2016-12-20 2017-03-29 江苏世林博尔制冷设备有限公司 一种带气液分离器的水冷机组

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030065616A (ko) * 2002-01-30 2003-08-09 한라공조주식회사 수액기 일체형 응축기
CN1975311A (zh) * 2006-09-22 2007-06-06 清华大学 分液式空气冷凝器
CN201415071Y (zh) * 2009-06-18 2010-03-03 中芯国际集成电路制造(上海)有限公司 用于气液分离的管路组件
CN103604255A (zh) * 2013-08-26 2014-02-26 Tcl空调器(中山)有限公司 冷凝器及包括该冷凝器的空调器
CN205505509U (zh) * 2016-03-15 2016-08-24 珠海格力电器股份有限公司 换热器组件及具有其的空调系统
CN106196749A (zh) * 2016-07-08 2016-12-07 南昌大学 一种气液分离式冷凝器
CN108266925A (zh) * 2016-12-30 2018-07-10 杭州三花微通道换热器有限公司 换热器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114165946A (zh) * 2021-09-19 2022-03-11 青岛海尔空调器有限总公司 换热器和空调器
CN117848093A (zh) * 2024-01-13 2024-04-09 广东博益空调配套设备有限公司 一种翅片式液化器

Also Published As

Publication number Publication date
CN112833589A (zh) 2021-05-25
CN112833589B (zh) 2022-04-22

Similar Documents

Publication Publication Date Title
WO2021103735A1 (zh) 冷凝器以及包括该冷凝器的空调器
CN106233077B (zh) 空调装置
CN103225926B (zh) 蒸发器单元
CN108139089B (zh) 空气调节机的室外机及室内机
US6431264B2 (en) Heat exchanger with fluid-phase change
US20160054038A1 (en) Heat exchanger and refrigeration cycle apparatus
CN105849498A (zh) 热交换器及空调装置
US9903659B2 (en) Low pressure chiller
JPH10176874A (ja) 熱交換器
US20140224455A1 (en) Condenser with a stack of heat exchanger plates
EP3042127B1 (en) Integrated separator-distributor for falling film evaporator
US20090229282A1 (en) Parallel-flow evaporators with liquid trap for providing better flow distribution
CN105352225A (zh) 空调器
CN107543340A (zh) 节流兼分流组件及空调器
US11629896B2 (en) Heat exchanger and refrigeration cycle apparatus
JP3632248B2 (ja) 冷媒蒸発器
JP2010065880A (ja) コンデンサ
TWI634305B (zh) Heat exchanger and air conditioner
US7650934B2 (en) Heat exchanger
JP2000180076A (ja) 水・冷媒熱交換器
WO2021103655A1 (zh) 换热器及空调器
WO2021039302A1 (ja) 熱交換器
JP2012037099A (ja) 空気調和機の室内機
WO2023030508A1 (zh) 换热器和多系统空调机组
US20220252349A1 (en) Heat exchanger

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20891937

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20891937

Country of ref document: EP

Kind code of ref document: A1