WO2023030508A1 - 换热器和多系统空调机组 - Google Patents

换热器和多系统空调机组 Download PDF

Info

Publication number
WO2023030508A1
WO2023030508A1 PCT/CN2022/116881 CN2022116881W WO2023030508A1 WO 2023030508 A1 WO2023030508 A1 WO 2023030508A1 CN 2022116881 W CN2022116881 W CN 2022116881W WO 2023030508 A1 WO2023030508 A1 WO 2023030508A1
Authority
WO
WIPO (PCT)
Prior art keywords
tube
heat exchange
channel
pipe
exchange tube
Prior art date
Application number
PCT/CN2022/116881
Other languages
English (en)
French (fr)
Inventor
肖瑞雪
蒋建龙
位征
金俊峰
高强
Original Assignee
杭州三花微通道换热器有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202122121246.2U external-priority patent/CN216049292U/zh
Priority claimed from CN202122293928.1U external-priority patent/CN216432597U/zh
Application filed by 杭州三花微通道换热器有限公司 filed Critical 杭州三花微通道换热器有限公司
Publication of WO2023030508A1 publication Critical patent/WO2023030508A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/30Arrangement or mounting of heat-exchangers

Definitions

  • the present application relates to the technical field of air-conditioning and refrigeration, in particular to a heat exchanger and a multi-system air-conditioning unit.
  • multi-refrigeration system air-conditioning units include multiple refrigeration systems that can be operated independently to meet different operating requirements.
  • Several systems share one or more heat exchangers, and several systems are isolated from each other and can work independently.
  • the multi-channel heat exchanger used is shared by the two systems.
  • the heat exchange units used in the two systems are often designed to have the same heat exchange capacity, and it is difficult to match various operating conditions according to environmental requirements. working conditions.
  • the application proposes a heat exchanger and a multi-system air-conditioning unit, which can improve the adaptability of the heat exchanger to the multi-refrigeration system air-conditioning unit in part-load operation, and is conducive to improving the heat exchange performance under the part-load operation condition.
  • the first aspect of the present application provides a heat exchanger, including: a first component, the first component includes a first tube and a second tube, a second component, the second component includes a third tube and
  • the fourth tube is a plurality of heat exchange tubes, the heat exchange tubes are microchannel flat tubes, and the heat exchange tubes include a plurality of channels arranged along their length direction, and the plurality of channels are within the width of the heat exchange tubes.
  • the heat exchange tubes include a first heat exchange tube and a second heat exchange tube, the first heat exchange tube communicates with the first tube and the third tube, and the second heat exchange tube
  • the second tube and the fourth tube are connected, the first heat exchange tube and the second heat exchange tube are arranged at intervals along the length direction of the first tube, and the first tube and the first tube
  • the two tubes are not connected to each other, the third tube and the fourth tube are not connected to each other, the fins, part of the fins are connected to one of the first heat exchange tubes, and the other part of the fins is connected to one of the first heat exchange tubes.
  • the second heat exchange tubes are connected, the first heat exchange tubes, the fins and the second heat exchange tubes are arranged along the length direction of the first tubes, and the fins are multiple
  • the first hydraulic diameter of the first pipe is D1
  • the second hydraulic diameter of the second pipe is D2
  • the ratio of the first hydraulic diameter D1 to the second hydraulic diameter D2 is greater than 1 and less than or equal to 6
  • the width dimension of the first heat exchange tube is Tw1
  • the width dimension of the second heat exchange tube is Tw2
  • the width dimension Tw1 of the first heat exchange tube is the same as that of the second heat exchange tube
  • the ratio of the width dimension Tw2 is greater than 1 and less than or equal to 5.
  • the thickness dimension HT1 of the first heat exchange tube is not equal to the thickness dimension HT2 of the second heat exchange tube.
  • the width dimension of the first heat exchange tube and the width dimension of the second heat exchange tube satisfy the following condition: 0.2 ⁇ D1*Tw2/Tw1*D2 ⁇ 6.
  • the ratio of the first hydraulic diameter D1 to the second hydraulic diameter D2 is greater than 1 and less than or equal to 4, and the width dimension Tw1 of the first heat exchange tube and the width dimension Tw1 of the second heat exchange tube The ratio of the width dimension Tw2 is greater than 1 and less than or equal to 3.
  • the minimum distance between two adjacent first heat exchange tubes is Tp1
  • the minimum distance between two adjacent second heat exchange tubes is The minimum distance between them is Tp2
  • the TP1 is not equal to the TP2
  • the hydraulic diameter D1 of the first pipe and the hydraulic diameter D2 of the second pipe meet the following conditions:
  • the first tube includes a peripheral wall and a main channel surrounded by the peripheral wall, along the length direction of the first heat exchange tube, between the peripheral wall of the first tube and part of the fins
  • a finless section is formed, defining the side of the heat exchanger located upstream in the wind direction during operation as the windward side, and defining the side downstream of the heat exchanger in the wind direction as the leeward side, at least part of the second tube Located on the windward side or the leeward side of the finless region.
  • the first distribution pipe is located in the main channel of the first pipe, the first distribution pipe extends for a certain distance along the length direction of the first pipe, the second pipe includes a peripheral wall and is composed of The surrounding wall surrounds the main passage formed, the second distribution pipe is located in the main passage of the second pipe, the second distribution pipe extends a certain distance along the length direction of the second pipe, and the hydraulic pressure of the first distribution pipe
  • the diameter is D3
  • the hydraulic diameter of the second distribution pipe is D4, and the following conditions are satisfied: 1 ⁇ D3/D4 ⁇ 4.
  • the width dimension of the fins is Fw
  • the width dimension of the first heat exchange tube is Tw1
  • the width dimension of the second heat exchange tube is Tw2
  • the second aspect of the present application also provides a heat exchanger, which includes: a first tube and a second tube; a third tube and a fourth tube; a heat exchange tube, the heat exchange tube is a microchannel flat tube,
  • the heat exchange tube includes a first heat exchange tube and a second heat exchange tube, and the first heat exchange tube is not connected to the second heat exchange tube; there are multiple first heat exchange tubes, at least some of which are The first heat exchange tube communicates with the first tube and the second tube; there are multiple second heat exchange tubes, and at least some of the second heat exchange tubes communicate with the third tube and the fourth tube.
  • the first tube includes a first channel
  • the second tube includes a second channel
  • the first channel communicates with the first heat exchange tube
  • the second channel communicates with the second heat exchange tube connected
  • the maximum length of the first channel in the length direction of the first tube is not equal to the maximum length of the second channel in the length direction of the second tube
  • the first heat exchange tube and the The second heat exchange tubes are arranged at intervals along the length direction of the first tubes, and at least two of the second heat exchange tubes are provided with the first heat exchange tubes on one side in the length direction of the first tubes; Fins, at least part of the fins are arranged between two adjacent heat exchange tubes in the length direction of the first tube.
  • the length of the first tube is smaller than the length of the second tube, and the number of the first heat exchange tubes communicating with the first passage is less than the number of the first heat exchange tubes communicating with the second passage The number of second heat exchange tubes.
  • the second tube is positioned adjacent to the first tube compared to the third tube
  • the fourth tube is positioned adjacent to the third tube compared to the first tube
  • the The length of the third tube is less than the length of the fourth tube.
  • the first tube includes a third channel, the third channel is in communication with the second heat exchange tube, the third channel is not in communication with the first channel, and the first The channel and the third channel are arranged along the length direction of the first tube, part of the third tube communicates with the first heat exchange tube and the first channel, and the other part of the third tube communicates with the first tube
  • the two heat exchange tubes are in communication with the third channel, the first tube includes a partition, and the partition separates the first channel and the third channel.
  • the heat exchanger further includes a fifth pipe and a sixth pipe; the heat exchange pipe further includes a third heat exchange pipe; the third heat exchange pipe communicates with the fifth pipe and the The sixth tube, the fifth tube is not connected to the first tube, the length of the fifth tube is less than the length of the second tube, and the number of the third heat exchange tubes is less than that of the second tube As for the number of heat pipes, in the length direction of the second pipes, the second heat exchange pipes are spaced from the third heat exchange pipes.
  • the second tube includes a fourth channel, and the fourth channel communicates with the first heat exchange tube; the second channel does not communicate with the fourth channel, and the first channel It communicates with the fourth channel, and the second channel communicates with the third channel; part of the third tube communicates with the first heat exchange tube and the first channel, and another part of the third tube It communicates with the second heat exchange tube and the third channel; part of the fourth tube communicates with the second heat exchange tube and the second channel, and another part of the fourth tube communicates with the first
  • the heat exchange tubes are in communication with the fourth channel; the sum of the number of the first heat exchange tubes in communication with the first channel and the number of the first heat exchange tubes in communication with the fourth channel is the first A value, the sum of the number of the second heat exchange tubes communicating with the second channel and the number of the second heat exchange tubes communicating with the third channel is the second value, the first value is not equal to the second value.
  • the third tube includes a fifth channel, the fifth channel communicates with the first channel through the first heat exchange tube, the third tube also includes a seventh channel, the The seventh channel communicates with the third channel through the second heat exchange tube; the fourth tube includes a sixth channel, and the sixth channel communicates with the second channel through the second heat exchange tube, The fourth tube further includes an eighth channel, and the eighth channel communicates with the fourth channel through the first heat exchange tube.
  • the hydraulic diameter of the first tube is smaller than the hydraulic diameter of the second tube, and/or the hydraulic diameter of the third tube is smaller than the hydraulic diameter of the fourth tube.
  • the width of the first heat exchange tube is greater than the width of the second heat exchange tube, and/or the length of the second heat exchange tube is greater than the length of the first heat exchange tube.
  • the third aspect of the present application also provides a multi-system air-conditioning unit, which includes the heat exchanger provided in the first aspect of the present application.
  • the third aspect of the application also provides a multi-system air-conditioning unit, which includes the heat exchanger provided in the first aspect of the application, the multi-system air-conditioning unit includes a first system and a second system, and the first The system includes a first compressor unit in communication with the first tube and the third tube of the heat exchanger, and the second system includes a second compressor unit in communication with the heat exchanger The second pipe is connected to the fourth pipe, and the ratio of the output power of the first compressor unit to the output power of the second compressor unit is greater than 1.5 and less than or equal to 5.
  • the heat exchanger and the multi-system air-conditioning unit provided by this application can make the heat exchanger
  • the two refrigeration systems have different heat transfer performances to match the needs of different load operating conditions of the unit.
  • Fig. 1 is the structural representation of the heat exchanger provided by the embodiment of the present application.
  • Fig. 2 is a top view of the heat exchanger shown in Fig. 1;
  • Fig. 3 is a schematic cross-sectional view of a part of the heat exchanger shown in Fig. 1;
  • Fig. 4 is a schematic cross-sectional view of a part of the heat exchanger shown in Fig. 1;
  • Fig. 5 is a schematic structural diagram of a heat exchanger according to another embodiment of the present application.
  • Fig. 6 is a bottom view of the heat exchanger shown in Fig. 5;
  • Fig. 7 is a schematic structural diagram of a heat exchanger according to another embodiment of the present application.
  • Fig. 8 is a bottom view of the heat exchanger shown in Fig. 7;
  • Fig. 9 is a schematic structural diagram of a heat exchanger according to still another embodiment of the present application.
  • Fig. 10 is a bottom view of the heat exchanger described in Fig. 9;
  • Fig. 11 is a schematic structural diagram of a heat exchanger according to yet another embodiment of the present application.
  • Fig. 12 is a bottom view of the heat exchanger shown in Fig. 11;
  • Fig. 13 is a schematic structural diagram of a heat exchanger according to a specific embodiment of the present application.
  • Fig. 14 is a perspective view of the heat exchanger shown in Fig. 13;
  • Fig. 15 is a schematic structural diagram of a heat exchanger according to a specific embodiment of the present application.
  • Fig. 16 is a schematic structural diagram of a heat exchanger according to a specific embodiment of the present application.
  • Fig. 17 is a flow schematic diagram of the heat exchanger shown in Fig. 16;
  • Figure 18 is a right view of the heat exchanger shown in Figure 17;
  • Figure 19 is a front view of the heat exchanger shown in Figure 17;
  • Fig. 20 is a schematic structural diagram of a heat exchanger according to yet another specific embodiment of the application.
  • Fig. 21 is a flow schematic diagram of the heat exchanger shown in Fig. 20;
  • Figure 22 is a right view of the heat exchanger shown in Figure 21;
  • Figure 23 is a front view of the heat exchanger shown in Figure 21;
  • Fig. 24 is a schematic structural diagram of a heat exchanger according to another specific embodiment of the present application.
  • Fig. 25 is a flow schematic diagram of the heat exchanger shown in Fig. 24;
  • Figure 26 is a right view of the heat exchanger shown in Figure 25;
  • Figure 27 is a front view of the heat exchanger shown in Figure 25;
  • Fig. 28 is another schematic diagram of the flow path of the heat exchanger shown in Fig. 24;
  • Figure 29 is a state diagram of the partition in the first tube
  • Fig. 30 is a structural schematic diagram of a multi-system air conditioning unit.
  • 1-heat exchanger 11-first heat exchange tube; 121-first tube; 1211-first channel; 1212-third channel; 122-third tube; 1221-fifth channel; 1222-seventh channel; 13-second heat exchange tube; 141-second tube; 1411-second channel; 1412-fourth channel; 142-fourth tube; 1421-sixth channel; 1422-eighth channel; 16-fin; 17 - Finless section; 18 - first distribution pipe; 19 - second distribution pipe; 101 - third heat exchange pipe; 2 - first compressor unit; 3 - second compressor unit; L1 - distance; L2 - distance ; 4-partition; 5-fifth tube; 6-sixth tube.
  • connection can be a fixed connection, a detachable connection, or an integrated Connected, or electrically connected; either directly or indirectly through an intermediary.
  • the embodiment of the present application provides a heat exchanger and a multi-system air-conditioning unit, and the heat exchanger 1 is applied to the multi-system air-conditioning unit.
  • the heat exchanger 1 can be used as a condenser or an evaporator, and in this embodiment, the heat exchanger 1 is preferably used as an evaporator.
  • the multi-system air conditioner unit includes a compressor, a condenser, an expansion valve, a heat exchanger 1 as an evaporator, and a fan system.
  • the low-pressure steam of the refrigerant is sucked by the compressor and compressed into high-temperature and high-pressure steam, and then discharged to the condenser.
  • the outdoor air sucked by the fan system flows through the condenser, taking away the heat released by the refrigerant, so The high-pressure refrigerant vapor condenses into a medium-temperature high-pressure liquid.
  • the medium-temperature and high-pressure liquid is converted into a low-temperature and low-pressure gas-liquid mixed state through the expansion valve and sprayed into the heat exchanger 1, and evaporates at the corresponding low pressure to absorb the surrounding heat.
  • the fan system makes the air continuously enter the heat exchanger 1 for heat exchange. , and send the cooled air to the room. In this way, the indoor air is continuously circulated to achieve the purpose of cooling and cooling. And the refrigerant flowing out of the heat exchanger 1 becomes a low-temperature and low-pressure gas again due to taking away the heat (heat absorption) in the air, and is sucked into the compressor again, repeating such a cycle.
  • the heat exchanger 1 includes a first group, a second group, a plurality of heat exchange tubes and fins.
  • the first component includes a first tube 121 and a second tube 141
  • the second component includes a second tube 141 and a fourth tube 142 .
  • the heat exchange tube is a microchannel flat tube.
  • the heat exchange tube includes a plurality of channels arranged along its length direction. The plurality of channels are arranged at intervals in the width direction of the heat exchange tube.
  • the heat exchange tube includes a first heat exchange tube 11 and a second heat exchange tube.
  • Heat exchange tube 13 the first heat exchange tube 11 communicates with the first tube 121 and the second tube 141
  • the second heat exchange tube 13 communicates with the second tube 141 and the fourth tube 142
  • the first heat exchange tube 11 and the second heat exchange tube The tubes 13 are arranged at intervals along the length direction of the first tube 121 , the first tube 121 and the second tube 141 are not connected to each other, and the second tube 141 and the fourth tube 142 are not connected to each other.
  • Part of the fin 16 is connected to a first heat exchange tube 11, another part of the fin 16 is connected to a second heat exchange tube 13, the first heat exchange tube 11, the fin 16 and the second heat exchange tube 13 is arranged along the length direction of the first pipe 121, and there are multiple fins 16.
  • the first heat exchange tubes 11 and the second heat exchange tubes 13 can share the fins 16, and when the unit is operating at part load, the first heat exchange tubes 11 or the second heat exchange tubes 13 can pass through all the fins 16. Heat exchange can improve heat exchange efficiency.
  • the first hydraulic diameter of the first pipe 121 is D1
  • the second hydraulic diameter of the second pipe 141 is D2
  • the ratio of the first hydraulic diameter D1 to the second hydraulic diameter D2 is greater than 1 and less than or equal to 6.
  • the amount of refrigerant that can flow through the second pipe 141 is increased relative to the amount of refrigerant that can flow through the first pipe 121, which is conducive to the heat exchange of the refrigerant, so that the refrigeration system including the second pipe 141 Improved heat transfer performance.
  • the two refrigeration systems can have different heat transfer performances, so as to match the requirements of different load operating conditions of the unit.
  • the first pipe 121 and the third pipe 122 have the same hydraulic diameter
  • the second pipe 141 and the fourth pipe 142 have the same hydraulic diameter
  • the first tube 121, the third tube 122 and the first heat exchange tube 11 can form a refrigeration circuit
  • the second tube 141, the fourth tube 142 and the second heat exchange tube 13 can form another refrigeration circuit
  • the two refrigeration circuits The heat dissipation performance can be the same or different.
  • the heat dissipation performance of the two refrigeration circuits is different.
  • two cooling circuits with different heat dissipation performance can be obtained by adjusting the ratio of the first hydraulic diameter D1 to the second hydraulic diameter D2. refrigeration circuit.
  • the width dimension of the first heat exchange tube 11 is Tw1
  • the width dimension of the second heat exchange tube 13 is Tw2
  • the width dimension Tw1 of the first heat exchange tube 11 and the width dimension of the second heat exchange tube 13 The ratio of Tw2 is greater than 1 and less than or equal to 5.
  • the hydraulic diameters of the first tube 121, the second tube 141, the second tube 141, and the fourth tube 142 are the same, and the widths of the first heat exchange tube 11 and the second heat exchange tube 13 are different.
  • the heat exchanging capacity of the larger heat exchanging tube is relatively stronger.
  • the refrigeration circuit including the first heat exchanging tube 11 and the refrigerating circuit including the second heat exchanging tube 11 can be made
  • the heat dissipation performance of the refrigeration circuit of the two heat exchange tubes 13 is different.
  • the ratio of the width dimension of the first heat exchange tube 11 to the width dimension of the second heat exchange tube 13 can be adjusted within a ratio range of 1 to 5 to obtain two heat exchange tubes.
  • the different heat transfer performance of each refrigeration circuit can match the needs of different load operating conditions of the unit.
  • the hydraulic diameters of the first tube 121 and the second tube 141 are different, and the widths of the first heat exchange tube 11 and the second heat exchange tube 13 are also different.
  • the ratio of the first hydraulic diameter D1 to the second hydraulic diameter D2 is in the range of 1 to 6
  • the ratio of the width of the first heat exchange tube 11 to the second heat exchange tube 13 is in the range of 1 to 5, thus , by simultaneously adjusting the hydraulic diameters of the first tube 121 and the second tube 141 and the width dimensions of the first heat exchange tube 11 and the second heat exchange tube 13, the two refrigeration circuits of the heat exchanger can be more flexibly obtained.
  • the heat exchange capacity can also be more flexibly matched to the operating conditions of different loads of the unit.
  • the thickness dimension HT1 of the first heat exchange tube 11 and the thickness dimension HT2 of the second heat exchange tube 13 may not be equal, so that the first heat exchange tube 11 and the second heat exchange tube 13 can be adjusted according to the operating conditions of the unit. In order to obtain the different heat transfer performance of the two refrigeration circuits of the heat exchanger.
  • the width dimension of the first heat exchange tube 11 and the width dimension of the second heat exchange tube 13 satisfy the following condition: 0.2 ⁇ D1*Tw2/Tw1*D2 ⁇ 6.
  • D1 is the hydraulic diameter of the first tube 121
  • D2 is the hydraulic diameter of the second tube 141
  • Tw1 is the width of the first heat exchange tube 11
  • Tw2 is the width of the second heat exchange tube 13 .
  • the hydraulic diameters of the first tube 121 and the second tube 141 are different, the ratio of the hydraulic diameter D1 of the first tube 121 to the hydraulic diameter D2 of the second tube 141 is greater than 1 and less than or equal to 4, and the width of the first heat exchange tube The ratio of the dimension Tw1 to the width dimension Tw2 of the second heat exchange tube is greater than 1 and less than or equal to 3.
  • the hydraulic diameter of the second pipe 141 satisfies the above formula, which can enhance the heat exchange capacity of the refrigerant in the first pipe 121 with a larger hydraulic diameter, so that two refrigeration circuits with different heat exchange capacities can be obtained, which is conducive to matching different loads of the unit operating conditions.
  • the first tube 121 is located above the second tube 141, but this will cause the first tube 121 and the second tube There are differences in the furnace parameters at 141. In order to ensure that the second tube 141 is well welded, the first tube 121 will be over-welded, causing too much solder to enter the first tube 121, thereby causing the risk of blocking the nozzle of the first heat exchange tube 11. If the first heat exchange tube 141 The nozzle opening of the tube 11 is blocked, which will affect the heat exchange performance of the heat exchanger 1 .
  • the distance L1 between the inner wall of the first tube 121 and the first heat exchange tube 11 is greater than the distance L1 between the inner wall of the second tube 141 and the second heat exchange tube. 13 between the distance L2.
  • the edge of the first heat exchange tube 11 is far away from the inner wall surface of the first tube, even if the solder enters the first tube 121, it will accumulate between the first tube 121 and the first heat exchange tube 11, and will not block the first tube.
  • a nozzle of the heat exchange tube 11 is .
  • the distance L1 between the inner wall of the first tube 121 and the first heat exchange tube 11 can be made larger than the inner wall of the second tube 141 by increasing the hydraulic diameter of the first tube 121 The distance L2 from the second heat exchange tube 13 .
  • the minimum distance between two adjacent first heat exchange tubes 11 is Tp1
  • the minimum distance between two adjacent second heat exchange tubes 13 is Tp2
  • TP1 is not equal to TP2
  • the hydraulic diameter D1 of the first pipe 121 and the hydraulic diameter D2 of the second pipe 141 meet the following conditions:
  • a plurality of first heat exchange tubes 11 and a plurality of second heat exchange tubes 13 are arranged respectively, and the plurality of first heat exchange tubes 11 and the plurality of second heat exchange tubes 13 are alternately arranged, specifically, it may be There is at least one first heat exchange tube 11 between every two second heat exchange tubes 13 , such as two, three or more first heat exchange tubes 11 between every two second heat exchange tubes 13 , so that the first heat exchange tubes 11 and the second heat exchange tubes 13 can be evenly distributed to ensure the uniformity of the outlet air temperature.
  • the number ratio of the first heat exchange tube 11 and the second heat exchange tube 13 can be 1:1, 2:1, 3:2, etc., so that To meet the operating conditions of the unit under different loads.
  • the first tube 121 includes a peripheral wall and a main channel surrounded by the peripheral wall.
  • the first heat exchange tube 11 there is a finless region formed between the peripheral wall of the first tube 121 and part of the fins 16 17.
  • the side where the heat exchanger 1 is located upstream in the wind direction during operation as the windward side
  • at least part of the second tube 141 is located at the windward side of the finless region 17
  • the side or leeward side, ie the projection of the second tube 141 is located between the fin 16 and the first tube 121 .
  • the finless area section 17 can ensure that both the first heat exchange tube 11 and the second heat exchange tube 13 can be effectively welded and fixed to the fins 16 .
  • the wind passing through the finless region 17 cannot participate in heat exchange. If the finless region 17 is too large, the wind will be lost there, resulting in reduced heat transfer performance.
  • the wind blowing towards the finless zone 17 can contact the second tube 141 to Heat exchange can be performed, and at the same time, the wind can be guided to the fins 16 for heat exchange by being blocked by the second tube 141 , thereby improving the heat exchange efficiency.
  • the heat exchanger 1 passes through the furnace, it is more convenient to brush the flux between the first heat exchange tube 11 and the first tube 121, thereby ensuring the welding between the first heat exchange tube 11 and the first tube 121 quality.
  • the first distribution pipe 18 is located in the main passage of the first pipe 121, the first distribution pipe 18 extends a certain distance along the length direction of the first pipe 121, and the second pipe 141 includes a peripheral wall and a main passage surrounded by the peripheral wall , the second distribution pipe 19 is located in the main channel of the second pipe 141, the second distribution pipe 19 extends a certain distance along the length direction of the second pipe 141, the hydraulic diameter of the first distribution pipe 18 is D3, the second distribution pipe 19 The hydraulic diameter is D4, which satisfies the following conditions: 1 ⁇ D3/D4 ⁇ 4, and the ratio can be specifically 2 or 3, so that the gas-liquid two-phase refrigerant can evenly flow into the corresponding tube.
  • the width dimension of the fin 16 is Fw
  • the width dimension of the first heat exchange tube 11 is Tw1
  • the width dimension of the second heat exchange tube 13 is Tw2
  • the following conditions are satisfied: Tw2 ⁇ Fw ⁇ Tw1+Tw2.
  • the first tube 121 includes a first channel 1211
  • the second tube 141 includes a second channel 1411
  • the first channel 1211 communicates with the first heat exchange tube 11
  • the second channel 1411 communicates with the second heat exchange tube 13
  • the maximum length of the first channel 1211 in the length direction of the first tube 121 is greater than or smaller than the maximum length of the second channel 1411 in the length direction of the second tube 141 .
  • the maximum length of the first channel 1211 in the length direction of the first tube 121 is smaller than the maximum length of the second channel 1411 in the length direction of the second tube 141 as an example for illustration.
  • the lengths of the first pipe 121 and the second pipe 141 are generally the same, so that the heat exchange unit including the first pipe 121 and the heat exchange unit including the second pipe 141 have the same heat exchange performance. ability.
  • the maximum length of the first channel 1211 in the length direction of the first tube 121 is smaller than the maximum length of the second channel 1411 in the length direction of the second tube 141, so that the first switch connected to the first tube 121
  • the number of heat pipes 11 is less than the number of second heat exchange pipes 13 connected to the second pipe 141, and the heat exchange performance of the fins 16 can be better exerted when the second heat exchange pipes 13 work, so that the first pipe 121
  • the heat exchange unit and the heat exchange unit including the second pipe 141 have different heat exchange capacities.
  • the heat exchange unit including the first pipe 121 or the heat exchange unit including the second pipe 141 can be started to work according to the actual situation, and various operating conditions can be matched according to environmental requirements .
  • the heat exchange capacity of the unit and the heat exchange capacity of the entire multi-refrigeration system air-conditioning unit enable the multi-refrigeration system air-conditioning unit to match various operating requirements of different loads, which can improve the heat exchanger’s performance on the multi-refrigeration system air-conditioning unit when it is operating at part load. Adaptability, which is conducive to improving the heat transfer performance under partial load operating conditions.
  • the hydraulic diameter of the first tube 121 is smaller than the hydraulic diameter of the second tube 141
  • the hydraulic diameter of the third tube 122 is smaller than the hydraulic diameter of the fourth tube 142 .
  • the width of the first heat exchange tube 11 is greater than the width of the second heat exchange tube 13 , and/or the length of the second heat exchange tube 13 is greater than the length of the first heat exchange tube 11 .
  • the hydraulic diameters of the first pipe 121 and the second pipe 141 may be different, and the hydraulic diameters of the third pipe 122 and the fourth pipe 142 may also be different.
  • the hydraulic diameter of the first pipe 121 is smaller than the hydraulic diameter of the second pipe 141
  • the hydraulic diameter of the third pipe 122 is smaller than the hydraulic diameter of the fourth pipe 142 .
  • the width and length of the first heat exchange tube 11 and the second heat exchange tube 13 can also be different, specifically, the width of the first heat exchange tube 11 is greater than the width of the second heat exchange tube 13, and/or the second heat exchange tube 13
  • the length of the heat pipe 13 is greater than the length of the first heat exchange pipe 11 .
  • different heat exchange channels of the heat exchanger can have different heat exchange performances.
  • the length of the first tube 121 is shorter than the length of the second tube 141, and the number of the first heat exchange tubes 11 communicating with the first channel 1211 is less than the number of the second heat exchange tubes communicating with the second channel 1411 .
  • the length of the first channel 1211 is equal to the length of the first tube 121
  • the length of the second channel 1411 is equal to the length of the second tube 141.
  • the first The channel 1211 extends in the axial direction of the first tube 121
  • the second channel 1411 extends in the axial direction of the second tube 141 .
  • the length of the first tube 121 is shorter than the length of the second tube 141
  • the number of the first heat exchange tubes 11 communicating with the first channel 1211 is different from the number of the second channel 1411 communicating with the second heat exchange tube 13, and the number of the first heat exchange tubes 11 is different.
  • 11 communicates with the first pipe 121 and the third pipe 122.
  • the ratio of the number of first heat exchange tubes 11 communicating with the first channel 1211 to the number of second heat exchange tubes 13 communicating with the second channel 1411 is 6:13. In other embodiments, The ratio of the number of first heat exchange tubes 11 communicating with the first channel 1211 to the number of second heat exchange tubes 13 communicating with the second channel 1411 is 7:12.
  • the plurality of first heat exchange tubes 11 communicate with the first tube 121 and the third tube 122, and the plurality of first heat exchange tubes 11 are arranged at intervals along the length direction of the first tube 121, because the first tube 121
  • the length is relatively short, the number of first heat exchange tubes 11 can be reduced, and the interval between adjacent first heat exchange tubes 11 is relatively small, which is conducive to improving the heat exchange performance of the fins placed between the heat exchange tubes .
  • the shorter first tube 121 is beneficial to reduce gas-liquid separation.
  • multiple second heat exchange tubes 13 are connected to the second tube 141 and the fourth tube 142. According to the design of the system and the condition of the compressor, matching the number of different second heat exchange tubes 13 is beneficial to the improvement of the energy efficiency of the system.
  • the heat exchange unit including the first tubes 121 The capacity is smaller than the heat exchange capacity of the heat exchange unit including the second pipe 141.
  • the heat exchange unit including the second pipe 141 with stronger heat exchange capacity can be selected according to the demand for part-load operation.
  • Unit work, or a heat exchange unit including the first tube 121 with a weaker heat exchange capacity can be selected to work, so that various operating conditions can be matched according to environmental requirements.
  • the second tube 141 is arranged adjacent to the first tube 121 compared to the third tube 122
  • the fourth tube 142 is located adjacent to the third tube 122 compared to the first tube 121
  • the length of the third tube 122 is shorter than that of the first tube 122.
  • Four tubes 142 in length wherein, the first tube 121, the third tube 122 and the first heat exchange tube 11 can form a heat exchange unit, the second tube 141, the fourth tube 142 and the second heat exchange tube 13 can form a heat exchange unit, two The heat exchange units have different heat exchange capacities, so that any one of the two heat exchange units can be more flexibly selected to work when the multi-refrigeration system air-conditioning units are operating at part load.
  • the lengths of the first tube 121 and the third tube 122 may be equal
  • the lengths of the second tube 141 and the fourth tube 142 may be equal.
  • the first tube 121 includes a third channel 1212, the third channel 1212 communicates with the second heat exchange tube 13, and the third channel 1212 does not communicate with the first channel 1211.
  • the first channel 1211 and the third channel 1212 are arranged along the length direction of the first tube 121 .
  • Part of the third tube 122 communicates with the first heat exchange tube 11 and the first channel 1211, and another part of the third tube 122 communicates with the second heat exchange tube 13 and the third channel 1212.
  • the first tube 121 includes a separator 4, and the separator 4 separates the first channel 1211 and the third channel 1212.
  • the second tube 141, the second heat exchange tube 13 and the fourth tube 142 can form a first flow path, and the first channel 1211, the channel in the first heat exchange tube 11 and some of the channels in the third tube 122 form a second channel.
  • the third channel 1212 , the channel in the second heat exchange tube 13 and another part of the channel in the third tube 122 may form a third flow path.
  • the heat exchange capacity of the heat exchange unit including the second flow path and the heat exchange unit including the third flow path can be the same or different, so that the most matching heat exchange unit among the three refrigeration flow paths can be selected according to the requirements of actual load operation.
  • the heat unit works, so that the multi-refrigeration system air-conditioning unit can match various operating conditions according to environmental requirements, and at the same time improve heat exchange efficiency.
  • first pipe 121 can be an integrally formed pipe, and the partition plate 4 is sealed and arranged on it. It should be noted that, as shown in FIG. The two sides of the plate 4 respectively form a first channel 1211 and a second channel 1411 .
  • the heat exchanger further includes a fifth tube 5 and a sixth tube 6
  • the heat exchange tubes further include a third heat exchange tube 101 .
  • the third heat exchange tube 101 communicates with the fifth tube 5 and the sixth tube 6, the fifth tube 5 and the first tube 121 are not connected to each other, the length of the fifth tube 5 is less than the length of the second tube 141, and the third heat exchange tube 101
  • the number of tubes 101 is smaller than that of the second heat exchange tubes 13 , and the second heat exchange tubes 13 and the third heat exchange tubes 101 are arranged at intervals along the length direction of the second tubes 141 .
  • the fifth pipe 5 and the first pipe 121 can be coaxially arranged, and the fifth pipe 5 and the first pipe 121 are arranged at intervals, so that the fifth pipe 5 and the first pipe 121 are not communicated with each other, and the sixth pipe 6 and the third pipe
  • the tubes 122 may be arranged coaxially, and the sixth tube 6 and the third tube 122 are arranged at intervals, so that the sixth tube 6 and the third tube 122 are not communicated with each other.
  • a first flow path may be formed between the channels in the first tube 121, the channels in the first heat exchange tube 11, and the channels in the third tube 122, and the channels in the second tube 141, the second heat exchange tube
  • a second flow path can be formed between the channel in the heat pipe 13 and the channel in the fourth tube 142, and the channel in the fifth tube 5, the channel in the third heat exchange tube 101, and the channel in the sixth tube 6 can be Flow path 3 is formed.
  • the heat exchange capacity of the flow path three is smaller than that of the flow path two. heat capacity.
  • the length of the first tube 121 and the length of the fifth tube 5 can be equal or different, and the number of the first heat exchange tube 11 and the number of the third heat exchange tube 101 can be equal or different, so that the flow path 1 and the flow path The same or different heat transfer capacity of Lu San.
  • the heat exchange capacity of the multi-refrigeration system air-conditioning unit can be more adaptable to various operating conditions of different loads.
  • the second tube 141 includes a fourth channel 1412, and the fourth channel 1412 communicates with the first heat exchange tube 11.
  • the second channel 1411 does not communicate with the fourth channel 1412
  • the first channel 1211 communicates with the fourth channel 1412
  • the second channel 1411 communicates with the third channel 1212.
  • Part of the third tube 122 communicates with the first heat exchange tube 11 and the first channel 1211, and another part of the third tube 122 communicates with the second
  • the heat exchange tube 13 communicates with the third channel 1212.
  • Part of the fourth tube 142 communicates with the second heat exchange tube 13 and the second channel 1411, and another part of the fourth tube 142 communicates with the first heat exchange tube 11 and the fourth channel 1412.
  • the sum of the number of the first heat exchange tubes 11 communicating with the first channel 1211 and the number of the first heat exchange tubes 11 communicating with the fourth channel 1412 is the first value
  • the second heat exchange tubes communicating with the second channel 1411 The sum of the number of 13 and the number of second heat exchange tubes 13 communicating with the third channel 1212 is the second value, and the first value and the second value are not equal.
  • the first passage 1211, the passages in the first heat exchange tube 11 and some of the passages in the third pipe 122 can form a flow path one
  • the third passage 1212, the passages in the second heat exchange tube 13 and Another part of the channel in the third tube 122 can form the second channel
  • the channel in the second channel 1411, the second heat exchange tube 13 and part of the channels in the fourth tube 142 can form the third channel
  • the channel in , the channel in the first heat exchange tube 11 and the fourth channel 1412 can form a fourth flow path.
  • one heat exchange unit includes flow path 1 and flow path 4
  • the other heat exchange unit includes flow path 2 and flow path 3.
  • the heat exchange capacity of each of the four refrigeration flow paths may be the same or different.
  • the sum of the number of first heat exchange tubes 11 communicating with the first channel 1211 and the number of first heat exchange tubes 11 communicating with the fourth channel 1412 can be defined as the first value
  • the sum of the number of first heat exchange tubes 11 communicating with the second channel 1411 The sum of the number of the second heat exchange tubes 13 and the number of the second heat exchange tubes 13 communicating with the third channel 1212 is a second value, and the first value and the second value may not be equal.
  • the heat exchange capacities of the above-mentioned first heat exchange unit and the second heat exchange unit can be different.
  • the matching heat exchange unit can be selected to work. According to the system design and In the case of the compressor, matching the number of different heat exchange tubes is conducive to improving the energy efficiency of the system.
  • the second channel 1411 and the fourth channel 1412 may be separated by a partition 4 .
  • the third tube 122 includes a fifth channel 1221, and the fifth channel 1221 communicates with the first channel 1211 through the first heat exchange tube.
  • the third tube 122 also includes a seventh channel 1222, and the seventh channel 1222 passes through the
  • the second heat exchange tube 13 communicates with the third channel 1212.
  • the fourth tube 142 includes a sixth channel 1421, the sixth channel 1421 communicates with the second channel 1411 through the second heat exchange tube 13, and the fourth tube 142 also includes an eighth channel 1422 , the eighth channel 1422 communicates with the fourth channel 1412 through the first heat exchange tube 11 .
  • the first channel 1211, the channel in the first heat exchange tube 11 and the fifth channel 1221 can form a flow path 1
  • the third channel 1212, the second heat exchange tube 13 and the seventh channel 1222 can form a flow path 2
  • the second The second channel 1411 , the second heat exchange tube 13 and the sixth channel 1421 can form a third flow path
  • the fourth channel 1412 , the first heat exchange tube 11 and the eighth channel 1422 can form a fourth flow path.
  • the present application also provides a multi-system air conditioner unit, which includes the heat exchanger 1 provided in any embodiment of the present application.
  • FIG. 30 Another embodiment of the application also provides a multi-system air-conditioning unit, as shown in Figure 30, which includes the heat exchanger 1 provided in any embodiment of the application, the multi-system air-conditioning unit includes the first system and the second system, the first system includes the first compressor unit 2, the first system communicates with the first pipe 121 and the second pipe 141 of the heat exchanger, the second system includes the second compressor unit 3, the second system communicates with the first pipe 141 of the heat exchanger The second pipe 141 communicates with the fourth pipe 142 , and the ratio of the output power of the first compressor unit 2 to the output power of the second compressor unit 3 is greater than 1.5 and less than or equal to 5.
  • the multi-system air-conditioning unit includes multiple refrigeration systems, and at least two refrigeration systems in the multi-system air-conditioning unit share at least one heat exchanger in any of the above-mentioned embodiments, as shown in FIG. 13 , according to
  • the multi-system air conditioner unit 2 of the embodiment of the present invention includes at least two refrigeration circuits, wherein, in one refrigeration circuit, the refrigerant flows out from the outlet of the first compressor 2 and then enters the first pipe 121 of the heat exchanger 1, and the first The tube 121 and the third tube 131 communicate through the first heat exchange tube 11, and the refrigerant flows out from the third tube 131 and then enters the first tube 121 and the third tube 131 of another heat exchanger 1, and the first tube 121 and the third tube The pipe 131 communicates with the first heat exchange pipe 11, and the refrigerant flows out from the third pipe 131 and then flows back to the inlet of the first compressor 2 to realize the circulation of one refrigerant circuit.
  • the refrigerant flows from the second After the outlet of the compressor 3 flows out, it enters the second pipe 141 of the heat exchanger 1.
  • the second pipe 141 and the fourth pipe 142 are connected through the second heat exchange pipe 13. After the refrigerant flows out of the second pipe 141, it enters another heat exchange pipe.
  • the second pipe 141 of the device 1, the second pipe 141 and the fourth pipe 142 are connected through the second heat exchange pipe 13, and the refrigerant flows out from the fourth pipe 142 and returns to the inlet of the second compressor 3 to realize a refrigerant circuit cycle, the heat exchanger can improve the utilization rate of the heat exchange area, which is beneficial to improve the heat exchange performance of the system.
  • the two compressor units can have different heat exchange capacities, so that the operating conditions of different loads of the units can be matched, and the output power of the two compressor units can be greater than 1.5 And be adjusted within the range of less than or equal to 5 to improve the adaptability of the heat exchanger to the multi-refrigeration system air-conditioning unit when it is operating at part load.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

一种换热器(1)和多系统空调机组,该换热器(1)包括第一管(121)、第二管(141)、第三管(122)、第四管(142)、换热管和翅片(16),换热管包括第一换热管(11)和第二换热管(13),第一换热管(11)和第二换热管(13)沿第一管(121)的长度方向交替布置,第一管(121)和第二管(141)的水力直径的比值大于1且小于等于6,和/或第一换热管(11)和第二换热管(13)的宽度尺寸的比值大于1且小于等于5,第一管(121)包括第一通道(1211),第二管(141)包括第二通道(1411),第一通道(1211)在第一管(121)长度方向上的最大长度与第二通道(1411)在所述第二管(141)长度方向上的最大长度不相等;由此可以使多系统换热器(1)对应不同的部分负荷工况,使得制冷系统能够匹配不同负荷运行要求,有利于提高部分负荷运行工况下的换热性能。

Description

换热器和多系统空调机组
相关申请的交叉引用
本申请要求申请号为202122121246.2且申请日为2021年09月03日的中国专利申请和申请号为202122293928.1且申请日为2021年09月18日的中国专利申请的优先权和权益,上述中国专利申请的全部内容在此通过引用并入本申请。
技术领域
本申请涉及空调制冷技术领域,尤其涉及一种换热器及多系统空调机组。
背景技术
相关技术中,多制冷系统空调机组中包括多个可单独运行的制冷系统以适应不同的运行要求,几个系统会共用一个或者多个换热器,几个系统之间相互隔离并可独立工作。以双系统换热器为例,使用的多通道换热器共用于两个系统,使用于两个系统的换热单元往往设计成一样的换热能力,难以根据环境要求匹配各种不同的运行工况。
发明内容
本申请提出一种换热器及多系统空调机组,可以提高换热器对多制冷系统空调机组在部分负荷运行时的适应性,有利于提高部分负荷运行工况下的换热性能。
本申请的第一方面提供了一种换热器,其中,包括:第一组件,所述第一组件包括第一管和第二管,第二组件,所述第二组件包括第三管和第四管,多个换热管,所述换热管为微通道扁管,所述换热管包括沿其长度方向设置的多个通道,所述多个通道在所述换热管的宽度方向上间隔设置,所述换热管包括第一换热管和第二换热管,所述第一换热管连通所述第一管和所述第三管,所述第二换热管连通所述第二管和所述第四管,所述第一换热管和所述第二换热管沿所述第一管的长度方向上间隔布置,所述第一管与所述第二管互不连通,所述第三管和所述第四管互不连通,翅片,部分所述翅片与一个所述第一换热管相连,该所述翅片的另一部分与一个所述第二换热管相连,该所述第一换热管、该所述翅片与该所述第二换热管沿所述第一管的长度方向上设置,所述翅片为多个,所述第一管的第一水力直径为D1,所述第二管的第二水力直径为D2,所述第一水力直径D1和所述第二水力直径D2的比值大于1且小于等于6,和/或所述第一换热管的宽度尺寸为Tw1,所述第二换热管的宽度尺寸为Tw2,所述第一换热管的宽度尺寸Tw1与所述第二换热管的宽度尺寸Tw2的比值大于1且小于等于5。
在一些实施例中,所述第一换热管的厚度尺寸HT1与所述第二换热管的厚度尺寸HT2不相等。
在一些实施例中,所述第一换热管的宽度尺寸和所述第二换热管的宽度尺寸满足下列条件:0.2<D1*Tw2/Tw1*D2≤6。
在一些实施例中,所述第一水力直径D1和所述第二水力直径D2的比值大于1且小于等于4,所述第一换热管的宽度尺寸Tw1与所述第二换热管的宽度尺寸Tw2的比值大于1且小于等于3。
在一些实施例中,沿所述第一管的长度方向,相邻设置的两个所述第一换热管之间的最小距离为Tp1、相邻设置的两个所述第二换热管之间的最小距离为Tp2,所述TP1与所述TP2不相等,所述第一管的水力直径D1和所述第二管水力直径D2,满足下列条件:
0.2<D1×Tp2/Tp1×D2≤30;0.2<Tp2/TP1≤5。
在一些实施例中,所述第一管包括周壁和由周壁包围形成的主通道,沿所述第一换热管的长度方向,所述第一管的周壁和部分该所述翅片之间形成有无翅片区域段,定义所述换热器在工作时位于风向上游的一侧为迎风侧,且定义所述换热器风向下游的一侧为背风侧,至少部分所述第二管位于所述无翅片区域段的迎风侧或者背风侧。
在一些实施例中,第一分配管位于所述第一管的主通道内,所述第一分配管沿所述第一管的长度方向延伸一定的距离,所述第二管包括周壁和由周壁包围形成的主通道,第二分配管位于所述第二管的主通道内,所述第二分配管沿所述第二管的长度方向延伸一定的距离,所述第一分配管的水力直径为D3,所述第二分配管的水力直径为D4,满足下列条件:1≤D3/D4≤4。
在一些实施例中,所述翅片的宽度尺寸为Fw,所述第一换热管的宽度尺寸为Tw1,所述第二换热管的宽度尺寸为Tw2,满足下列条件:Tw2<Fw≤Tw1+Tw2
本申请的第二方面也提供了一种换热器,其中,包括:第一管和第二管;第三管和第四管;换热管,所述换热管为微通道扁管,所述换热管包括第一换热管和第二换热管,所述第一换热管与所述第二换热管不连通;所述第一换热管为多个,至少部分所述第一换热管连通所述第一管和所述第二管;所述第二换热管为多个,至少部分所述第二换热管连通所述第三管和所述第四管;所述第一管包括第一通道,所述第二管包括第二通道,所述第一通道与所述第一换热管连通,所述第二通道与所述第二换热管连通,所述第一通道在所述第一管长度方向上的最大长度与所述第二通道在所述第二管长度方向上的最大长度不相等;所述第一换热管和所述第二换热管沿所述第一管长度方向间隔设置,至少两个所述第二换热管在所述第一管长度方向上的一侧设置有所述第一换热管;还包括翅片,至少部分所述翅片设置于在所述第一管长度方向上相邻的两个所述换热管之间。
在一些实施例中,所述第一管的长度小于所述第二管的长度,与所述第一通道连通的所述第一换热管的数量小于与所述第二通道连通的所述第二换热管的数量。
在一些实施例中,所述第二管相较于所述第三管邻近所述第一管设置,所述第四管相较于所述第一管邻近所述第三管设置,所述第三管的长度小于所述第四管的长度。
在一些实施例中,所述第一管包括第三通道,所述第三通道与所述第二换热管连通,所述第三通道与所述第一通道互不连通,所述第一通道和所述第三通道沿所述第一管长度方向设置,部分所述第三管与所述第一换热管、所述第一通道连通,另一部分所述第三管与所述第二换热管、 所述第三通道连通,所述第一管包括隔板,所述隔板分隔所述第一通道和所述第三通道。
在一些实施例中,所述换热器还包括第五管和第六管;所述换热管还包括第三换热管;所述第三换热管连通所述第五管和所述第六管,所述第五管与所述第一管互不连通,所述第五管的长度小于所述第二管的长度,所述第三换热管的数量小于所述第二换热管的数量,在所述第二管的长度方向上,所述第二换热管与所述第三换热管间隔设置。
在一些实施例中,所述第二管包括第四通道,所述第四通道与所述第一换热管连通;所述第二通道与所述第四通道不连通,所述第一通道与所述第四通道连通,所述第二通道与所述第三通道连通;部分所述第三管与所述第一换热管、所述第一通道连通,另一部分所述第三管与所述第二换热管、所述第三通道连通;部分所述第四管与所述第二换热管、所述第二通道连通,另一部分所述第四管与所述第一换热管、所述第四通道连通;与所述第一通道连通的所述第一换热管的数量和与所述第四通道连通的所述第一换热管的数量之和为第一数值,与所述第二通道连通的所述第二换热管的数量和与所述第三通道连通的所述第二换热管的数量之和为第二数值,所述第一数值和所述第二数值不相等。
在一些实施例中,所述第三管包括第五通道,所述第五通道经所述第一换热管与所述第一通道连通,所述第三管还包括第七通道,所述第七通道经所述第二换热管与所述第三通道连通;所述第四管包括第六通道,所述第六通道经所述第二换热管与所述第二通道连通,所述第四管还包括第八通道,所述第八通道经所述第一换热管与所述第四通道连通。
在一些实施例中,所述第一管的水力直径小于所述第二管的水力直径,和/或所述第三管的水力直径小于所述第四管的水力直径。
在一些实施例中,所述第一换热管的宽度大于所述第二换热管的宽度,和/或所述第二换热管的长度大于所述第一换热管的长度。
本申请的第三方面还提供了一种多系统空调机组,其中,包括本申请第一方面提供的换热器。
本申请的第三方面还提供了一种多系统空调机组,其中,包括本申请第一方面中提供的换热器,所述多系统空调机组包括第一系统和第二系统,所述第一系统包括第一压缩机组,所述第一系统与所述换热器的第一管和第三管连通,所述第二系统包括第二压缩机组,所述第二系统与所述换热器的第二管和第四管连通,所述第一压缩机组的输出功率和所述第二压缩机组的输出功率之比大于1.5且小于等于5。
本申请提供的技术方案可以达到以下有益效果:
本申请提供的换热器及多系统空调机组,通过调整第一管和第二管的水力直径的关系,以及第一换热管和第二换热管宽度尺寸的关系,可以使换热器的两个制冷系统具有不同的换热性能,以匹配机组不同负荷运行工况的需求。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性的,并不能限制本申请。
附图说明
图1为本申请实施例提供的换热器的结构示意图;
图2为图1所示换热器的俯视图;
图3为图1所示换热器的一部分的剖面示意图;
图4为图1所示换热器的一部分的剖面示意图;
图5为根据本申请的另一个实施例的换热器的结构示意图;
图6为图5所示换热器的仰视图;
图7为根据本申请的再一个实施例的换热器的结构示意图;
图8为图7所示换热器的仰视图;
图9为根据本申请的再又一个实施例的换热器的结构示意图;
图10为图9所述换热器的仰视图;
图11根据本申请的又一个实施例的换热器的结构示意图;
图12为图11所示换热器的仰视图;
图13为根据本申请一个具体实施例的换热器的结构示意图;
图14为图13所示换热器的立体图;
图15为根据本申请一个具体实施例的换热器的结构示意图;
图16为根据本申请一个具体实施例的换热器的结构示意图;
图17为图16所示换热器的流路示意图;
图18为图17所示换热器的右视图;
图19为图17所示换热器的正视图;
图20为根据申请又一个具体实施例的换热器的结构示意图;
图21为图20所示换热器的流路示意图;
图22为图21所示换热器的右视图;
图23为图21所示换热器的正视图;
图24为本申请又一个具体实施例的换热器的结构示意图;
图25为图24所示换热器的流路示意图;
图26为图25所示换热器的右视图;
图27为图25所示换热器的正视图;
图28为图24所示换热器的另一种流路示意图;
图29为隔板在第一管中的状态图;
图30为多系统空调机组的结构示意图。
附图标记:
1-换热器;11-第一换热管;121-第一管;1211-第一通道;1212-第三通道;122-第三管;1221-第五通道;1222-第七通道;13-第二换热管;141-第二管;1411-第二通道;1412-第四通道;142- 第四管;1421-第六通道;1422-第八通道;16-翅片;17-无翅片区域段;18-第一分配管;19-第二分配管;101-第三换热管;2-第一压缩机组;3-第二压缩机组;L1-距离;L2-距离;4-隔板;5-第五管;6-第六管。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
在本申请的描述中,除非另有明确的规定和限定,术语“第一”、“第二”仅用于描述的目的,而不能理解为指示或暗示相对重要性;除非另有规定或说明,术语“多个”是指两个或两个以上;术语“连接”、“固定”等均应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或一体地连接,或电连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
本说明书的描述中,需要理解的是,本申请实施例所描述的“上”、“下”等方位词是以附图所示的角度来进行描述的,不应理解为对本申请实施例的限定。此外,在上下文中,还需要理解的是,当提到一个元件连接在另一个元件“上”或者“下”时,其不仅能够直接连接在另一个元件“上”或者“下”,也可以通过中间元件间接连接在另一个元件“上”或者“下”。
如图1至图12所示,本申请实施例提供了一种换热器和多系统空调机组,该换热器1应用于该多系统空调机组。该换热器1可以作为冷凝器或蒸发器,本实施例中,该换热器1优选作为蒸发器。
该多系统空调机组包括压缩机、冷凝器、膨胀阀、作为蒸发器的换热器1和风机系统。多系统空调机组工作过程中,制冷剂的低压蒸汽被压缩机吸入并压缩为高温高压蒸汽后排至冷凝器,同时风机系统吸入的室外空气流经冷凝器,带走制冷剂放出的热量,使高压制冷剂蒸汽凝结为中温高压液体。中温高压液体经过膨胀阀转换为低温低压气液混合态并喷入该换热器1,并在相应的低压下蒸发,吸取周围的热量,同时风机系统使空气不断进入换热器1进行热交换,并将放热后变冷的空气送向室内。如此室内空气不断循环流动,达到制冷降温的目的。而流出该换热器1的制冷剂因带走空气中的热量(吸热)又变成低温低压的气体,被重新吸入到压缩机,反复如此循环。
在一些实施例中,换热器1包括第一机组、第二机组、多个换热管和翅片。其中,第一组件包括第一管121和第二管141,第二组件包括第二管141和第四管142。换热管为微通道扁管,换热管包括沿其长度方向设置的多个通道,多个通道在换热管的宽度方向上间隔设置,换热管包括第一换热管11和第二换热管13,第一换热管11连通第一管121和第二管141,第二换热管13连通第二管141和第四管142,第一换热管11和第二换热管13沿第一管121的长度方向上间隔布置,第一管121与第二管141互不连通,第二管141和第四管142互不连通。部分翅片16与一个第一 换热管11相连,该翅片16的另一部分与一个第二换热管13相连,该第一换热管11、该翅片16与该第二换热管13沿第一管121的长度方向上设置,翅片16为多个。由此,第一换热管11和第二换热管13可以共用翅片16,当机组部分负荷运行时,第一换热管11或第二换热管13均可以通过全部翅片16进行换热,可以提升换热效率。
其中,在一些实施例中,第一管121的第一水力直径为D1,第二管141的第二水力直径为D2,第一水力直径D1和第二水力直径D2的比值大于1且小于等于6,使第二管141可以流过的制冷剂的量相对于第一管121可以流过的制冷剂的量增加,有利于制冷剂进行换热,使包括有第二管141的制冷系统的换热性能提升。其中,通过调整第一水力直径D1和第二水力直径D2的比值,可以使两个制冷系统具有不同的换热性能,以匹配机组不同负荷运行工况的需求。
在一些实施例中,第一管121和第三管122的水力直径相同,第二管141和第四管142的水力直径相同。第一管121、第三管122和第一换热管11可以构成一个制冷回路,第二管141、第四管142和第二换热管13可以构成另一个制冷回路,两个制冷回路的散热性能可以相同也可以不同,在一些实施例中,两个制冷回路的散热性能不同,具体可以通过调整第一水力直径D1和第二水力直径D2的比值,来获得具有不同散热性能的两个制冷回路。
在一些实施例中,第一换热管11的宽度尺寸为Tw1,第二换热管13的宽度尺寸为Tw2,第一换热管11的宽度尺寸Tw1与第二换热管13的宽度尺寸Tw2的比值大于1且小于等于5。在一些实施例中,第一管121、第二管141、第二管141和第四管142的水力直径均相同,第一换热管11和第二换热管13的宽度尺寸不同,宽度尺寸较大的换热管的换热能力相对较强,通过使第一换热管11和第二换热管13的宽度尺寸不同,可以使包括第一换热管11的制冷回路和包括第二换热管13的制冷回路的散热性能不同,具体可以通过在1~5的比值范围内调整第一换热管11的宽度尺寸与第二换热管13的宽度尺寸的比值,来获得两个制冷回路的不同换热性能,从而可以匹配机组不同负荷运行工况的需求。
在一些实施例中,第一管121和第二管141的水力直径不同,第一换热管11和第二换热管13的宽度尺寸也不同。具体地,第一水力直径D1和第二水力直径D2的比值在1~6范围内,第一换热管11和第二换热管13的宽度尺寸的比值在1~5范围内,由此,通过对第一管121和第二管141的水力直径以及第一换热管11和第二换热管13宽度尺寸的同时调整,可以使换热器的两个制冷回路更灵活地获得不同的换热能力,从而也能够更灵活地匹配机组不同负荷运行工况。
进一步地,第一换热管11的厚度尺寸HT1与第二换热管13的厚度尺寸HT2可以不相等,从而可以根据机组的运行工况调整第一换热管11和第二换热管13的厚度,以获得换热器两个制冷回路不同的换热性能。
具体地,第一换热管11的宽度尺寸和第二换热管13的宽度尺寸满足下列条件:0.2<D1*Tw2/Tw1*D2≤6。其中,D1为第一管121的水力直径,D2为第二管141的水力直径,Tw1为第一换热管11的宽度,Tw2为第二换热管13的宽度。
在第一管121和第二管141的水力直径不同,第一换热管11和第二换热管13的宽度尺寸也不同的条件下,通过使第一管121和第二管141的水力直径及第一换热管11和第二换热管13的宽度尺寸满足上述公式,可以使换热器的两个制冷回路维持足够的系统压力,保证制冷剂具有足够的流速用于回油,保证了系统具有最佳的换热性能。
具体地,第一管121和第二管141的水力直径不同,第一管121的水力直径D1和第二管141的水力直径D2的比值大于1且小于等于4,第一换热管的宽度尺寸Tw1与所第二换热管的宽度尺寸Tw2的比值大于1且小于等于3。
本一些实施例中,在第一管121和第二管141的水力直径不同,第一换热管11和第二换热管13的宽度尺寸相同的条件下,通过使第一管121和第二管141的水力直径满足上述公式,可以使水力直径较大的第一管121中的制冷剂的换热能力增强,从而可以获得换热能力不同的两个制冷回路,有利于匹配机组不同负荷的运行工况。
需要说明的是,一般情况,基于现有工艺水平,换热器1过钎焊炉钎焊时,第一管121位于第二管141之上,但这样会造成第一管121和第二管141处的过炉参数存在差异。为保证第二管141焊接良好,第一管121会存在焊接过度的情况,导致焊料过多地进入第一管121,从而发生堵塞第一换热管11管口的风险,如果第一换热管11的管口堵塞,会影响换热器1的换热性能。
为此,在一些实施例中,如图3和图4所示,使第一管121的内壁与第一换热管11之间的距离L1大于第二管141的内壁与第二换热管13之间的距离L2。由此,第一换热管11的边缘距离第一管的内壁面较远,即使焊料进入第一管121,也是在第一管121与第一换热管11之间堆积,不会堵塞第一换热管11的管口。
在一些实施例中,如图3所示,可以通过增大第一管121的水力直径,使第一管121的内壁与第一换热管11之间的距离L1大于第二管141的内壁与第二换热管13之间的距离L2。同时,通过增大第一管121的水力直径,也有利于气体制冷剂进行换热,提升第一换热管11的换热性能。
具体地,沿第一管121的长度方向,相邻设置的两个第一换热管11之间的最小距离为Tp1、相邻设置的两个第二换热管13之间的最小距离为Tp2,TP1与TP2不相等,第一管121的水力直径D1和第二管141水力直径D2,满足下列条件:
0.2<D1×Tp2/Tp1×D2≤30;0.2<Tp2/TP1≤5。
可以理解的是,第一换热管11和第二换热管13分别设置有多个,多个第一换热管11和多个第二换热管13之间交替排布,具体可以是每两个第二换热管13之间具有至少一个的第一换热管11,如每两个第二换热管13之间具有两个、三个或更多个第一换热管11,从而能够使第一换热管11和第二换热管13均匀分布,保证出风温度的均匀性。当然,也可以是每两个第一换热管11之间具有至少一个的第二换热管13。
其中,不同管间距,可实现部分负荷的差异化匹配,例如,第一换热管11和第二换热管13的数量比可以为1:1,2:1,3:2等,从而能够满足机组不同负荷下的运行工况。
具体地,第一管121包括周壁和由周壁包围形成的主通道,沿第一换热管11的长度方向,第一管121的周壁和部分该翅片16之间形成有无翅片区域段17,定义换热器1在工作时位于风向上游的一侧为迎风侧,且定义换热器1风向下游的一侧为背风侧,至少部分第二管141位于无翅片区域段17的迎风侧或者背风侧,也即,第二管141的投影位于翅片16和第一管121之间。
其中,该无翅片区域段17可以保证第一换热管11和第二换热管13均能够与翅片16有效焊接固定。但是,通过该无翅片区域段17的风不能参与换热,如果该无翅片区域段17过大,风会从此处流失,导致换热性能降低。为此,在一些实施例中,通过使至少部分第二管141位于无翅片区域段17的迎风侧或者背风侧,可以使吹向无翅片区域段17的风与第二管141接触而能够进行换热,同时受第二管141的阻挡可以将风导流至翅片16进行换热,从而提升了换热效率。此外,在换热器1过炉时,能够更方便地为第一换热管11和第一管121之间刷钎剂,进而保证第一换热管11和第一管121之间的焊接质量。
具体地,第一分配管18位于第一管121的主通道内,第一分配管18沿第一管121的长度方向延伸一定的距离,第二管141包括周壁和由周壁包围形成的主通道,第二分配管19位于第二管141的主通道内,第二分配管19沿第二管141的长度方向延伸一定的距离,第一分配管18的水力直径为D3,第二分配管19的水力直径为D4,满足下列条件:1≤D3/D4≤4,该比值具体可以为2或3,以使气液两相态制冷剂可以均匀地流入相应的管内。
具体地,翅片16的宽度尺寸为Fw,第一换热管11的宽度尺寸为Tw1,第二换热管13的宽度尺寸为Tw2,满足下列条件:Tw2<Fw≤Tw1+Tw2。在该关系下,可以使翅片、第一换热管11和第二换热管13组合成最佳的配置,提升该换热器换热的有效性。
在一些实施例中,第一管121包括第一通道1211,第二管141包括第二通道1411,第一通道1211与第一换热管11连通,第二通道1411与第二换热管13连通,第一通道1211在第一管121长度方向上的最大长度大于或小于第二通道1411在第二管141长度方向上的最大长度。在一些实施例中,以第一通道1211在第一管121长度方向上的最大长度小于第二通道1411在第二管141长度方向上的最大长度为例进行说明。
通常使用的双制冷系统换热器,其第一管121和第二管141的长度一般相同,使包括第一管121的换热单元和包括第二管141的换热单元具有相同的换热能力。而在一些实施例中,第一通道1211在第一管121长度方向上的最大长度小于第二通道1411在第二管141长度方向上的最大长度,使连接于第一管121的第一换热管11的数量小于连接于第二管141的第二换热管13的数量,且第二换热管13工作时翅片16换热性能可以更好地发挥,从而使包括第一管121的换热单元和包括第二管141的换热单元具有不同的换热能力。当多制冷系统空调机组需要部分负荷运行时,可以根据实际启动包括第一管121的换热单元工作或者包括第二管141的换热单元工作,可以根据环境要求匹配各种不同的运行工况。当然,也可以通过增长或缩短第一管121中第一通道1211的长度,以改变连接第一通道1211的第一换热管11的数量和位置,从而能够改变包括第一管121 的换热单元的换热能力以及整个多制冷系统空调机组的换热能力,使该多制冷系统空调机组能够匹配各种不同负荷运行要求,可以提高换热器对多制冷系统空调机组在部分负荷运行时的适应性,有利于提高部分负荷运行工况下的换热性能。
在一些实施例中,第一管121的水力直径小于第二管141的水力直径,和/或第三管122的水力直径小于第四管142的水力直径。
在一些实施例中,第一换热管11的宽度大于第二换热管13的宽度,和/或第二换热管13的长度大于第一换热管11的长度。
其中,第一管121和第二管141的水力直径可以不同,第三管122和第四管142的水力直径也可以不同。具体地,即第一管121的水力直径小于第二管141的水力直径,和/或第三管122的水力直径小于第四管142的水力直径。此外,第一换热管11和第二换热管13的宽度及长度也可以不同,具体地,第一换热管11的宽度大于第二换热管13的宽度,和/或第二换热管13的长度大于第一换热管11的长度。由此,可以使换热器的不同换热流路具有不同的换热性能。
在一些实施例中,第一管121的长度小于第二管141的长度,与第一通道1211连通的第一换热管11的数量小于与第二通道1411连通的第二换热管的数量。
在一些实施例中,如图13至图15所示,第一通道1211的长度等于第一管121的长度,第二通道1411的长度等于第二管141的长度,可以理解的是,第一通道1211在第一管121的轴向上延伸,第二通道1411在第二管141的轴向上延伸。其中第一管121的长度小于第二管141的长度,与第一通道1211连通的第一换热管11的数量第二通道1411连通第二换热管13的数量不同,第一换热管11连通第一管121和第三管122。
在一些实施例中,与第一通道1211连通的第一换热管11的数量和与第二通道1411连通第二换热管13的数量的比值为6:13,在另外一些实施例中,第一通道1211连通的第一换热管11的数量和与第二通道1411连通第二换热管13的数量的比值为7:12。
在一些实施例中,多个第一换热管11连通第一管121和第三管122,多个第一换热管11沿第一管121的长度方向间隔排列,由于第一管121的长度相对较短,第一换热管11的数量可以减少,同时相邻的第一换热管11之间间隔相对较小,有利于提高放置在换热管之间的翅片的换热性能。当换热器作为蒸发器使用时,较短的第一管121有利于减少气液分离。另外多个第二换热管13连通第二管141和第四管142,根据系统的设计和压缩机情况,匹配不同的第二换热管13的数量,有利于系统能效的提升。
需要说明的是,由于与第一通道1211连通的第一换热管11的数量小于与第二通道1411连通第二换热管13的数量,使包括第一管121的换热单元的换热能力小于包括第二管141的换热单元的换热能力,当多制冷系统空调机组需要部分负荷运行时,可以根据部分负荷运行的需求选择换热能力较强的包括第二管141的换热单元工作,也可以选择换热能力较弱的包括第一管121的换热单元工作,可以实现根据环境要求匹配各种不同的运行工况。
在一些实施例中,第二管141相较于第三管122邻近第一管121设置,第四管142相较于第一管121邻近第三管122设置,第三管122的长度小于第四管142的长度。其中,第一管121、第三管122和第一换热管11可以形成一个换热单元,第二管141、第四管142和第二换热管13可以形成一个换热单元,两个换热单元具有不同的换热能力,从而在多制冷系统空调机组部分负荷运行时可以更灵活地选择两个换热单元中的任意一个换热单元工作。其中,第一管121和第三管122的长度可以相等,第二管141和第四管142的长度可以相等。
在一些实施例中,如图16至图19所示,第一管121包括第三通道1212,第三通道1212与第二换热管13连通,第三通道1212与第一通道1211互不连通,第一通道1211和第三通道1212沿第一管121长度方向设置。部分第三管122与第一换热管11、第一通道1211连通,另一部分第三管122与第二换热管13、第三通道1212连通,第一管121包括隔板4,隔板4分隔第一通道1211和第三通道1212。
其中,第二管141、第二换热管13和第四管142可以形成第一流路,第一通道1211、第一换热管11中的通道和部分第三管122中的通道形成第二流路,第三通道1212、第二换热管13中的通道和另一部分第三管122中的通道可以形成第三流路。其中,包括第二流路的换热单元和包括第三流路的换热单元的换热能力可以相同也可以不同,从而可以根据实际负荷运行的要求选择三个制冷流路中最匹配的换热单元进行工作,从而使该多制冷系统空调机组可以实现根据环境要求匹配各种不同的运行工况,同时提升换热效率。
需要说明的是,该第一管121可以为一体成型的管,隔板4密封设置于需要说明的是,如图29所示,以将第一管121内的通道分隔成两段,使隔板4的两侧分别形成第一通道1211和第二通道1411。
在一些实施例中,如图20至图23所示,该换热器还包括第五管5和第六管6,换热管还包括第三换热管101。其中,第三换热管101连通第五管5和第六管6,第五管5与第一管121互不连通,第五管5的长度小于第二管141的长度,第三换热管101的数量小于第二换热管13的数量,在第二管141的长度方向上,第二换热管13与第三换热管101间隔设置。
其中,第五管5和第一管121可以同轴设置,且第五管5和第一管121间隔设置,使第五管5和第一管121互不连通,第六管6和第三管122可以同轴设置,第六管6和第三管122间隔设置,使第六管6和第三管122互不连通。在一些实施例中,第一管121中的通道、第一换热管11中的通道和第三管122中的通道之间可以形成流路一,第二管141中的通道、第二换热管13中的通道和第四管142中的通道之间可以形成流路二,第五管5中的通道、第三换热管101中的通道和第六管6中的通道之间可以形成流路三。其中,由于第五管5的长度小于第二管141的长度,且第三换热管101的数量小于第二换热管13的数量,使流路三的换热能力小于流路二的换热能力。此外,第一管121的长度与第五管5的长度可以相等或不等,第一换热管11的数量与第三换热管101的数量可以相等或不等,使流路一和流路三的换热能力相同或不同。由此,可以使多制冷系统空 调机组的换热能力更能够适应各种不同负荷的运行工况。
在一些实施例中,如图24至图27所示,第二管141包括第四通道1412,第四通道1412与第一换热管11连通.第二通道1411与第四通道1412不连通,第一通道1211与第四通道1412连通,第二通道1411与第三通道1212连通.部分第三管122与第一换热管11、第一通道1211连通,另一部分第三管122与第二换热管13、第三通道1212连通.部分第四管142与第二换热管13、第二通道1411连通,另一部分第四管142与第一换热管11、第四通道1412连通.与第一通道1211连通的第一换热管11的数量和与第四通道1412连通的第一换热管11的数量之和为第一数值,与第二通道1411连通的第二换热管13的数量和与第三通道1212连通的第二换热管13的数量之和为第二数值,第一数值和第二数值不相等。
在一些实施例中,第一通道1211、第一换热管11中的通道和部分第三管122中的通道可以形成流路一,第三通道1212、第二换热管13中的通道和另一部分第三管122中的通道可以形成流路二,第二通道1411、第二换热管13中的通道和部分第四管142中的通道可以形成流路三,另一部分第四管142中的通道、第一换热管11中的通道和第四通道1412可以形成流路四。其中,一个换热单元包括流路一和流路四,另一个换热单元包括流路二和流路三。
在一些实施例中,四个制冷流路中的各个流路的换热能力可以相同也可以不同。具体地,可以定义与第一通道1211连通的第一换热管11的数量和与第四通道1412连通的第一换热管11的数量之和为第一数值,与第二通道1411连通的第二换热管13的数量和与第三通道1212连通的第二换热管13的数量之和为第二数值,该第一数值和第二数值可以不相等。由此,可以使上述第一换热单元和第二换热单元的换热能力不同,当多制冷系统空调机组需要部分负荷运行时,可以选择相匹配的换热单元工作,根据系统的设计和压缩机情况,匹配不同换热管的数量,有利于系统能效的提升。其中,第二通道1411和第四通道1412可以通过隔板4分隔。
在一些实施例中,第三管122包括第五通道1221,第五通道1221经第一换热管与第一通道1211连通,第三管122还包括第七通道1222,第七通道1222经第二换热管13与第三通道1212连通.第四管142包括第六通道1421,第六通道1421经第二换热管13与第二通道1411连通,第四管142还包括第八通道1422,第八通道1422经第一换热管11与第四通道1412连通。
其中,第一通道1211、第一换热管11中的通道和第五通道1221可以形成流路一,第三通道1212、第二换热管13和第七通道1222可以形成流路二,第二通道1411、第二换热管13和第六通道1421可以形成流路三,第四通道1412、第一换热管11和第八通道1422可以形成流路四。
本申请还提供了一种多系统空调机组,其包括本申请任意实施例提供的换热器1。
本申请的另一种实施例还提供了一种多系统空调机组,如图30所示,其包括本申请任意实施例提供的换热器1,该多系统空调机组包括第一系统和第二系统,第一系统包括第一压缩机组2,第一系统与换热器的第一管121和第二管141连通,第二系统包括第二压缩机组3,第二系统与换热器的第二管141和第四管142连通,第一压缩机组2的输出功率和第二压缩机组3的输出功率 之比大于1.5且小于等于5。
根据本发明的实施例的多系统空调机组包括多个制冷系统,多系统空调机组中的至少两个制冷系统共用至少一个上述任一项实施例中的换热器,如图13所示,根据本发明实施例的多系统空调机组2包括至少两个制冷回路,其中,在一个制冷回路中,制冷剂从第一压缩机2的出口流出后进入换热器1的第一管121,第一管121和第三管131通过第一换热管11连通,制冷剂从第三管131流出后进入另一个换热器1的第一管121和第三管131,第一管121和第三管131通过第一换热管11连通,制冷剂从第三管131流出后回流至第一压缩机2的进口,实现一个制冷剂回路的循环,在另一个制冷回路中,制冷剂从第二压缩机3的出口流出后进入换热器1的第二管141,第二管141和第四管142通过第二换热管13连通,制冷剂从第二管141流出后进入另一个换热器1的第二管141,第二管141和第四管142通过第二换热管13连通,制冷剂从第四管142流出后回流至第二压缩机3的进口,实现一个制冷剂回路的循环,该换热器能够提高换热面积利用率,有利于提高系统的换热性能。
其中,通过使两个压缩机组具有不同的输出功率,可以使两个系统分别具有不同的换热能力,从而可以匹配机组不同负荷的运行工况,且两个压缩机组的输出功率可以在大于1.5且小于等于5的范围内调节,以提高换热器对多制冷系统空调机组在部分负荷运行时的适应性。
以上仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (19)

  1. 一种换热器,其特征在于,包括:
    第一组件,所述第一组件包括第一管和第二管;
    第二组件,所述第二组件包括第二管和第四管;
    多个换热管,所述换热管为微通道扁管,所述换热管包括沿其长度方向设置的多个通道,所述多个通道在所述换热管的宽度方向上间隔设置,所述换热管包括第一换热管和第二换热管,所述第一换热管连通所述第一管和所述第二管,所述第二换热管连通所述第二管和所述第四管,所述第一换热管和所述第二换热管沿所述第一管的长度方向上间隔布置,所述第一管与所述第二管互不连通,所述第三管和所述第四管互不连通;
    翅片,部分所述翅片与一个所述第一换热管相连,该所述翅片的另一部分与一个所述第二换热管相连,该所述第一换热管、该所述翅片与该所述第二换热管沿所述第一管的长度方向上设置,所述翅片为多个;
    所述第一管的第一水力直径为D1,所述第二管的第二水力直径为D2,所述第一水力直径D1和所述第二水力直径D2的比值大于1且小于等于6,和/或所述第一换热管的宽度尺寸为Tw1,所述第二换热管的宽度尺寸为Tw2,所述第一换热管的宽度尺寸Tw1与所述第二换热管的宽度尺寸Tw2的比值大于1且小于等于5。
  2. 根据权利要求1所述的换热器,其特征在于,所述第一换热管的厚度尺寸HT1与所述第二换热管的厚度尺寸HT2不相等。
  3. 根据权利要求1所述的换热器,其特征在于,所述第一换热管的宽度尺寸和所述第二换热管的宽度尺寸满足下列条件:0.2<D1*Tw2/Tw1*D2≤6。
  4. 根据权利要求1所述的换热器,其特征在于,所述第一水力直径D1和所述第二水力直径D2的比值大于1且小于等于4,所述第一换热管的宽度尺寸Tw1与所述第二换热管的宽度尺寸Tw2的比值大于1且小于等于3。
  5. 根据权利要求1至4任一项所述的换热器,其特征在于,沿所述第一管的长度方向,相邻设置的两个所述第一换热管之间的最小距离为Tp1、相邻设置的两个所述第二换热管之间的最小距离为Tp2,所述TP1与所述TP2不相等,所述第一管的水力直径D1和所述第二管水力直径D2,满足下列条件:
    0.2<D1×Tp2/Tp1×D2≤30;0.2<Tp2/TP1≤5。
  6. 根据权利要求5所述的换热器,其特征在于,所述第一管的周壁和所述翅片之间形成有无翅片区域段,定义所述换热器在工作时位于风向上游的一侧为迎风侧,且定义所述换热器风向下游的一侧为背风侧,至少部分所述第二管位于所述无翅片区域段的迎风侧或者背风侧。
  7. 根据权利要求6所述的换热器,其特征在于,第一分配管位于所述第一管的主通道内,所述第一分配管沿所述第一管的长度方向延伸一定的距离,所述第二管包括周壁和由周壁包围形成的主通道,第二分配管位于所述第二管的主通道内,所述第二分配管沿所述第二管的长度方向延伸一定的距离,所述第一分配管的水力直径为D3,所述第二分配管的水力直径为D4,满足下列条件:1≤D3/D4≤4。
  8. 根据权利要求1所述的换热器,其特征在于,所述翅片的宽度尺寸为Fw,所述第一换热管的宽度尺寸为Tw1,所述第二换热管的宽度尺寸为Tw2,满足下列条件:Tw2<Fw≤Tw1+Tw2。
  9. 一种换热器,其特征在于,包括:
    第一管和第二管;
    第三管和第四管;
    换热管,所述换热管为微通道扁管,所述换热管包括第一换热管和第二换热管,所述第一换热管与所述第二换热管不连通;
    所述第一换热管为多个,至少部分所述第一换热管连通所述第一管和所述第二管;
    所述第二换热管为多个,至少部分所述第二换热管连通所述第三管和所述第四管;
    所述第一管包括第一通道,所述第二管包括第二通道,所述第一通道与所述第一换热管连通,所述第二通道与所述第二换热管连通,所述第一通道在所述第一管长度方向上的最大长度与所述第二通道在所述第二管长度方向上的最大长度不相等;
    所述第一换热管和所述第二换热管沿所述第一管长度方向间隔设置,至少两个所述第二换热管在所述第一管长度方向上的一侧设置有所述第一换热管;
    还包括翅片,至少部分所述翅片设置于在所述第一管长度方向上相邻的两个所述换热管之间。
  10. 根据权利要求9所述的换热器,其特征在于,所述第一管的长度小于所述第二管的长度,与所述第一通道连通的所述第一换热管的数量小于与所述第二通道连通的所述第二换热管的数量。
  11. 根据权利要求9或10所述的换热器,其特征在于,所述第二管相较于所述第三管邻近所述第一管设置,所述第四管相较于所述第一管邻近所述第三管设置,所述第三管的长度小于所述第四管的长度。
  12. 根据权利要求9所述的换热器,其特征在于,所述第一管包括第三通道,所述第三通道与所述第二换热管连通,所述第三通道与所述第一通道互不连通,所述第一通道和所述第三通道沿所述第一管长度方向设置,部分所述第三管与所述第一换热管、所述第一通道连通,另一部分所述第三管与所述第二换热管、所述第三通道连通,所述第一管包括隔板,所述隔板分隔所述第一通道和所述第三通道。
  13. 根据权利要求9所述的换热器,其特征在于,还包括:
    第五管和第六管;
    所述换热管还包括第三换热管;
    所述第三换热管连通所述第五管和所述第六管,所述第五管与所述第一管互不连通,所述第五管的长度小于所述第二管的长度,所述第三换热管的数量小于所述第二换热管的数量,在所述第二管的长度方向上,所述第二换热管与所述第三换热管间隔设置。
  14. 根据权利要求12所述的换热器,其特征在于,
    所述第二管包括第四通道,所述第四通道与所述第一换热管连通;
    所述第二通道与所述第四通道不连通,所述第一通道与所述第四通道连通,所述第二通道与所述第三通道连通;
    部分所述第三管与所述第一换热管、所述第一通道连通,另一部分所述第三管与所述第二换热管、所述第三通道连通;
    部分所述第四管与所述第二换热管、所述第二通道连通,另一部分所述第四管与所述第一换热管、所述第四通道连通;
    与所述第一通道连通的所述第一换热管的数量和与所述第四通道连通的所述第一换热管的数量之和为第一数值,与所述第二通道连通的所述第二换热管的数量和与所述第三通道连通的所述第二换热管的数量之和为第二数值,所述第一数值和所述第二数值不相等。
  15. 根据权利要求14所述的换热器,其特征在于,
    所述第三管包括第五通道,所述第五通道经所述第一换热管与所述第一通道连通,所述第三管还包括第七通道,所述第七通道经所述第二换热管与所述第三通道连通;
    所述第四管包括第六通道,所述第六通道经所述第二换热管与所述第二通道连通,所述第四管还包括第八通道,所述第八通道经所述第一换热管与所述第四通道连通。
  16. 根据权利要求9或10或14或15所述的换热器,其特征在于,所述第一管的水力直径小于所述第二管的水力直径,和/或所述第三管的水力直径小于所述第四管的水力直径。
  17. 根据权利要求16所述的换热器,其特征在于,所述第一换热管的宽度大于所述第二换热管的宽度,和/或所述第二换热管的长度大于所述第一换热管的长度。
  18. 一种多系统空调机组,其特征在于,包括权利要求1-17任一项所述的换热器,所述空调机组包括多个多系统空调机组,至少两个所述多系统空调机组共用所述换热器。
  19. 根据权利要求18所述的多系统空调机组,其特征在于,包括权利要求9中所述的换热器,所述多系统空调机组包括第一系统和第二系统,所述第一系统包括第一压缩机组,所述第一系统与所述换热器的第一管和第三管连通,所述第二系统包括第二压缩机组,所述第二系统与所述换热器的第二管和第四管连通,所述第一压缩机组的输出功率和所述第二压缩机组的输出功率之比大于1.5且小于等于5。
PCT/CN2022/116881 2021-09-03 2022-09-02 换热器和多系统空调机组 WO2023030508A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202122121246.2U CN216049292U (zh) 2021-09-03 2021-09-03 换热器及多系统空调机组
CN202122121246.2 2021-09-03
CN202122293928.1 2021-09-18
CN202122293928.1U CN216432597U (zh) 2021-09-18 2021-09-18 换热器和多制冷系统空调机组

Publications (1)

Publication Number Publication Date
WO2023030508A1 true WO2023030508A1 (zh) 2023-03-09

Family

ID=85411989

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/116881 WO2023030508A1 (zh) 2021-09-03 2022-09-02 换热器和多系统空调机组

Country Status (1)

Country Link
WO (1) WO2023030508A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08219662A (ja) * 1995-02-16 1996-08-30 Zexel Corp 熱交換器
CN1380203A (zh) * 2001-04-10 2002-11-20 三电有限公司 多流式过冷冷凝器
CN101432590A (zh) * 2006-04-14 2009-05-13 三菱电机株式会社 热交换器及制冷空调装置
CN103644685A (zh) * 2013-12-26 2014-03-19 杭州三花微通道换热器有限公司 换热器和具有该换热器的多制冷系统空调
JP2018096568A (ja) * 2016-12-09 2018-06-21 株式会社デンソー 熱交換器
CN110168294A (zh) * 2017-07-05 2019-08-23 日立江森自控空调有限公司 空调机的室外换热器以及具备该室外换热器的空调机
CN113108455A (zh) * 2020-01-09 2021-07-13 开利公司 组合芯微通道热交换器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08219662A (ja) * 1995-02-16 1996-08-30 Zexel Corp 熱交換器
CN1380203A (zh) * 2001-04-10 2002-11-20 三电有限公司 多流式过冷冷凝器
CN101432590A (zh) * 2006-04-14 2009-05-13 三菱电机株式会社 热交换器及制冷空调装置
CN103644685A (zh) * 2013-12-26 2014-03-19 杭州三花微通道换热器有限公司 换热器和具有该换热器的多制冷系统空调
JP2018096568A (ja) * 2016-12-09 2018-06-21 株式会社デンソー 熱交換器
CN110168294A (zh) * 2017-07-05 2019-08-23 日立江森自控空调有限公司 空调机的室外换热器以及具备该室外换热器的空调机
CN113108455A (zh) * 2020-01-09 2021-07-13 开利公司 组合芯微通道热交换器

Similar Documents

Publication Publication Date Title
US9651317B2 (en) Heat exchanger and air conditioner
US9791189B2 (en) Heat exchanger and refrigeration cycle apparatus
WO2018173356A1 (ja) 熱交換器、および、それを用いた空気調和機
JP2012163328A5 (zh)
WO2023030508A1 (zh) 换热器和多系统空调机组
CN110285603B (zh) 热交换器和使用其的制冷系统
US20230094694A1 (en) Heat exchanger
WO2021095567A1 (ja) 伝熱管、及び、熱交換器
AU2017444848A1 (en) Heat exchanger and refrigeration cycle device
CN216049292U (zh) 换热器及多系统空调机组
JP6987227B2 (ja) 熱交換器及び冷凍サイクル装置
JP2014001882A (ja) 熱交換器および空気調和機
US20220011048A1 (en) Heat exchanger
WO2023281656A1 (ja) 熱交換器および冷凍サイクル装置
US20230194191A1 (en) Refrigerant distributer, heat exchanger, and air-conditioning apparatus
WO2023275973A1 (ja) 冷凍サイクル装置
WO2021192902A1 (ja) 熱交換器
JP6928793B2 (ja) プレートフィン積層型熱交換器およびそれを用いた冷凍システム
WO2022215193A1 (ja) 冷凍サイクル装置
WO2022215164A1 (ja) 熱交換器及び空気調和装置
WO2019207806A1 (ja) 冷媒分配器、熱交換器および空気調和機
JP2020079651A (ja) 空気調和機
CN117073073A (zh) 分液器、换热器及空调
JP2019066132A (ja) 多パス型熱交換器およびそれを用いた冷凍システム
CN115917243A (zh) 热交换器和制冷循环装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22863642

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE