WO2021095567A1 - 伝熱管、及び、熱交換器 - Google Patents

伝熱管、及び、熱交換器 Download PDF

Info

Publication number
WO2021095567A1
WO2021095567A1 PCT/JP2020/040840 JP2020040840W WO2021095567A1 WO 2021095567 A1 WO2021095567 A1 WO 2021095567A1 JP 2020040840 W JP2020040840 W JP 2020040840W WO 2021095567 A1 WO2021095567 A1 WO 2021095567A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
heat transfer
transfer tube
heat exchanger
refrigerant
Prior art date
Application number
PCT/JP2020/040840
Other languages
English (en)
French (fr)
Inventor
佐藤 健
智彦 坂巻
賢吾 内田
好男 織谷
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to CN202080079251.7A priority Critical patent/CN114729793B/zh
Priority to EP20887565.8A priority patent/EP4060252B1/en
Publication of WO2021095567A1 publication Critical patent/WO2021095567A1/ja
Priority to US17/743,141 priority patent/US20220268525A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • F25B39/028Evaporators having distributing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • F25B41/24Arrangement of shut-off valves for disconnecting a part of the refrigerant cycle, e.g. an outdoor part
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05391Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits combined with a particular flow pattern, e.g. multi-row multi-stage radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/022Tubular elements of cross-section which is non-circular with multiple channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/126Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element consisting of zig-zag shaped fins
    • F28F1/128Fins with openings, e.g. louvered fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • F28F1/325Fins with openings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2215/00Fins
    • F28F2215/12Fins with U-shaped slots for laterally inserting conduits

Definitions

  • This disclosure relates to heat transfer tubes and heat exchangers.
  • This microchannel heat exchanger includes a heat transfer tube called a multi-hole tube formed by arranging a plurality of flow paths inside (see, for example, Patent Document 1).
  • a heat transfer tube In this heat transfer tube, heat exchange is performed between the refrigerant flowing through each flow path and the air flowing around the heat transfer tube along the arrangement direction of the plurality of flow paths.
  • a plurality of protrusions are provided on the inner surface of each flow path, and the contact area with the refrigerant is expanded by these protrusions.
  • the cross-sectional shape of each flow path is formed in a rectangular shape that is long in the arrangement direction of the plurality of flow paths. Therefore, many protrusions can be formed on the inner surface of each flow path to further expand the contact area with the refrigerant, and the number of flow paths inside the heat transfer tube is reduced, so that the arrangement directions of the plurality of flow paths are reduced. There is an advantage that the difference in heat exchange efficiency between the upstream side and the downstream side of the air flow along the can be reduced.
  • the long side of the rectangle in the cross-sectional shape of the flow path becomes longer, the speed of the refrigerant flowing in each flow path becomes lower, so that the heat exchange performance may be deteriorated. Therefore, it is necessary to appropriately set the dimensions of each flow path in order to improve the heat exchange performance.
  • An object of the present disclosure is to provide a heat transfer tube and a heat exchanger capable of improving heat exchange performance.
  • the heat transfer tube of the present disclosure is A plurality of first flow paths are formed side by side inside.
  • the cross-sectional shape of each of the first flow paths is a rectangle long in the first direction, which is the arrangement direction of the plurality of first flow paths.
  • a plurality of protrusions are formed on the inner surface of the first flow path, The ratio of the length of the long side to the length of the short side in the cross-sectional shape of the first flow path is 1.1 or more and 1.5 or less.
  • the ratio of the long side to the short side in the cross-sectional shape of the first flow path can be appropriately set, and the heat exchange performance can be improved.
  • the distance between the adjacent first flow paths is 0.5 mm or more and 0.6 mm or less.
  • a second flow path is formed at the end of the heat transfer tube in the first direction.
  • the cross-sectional area of the second flow path is smaller than the cross-sectional area of the first flow path.
  • frost formation is likely to occur at the end face of the heat transfer tube in the first direction, so that the cross-sectional area of the second flow path is made smaller than the cross-sectional area of the first flow path, and the flow rate of the refrigerant in the second flow path.
  • Frost formation can be suppressed by making the amount less than that of the first flow path.
  • the second flow path is formed at both ends of the first direction inside the heat transfer tube.
  • the maximum distance in the first direction between the second flow path and the end surface of the heat transfer tube in the first direction closest to the second flow path is the two first adjacent ones. It is greater than the distance between the flow paths in the first direction. According to this configuration, frost formation is likely to occur on the end face of the heat transfer tube in the first direction, so that the maximum distance in the first direction between the second flow path and the end face of the heat transfer tube is set to the adjacent first flow path.
  • the heat exchanger of the present disclosure is Header and The plurality of heat transfer tubes according to any one of (1) to (5) above, which are arranged side by side in the longitudinal direction of the header and whose ends are connected to the header, are provided.
  • the heat exchanger of the present disclosure is Header and The plurality of heat transfer tubes according to any one of (3) to (5) above, which are arranged side by side in the longitudinal direction of the header and whose ends are connected to the header. With fins, The fins are in contact with the outer peripheral surface of the heat transfer tube except for one end surface of the heat transfer tube in the first direction.
  • the second flow path is formed at one end of the heat transfer tube on one side.
  • one end surface of the heat transfer tube with which the fins are not in contact has a lower temperature than the other surface with which the fins are in contact, and frost is likely to form on one side of the inside of the heat transfer tube.
  • FIG. 3 is a cross-sectional view taken along the line AA of FIG. It is sectional drawing of a heat transfer tube. It is sectional drawing which shows the 1st flow path of a heat transfer tube enlarged. It is sectional drawing which shows the 2nd flow path of a heat transfer tube enlarged. It is a graph which shows the relationship between the aspect ratio and the heat exchange performance ratio. It is a graph which shows the relationship between the aspect ratio, the surface area in a flow path, and the heat exchange performance ratio of a single flow path.
  • FIG. 1 is a schematic configuration diagram of an air conditioner according to an embodiment of the present disclosure.
  • the air conditioner 1 as a refrigerating device includes an outdoor unit 2 installed outdoors and an indoor unit 3 installed indoors.
  • the outdoor unit 2 and the indoor unit 3 are connected to each other by a connecting pipe.
  • the air conditioner 1 includes a refrigerant circuit 4 that performs a vapor compression refrigeration cycle operation.
  • the refrigerant circuit 4 is provided with an indoor heat exchanger 11, a compressor 12, an oil separator 13, an outdoor heat exchanger 14, an expansion valve (expansion mechanism) 15, an accumulator 16, a four-way switching valve 17, and the like. Is connected by a refrigerant pipe 10.
  • the refrigerant pipe 10 includes a liquid pipe 10L and a gas pipe 10G.
  • the indoor heat exchanger 11 is a heat exchanger for exchanging heat between the refrigerant and the indoor air, and is provided in the indoor unit 3.
  • the indoor heat exchanger 11 for example, a cross-fin type fin-and-tube heat exchanger, a microchannel type heat exchanger, or the like can be adopted.
  • An indoor fan (not shown) for blowing indoor air to the indoor heat exchanger 11 is provided in the vicinity of the indoor heat exchanger 11.
  • the compressor 12, the oil separator 13, the outdoor heat exchanger 14, the expansion valve 15, the accumulator 16, and the four-way switching valve 17 are provided in the outdoor unit 2.
  • the compressor 12 compresses the refrigerant sucked from the suction port and discharges it from the discharge port.
  • various compressors such as a scroll compressor can be adopted.
  • the oil separator 13 is for separating the lubricating oil from the mixed fluid of the lubricating oil and the refrigerant discharged from the compressor 12.
  • the separated refrigerant is sent to the four-way switching valve 17, and the lubricating oil is returned to the compressor 12.
  • the outdoor heat exchanger 14 is for exchanging heat between the refrigerant and the outdoor air.
  • the outdoor heat exchanger 14 of the present embodiment is a microchannel heat exchanger.
  • An outdoor fan 18 for blowing outdoor air to the outdoor heat exchanger 14 is provided in the vicinity of the outdoor heat exchanger 14.
  • a refrigerant shunt 19 having a capillary pipe is connected to the liquid side end of the outdoor heat exchanger 14.
  • the expansion valve 15 is arranged between the outdoor heat exchanger 14 and the indoor heat exchanger 11 in the refrigerant circuit 4, expands the inflowing refrigerant, and reduces the pressure to a predetermined pressure.
  • the expansion valve 15 for example, an electronic expansion valve having a variable opening degree can be adopted.
  • the accumulator 16 separates the inflowing refrigerant into gas and liquid, and is arranged between the suction port of the compressor 12 and the four-way switching valve 17 in the refrigerant circuit 4. The gas refrigerant separated by the accumulator 16 is sucked into the compressor 12.
  • the four-way switching valve 17 can be switched between the first state shown by the solid line and the second state shown by the broken line in FIG. When the air conditioner 1 performs the cooling operation, the four-way switching valve 17 is switched to the first state, and when the air conditioner 1 performs the heating operation, the four-way switching valve 17 is switched to the second state.
  • the outdoor heat exchanger 14 functions as a refrigerant condenser (radiator), and the indoor heat exchanger 11 functions as a refrigerant evaporator.
  • the gaseous refrigerant discharged from the compressor 12 is condensed in the outdoor heat exchanger 14, and then the refrigerant decompressed by the expansion valve 15 evaporates in the indoor heat exchanger 11 and is sucked into the compressor 12.
  • the outdoor heat exchanger 14 functions as a refrigerant condenser as in the cooling operation
  • the indoor heat exchanger 11 Functions as a refrigerant evaporator.
  • the outdoor heat exchanger 14 functions as a refrigerant evaporator
  • the indoor heat exchanger 11 functions as a refrigerant condenser.
  • the gaseous refrigerant discharged from the compressor 12 is condensed in the indoor heat exchanger 11, and then the refrigerant decompressed by the expansion valve 15 evaporates in the outdoor heat exchanger 14 and is sucked into the compressor 12.
  • FIG. 2 is a perspective view showing an outdoor heat exchanger of an air conditioner.
  • FIG. 3 is a schematic view showing the outdoor heat exchanger in an unfolded manner.
  • FIG. 4 is a cross-sectional view taken along the line AA of FIG.
  • expressions such as “top”, “bottom”, “left”, “right”, “front (front)”, and “rear (back)” may be used to explain the orientation and position. is there. Unless otherwise specified, these expressions follow the directions of the arrows drawn in FIG. Specifically, in the following description, the direction of the arrow X in FIG.
  • the outdoor heat exchanger 14 is a device that exchanges heat between the refrigerant flowing inside and the air.
  • the outdoor heat exchanger 14 of the present embodiment is formed in a substantially U shape when viewed from above.
  • the outdoor heat exchanger 14 is housed in, for example, the casing of the outdoor unit 2 formed in a rectangular parallelepiped shape, and is arranged so as to face the three side walls of the casing.
  • the outdoor heat exchanger 14 of the present embodiment has a pair of headers 21 and 22 and a heat exchanger main body 23.
  • the pair of headers 21 and 22 and the heat exchanger body 23 are made of aluminum or an aluminum alloy.
  • a pair of headers 21 and 22 are arranged at both ends of the heat exchanger main body 23.
  • One header 21 is a liquid header through which a liquid refrigerant (gas-liquid two-phase refrigerant) flows.
  • the other header 22 is a gas header through which a gaseous refrigerant flows.
  • the liquid header 21 and the gas header 22 are arranged with their longitudinal directions oriented in the vertical direction Z.
  • a refrigerant shunt 19 having the above-mentioned capillary pipes 37A to 37F is connected to the liquid header 21.
  • a gas pipe 24 is connected to the gas header 22.
  • the heat exchanger main body 23 is a part that exchanges heat between the refrigerant flowing inside and the air. As shown by the arrow a, the air passes from the outside to the inside of the heat exchanger main body 23 formed in a substantially U shape in the direction intersecting the heat exchanger main body 23.
  • the heat exchanger main body 23 has a plurality of heat transfer tubes 26 and a plurality of fins 27.
  • the plurality of heat transfer tubes 26 are arranged horizontally.
  • the plurality of heat transfer tubes 26 are arranged side by side in the vertical direction, which is the longitudinal direction of the headers 21 and 22.
  • One end of each heat transfer tube 26 in the longitudinal direction is connected to the liquid header 21.
  • the other end of each heat transfer tube 26 in the longitudinal direction is connected to the gas header 22.
  • the heat transfer tube 26 of the present embodiment is a multi-hole tube in which a plurality of refrigerant passages 30A and 30B are formed.
  • the flow paths 30A and 30B extend along the longitudinal direction of the heat transfer tube 26.
  • the refrigerant exchanges heat with air while flowing through the flow paths 30A and 30B of the heat transfer tube 26.
  • the plurality of flow paths 30A and 30B are arranged side by side along the air flow direction a with respect to the heat exchanger main body 23. Air passes between the plurality of heat transfer tubes 26 in the vertical direction.
  • the heat transfer tube 26 is formed in a flat shape in which the length in the vertical direction is smaller than the length in the direction in which the plurality of flow paths 30A and 30B are lined up (air flow direction a). Both end faces 26a of the heat transfer tube 26 in the direction in which the plurality of flow paths 30A and 30B are lined up are formed in a semicircular shape.
  • the plurality of fins 27 are arranged side by side along the longitudinal direction of the heat transfer tube 26.
  • Each fin 27 is a thin plate material formed long in the vertical direction.
  • the fins 27 are formed with a plurality of grooves 27a extending from one side 27c of the air flow direction a toward the other side side by side at intervals in the vertical direction.
  • the groove 27a is open on one side 27c of the fin 27.
  • the heat transfer tube 26 is attached to the fin 27 in a state of being inserted into each groove 27a of the fin 27.
  • the fin 27 is formed with a louver 27b for promoting heat transfer and a rib 27d for reinforcement.
  • the heat exchanger main body 23 illustrated in FIGS. 2 and 3 has a plurality of heat exchange units 31A to 31F.
  • the plurality of heat exchange units 31A to 31F are arranged side by side in the vertical direction.
  • the inside of the liquid header 21 is vertically partitioned for each of the heat exchange portions 31A to 31F.
  • flow paths 33A to 33F for each of the heat exchange portions 31A to 31F are formed inside the liquid header 21.
  • a plurality of connecting pipes 35A to 35F are connected to the liquid header 21.
  • the connecting pipes 35A to 35F are provided corresponding to the flow paths 33A to 33F.
  • Capillary pipes 37A to 37F of the refrigerant shunt 19 are connected to the connection pipes 35A to 35F.
  • the liquid refrigerant separated by the refrigerant shunt 19 flows through the capillary pipes 37A to 37F and the connecting pipes 35A to 35F and flows into the respective flow paths 33A to 33F in the liquid header 21, and each flow path. It flows to the gas header 22 through one or more heat transfer tubes 26 connected to 33A to 33F.
  • the refrigerant shunted into the heat transfer tubes 26 by the gas header 22 flows into the flow paths 33A to 33F of the liquid header 21, and the capillarys from the flow paths 33A to 33F. It flows through the pipes 37A to 37F and joins with the refrigerant shunt 19.
  • the inside of the gas header 22 is not partitioned and is continuous over all the heat exchange portions 31A to 31F. Therefore, the refrigerant flowing into the gas header 22 from one gas pipe 24 is diverted to all the heat transfer pipes 26, and the refrigerant flowing into the gas header 22 from all the heat transfer pipes 26 is merged by the gas header 22 to be one gas. It flows into the pipe 24.
  • FIG. 5 is a cross-sectional view of the heat transfer tube.
  • FIG. 6 is an enlarged cross-sectional view showing the first flow path of the heat transfer tube.
  • FIG. 7 is an enlarged cross-sectional view showing the second flow path of the heat transfer tube.
  • a plurality of flow paths 30A and 30B are formed in the heat transfer tube 26.
  • Second flow paths 30B are formed at both ends of the heat transfer tube 26 in the air flow direction a.
  • a plurality of first flow paths 30A are formed side by side between the two second flow paths 30B.
  • the seven first flow paths 30A and the two second flow paths 30B are formed by arranging them in a line in the air flow direction a.
  • the arrangement direction of the flow paths 30A and 30B is also referred to as "first direction P".
  • the first flow path 30A has a long rectangular cross-sectional shape in the first direction P.
  • the length of the long side (the length of the first direction P) in the cross-sectional shape of the first flow path 30A is shown by L1a
  • the length of the short side (the length in the vertical direction) is shown by L1b. ..
  • a plurality of protrusions 31 are formed on the inner surface of the first flow path 30A.
  • the plurality of protrusions 31 are formed on the inner surfaces on the two long side sides in the cross-sectional shape of the first flow path 30A.
  • six protrusions 31 are formed on each inner surface.
  • Each protrusion 31 is formed in a tapered shape so that the length of the first direction P becomes smaller toward the tip end side.
  • the second flow path 30B has a long rectangular cross-sectional shape in the first direction P.
  • the length of the long side in the cross-sectional shape of the second flow path 30B is shown by L2a
  • the length of the short side is shown by L2b.
  • the length L2a of the long side of the second flow path 30B is shorter than the length L1a of the long side of the first flow path 30A.
  • the length L2b of the short side of the second flow path 30B is the same as the length L1b of the short side of the first flow path 30A.
  • the cross-sectional area of the second flow path 30B is smaller than the cross-sectional area of the first flow path 30A.
  • a plurality of protrusions 31 are formed on the inner surface of the second flow path 30B.
  • the plurality of protrusions 31 are formed on the inner surfaces of the two long sides in the cross-sectional shape of the second flow path 30B.
  • four protrusions 31 are formed on each inner surface.
  • the protrusion 31 of the second flow path 30B and the protrusion 31 of the first flow path 30A have the same shape. Since the length L2a of the long side of the second flow path 30B is shorter than the length L1a of the long side of the first flow path 30A, the number of protrusions 31 that can be formed in the second flow path 30B is the first. It is less than the number of protrusions 31 that can be formed in the flow path 30A.
  • each flow path is increased by forming the protrusion 31 on the inner surface of the first and second flow paths 30A and 30B, so that the heat exchange efficiency can be improved.
  • the first flow path 30A has a rectangular cross-sectional shape, and the aspect ratio, which is the ratio of the length L1a on the long side of the rectangle to the length L1b on the short side, is 1.1 or more and 1.5 or less. Is set to. The reason why the aspect ratio is set to such a value is that the following items (1) to (4) are taken into consideration.
  • the timing of the state change differs between the refrigerant flowing in the flow path 30A on the upstream side of the air flow direction a and the refrigerant flowing in the flow path 30A on the downstream side of the air flow direction a. Therefore, the outdoor heat exchanger 14 is designed so that the refrigerant in the flow path 30A on the downstream side appropriately changes its state. However, if the heat exchange efficiency is significantly different between the upstream flow path 30A and the downstream flow path 30A, the upstream flow path 30A will allow the refrigerant whose state has changed to flow into the outdoor heat exchanger 14. Therefore, the ability is wasted. In order to suppress this phenomenon, the number of flow paths 30A in the heat transfer tube 26 may be reduced without reducing the total cross-sectional area of the flow path 30A. Therefore, the cross-sectional shape of the flow path 30A is a rectangle long in the air flow direction a. It is effective to form in.
  • FIG. 9 is a graph showing the relationship between the aspect ratio, the surface area in the flow path, and the heat exchange performance ratio of a single flow path. With reference to FIG. 9, it can be seen that the larger the aspect ratio of the flow path, the larger the surface area in the flow path, but the larger the aspect ratio, the lower the heat exchange performance ratio of each flow path.
  • the number of flow paths is changed under the six conditions A to F while the length (thickness) of the heat transfer tube 26 in the vertical direction and the length of the first direction P are constant.
  • the wall thickness, aspect ratio, and number of protrusions (number of grooves) were set according to the number of, and the heat exchange performance ratio was calculated.
  • the heat exchange performance ratio was the ratio when the condition A was 100%.
  • the length of the heat transfer tube 26 in the vertical direction is 2.0 mm
  • the length of the first direction P is 22.2 mm.
  • FIG. 8 is a graph showing the relationship between the aspect ratio of the flow path shown in Table 1 and the heat exchange performance ratio.
  • the heat exchange performance ratio increases in the aspect ratio between 0.7 and 1.3, but decreases thereafter. It is considered that this is because when the aspect ratio exceeds 1.3, the influence of the increase in the wall thickness between the flow paths and the individual performance deterioration of each flow path is larger than the increase in the surface area in the flow path. ..
  • a value of 1.1 or more and 1.5 or less is adopted as an aspect ratio capable of obtaining appropriate heat exchange performance, and the first flow path.
  • the lengths La1 and La2 of the long side and the short side in the cross-sectional shape of 30A are set.
  • the distance (thickness of the wall 26b) t1 between the first flow path 30A and the first flow path 30A is preferably 0.5 mm or more and 0.6 mm or less.
  • the temperature of the heat transfer tube 26 drops significantly on the end surface 26a of the heat transfer tube 26 to which the fins 27 are not in contact, and frost formation is more likely to occur. Since the end surface 26a of the heat transfer tube 26 with which the fins 27 are not in contact is located on the upstream side in the air flow direction a, air containing moisture comes into contact with the heat transfer tube 26, and frost formation is more likely to occur.
  • the second flow path 30B is formed at both ends inside the heat transfer tube 26 in the first direction P.
  • the cross-sectional area of the second flow path 30B is smaller than the cross-sectional area of the first flow path 30A. Therefore, the amount of the refrigerant flowing through the second flow path 30B is smaller than the amount of the refrigerant flowing through the first flow path 30A, and the amount of heat transfer to the end face 26a of the heat transfer tube 26 is reduced. Therefore, by forming the second flow path 30B at the end of the first direction P inside the heat transfer tube 26, frost formation on the end surface 26a of the heat transfer tube 26 can be suppressed.
  • the aspect ratio of the second flow path 30B in the present embodiment is not included in the range of 1.1 or more and 1.5 or less, which is the aspect ratio of the first flow path 30A, and is set to less than 1.1. There is.
  • the maximum distance (heat transfer tube) of the first direction P between the second flow path 30B and the end surface 26a of the heat transfer tube 26 in the first direction P closest to the second flow path 30B As shown in FIGS. 5 and 7, the maximum distance (heat transfer tube) of the first direction P between the second flow path 30B and the end surface 26a of the heat transfer tube 26 in the first direction P closest to the second flow path 30B.
  • the thickness (thickness) t2 of the end portion of 26 is larger than the distance (thickness of the wall 26b) t1 in the first direction P between the first flow path 30A and the first flow path 30A. Therefore, the heat of the refrigerant flowing through the second flow path 30B is less likely to be transferred to the end surface 26a of the heat transfer tube 26, and frost formation can be further suppressed.
  • the distance t1 between the first flow path 30A and the second flow path 30B (thickness of the wall 26b) is also the same as the distance t1 between the first flow paths 30A.
  • the grooves 27a formed in the fins 27 have a first portion 27a1 having a length L3 in the vertical direction substantially the same as the length in the vertical direction of the heat transfer tube 26, and a first direction P of the fins 27.
  • a second portion 27a2 On one end side of the above, there is a second portion 27a2 whose length in the vertical direction is larger than that of the first portion 27a1.
  • the maximum length of the second portion 27a2 in the vertical direction is indicated by L4
  • the range of the second portion 27a2 in the first direction P is indicated by W.
  • the end face 26a of the heat transfer tube 26 has a semicircular cross-sectional shape. A part of the end face 26a of the heat transfer tube 26 is arranged in the first portion 27a1 of the groove 27a, and the remaining portion is arranged in the range W of the first direction P of the second portion 27a2 of the groove 27a. The end surface 26a of the heat transfer tube 26 and the first portion 27a1 of the groove 27a are close to each other with a gap S.
  • the radius of the end face 26a of the heat transfer tube 26 is about 1.0 mm, and the length L5 of the end face 26a of the heat transfer tube 26 arranged in the second portion 27a2 in the first direction P is, for example, 0.20 to 0.24 mm. It is more preferably 0.22 mm.
  • the protrusions 31 formed in the first flow path 30A and the second flow path 30B may be formed on the inner surface on the short side side in the cross-sectional shape of the first flow path 30A and the second flow path 30B, or may be formed on the long side. It may be formed on both the inner surface on the side and the inner surface on the short side.
  • the cross-sectional shape of the second flow path 30B is rectangular, but it may be another shape such as a square or a circular shape.
  • the end surface 26a of the heat transfer tube 26 in the first direction P is formed in a semicircular shape, but it may be a flat surface along the vertical direction.
  • a plurality of first flow paths 30A are arranged side by side, and the cross-sectional shape of each first flow path 30A is the arrangement direction of the plurality of first flow paths 30A. It is a rectangle long in the first direction P, and a plurality of protrusions 31 are formed on the inner surface of the first flow path 30A, and the length L1a of the long side and the length L1b of the short side in the cross-sectional shape of the first flow path 30A
  • the ratio is 1.1 or more and 1.5 or less. Thereby, the ratio of the lengths of the long side and the short side in the cross-sectional shape of the first flow path 30A can be appropriately set, and the heat exchange performance can be improved.
  • the second flow path 30B is formed at the end of the first direction P inside the heat transfer tube 26, and the cross-sectional area of the second flow path 30B is the disconnection of the first flow path 30A. Smaller than the area. Since frost is likely to occur at the end of the heat transfer tube 26 in the first direction P, the cross-sectional area of the second flow path 30B is made smaller than the cross-sectional area of the first flow path 30A, and the refrigerant flowing through the second flow path 30B. Frost formation can be suppressed by reducing the flow rate of.
  • the second flow path 30B is formed at both ends of the first direction P inside the heat transfer tube 26. Therefore, frost formation at both ends of the heat transfer tube 26 in the first direction P can be suppressed.
  • the maximum distance t2 of the first direction P between the second flow path 30B and the end surface 26a of the heat transfer tube 26 in the first direction P closest to the second flow path 30B is adjacent to each other. It is larger than the distance t1 in the first direction P between the two first flow paths 30A. Since frost is likely to occur on the end surface 26a of the heat transfer tube 26 in the first direction P, the maximum distance t2 between the second flow path 30B and the end surface 26a of the heat transfer tube 26 is set to the distance t1 between the adjacent first flow paths 30A. By making the length longer than that, the heat of the refrigerant flowing through the second flow path 30B is less likely to be transferred to the end surface 26a of the heat transfer tube 26, and frost formation can be suppressed.
  • the outdoor heat exchanger 14 of the above embodiment includes headers 21 and 22, and a plurality of heat transfer tubes 26 which are arranged side by side in the longitudinal direction of the headers 21 and 22 and whose ends are connected to the headers 21 and 22.
  • a fin 27 that contacts the outer peripheral surface of the heat transfer tube 26 is provided, and the fin 27 is in contact with the outer peripheral surface of the heat transfer tube 26 except for the end surface 26a on one side of the heat transfer tube 26 in the first direction P.
  • a second flow path 30B is formed on one side of the inside of the heat transfer tube 26.
  • the end surface 26a on one side of the heat transfer tube 26 with which the fins 27 are not in contact has a lower temperature than the other portion with which the fins 27 are in contact, and frost is likely to occur.

Abstract

伝熱管(26)は、内部に複数の第1流路(30A)が並べて形成され、各第1流路(30A)の断面形状が、複数の第1流路(30A)の並び方向である第1方向(P)に長い長方形であり、第1流路(30A)の内面に複数の突起(31)が形成され、第1流路(30A)の断面形状における長辺の長さ(L1a)と短辺の長さ(L1b)との比率が、1.1以上1.5以下である。

Description

伝熱管、及び、熱交換器
 本開示は、伝熱管、及び、熱交換器に関する。
 近年、空気調和機の熱交換器として、熱交換効率が高く、小形化・軽量化が可能なマイクロチャネル式の熱交換器が用いられることがある。このマイクロチャネル式の熱交換器は、内部に複数の流路が並べて形成された多穴管と呼ばれる伝熱管を備えている(例えば、特許文献1参照)。この伝熱管においては、各流路を流れる冷媒と、複数の流路の並び方向に沿って伝熱管の周囲を流れる空気との間で熱交換が行われる。特許文献1記載の伝熱管においては、各流路の内面には複数の突起が設けられ、この突起によって冷媒との接触面積が拡大されている。
特開2009-63228号公報
 特許文献1記載の伝熱管は、各流路の断面形状が、複数の流路の並び方向に長い長方形に形成されている。そのため、各流路の内面に多くの突起を形成して冷媒との接触面積をより拡大することができ、さらに、伝熱管内部の流路の数が少なくなるので、複数の流路の並び方向に沿った空気流の上流側と下流側との間で熱交換効率の差を小さくすることができるという利点がある。しかし、流路の断面形状における長方形の長辺が長くなるほど、各流路内を流れる冷媒の速度が低くなるため、熱交換性能が却って悪化する場合もある。したがって、熱交換性能を向上させるために各流路の寸法を適切に設定する必要がある。
 本開示は、熱交換性能を向上させることができる伝熱管、及び、熱交換器を提供することを目的とする。
 (1)本開示の伝熱管は、
 内部に、複数の第1流路が並べて形成され、
 前記各第1流路の断面形状が、複数の前記第1流路の並び方向である第1方向に長い長方形であり、
 前記第1流路の内面に複数の突起が形成され、
 前記第1流路の断面形状における長辺の長さと短辺の長さとの比率が、1.1以上1.5以下である。
 以上の構成によれば、第1流路の断面形状における長辺と短辺の比率を適切に設定し、熱交換性能を向上させることができる。
(2) 好ましくは、隣接する前記第1流路の間の距離が、0.5mm以上0.6mm以下である。
(3) 好ましくは、前記伝熱管の内部における前記第1方向の端部には、第2流路が形成され、
 前記第2流路の断面積が、前記第1流路の断面積よりも小さい。
 この構成によれば、第1方向における伝熱管の端面では、着霜が生じやすいため、第2流路の断面積を第1流路の断面積よりも小さくし、第2流路の冷媒流量を第1流路よりも少なくすることによって着霜を抑制することができる。
(4) 好ましくは、前記伝熱管の内部における前記第1方向の両端部に、前記第2流路が形成されている。
(5) 好ましくは、前記第2流路と、この第2流路に最も近い前記第1方向における前記伝熱管の端面との間の前記第1方向の最大距離が、隣接する2つの第1流路の間の前記第1方向の距離よりも大きい。
 この構成によれば、第1方向における伝熱管の端面では、着霜が生じやすいため、第2流路と伝熱管の端面との間の第1方向の最大距離を、隣接する第1流路間の第1方向の距離よりも長くすることによって、第2流路を流れる冷媒の熱が、伝熱管の端面に伝わりにくくすることができ、当該端面における着霜を抑制することができる。
(6) 本開示の熱交換器は、
 ヘッダと、
 ヘッダの長手方向に並べて配置され、前記ヘッダに端部が接続される上記(1)~(5)のいずれか1つに記載の複数の伝熱管と、を備えている。
(7) 本開示の熱交換器は、
 ヘッダと、
 前記ヘッダの長手方向に並べて配置され、前記ヘッダに端部が接続される上記の(3)~(5)のいずれか1つに記載の複数の伝熱管と、
 フィンと、を備え、
 前記フィンが、前記第1方向における前記伝熱管の一方側の端面を除いて、前記伝熱管の外周面に接触しており、
 前記伝熱管の内部における前記一方側の端部に、前記第2流路が形成されている。
 以上の構成によれば、フィンが接触していない伝熱管の一方側の端面は、フィンが接触している他の面よりも低温となり、着霜しやすくなるため、伝熱管の内部の一方側に端部に第2流路を形成することで、伝熱管の一方側の端面付近の冷媒流量を少なくし、着霜を抑制することができる。
本開示の一実施の形態に係る空気調和機の概略構成図である。 空気調和機の室外熱交換器を示す斜視図である。 室外熱交換器を展開して示す概略図である。 図3のA-A矢視断面図である。 伝熱管の断面図である。 伝熱管の第1流路を拡大して示す断面図である。 伝熱管の第2流路を拡大して示す断面図である。 アスペクト比と熱交換性能比との関係を示すグラフである。 アスペクト比と流路内の表面積及び単一流路の熱交換性能比との関係を示すグラフである。
 以下、添付図面を参照しつつ、本開示の実施形態を詳細に説明する。
 図1は、本開示の一実施の形態に係る空気調和機の概略構成図である。
 冷凍装置としての空気調和機1は、室外に設置される室外機2と、室内に設置される室内機3とを備えている。室外機2と室内機3とは、連絡配管によって互いに接続されている。空気調和機1は、蒸気圧縮式の冷凍サイクル運転を行う冷媒回路4を備えている。冷媒回路4には、室内熱交換器11、圧縮機12、油分離器13、室外熱交換器14、膨張弁(膨張機構)15、アキュムレータ16、四方切換弁17等が設けられており、これらが冷媒配管10によって接続されている。冷媒配管10は、液配管10Lとガス配管10Gとを含む。
 室内熱交換器11は、冷媒を室内空気と熱交換させるための熱交換器であり、室内機3に設けられている。室内熱交換器11としては、例えばクロスフィン型のフィン・アンド・チューブ熱交換器やマイクロチャネル型熱交換器等を採用することができる。室内熱交換器11の近傍には、室内空気を室内熱交換器11へ送風するための室内ファン(図示省略)が設けられている。
 圧縮機12、油分離器13、室外熱交換器14、膨張弁15、アキュムレータ16及び四方切換弁17は、室外機2に設けられている。
 圧縮機12は、吸入ポートから吸入した冷媒を圧縮して吐出ポートから吐出するものである。圧縮機12としては、例えば、スクロール圧縮機等の種々の圧縮機を採用することができる。
 油分離器13は、圧縮機12から吐出された潤滑油及び冷媒の混合流体から潤滑油を分離するためのものである。分離された冷媒は四方切換弁17へ送られ、潤滑油は圧縮機12に戻される。
 室外熱交換器14は、冷媒を室外空気と熱交換させるためのものである。本実施形態の室外熱交換器14は、マイクロチャネル型熱交換器である。室外熱交換器14の近傍には、室外空気を室外熱交換器14へ送風するための室外ファン18が設けられている。室外熱交換器14の液側端には、キャピラリ管を有する冷媒分流器19が接続されている。
 膨張弁15は、冷媒回路4において室外熱交換器14と室内熱交換器11との間に配設され、流入した冷媒を膨張させて、所定の圧力に減圧させる。膨張弁15として、例えば開度可変の電子膨張弁を採用することができる。
 アキュムレータ16は、流入した冷媒を気液分離するものであり、冷媒回路4において圧縮機12の吸入ポートと四方切換弁17との間に配設されている。アキュムレータ16で分離されたガス冷媒は、圧縮機12に吸入される。
 四方切換弁17は、図1において実線で示す第1の状態と、破線で示す第2の状態とに切換可能である。空気調和機1が冷房運転を行うときには、四方切換弁17は第1の状態に切り換えられ、暖房運転を行うときには、四方切換弁17は第2の状態に切り換えられる。
 空気調和機1が冷房運転を行う場合、室外熱交換器14が冷媒の凝縮器(放熱器)として機能し、室内熱交換器11が冷媒の蒸発器として機能する。圧縮機12から吐出されたガス状冷媒は室外熱交換器14で凝縮し、その後、膨張弁15で減圧された冷媒が室内熱交換器11で蒸発し、圧縮機12に吸引される。暖房運転の際に室外熱交換器14に付着した霜を取り除く除霜運転を行う場合にも、冷房運転と同様に、室外熱交換器14が冷媒の凝縮器として機能し、室内熱交換器11が冷媒の蒸発器として機能する。
 空気調和機1が暖房運転を行う場合、室外熱交換器14が冷媒の蒸発器として機能し、室内熱交換器11が冷媒の凝縮器として機能する。圧縮機12から吐出されたガス状冷媒は室内熱交換器11で凝縮し、その後、膨張弁15で減圧された冷媒が室外熱交換器14で蒸発し、圧縮機12に吸引される。
[室外熱交換器の構成]
 図2は、空気調和機の室外熱交換器を示す斜視図である。図3は、室外熱交換器を展開して示す概略図である。図4は、図3のA-A矢視断面図である。
 以下の説明において、向きや位置を説明するために、「上」、「下」、「左」、「右」、「前(前面)」、「後(背面)」等の表現を用いる場合がある。これらの表現は、特に断りの無い限り、図2中に描画した矢印の方向に従う。具体的に以下の説明では、図2中の矢印Xの方向を左右方向、矢印Yの方向を前後方法、矢印Zの方向を上下方向とする。なお、これらの方向や位置を表す表現は、説明の便宜上用いられるものであって、特記無き場合、室外熱交換器14全体や室外熱交換器14の各構成の向きや位置を記載の表現の向きや位置に特定するものではない。
 室外熱交換器14は、内部を流れる冷媒と空気との間で熱交換を行わせる機器である。本実施形態の室外熱交換器14は、上面視において略U字形状に形成されている。この室外熱交換器14は、例えば、直方体形状に形成された室外機2のケーシングに収容され、当該ケーシングの3つの側壁に対向するように配置される。本実施形態の室外熱交換器14は、一対のヘッダ21,22と、熱交換器本体23とを有する。一対のヘッダ21,22及び熱交換器本体23は、アルミニウム製又はアルミニウム合金製である。
 一対のヘッダ21,22は、熱交換器本体23の両端に配置されている。一方のヘッダ21は、液状冷媒(気液二相冷媒)が流れる液ヘッダである。他方のヘッダ22は、ガス状冷媒が流れるガスヘッダである。液ヘッダ21及びガスヘッダ22は、その長手方向を上下方向Zに向けた状態で配置されている。液ヘッダ21には、前述したキャピラリ管37A~37Fを有する冷媒分流器19が接続されている。ガスヘッダ22には、ガス配管24が接続されている。
 熱交換器本体23は、内部を流れる冷媒と空気との間で熱交換を行う部分である。空気は、矢印aで示すように、略U字形状に形成された熱交換器本体23の外側から内側へ熱交換器本体23と交差する方向に通過する。
 図3に示すように、熱交換器本体23は、複数の伝熱管26と、複数のフィン27とを有する。複数の伝熱管26は、水平に配置されている。複数の伝熱管26は、ヘッダ21,22の長手方向である上下方向に並べて配置されている。各伝熱管26の長手方向の一端部は液ヘッダ21に接続されている。各伝熱管26の長手方向の他端部は、ガスヘッダ22に接続されている。
 図4に示すように、本実施形態の伝熱管26は、複数の冷媒の流路30A,30Bが形成された多穴管である。各流路30A,30Bは、伝熱管26の長手方向に沿って延びている。冷媒は、伝熱管26の各流路30A,30Bを流れている間に空気と熱交換する。複数の流路30A,30Bは、熱交換器本体23に対する空気の流れ方向aに沿って並べて配置されている。空気は、複数の伝熱管26の上下方向の間を通過する。伝熱管26は、複数の流路30A,30Bが並ぶ方向(空気の流れ方向a)の長さよりも上下方向の長さの方が小さい扁平形状に形成されている。複数の流路30A,30Bが並ぶ方向における伝熱管26の両端面26aは、半円弧状に形成されている。
 複数のフィン27は、伝熱管26の長手方向に沿って並べて配置されている。各フィン27は、上下方向に長く形成された薄板材である。フィン27には、空気の流れ方向aの一方側の辺27cから他方側の辺に向けて延びる溝27aが、上下方向に間隔をあけて複数個並べて形成されている。溝27aは、フィン27の一方側の辺27cにおいて開放されている。伝熱管26は、フィン27の各溝27aに挿入された状態でフィン27に取り付けられている。フィン27には、熱伝達を促進するためのルーバー27bと、補強用のリブ27dとが形成されている。
 図2及び図3に例示する熱交換器本体23は、複数の熱交換部31A~31Fを有している。複数の熱交換部31A~31Fは、上下方向に並べて配置されている。液ヘッダ21の内部は、熱交換部31A~31Fごとに上下に区画されている。言い換えると、図3に示すように、液ヘッダ21の内部には、熱交換部31A~31Fごとの流路33A~33Fが形成されている。
 液ヘッダ21には、複数の接続管35A~35Fが接続されている。各接続管35A~35Fは、各流路33A~33Fに対応して設けられている。各接続管35A~35Fには、冷媒分流器19のキャピラリ管37A~37Fが接続されている。
 暖房運転の際に、冷媒分流器19で分流された液状冷媒は、キャピラリ管37A~37F及び接続管35A~35Fを流れて液ヘッダ21内の各流路33A~33Fに流入し、各流路33A~33Fに接続された1又は複数の伝熱管26を通ってガスヘッダ22へ流れる。逆に、冷房運転又は除霜運転の際に、ガスヘッダ22で各伝熱管26に分流された冷媒は、液ヘッダ21の各流路33A~33Fに流入し、各流路33A~33Fから各キャピラリ管37A~37Fを流れて冷媒分流器19で合流する。
 ガスヘッダ22の内部は区画されておらず、全ての熱交換部31A~31Fにわたって連続している。したがって、1本のガス配管24からガスヘッダ22に流入した冷媒は、全ての伝熱管26に分流され、全ての伝熱管26からガスヘッダ22に流入した冷媒は、ガスヘッダ22で合流されて1本のガス配管24に流入する。
[伝熱管の具体的構造]
 図5は、伝熱管の断面図である。図6は、伝熱管の第1流路を拡大して示す断面図である。図7は、伝熱管の第2流路を拡大して示す断面図である。
 図5に示すように、伝熱管26には、複数の流路30A,30Bが形成されている。伝熱管26の空気流方向aの両端には、第2流路30Bが形成されている。2個の第2流路30Bの間には、複数の第1流路30Aが並べて形成されている。本実施形態では、7個の第1流路30Aと2個の第2流路30Bとが空気流方向aに一列に並べて形成されている。以下の説明においては、流路30A,30Bの並び方向を「第1方向P」ともいう。
 図6に示すように、第1流路30Aは、第1方向Pに長い長方形の断面形状を有する。図6には、第1流路30Aの断面形状における長辺の長さ(第1方向Pの長さ)がL1a,短辺の長さ(上下方向の長さ)がL1bで示されている。第1流路30Aの内面には、複数の突起31が形成されている。具体的に、複数の突起31は、第1流路30Aの断面形状における2つの長辺側の内面に形成されている。図6に示す例では、各内面に6個の突起31が形成されている。各突起31は、第1方向Pの長さが先端側ほど小さくなるような先細り形状に形成されている。
 図7に示すように、第2流路30Bは、第1方向Pに長い長方形の断面形状を有する。図7には、第2流路30Bの断面形状における長辺の長さがL2a、短辺の長さがL2bで示されている。第2流路30Bの長辺の長さL2aは、第1流路30Aの長辺の長さL1aよりも短い。第2流路30Bの短辺の長さL2bは、第1流路30Aの短辺の長さL1bと同じである。第2流路30Bの断面積は、第1流路30Aの断面積よりも小さい。
 第2流路30Bの内面には、複数の突起31が形成されている。具体的に、複数の突起31は、第2流路30Bの断面形状における2つの長辺側の内面に形成されている。図7に示す例では、各内面に4個の突起31が形成されている。第2流路30Bの突起31と、第1流路30Aの突起31とは、同一の形状である。第2流路30Bの長辺の長さL2aは、第1流路30Aの長辺の長さL1aよりも短いので、第2流路30Bに形成することができる突起31の数は、第1流路30Aに形成することができる突起31の数よりも少なくなっている。
 以上のように第1、第2流路30A,30Bの内面に突起31が形成されることによって各流路の表面積が増大するため、熱交換効率を向上させることができる。
 (第1流路30Aの形状について)
 第1流路30Aは、断面形状が長方形であり、この長方形の長辺側の長さL1aと、短辺側の長さL1bとの比率であるアスペクト比は、1.1以上1.5以下に設定されている。アスペクト比をこのような値に設定した理由は、次の(1)~(4)の事項を考慮したことによる。
 (1) 図4に示すように、伝熱管26内の第1流路30A(以下、単に「流路」ともいう)の並び方向に沿って空気が流れると、空気流方向aの上流側(図4の右側)では、流路30A内の冷媒と空気との温度差が大きいため、効率よく熱交換が行われる。一方、空気流方向aの下流側(図4の左側)には、上流側で熱交換された空気が流れてくるため、流路30A内の冷媒と空気との温度差が小さくなる。よって、上流側に比べて熱交換効率が低下する。空気流方向aの上流側の流路30Aを流れる冷媒と、空気流方向aの下流側の流路30Aを流れる冷媒とでは、状態変化するタイミングが異なる。そのため、室外熱交換器14は、下流側の流路30A内の冷媒が適切に状態変化するように設計される。しかし、上流側の流路30Aと下流側の流路30Aとで熱交換効率が大きく異なると、上流側の流路30Aでは、状態変化し終わった冷媒を室外熱交換器14内に流すことになり、能力に無駄が生じてしまう。この現象を抑制するには、流路30Aの総断面積を減らすことなく伝熱管26内の流路30Aの数を少なくすればよいため、流路30Aの断面形状を空気流方向aに長い長方形に形成することが有効である。
 (2) 上記(1)の考えに基づいて流路30Aの断面形状を長方形とした場合、その長辺を長くするほど(アスペクト比を大きくするほど)、流路30Aの長辺側の内面に多くの突起31を形成することができる。そのため、流路30A内の表面積を大きくすることができ、熱交換効率の向上を期待することができる。
 (3)しかし、流路30Aの断面形状の長辺を長くするほど、伝熱管26内の流路30Aの数が少なくなると同時に流路30Aと流路30Aとを仕切る壁26b(図5参照)の数も少なくなるため、伝熱管26の強度が低下する。そのため、伝熱管26の強度低下を防ぐために壁26bの厚みt1を大きくする必要がある。その結果、流路30Aの断面形状の長辺を長くしても、これに比例して流路30Aの表面積を大きくすることができない。
 (4)さらに、流路30Aの断面形状の長辺を長くするほど、各流路30Aにおける冷媒の流速が低下するため、個々の流路(単一の流路)30Aにおける熱交換性能が低下する可能性がある。また、流路30Aの断面形状の長辺が長くなると、流路30Aの内面のうち、長辺の中心位置付近では冷媒と流路30Aの内面とが接触しない領域が発生し、その内面の冷媒と接触しない領域では冷媒との熱交換ができないため熱交換効率が低下する。
 図9は、アスペクト比と、流路内の表面積及び単一流路の熱交換性能比との関係を示すグラフである。図9を参照すると、流路のアスペクト比が大きくなるほど流路内の表面積は大きくなるが、アスペクト比が大きくなるほど、個々の流路の熱交換性能比は低下していることがわかる。
 本出願の発明者は、上記(1)~(4)の事項及び図9に示す関係に鑑み、次の表1に示すような条件A~Fで、流路のアスペクト比と伝熱管26の熱交換性能との関係を求めた。
Figure JPOXMLDOC01-appb-T000001
 表1においては、伝熱管26の上下方向の長さ(厚み)と第1方向Pの長さとを一定にした状態で、A~Fの6つの条件で流路の数を変化させ、流路の数に応じた壁の厚みとアスペクト比と突起の数(溝の数)とを設定し、熱交換性能比を求めた。熱交換性能比は、条件Aを100%としたときの比率とした。伝熱管26の上下方向の長さは、2.0mm、第1方向Pの長さは、22.2mmである。
 図8は、表1に示す流路のアスペクト比と熱交換性能比との関係を示すグラフである。
 図8に示すように、熱交換性能比は、アスペクト比が0.7から1.3までの間で上昇するが、それ以降は、低下している。これは、アスペクト比が1.3を超えると、流路内の表面積の増加よりも流路間の壁の厚みの増大及び各流路の個々の性能低下の影響が大きいからであると考えられる。本実施形態の伝熱管26においては、表1及び図8の結果より、適切な熱交換性能を得ることができるアスペクト比として1.1以上1.5以下の値を採用し、第1流路30Aの断面形状における長辺及び短辺の長さLa1、La2を設定している。
 なお、第1流路30Aと第1流路30Aとの間の距離(壁26bの厚み)t1は、0.5mm以上0.6mm以下とすることが好適である。
 (第2流路30B及び伝熱管26の端面26aの形状について)
 図5及び図7に示すように、室外熱交換器14を蒸発器として使用するとき、伝熱管26内には冷却された冷媒が通過するため、伝熱管26の表面の温度も下がり、着霜することがある。特に、図4に示すように、室外熱交換器14の伝熱管26の第1方向Pの一方側の端面26a(右側の端面)は、フィン27と接触していないため、冷媒により冷却された伝熱管26の端面26aからフィン27に伝熱することができない。そのため、フィン27が接触していない伝熱管26の端面26aにおいて伝熱管26の温度低下が著しくなり、より着霜が生じやすくなる。フィン27が接触していない伝熱管26の端面26aは、空気流方向aの上流側に位置しているので、水分を含む空気が接触し、より着霜が生じやすくなる。
 本実施形態では、第1方向Pにおける伝熱管26の内部の両端部に、第2流路30Bが形成されている。この第2流路30Bの断面積は、第1流路30Aの断面積よりも小さい。したがって、第2流路30Bを流れる冷媒量は、第1流路30Aを流れる冷媒量よりも少なくなり、伝熱管26の端面26aへの伝熱量が低下する。そのため、伝熱管26の内部における第1方向Pの端部に第2流路30Bを形成することで、伝熱管26の端面26aにおける着霜を抑制することができる。本実施形態における第2流路30Bのアスペクト比は、第1流路30Aのアスペクト比である1.1以上1.5以下の範囲内には含まれておらず、1.1未満とされている。
 図5及び図7に示すように、第2流路30Bと、第2流路30Bに最も近い第1方向Pにおける伝熱管26の端面26aとの間の第1方向Pの最大距離(伝熱管26の端部の厚み)t2は、第1流路30Aと第1流路30Aとの間の第1方向Pの距離(壁26bの厚み)t1よりも大きい。そのため、第2流路30Bを流れる冷媒の熱は、伝熱管26の端面26aに伝わりにくくなっており、着霜をより抑制することができる。第1流路30Aと第2流路30Bとの間の距離(壁26bの厚み)t1も、第1流路30A間の距離t1と同じである。
 図7に示すように、フィン27に形成された溝27aは、伝熱管26の上下方向の長さと略同一の上下方向の長さL3を有する第1部分27a1と、フィン27の第1方向Pの一端側において、第1部分27a1よりも上下方向の長さが拡大された第2部分27a2とを有している。図7には、第2部分27a2の上下方向の最大長さをL4で示し、第2部分27a2の第1方向Pの範囲をWで示している。
 伝熱管26の端面26aは、断面形状が半円弧状に形成されている。伝熱管26の端面26aは、一部が溝27aの第1部分27a1内に配置され、残りの部分が、溝27aの第2部分27a2の第1方向Pの範囲W内に配置されている。伝熱管26の端面26aと溝27aの第1部分27a1とは、隙間Sをあけて接近している。
 伝熱管26の端面26aの半径は、約1.0mmであり、第2部分27a2に配置された伝熱管26の端面26aの第1方向Pの長さL5は、例えば0.20~0.24mmであり、より好ましくは、0.22mmである。
[他の実施形態]
 第1流路30A及び第2流路30Bに形成された突起31は、第1流路30A及び第2流路30Bの断面形状における短辺側の内面に形成されていてもよいし、長辺側の内面及び短辺側の内面の双方に形成されていてもよい。
 上記実施形態では、第2流路30Bの断面形状が長方形状であったが、正方形又は円形状等の他の形状であってもよい。
 上記実施形態では、伝熱管26の第1方向Pの端面26aは、半円弧状に形成されていたが、上下方向に沿った平坦面であってもよい。
[実施形態の作用効果]
(1)上記実施形態の伝熱管26は、内部に、複数の第1流路30Aが並べて形成され、各第1流路30Aの断面形状が、複数の第1流路30Aの並び方向である第1方向Pに長い長方形であり、第1流路30Aの内面に複数の突起31が形成され、第1流路30Aの断面形状における長辺の長さL1aと短辺の長さL1bとの比率が、1.1以上1.5以下である。これにより、第1流路30Aの断面形状における長辺と短辺との長さの比率を適切に設定し、熱交換性能を向上させることができる。
(3)上記実施形態では、伝熱管26の内部における第1方向Pの端部には、第2流路30Bが形成され、第2流路30Bの断面積が、第1流路30Aの断面積よりも小さい。第1方向Pにおける伝熱管26の端部では、着霜が生じやすいため、第2流路30Bの断面積を第1流路30Aの断面積よりも小さくし、第2流路30Bを流れる冷媒の流量を少なくすることによって着霜を抑制することができる。
(4)上記実施形態では、伝熱管26の内部における第1方向Pの両端部に、第2流路30Bが形成されている。そのため、伝熱管26の第1方向Pの両端部における着霜を抑制することができる。
(5)上記実施形態では、第2流路30Bと、この第2流路30Bに最も近い第1方向Pにおける伝熱管26の端面26aとの間の第1方向Pの最大距離t2が、隣接する2つの第1流路30Aの間の第1方向Pの距離t1よりも大きい。第1方向Pにおける伝熱管26の端面26aでは、着霜が生じやすいため、第2流路30Bと伝熱管26の端面26aとの最大距離t2を、隣接する第1流路30A間の距離t1よりも長くすることによって、第2流路30Bを流れる冷媒の熱が、伝熱管26の端面26aに伝わりにくくなり、着霜を抑制することができる。
(6)上記実施形態の室外熱交換器14は、ヘッダ21,22と、ヘッダ21,22の長手方向に並べて配置され、ヘッダ21,22に端部が接続される複数の伝熱管26と、伝熱管26の外周面に接触するフィン27と、を備え、フィン27が、第1方向Pにおける伝熱管26の一方側の端面26aを除いて、伝熱管26の外周面に接触しており、伝熱管26の内部における前記一方側に、第2流路30Bが形成されている。フィン27が接触していない伝熱管26の一方側の端面26aは、フィン27が接触している他の部分よりも低温となり、着霜しやすくなるため、伝熱管26内の前記一方側の端部に第2流路30Bを形成することで、冷媒流量を少なくし、着霜を抑制することができる。
21:液ヘッダ
22:ガスヘッダ
26:伝熱管
26a:端面
27:フィン
30A:第1流路
30B:第2流路
31:突起

Claims (7)

  1.  内部に、複数の第1流路(30A)が並べて形成され、
     前記各第1流路(30A)の断面形状が、複数の前記第1流路(30A)の並び方向である第1方向(P)に長い長方形であり、
     前記第1流路(30A)の内面に複数の突起(31)が形成され、
     前記第1流路(30A)の断面形状における長辺の長さ(L1a)と短辺の長さ(L1b)との比率が、1.1以上1.5以下である、伝熱管。
  2.  隣接する前記第1流路(30A)の間の距離(t1)が、0.5mm以上0.6mm以下である、請求項1に記載の伝熱管。
  3.  前記伝熱管の内部における前記第1方向(P)の端部には、第2流路(30B)が形成され、
     前記第2流路(30B)の断面積が、前記第1流路(30A)の断面積よりも小さい、請求項1又は2に記載の伝熱管。
  4.  前記伝熱管の内部における前記第1方向(P)の両端部に、前記第2流路(30B)が形成されている、請求項3に記載の伝熱管。
  5.  前記第2流路(30B)と、この第2流路(30B)に最も近い前記第1方向(P)における前記伝熱管の端面との間の前記第1方向(P)の最大距離(t2)が、隣接する2つの第1流路(30A)の間の前記第1方向(P)の距離(t1)よりも大きい、請求項3又は4に記載の伝熱管。
  6.  ヘッダ(21,22)と、
     前記ヘッダ(21,22)の長手方向に並べて配置され、前記ヘッダ(21,22)に端部が接続される請求項1~5のいずれか1項に記載の複数の伝熱管と、を備えている、熱交換器。
  7.  ヘッダ(21,22)と、
     前記ヘッダ(21,22)の長手方向に並べて配置され、前記ヘッダ(21,22)に端部が接続される請求項3~5のいずれか1項に記載の複数の伝熱管と、
     フィン(27)と、を備え、
     前記フィン(27)が、前記第1方向(P)における前記伝熱管(26)の一方側の端面(26a)を除いて、前記伝熱管(26)の外周面に接触しており、
     前記伝熱管(26)の内部における前記一方側の端部に、前記第2流路(30B)が形成されている、熱交換器。
     
PCT/JP2020/040840 2019-11-14 2020-10-30 伝熱管、及び、熱交換器 WO2021095567A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080079251.7A CN114729793B (zh) 2019-11-14 2020-10-30 传热管以及热交换器
EP20887565.8A EP4060252B1 (en) 2019-11-14 2020-10-30 Heat transfer pipe and heat exchanger
US17/743,141 US20220268525A1 (en) 2019-11-14 2022-05-12 Heat transfer tube and heat exchanger

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-205903 2019-11-14
JP2019205903A JP2021081081A (ja) 2019-11-14 2019-11-14 伝熱管、及び、熱交換器

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/743,141 Continuation US20220268525A1 (en) 2019-11-14 2022-05-12 Heat transfer tube and heat exchanger

Publications (1)

Publication Number Publication Date
WO2021095567A1 true WO2021095567A1 (ja) 2021-05-20

Family

ID=75912335

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/040840 WO2021095567A1 (ja) 2019-11-14 2020-10-30 伝熱管、及び、熱交換器

Country Status (5)

Country Link
US (1) US20220268525A1 (ja)
EP (1) EP4060252B1 (ja)
JP (2) JP2021081081A (ja)
CN (1) CN114729793B (ja)
WO (1) WO2021095567A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200078936A (ko) * 2018-12-24 2020-07-02 삼성전자주식회사 열 교환기

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5913877U (ja) * 1982-07-13 1984-01-27 株式会社デンソー 熱交換器
JPH02166393A (ja) * 1988-12-16 1990-06-27 Matsushita Refrig Co Ltd フィン付熱交換器
JPH06185885A (ja) * 1992-07-24 1994-07-08 Furukawa Electric Co Ltd:The 偏平多穴凝縮伝熱管
JPH06300473A (ja) * 1993-04-19 1994-10-28 Sanden Corp 偏平冷媒管
JP2000018867A (ja) * 1998-06-23 2000-01-18 Mitsubishi Heavy Ind Ltd 熱交換器用チューブ材及び熱交換器
JP2000154987A (ja) * 1998-11-19 2000-06-06 Daikin Ind Ltd 空気熱交換器
JP2000329487A (ja) * 1999-05-21 2000-11-30 Bosch Automotive Systems Corp 熱交換器
JP2002318086A (ja) * 2001-04-16 2002-10-31 Japan Climate Systems Corp 熱交換器用チューブ
JP2006162085A (ja) * 2004-12-02 2006-06-22 Matsushita Electric Ind Co Ltd 熱交換器用偏平チューブ
JP2009063228A (ja) 2007-09-06 2009-03-26 Showa Denko Kk 扁平状伝熱管
JP2013019596A (ja) * 2011-07-11 2013-01-31 Mitsubishi Electric Corp 熱交換器、室内機、および室外機
WO2016103437A1 (ja) * 2014-12-26 2016-06-30 三菱電機株式会社 冷凍サイクル装置
WO2017073715A1 (ja) * 2015-10-29 2017-05-04 株式会社Uacj アルミニウム製押出扁平多穴管及び熱交換器
WO2017141943A1 (ja) * 2016-02-15 2017-08-24 株式会社Uacj 熱交換器
WO2018008134A1 (ja) * 2016-07-07 2018-01-11 三菱電機株式会社 熱交換器

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1144498A (ja) * 1997-05-30 1999-02-16 Showa Alum Corp 熱交換器用偏平多孔チューブ及び同チューブを用いた熱交換器
JP4328512B2 (ja) 2001-10-23 2009-09-09 昭和電工株式会社 微細多穴管押出用ダイスおよびこのダイスに用いられるマンドレル、ならびに前記ダイスを用いて製造された多穴管
JP2005090760A (ja) * 2003-09-12 2005-04-07 Matsushita Electric Ind Co Ltd 熱交換器
JP2013024472A (ja) 2011-07-20 2013-02-04 Daikin Industries Ltd 熱交換器用扁平管
JP2014001868A (ja) 2012-06-15 2014-01-09 Sanden Corp 熱交換器
JP2019011923A (ja) 2017-06-30 2019-01-24 ダイキン工業株式会社 熱交換器

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5913877U (ja) * 1982-07-13 1984-01-27 株式会社デンソー 熱交換器
JPH02166393A (ja) * 1988-12-16 1990-06-27 Matsushita Refrig Co Ltd フィン付熱交換器
JPH06185885A (ja) * 1992-07-24 1994-07-08 Furukawa Electric Co Ltd:The 偏平多穴凝縮伝熱管
JPH06300473A (ja) * 1993-04-19 1994-10-28 Sanden Corp 偏平冷媒管
JP2000018867A (ja) * 1998-06-23 2000-01-18 Mitsubishi Heavy Ind Ltd 熱交換器用チューブ材及び熱交換器
JP2000154987A (ja) * 1998-11-19 2000-06-06 Daikin Ind Ltd 空気熱交換器
JP2000329487A (ja) * 1999-05-21 2000-11-30 Bosch Automotive Systems Corp 熱交換器
JP2002318086A (ja) * 2001-04-16 2002-10-31 Japan Climate Systems Corp 熱交換器用チューブ
JP2006162085A (ja) * 2004-12-02 2006-06-22 Matsushita Electric Ind Co Ltd 熱交換器用偏平チューブ
JP2009063228A (ja) 2007-09-06 2009-03-26 Showa Denko Kk 扁平状伝熱管
JP2013019596A (ja) * 2011-07-11 2013-01-31 Mitsubishi Electric Corp 熱交換器、室内機、および室外機
WO2016103437A1 (ja) * 2014-12-26 2016-06-30 三菱電機株式会社 冷凍サイクル装置
WO2017073715A1 (ja) * 2015-10-29 2017-05-04 株式会社Uacj アルミニウム製押出扁平多穴管及び熱交換器
WO2017141943A1 (ja) * 2016-02-15 2017-08-24 株式会社Uacj 熱交換器
WO2018008134A1 (ja) * 2016-07-07 2018-01-11 三菱電機株式会社 熱交換器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4060252A4

Also Published As

Publication number Publication date
CN114729793B (zh) 2024-04-02
EP4060252B1 (en) 2023-09-13
JP2021081081A (ja) 2021-05-27
EP4060252A1 (en) 2022-09-21
EP4060252A4 (en) 2022-12-07
US20220268525A1 (en) 2022-08-25
CN114729793A (zh) 2022-07-08
JP2021191996A (ja) 2021-12-16
JP7381909B2 (ja) 2023-11-16

Similar Documents

Publication Publication Date Title
US9651317B2 (en) Heat exchanger and air conditioner
US10309701B2 (en) Heat exchanger and air conditioner
AU2012208118A1 (en) Heat exchanger and air conditioner
US20140102131A1 (en) Outdoor unit of refrigeration system
WO2014181400A1 (ja) 熱交換器及び冷凍サイクル装置
CN114641663A (zh) 热交换器及制冷循环装置
US10480869B2 (en) Heat exchanger and refrigeration cycle apparatus including the same
JP6351875B1 (ja) 熱交換器及び冷凍サイクル装置
WO2021095567A1 (ja) 伝熱管、及び、熱交換器
JPH08178366A (ja) 熱交換器
US20230168040A1 (en) Heat exchanger, outdoor unit including heat exchanger, and air-conditioning apparatus including outdoor unit
US20230101157A1 (en) Heat exchanger and air-conditioning apparatus
US11913729B2 (en) Heat exchanger
US20220268497A1 (en) Heat exchanger
EP3699538B1 (en) Heat exchanger and refrigeration cycle device
JP7414845B2 (ja) 冷凍サイクル装置
AU2017444848A1 (en) Heat exchanger and refrigeration cycle device
JP6987227B2 (ja) 熱交換器及び冷凍サイクル装置
JP4983878B2 (ja) 熱交換器及びこの熱交換器を備えた冷蔵庫、空気調和機
JPWO2020178966A1 (ja) ガスヘッダ、熱交換器及び冷凍サイクル装置
JP7399286B2 (ja) 熱交換器および冷凍サイクル装置
WO2023281655A1 (ja) 熱交換器および冷凍サイクル装置
JP7258151B2 (ja) 熱交換器および冷凍サイクル装置
WO2023032155A1 (ja) 熱交換器、冷凍サイクル装置及び熱交換器の製造方法
JP6698196B2 (ja) 空気調和機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20887565

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020887565

Country of ref document: EP

Effective date: 20220614