WO2021103514A1 - 一种基于车联网的动态信息发送方法及设备 - Google Patents

一种基于车联网的动态信息发送方法及设备 Download PDF

Info

Publication number
WO2021103514A1
WO2021103514A1 PCT/CN2020/098291 CN2020098291W WO2021103514A1 WO 2021103514 A1 WO2021103514 A1 WO 2021103514A1 CN 2020098291 W CN2020098291 W CN 2020098291W WO 2021103514 A1 WO2021103514 A1 WO 2021103514A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
indication
dynamic
dynamic information
internet
Prior art date
Application number
PCT/CN2020/098291
Other languages
English (en)
French (fr)
Inventor
刘建琴
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to KR1020227021786A priority Critical patent/KR20220106179A/ko
Priority to JP2022531354A priority patent/JP7411803B2/ja
Priority to EP20891540.5A priority patent/EP4057647A4/en
Publication of WO2021103514A1 publication Critical patent/WO2021103514A1/zh
Priority to US17/827,376 priority patent/US20220292965A1/en

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0967Systems involving transmission of highway information, e.g. weather, speed limits
    • G08G1/096766Systems involving transmission of highway information, e.g. weather, speed limits where the system is characterised by the origin of the information transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/024Guidance services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/44Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for communication between vehicles and infrastructures, e.g. vehicle-to-cloud [V2C] or vehicle-to-home [V2H]
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0968Systems involving transmission of navigation instructions to the vehicle
    • G08G1/096833Systems involving transmission of navigation instructions to the vehicle where different aspects are considered when computing the route
    • G08G1/096844Systems involving transmission of navigation instructions to the vehicle where different aspects are considered when computing the route where the complete route is dynamically recomputed based on new data
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/14Means for informing the driver, warning the driver or prompting a driver intervention
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/38Electronic maps specially adapted for navigation; Updating thereof
    • G01C21/3885Transmission of map data to client devices; Reception of map data by client devices
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0108Measuring and analyzing of parameters relative to traffic conditions based on the source of data
    • G08G1/0112Measuring and analyzing of parameters relative to traffic conditions based on the source of data from the vehicle, e.g. floating car data [FCD]
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0125Traffic data processing
    • G08G1/0133Traffic data processing for classifying traffic situation
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0137Measuring and analyzing of parameters relative to traffic conditions for specific applications
    • G08G1/0141Measuring and analyzing of parameters relative to traffic conditions for specific applications for traffic information dissemination
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0967Systems involving transmission of highway information, e.g. weather, speed limits
    • G08G1/096708Systems involving transmission of highway information, e.g. weather, speed limits where the received information might be used to generate an automatic action on the vehicle control
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0967Systems involving transmission of highway information, e.g. weather, speed limits
    • G08G1/096708Systems involving transmission of highway information, e.g. weather, speed limits where the received information might be used to generate an automatic action on the vehicle control
    • G08G1/096716Systems involving transmission of highway information, e.g. weather, speed limits where the received information might be used to generate an automatic action on the vehicle control where the received information does not generate an automatic action on the vehicle control
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0967Systems involving transmission of highway information, e.g. weather, speed limits
    • G08G1/096766Systems involving transmission of highway information, e.g. weather, speed limits where the system is characterised by the origin of the information transmission
    • G08G1/096775Systems involving transmission of highway information, e.g. weather, speed limits where the system is characterised by the origin of the information transmission where the origin of the information is a central station
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0002Automatic control, details of type of controller or control system architecture
    • B60W2050/0004In digital systems, e.g. discrete-time systems involving sampling
    • B60W2050/0005Processor details or data handling, e.g. memory registers or chip architecture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/40High definition maps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/45External transmission of data to or from the vehicle
    • B60W2556/50External transmission of data to or from the vehicle of positioning data, e.g. GPS [Global Positioning System] data
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0108Measuring and analyzing of parameters relative to traffic conditions based on the source of data
    • G08G1/0116Measuring and analyzing of parameters relative to traffic conditions based on the source of data from roadside infrastructure, e.g. beacons
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0967Systems involving transmission of highway information, e.g. weather, speed limits
    • G08G1/096733Systems involving transmission of highway information, e.g. weather, speed limits where a selection of the information might take place
    • G08G1/096741Systems involving transmission of highway information, e.g. weather, speed limits where a selection of the information might take place where the source of the transmitted information selects which information to transmit to each vehicle

Definitions

  • This application relates to the field of communication technology, and in particular to a method and equipment for sending dynamic information based on the Internet of Vehicles.
  • a high-precision map includes a static layer part and a dynamic layer part.
  • the static layer part mainly refers to some target objects or objects that remain regular in the high-precision map, which can include roads, lanes, intersections, road signs, and traffic. Road ancillary facilities such as signs, traffic lights, etc.
  • the dynamic layer part refers to the dynamic information that is changing or may change during the automatic driving process, that is, dynamically changing event information, such as changing traffic flow, real-time road conditions, road repair or road closure, and other data that need to be pushed or updated in real time.
  • the communication of intelligent networked vehicles based on the information of the dynamic layer part can provide a more accurate basis for vehicle positioning, decision-making planning, and perception fusion, thereby ensuring the driving safety and comfort of higher-level autonomous vehicles And driving efficiency.
  • the traffic flow and traffic congestion information on the same road segment may change with the time period, the traffic flow information from 7 pm to 9 pm and the traffic flow from 9 am to 11 am Information may be very different. Therefore, real-time and accurate dynamic information should be indicated from the two dimensions of time and space. This will lead to a large amount of dynamic information sent by the Internet of Vehicles server to the Internet of Vehicles terminal. In the case of a certain bandwidth If the data volume of the dynamic information to be sent is relatively large, the transmission time will be longer, which will affect the transmission efficiency of the dynamic information.
  • the embodiments of the present application provide a method and device for transmitting dynamic information based on the Internet of Vehicles, so as to solve the problem of low dynamic information transmission efficiency in the prior art.
  • the embodiments of the present application provide a method for sending dynamic information based on the Internet of Vehicles.
  • the first device determines the indication range of the dynamic information in the high-precision map according to the route information of the navigation map. Further, the The first device sends first indication information to the second device, where the first indication information is used to indicate dynamic information within the indication range in the high-precision map.
  • the methods described in the embodiments of the present application may be executed by the first device, or may be executed by components in the first device, such as a processor chip or a circuit.
  • the execution of the first device is taken as an example for description.
  • the first device can be a device such as a car networking server or a roadside unit or a cloud server such as a map cloud server.
  • the second device described can be a car networking terminal (such as a vehicle, a device for navigation, advanced intelligent driving assistance, or autonomous driving). On-board unit, on-board box, etc.).
  • the first device uses the route information of the navigation map as a constraint or restriction condition indicating the range of the dynamic information in the high-precision map of the second device, and determines the dynamic information in the high-precision map according to the route information of the navigation map. Indicating the range, so that it is not necessary to send all the dynamic information of the high-precision map to the second device, reducing the data volume of the dynamic information sent, and improving the transmission efficiency of the dynamic information.
  • the second device is driving within the indication range corresponding to the navigation information of the navigation map.
  • the first device restricts the indication range of the dynamic information in the high-precision map according to the route information of the navigation map, and not only does not affect the second device
  • the driving within the corresponding indication range of the navigation information has an impact, and by reducing the data volume of the dynamic information sent to the second device, the transmission efficiency of the dynamic information is improved, which is more conducive to the second device to obtain the dynamic information related to the driving in time. Improve driving safety.
  • the dynamic information includes at least one of traffic jam information, traffic accident information, road surface condition information, passable information, pedestrian or bicycle crossing road information, and pedestrian or motor vehicle occupation road information.
  • traffic jam information traffic accident information
  • road surface condition information road surface condition information
  • passable information pedestrian or bicycle crossing road information
  • pedestrian or motor vehicle occupation road information pedestrian or motor vehicle occupation road information
  • the method further includes: before the first device sends the first indication information to the second device, sending second indication information to the second device, the second indication Information is used to indicate that the dynamic information is associated with the path information.
  • sending, by the first device, the first indication information to the second device includes: sending second indication information and the first indication information to the second device, where the second indication information is used for Indicating that the dynamic information is associated with the path information.
  • the second indication information indicates that the dynamic information indicated by the first indication information is associated with the route information of the navigation map, which is beneficial to The second device distinguishes whether the first indication information indicates global dynamic information of the high-precision map system or dynamic information within an indication range corresponding to the route information of the navigation map.
  • the first device when the dynamic information is associated with the path information, the first device sends the first indication information to the second device in a first format, and the first format corresponds to the The first device sends the dynamic information within the indication range corresponding to the path information to the second device; when the dynamic information indicated by the first indication information is not associated with the path information of the navigation map, the The first device sends the first indication information to the second device in a second format, where the first format is different from the second format.
  • the first device uses a matching format to send the dynamic information, which helps the second device to distinguish that the first instruction information indicates the global high-precision map system according to the format of the first instruction information.
  • the dynamic information is still dynamic information within the indicated range corresponding to the route information of the navigation map.
  • the first indication information when the dynamic information is road-level dynamic information, includes: road marking information and content of dynamic information corresponding to the road marking information; when the dynamic information is In the case of lane-level dynamic information, the first indication information includes: lane identification information and content of dynamic information corresponding to the lane identification information, wherein the lane identification information includes road information and lane information.
  • the dynamic information is classified according to the content type of the dynamic information, and the data format of the dynamic information of different content types is standardized for standardized transmission, which is beneficial to improve the transmission efficiency of the dynamic information and facilitate the second device to check the dynamic information. Acquisition of information content.
  • the first device sending the first indication information to the second device includes: when the dynamic information is low-efficiency dynamic information, the first device sends the first indication information to the second device according to the first period.
  • the second device sends the first indication information; when the dynamic information is high-efficiency dynamic information, the first device sends the first device to the second device when the trigger event corresponding to the dynamic information is triggered.
  • the device sends the first indication information.
  • the first device sends the first indication information to the second device, which is conducive to the timely maintenance or update of the dynamic information in the high-precision map by the second device.
  • the first device sends the first indication information to the second device according to the first cycle, which is beneficial to saving signaling.
  • the high-efficiency dynamic information is sent when the corresponding trigger event is triggered
  • the low-efficiency dynamic information it is sent according to the first cycle, which avoids sending all the dynamic information to the second device at the same time, which is also conducive to improving the transmission of dynamic information. reliability.
  • the first indication information indicates the at least two associated information contents that are jointly coded.
  • the associated information content is jointly encoded, which is conducive to the binding and transmission of dynamic information, and also helps to quickly update the dynamic information in the high-precision map in the second device, thereby improving the driving safety of the autonomous vehicle.
  • the scrambling codes or initialization values corresponding to the dynamic information of different high-precision maps are different.
  • the first device can use different scrambling codes or initialization values to scramble the dynamic information, and the dynamic information after different scrambling or initialization corresponds to different image providers.
  • the high-precision map that is, the processing method or transmission format of the dynamic information corresponding to the high-precision map of different graphic vendors can be different.
  • the embodiments of the present application provide a method for sending dynamic information based on the Internet of Vehicles.
  • the beneficial effects of the second aspect can be referred to the beneficial effects of the first aspect.
  • the method includes: the first device sends the first device to the second device.
  • Indication information the first indication information is used to indicate dynamic information in a high-precision map, where, when the dynamic information is road-level dynamic information, the first indication information includes: road identification information and the road identification The content of the dynamic information corresponding to the information; when the dynamic information is lane-level dynamic information, the first indication information includes: lane identification information and content of the dynamic information corresponding to the lane identification information, wherein the lane identification information Including road information and lane information.
  • the sending of the first indication information by the first device to the second device includes:
  • the first device When the dynamic information is low-efficiency dynamic information, the first device sends the first indication information to the second device according to a first cycle; when the dynamic information is high-efficiency dynamic information, the first device When a device is triggered by a trigger event corresponding to the dynamic information, the first device sends the first indication information to the second device.
  • the first indication information indicates the at least two associated information contents that are jointly coded.
  • the scrambling codes or initialization values corresponding to the dynamic information of different high-precision maps are different.
  • the embodiments of the present application provide a method for receiving dynamic information based on the Internet of Vehicles.
  • the beneficial effects of the third aspect can be referred to the beneficial effects of the first aspect.
  • the method includes: the second device receives the data sent by the first device.
  • the first indication information, the first indication information is used to indicate the dynamic information within the indication range in the high-definition map, and the indication range is the information in the high-definition map determined by the first device according to the route information of the navigation map
  • the indication range of the dynamic information the second device maintains and updates the dynamic information within the indication range in the high-precision map according to the first indication information.
  • the dynamic information includes at least one of traffic jam information, traffic accident information, road surface condition information, passable information, pedestrian or bicycle crossing road information, and pedestrian or motor vehicle occupation road information.
  • the method before the second device receives the first indication information sent by the first device, the method further includes: the second device receives the second device sent by the first device. Indication information, the second indication information is used to indicate that the dynamic information is associated with the path information; or the second device receiving the first indication information sent by the first device includes: receiving the first device The sent second indication information and the first indication information, where the second indication information is used to indicate that the dynamic information is associated with the path information.
  • the receiving, by the second device, the first indication information sent by the first device includes: receiving, by the second device, the second device sent by the first device in a first format.
  • the first indication information when the dynamic information is road-level dynamic information, includes: road marking information and content of dynamic information corresponding to the road marking information; when the dynamic information is In the case of lane-level dynamic information, the first indication information includes: lane identification information and content of dynamic information corresponding to the lane identification information, wherein the lane identification information includes road information and lane information.
  • the first indication information indicates the at least two associated information contents that are jointly coded.
  • the scrambling codes or initialization values corresponding to the dynamic information of different high-precision maps are different.
  • an embodiment of the present application provides a method for receiving dynamic information based on the Internet of Vehicles.
  • the beneficial effects of the fourth aspect may refer to the beneficial effects of the first aspect.
  • the method includes: the second device receives the data sent by the first device.
  • the first indication information is used to indicate the dynamic information in the high-precision map; wherein, when the dynamic information is road-level dynamic information, the first indication information includes: road identification information and the The content of the dynamic information corresponding to the road identification information; when the dynamic information is lane-level dynamic information, the first indication information includes: lane identification information and content of the dynamic information corresponding to the lane identification information, wherein the lane The identification information includes road information and lane information; the second device maintains and updates the dynamic information in the high-precision map according to the first instruction information.
  • the dynamic information includes at least one of traffic jam information, traffic accident information, road surface condition information, passable information, pedestrian or bicycle crossing road information, and pedestrian or motor vehicle occupation road information.
  • the first indication information indicates the at least two associated information contents that are jointly coded.
  • the scrambling codes or initialization values corresponding to the dynamic information of different high-precision maps are different.
  • an embodiment of the present application provides an Internet of Vehicles device, which has the function of realizing any of the possible design methods of the first aspect or the first aspect, or the second aspect or the second aspect.
  • the function of any possible design method can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions, such as a transceiver unit and a processing unit.
  • the device can be a chip or an integrated circuit.
  • the device includes a memory and a processor.
  • the memory is used to store a program executed by the processor.
  • the program is executed by the processor, the device can execute the first aspect or any of the first aspects.
  • the method described in one possible design, or the method described in the above-mentioned second aspect or any one of the possible designs of the second aspect is implemented.
  • the device can be a car networking server or a roadside unit.
  • an embodiment of the present application provides an Internet of Vehicles device, which has the function of realizing any one of the possible design methods of the third aspect or the third aspect, or the fourth aspect or the fourth aspect.
  • the function of any possible design method can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions, such as a transceiver unit and a processing unit.
  • the device can be a chip or an integrated circuit.
  • the device includes a memory and a processor, and the memory is used to store a program executed by the processor.
  • the program is executed by the processor, the device can execute any of the foregoing third aspect or the third aspect.
  • the method described in one possible design, or the method described in the fourth aspect or any one of the possible designs of the fourth aspect is implemented.
  • the device can be a car networking terminal.
  • an embodiment of the present application provides a computer-readable storage medium, the storage medium stores computer instructions, and when the computer instructions are executed, the first aspect or any one of the possibilities of the first aspect can be realized.
  • the method described in the design, or the method described in the second aspect or any one of the possible designs of the second aspect above, or the method described in the third aspect or any one of the possible designs of the third aspect above The method described above, or the method described in the fourth aspect or any one of the possible designs of the fourth aspect.
  • the embodiments of the present application also provide a computer program product, including a computer program or instruction.
  • the computer program or instruction When executed, it can implement the above-mentioned first aspect or any one of the possible designs of the first aspect.
  • FIG. 1 is a schematic diagram of a network architecture provided by an embodiment of this application.
  • FIG. 2 is a schematic diagram of a dynamic information transmission process provided by an embodiment of this application.
  • FIG. 3 is a schematic diagram of navigation information of a navigation map provided by an embodiment of this application.
  • FIG. 4 is a schematic diagram of another dynamic information transmission process provided by an embodiment of this application.
  • FIG. 5 is a schematic diagram of a dynamic information transmission format provided by an embodiment of this application.
  • FIG. 6 is a schematic block diagram of a car networking device provided by an embodiment of the application.
  • FIG. 7 is a schematic block diagram of an Internet of Vehicles server provided by an embodiment of the application.
  • FIG. 8 is a schematic block diagram of another car networking device provided by an embodiment of the application.
  • FIG. 9 is a schematic block diagram of a car networking terminal provided by an embodiment of the application.
  • Fig. 10 is a schematic structural diagram of a car networking terminal provided by an embodiment of the application.
  • This application provides a method and equipment for sending dynamic information based on the Internet of Vehicles, which aims to improve the dynamics of the HD map by restricting the range of the dynamic information transmitted by the dynamic layer of the HD map and optimizing the transmission format of the dynamic information.
  • the transmission efficiency of the dynamic information of the layer solves the problem of low transmission efficiency in the real-time transmission of all dynamic information of the high-precision map dynamic layer in the prior art.
  • the Internet of Vehicles terminal can also be referred to as Internet of Vehicles communication device or vehicle terminal equipment in this application.
  • the IoV terminal can be an IoV terminal of a vehicle or non-motor vehicle with a communication function, a portable device, a wearable device, a mobile phone (or called a "cellular" phone), a portable, pocket-sized, or handheld terminal, etc., or Chips in these devices, etc.
  • a vehicle is a typical Internet of Vehicles terminal.
  • a vehicle is used as an example for description. Those skilled in the art should understand that the embodiments of the present application using a vehicle as an example can also be applied to other types Terminal.
  • the Internet of Vehicles terminal can specifically execute Internet of Vehicles related business processes through its internal functional units or devices.
  • the Internet of Vehicles terminal is a vehicle
  • one or more of the following devices in the vehicle can be used to execute the method procedures related to the Internet of Vehicles terminal in the embodiment of the present application, such as a telematics box (T-Box), a domain controller ( domian controller (DC), multi-domian controller (MDC), on-board unit (OBU), or car networking chip, etc.
  • T-Box telematics box
  • DC domian controller
  • MDC multi-domian controller
  • OBU on-board unit
  • car networking chip etc.
  • Roadside unit which can be used to send vehicles to everything (vehicle to everything) through communication methods such as direct communication (such as PC5) or dedicated short-range communications (dedicated short range communications, DSRC). , V2X) message.
  • the V2X message can carry dynamic information or other information that needs to be notified to the car networking terminal.
  • the communication method between the roadside unit and the vehicle networking terminal may also be referred to as vehicle to roadside infrastructure (V2I) communication.
  • V2I vehicle to roadside infrastructure
  • This application does not specifically limit the specific deployment form of the roadside unit, which may be a car networking terminal, mobile or non-mobile terminal equipment, server or chip, etc.
  • the roadside unit can also be used to report dynamic information that occurs within the jurisdiction to the Internet of Vehicles server, for example, to report dynamic information through roadside information (RSI) messages.
  • RSI roadside information
  • the Internet of Vehicles server can be an Internet of Vehicles platform or server that manages and provides services to Internet of Vehicles terminals and/or roadside units, including application servers or map cloud servers that provide services for high-precision maps and navigation maps.
  • the specific deployment form of the Internet of Vehicles server is not limited in this application. The specific deployment form may be cloud deployment, or independent computer equipment or chips.
  • the car networking server can send the V2X message to the roadside unit, and the roadside unit can broadcast it to the car networking terminal in its coverage area.
  • the V2X message can also be sent directly to the car networking terminal by the car networking server.
  • At least one of a, b, or c can represent: a, b, c, a-b, a-c, b-c, or a-b-c, where a, b, and c can be single or multiple.
  • the ordinal numbers such as "first" and "second” mentioned in the embodiments of this application are used to distinguish multiple objects, and are not used to limit the order, timing, priority, or order of multiple objects. Importance.
  • the first lane and the second lane are only for distinguishing different lanes, but do not indicate the difference in priority or importance of the two lanes.
  • a network architecture applicable to this embodiment of the application relates to an Internet of Vehicles server that provides services for high-precision maps and navigation maps, and Internet of Vehicles terminals for navigation, advanced intelligent assisted driving or autonomous driving, and It may involve equipment such as roadside units, wherein the Internet of Vehicles server may be an application server or a map cloud server that provides services for high-precision maps and navigation maps, and the Internet of Vehicles terminal device may be a vehicle or may be installed in the vehicle.
  • the on-board unit, on-board box and other devices of the vehicle are not specifically limited here.
  • the Internet of Vehicles server can communicate with Internet of Vehicles terminals and multiple roadside units deployed on the roadside of the road (the road can include one or more lanes), and each roadside unit can also communicate to the Internet of Vehicles terminal within its own coverage area. Send a V2X message.
  • the coverage areas of different roadside units are separated by dotted lines in FIG. 1. It should be understood that in practical applications, the coverage area of the roadside unit can be a regular shape, such as a rectangle, or an irregular shape; the coverage areas of different roadside units can be partially or completely overlapped, as shown in Figure 1 of this application. Only one possible example.
  • the Internet of Vehicles server can provide planning and control services for Internet of Vehicles terminals by maintaining and updating the information of the high definition map (HD MAP), and can also maintain and update the information of the navigation map.
  • the car networking terminal provides navigation services.
  • a roadside unit can send a car networking message containing dynamic information of a high-precision map to a car networking terminal.
  • dynamic information usually corresponds to a time-varying dynamic event, which is information about a dynamic event.
  • a dynamic event refers to information that may change over time, such as: lanes, road construction events, traffic control events, traffic Accident events, severe weather, or natural disasters, etc.
  • V2X vehicle to X, commonly known as V2X
  • V2X vehicle to X
  • the range of dynamic information transmitted by the dynamic layer of the high-precision map can be restricted by the route information of the navigation map, so as to reduce the transmission volume of the dynamic information in the high-precision map to be transmitted and improve the dynamic information. Transmission efficiency and utilization.
  • a schematic diagram of a dynamic information transmission process provided by an embodiment of this application can be implemented by an Internet of Vehicles server as the first device and an Internet of Vehicles terminal (a vehicle as an example) as the second device.
  • the method includes the following steps.
  • S201 The Internet of Vehicles server determines the indication range of the dynamic information in the high-precision map according to the route information of the navigation map.
  • the indication range of the dynamic information in the high-precision map corresponds to the route information of the navigation map, that is, when the car networking server indicates the dynamic information in the high-precision map of the car networking terminal, the car networking server can use the navigation
  • the route information planned by the map for the IoV terminal is used as a range constraint indicating the dynamic information in the high-precision map of the IoV terminal to reduce the amount of dynamic information transmission, thereby improving the transmission efficiency of dynamic information.
  • the route information of the navigation map such as the route information planned by the navigation map for the IoV terminal (vehicle), may include one or more driving sections planned for the IoV terminal and the lane occupied by the IoV terminal on each driving section. Information.
  • the IoV The server can plan route information for the car networking terminal based on the navigation map.
  • the IoV terminal reports the current location and destination to the IoV server, and the IoV server plans the IoV terminal in the navigation map according to the location of the IoV terminal "Location A" and the destination "Location B"
  • One or more paths, and one or more paths planned for the IoV terminal in the navigation map are sent to the IoV terminal.
  • the Internet of Vehicles server is the path planned by the Internet of Vehicles terminal in the navigation map, that is, the Internet of Vehicles server is the Internet of Vehicles in the navigation map.
  • Path information planned by the terminal when the IoV server plans multiple paths in the navigation map for the IoV terminal, the IoV server can determine the path of the IoV terminal according to the path selected by the user through the IoV terminal in the navigation map information.
  • the Internet of Vehicles server when the Internet of Vehicles server is not used as an application server or a map cloud server that provides services for the navigation map of the Internet of Vehicles terminal, the Internet of Vehicles server is sending to the Internet of Vehicles terminal the dynamic information in the high-precision map.
  • the Internet of Vehicles server when the Internet of Vehicles server is not used as an application server or a map cloud server that provides services for the navigation map of the Internet of Vehicles terminal, the Internet of Vehicles server can also be used to provide services for the navigation map of the Internet of Vehicles terminal.
  • the cloud server obtains the route information planned by the navigation map for the IoV terminal.
  • the car networking server can use the navigation map as one or more driving sections planned by the car networking terminal as the dynamic information in the high-precision map Indicates the range.
  • the route information planned by the navigation map for the IoV terminal is: Avenue A (section 1)-Avenue B (section 6)-Road C (section 2)
  • the Internet of Vehicles server can determine
  • the indication range of the dynamic information in the high-precision map is: Avenue A (section 1)-Avenue B (section 6)-Road C (section 2).
  • the Internet of Vehicles server can further restrict (limit) the indication range of the dynamic information in the high-precision map according to the information of the lanes occupied on each driving section planned for the Internet of Vehicles terminal according to the navigation map.
  • the IoV terminal needs to turn left into Avenue B (section 6), and the navigation map is that the IoV terminal is planned to occupy lane 2 on Avenue A (section 1). Turn left lane), the car networking server can determine that the indication range of the dynamic information in the high-precision map on Avenue A (section 1) is lane 2.
  • the IoV server can determine the indication range of the dynamic information in the high-precision map as: A street (section 1) lane 2, B Lane 1 of the main street (section 6) and lane 3 of the road C (section 2) further reduce the indication range of the dynamic information in the high-precision map. Therefore, when the Internet of Vehicles server indicates dynamic information such as construction events, traffic control events, traffic accidents, severe weather or natural disasters, it only needs to indicate lane 2 of Street A (section 1) and lane 2 (section 6) of Street B (section 6). Corresponding dynamic information on lane 1 and lane 3 of road C (section 2).
  • the Internet of Vehicles server can also determine the current driving section of the Internet of Vehicles terminal as an indication of the dynamic information in the high-definition map based on the route information of the navigation map of the Internet of Vehicles terminal and the current location of the Internet of Vehicles terminal.
  • the current driving section of the IoV terminal is Avenue A (Road Section 1)
  • the IoV server can use Lane 2 of Avenue A (Road Section 1) as the indication range of the dynamic information in the high-definition map.
  • the route information of the navigation map of the Internet of Vehicles terminal will be updated. For example, when the destination remains unchanged, as the Internet of Vehicles terminal moves, the Internet of Vehicles terminal will reach the destination. The path will change, and the indication range of the dynamic information in the high-precision map determined by the Internet of Vehicles server will be updated according to the updated path information of the navigation map.
  • S202 The Internet of Vehicles server sends first instruction information to the Internet of Vehicles terminal, where the first instruction information is used to indicate dynamic information within the instruction range on the high-precision map.
  • the dynamic information may include at least one of the following information: traffic jam information, traffic accident information, road surface condition information, passability information, pedestrian or bicycle crossing road information, pedestrian or motor vehicle in a certain lane Road occupation information, traffic congestion information, traffic accident information, road condition information, passable information, pedestrian or bicycle crossing information, pedestrian or motor vehicle occupation information, or weather information on a certain road section.
  • the first indication information indicates that the road surface condition of Lane 2 of Avenue A (Road Section 1) is wet and slippery.
  • the vehicle networking terminal receives the first instruction information sent by the vehicle networking server, and maintains and updates the dynamic information within the instruction range in the high-precision map.
  • the Internet of Vehicles server may send the first instruction message to the roadside unit (such as a roadside unit covering the current location of the Internet of Vehicles terminal), and the roadside unit forwards the first instruction message to the Internet of Vehicles terminal.
  • the roadside unit such as a roadside unit covering the current location of the Internet of Vehicles terminal
  • the roadside unit forwards the first instruction message to the Internet of Vehicles terminal.
  • it is sent to the car networking terminal through low-latency wireless communication; the first indication message can also be directly sent by the car networking server to the car networking terminal, which is not specifically limited here.
  • the Internet of Vehicles terminal After receiving the first instruction message, the Internet of Vehicles terminal updates the dynamic information within the corresponding instruction range according to the instruction range of the first instruction information, and can adjust the decision-making of automatic driving or the optimal driving assistance based on the updated dynamic information. Decisions on optimal driving routes.
  • the first indication information indicates that the road surface condition of Lane 2 on Avenue A (section 1) is slippery
  • the vehicle networking terminal updates the road surface condition of Lane 2 on Avenue A (section 1) as slippery to the high-precision map.
  • the car networking terminal can combine the received first indication information sent by the car networking server with the navigation map by default, that is, the dynamic information indicated by the first indication information is associated with the route information of the navigation map.
  • the car networking server when the range of dynamic information in the high-precision map indicated by the first indication information is determined according to the route information of the navigation map, before the car networking server sends the first indication information to the car networking terminal.
  • the Internet of Vehicles server when the Internet of Vehicles server sends the first instruction information to the Internet of Vehicles terminal, it also sends second instruction information to the Internet of Vehicles terminal, where the second instruction information is used to indicate that the dynamic information is associated with the path information. That is, it is indicated that the dynamic information is relative information within an indication range determined according to the path information.
  • the IoV server sets the dynamic information indicated by the first indication information
  • the Internet of Vehicles server may also use the first format to send the first instruction information to the Internet of Vehicles terminal.
  • the Internet of Vehicles server may also use a second format to send first instruction information to the Internet of Vehicles terminal, the first format corresponding to the dynamic information within the instruction range corresponding to the route information sent by the Internet of Vehicles server to the Internet of Vehicles terminal;
  • the second format corresponds to that the dynamic information sent by the Internet of Vehicles server to the Internet of Vehicles terminal is not associated with the route information of the navigation map, and the first format is different from the second format.
  • the Internet of Vehicles server can use one or more roadside units to broadcast format to all the areas covered by the one or more roadside units.
  • the Internet of Vehicles terminal broadcasts the first indication information; the Internet of Vehicles server for the relative range of dynamic information "Wet and slippery road surface information of Lane 2 of Avenue A (section 1)" related to the route information of the navigation map of a certain Internet of Vehicles terminal
  • the first instruction information is sent to the Internet of Vehicles terminal directly or through a roadside unit covering the Internet of Vehicles terminal.
  • the Internet of Vehicles server indicates in the second format "the road surface wet and slippery information on all 4 lanes of Avenue A (Road 1)", that is, every The slippery road surface information of each lane shall be notified separately.
  • the transmission format of the dynamic information can also be optimized to improve the transmission efficiency of the dynamic information of the dynamic layer in the high-precision map.
  • the transmission format of the dynamic information can also be optimized to improve the transmission efficiency of the dynamic information of the dynamic layer in the high-precision map.
  • a schematic diagram of a dynamic information transmission process provided by an embodiment of this application can be implemented by an Internet of Vehicles server as the first device and an Internet of Vehicles terminal (a vehicle as an example) as the second device.
  • the method includes the following steps.
  • the Internet of Vehicles server sends first instruction information to the Internet of Vehicles terminal, where the first instruction information is used to indicate dynamic information in the high-precision map;
  • the first indication information when the dynamic information is road-level dynamic information, includes: road identification information and content of the dynamic information corresponding to the road identification information; when the dynamic information is lane-level dynamic information, The first indication information includes: lane identification information and content of dynamic information corresponding to the lane identification information, wherein the lane identification information includes road information and lane information.
  • the vehicle networking terminal receives the first instruction information sent by the vehicle networking server, and maintains and updates the dynamic information in the high-precision map.
  • the dynamic information can be divided into general dynamic information, road-level dynamic information, and lane-level dynamic information according to the coverage of the content of the dynamic information.
  • General dynamic information which can also be called global level dynamic information, usually covers more than a certain road section or multiple road sections, such as weather conditions (rain, snow, fog, etc.), all road sections in a larger range are the same at the same time Of a message.
  • Road-level dynamic information usually covers a certain road section, such as traffic control information on a certain road, road construction information, information on pedestrians or bicycles crossing the road, information on road occupation, etc.
  • Lane-level dynamic information usually covers a certain lane, such as traffic jam information, traffic accident information, road surface information, manhole cover ups and downs, lane occupied information, and tidal lane information.
  • the first indication information includes the information type, such as weather, and the content of the dynamic information corresponding to the information type, such as rainstorm weather , Estimated to last 4 hours.
  • the first indication information includes road identification information, such as information road section 3 and the dynamic information corresponding to the road identification information
  • the content such as road construction and speed limit of 20km/h; referring to (C) in FIG. 5, the first indication information may also include the type of information under the road sign information, such as construction conditions.
  • the first indication information includes: lane identification information, such as information road section No. 3-lane 2 and the lane identification information corresponding The content of the dynamic information, such as slight congestion; referring to (E) in FIG. 5, the first indication information may also include the type of information under the lane identification information, such as traffic congestion.
  • the dynamic information is classified according to the coverage of the content of the dynamic information, and the data format of the dynamic information of different content types is standardized, and the standardized transmission is helpful to improve the transmission efficiency of the dynamic information and facilitate the Internet of Vehicles terminal to analyze the dynamic information content. Of access.
  • the Internet of Vehicles server can also send the first indication information for indicating the dynamic information in the high-precision map to the Internet of Vehicles terminal according to the timeliness of the dynamic information. .
  • the priority can be set for the dynamic event corresponding to each dynamic information.
  • the priority of the dynamic event can be used to indicate whether the dynamic event is a dynamic event with high timeliness (or emergency) or a dynamic event with low timeliness (or called Non-emergency). Thereby indicating the priority of the dynamic information corresponding to the dynamic event. For example, an event with a priority that reaches (or exceeds) a certain threshold is a low-time dynamic event, on the contrary, an event with a priority lower than (or not higher than) the threshold is a low-time dynamic event.
  • high-priority dynamic events can include traffic accident information, road surface condition information, passable information (such as corresponding traffic indicator information), pedestrian or bicycle crossing road information, pedestrian or motor vehicle occupation road information, and other sudden emergencies. Strong events; low-priority dynamic events, including weather, traffic control and other unexpected events that are often predictable in advance.
  • the Internet of Vehicles server can broadcast to the Internet of Vehicles terminal according to the first cycle.
  • the first cycle is configurable, or it can be pre-configured in the car networking server.
  • the Internet of Vehicles server broadcasts road passable information to the Internet of Vehicles terminal every 20 minutes or broadcasts weather information to the Internet of Vehicles terminal every 1 hour.
  • the Internet of Vehicles server will trigger the event according to the dynamic information,
  • the trigger event is triggered, the first indication information is sent to the car networking terminal.
  • the lane-level dynamic information is triggered to update and the corresponding instruction is given. That is, the trigger condition of the lane-level dynamic information includes lane or road switching.
  • the IoV terminal may need to change lanes or roads, so the IoV server can be based on the lane change or road switching situation of the IoV terminal , Trigger road or lane-level dynamic information to the car networking terminal.
  • the priority of the dynamic event described and the trigger event of the dynamic information corresponding to the dynamic event can be pre-configured or adjusted according to requirements.
  • the dynamic information sent by the Internet of Vehicles server to the Internet of Vehicles terminals that use different operators’ HD maps may adopt different data formats, for example: one
  • the four traffic lights at the intersection can have different numbers in different high-precision maps.
  • the four traffic lights in the high-precision map of Figure 1 are numbered 1, 2, 3, and 4, while in Figure 2
  • the four traffic lights in the high-precision map of Figure 3 are numbered 4, 3, 2, and 1, and the four traffic lights in the high-precision map of Figure 3 are numbered 2, 3, 1, and 4. Therefore, the traffic light information sent to different graphic vendors should adopt the information format corresponding to the graphic vendor.
  • one way is to use different scrambling codes or initialization values to scramble the dynamic information of the high-precision maps sent to different high-precision map operators.
  • the IoV server when the IoV server indicates the dynamic information, it can also consider the association (binding) relationship between different dynamic information. For example, there is an association relationship between weather information and road-level road condition information. When the weather information is rain or snow, etc., Associate weather information as rain or snow with road-level road condition information, such as slippery and stagnant water information, and perform joint coding instructions. When the weather information is sunny, there may be no need to indicate slippery or stagnant water information. That is, the dependency relationship between the information to be indicated is established, for example, the indication of the slippery road surface information depends on the indication of the weather information. The joint instruction of the two can improve the efficiency of dynamic information transmission.
  • association relationship between weather information and road-level road condition information When the weather information is rain or snow, etc., Associate weather information as rain or snow with road-level road condition information, such as slippery and stagnant water information, and perform joint coding instructions. When the weather information is sunny, there may be no need to indicate slippery or stagnant water information. That is, the dependency relationship between the information to be
  • Another example can be when the road-level dynamic information indicates that the road is slippery and water is accumulated, and the lane-level passability information is associated at the same time, and the two kinds of dynamic information are jointly coded.
  • each network element includes a hardware structure and/or software module (or unit) corresponding to each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered beyond the scope of this application.
  • FIG. 6 shows a possible exemplary block diagram of an Internet of Vehicles device involved in an embodiment of the present application, and the Internet of Vehicles device 600 may exist in the form of software.
  • the apparatus 600 may include: a processing unit 602 and a transceiver unit 603.
  • the processing unit 602 is used to implement corresponding processing functions.
  • the transceiver unit 603 is used to support the communication between the device 600 and other network entities.
  • the transceiving unit 603 may include a receiving unit and/or a sending unit, which are used to perform receiving and sending operations, respectively.
  • the device 600 may further include a storage unit 601 for storing the program code and/or data of the device 600.
  • the device 600 may be the Internet of Vehicles server in any of the foregoing embodiments (for example, the Internet of Vehicles server is the Internet of Vehicles server in Embodiment 1), or may also be a component such as a chip set in the Internet of Vehicles server.
  • the processing unit 602 may support the device 600 to execute the actions of the Internet of Vehicles server in the foregoing method examples. Alternatively, the processing unit 602 mainly executes the internal actions of the Internet of Vehicles server in the method example, and the transceiver unit 603 can support the communication between the device 600 and the Internet of Vehicles terminal.
  • the processing unit 602 is configured to determine the indication range of the dynamic information in the high-precision map according to the path information of the navigation map;
  • the transceiver unit 603 is configured to send first indication information to the car networking terminal, where the first indication information is used to indicate dynamic information within the indication range in the high-precision map.
  • the dynamic information includes at least one of traffic jam information, traffic accident information, road surface condition information, passable information, pedestrian or bicycle crossing road information, and pedestrian or motor vehicle occupation road information.
  • the transceiving unit 603 is further configured to send second instruction information to the Internet of Vehicles terminal before sending the first instruction information to the Internet of Vehicles terminal, and the second instruction information is used for To indicate that the dynamic information is associated with the path information.
  • the transceiver unit 603 when the transceiver unit 603 sends the first instruction information to the Internet of Vehicles terminal, it is specifically configured to send the second instruction information and the first instruction information to the Internet of Vehicles terminal,
  • the second indication information is used to indicate that the dynamic information is associated with the path information.
  • the transceiver unit 603 when the dynamic information is associated with the path information, the transceiver unit 603 sends the first indication information to the vehicle networking terminal in a first format, and the first format corresponds to Sending the dynamic information within the indication range corresponding to the path information to the vehicle networking terminal.
  • the first indication information when the dynamic information is road-level dynamic information, includes: road marking information and content of dynamic information corresponding to the road marking information; when the dynamic information is lane In the case of level dynamic information, the first indication information includes: lane identification information and content of dynamic information corresponding to the lane identification information, wherein the lane identification information includes road information and lane information.
  • the transceiver unit 603 is specifically configured to send the first indication information to the Internet of Vehicles terminal according to the first cycle when the dynamic information is low-efficiency dynamic information; When the information is high-efficiency dynamic information, when a trigger event corresponding to the dynamic information is triggered, the first indication information is sent to the vehicle networking terminal.
  • the first indication information indicates the at least two associated information contents that are jointly coded.
  • the scrambling codes or initialization values corresponding to the dynamic information of different high-precision maps are different.
  • the processing unit 602 is configured to determine to send first indication information to the car networking terminal, where the first indication information is used to indicate dynamic information in the high-precision map, where, when the dynamic information is a road
  • the first indication information includes: road identification information and content of dynamic information corresponding to the road identification information
  • the first indication information includes: lane Identification information and content of the dynamic information corresponding to the lane identification information, wherein the lane identification information includes road information and lane information;
  • the transceiver unit 603 is configured to send the first indication information to the vehicle networking terminal.
  • the transceiver unit 603 is specifically configured to send the first indication information to the Internet of Vehicles terminal according to the first cycle when the dynamic information is low-efficiency dynamic information; when the dynamic information When the dynamic information is time-efficient, when a trigger event corresponding to the dynamic information is triggered, the first indication information is sent to the vehicle networking terminal.
  • the first indication information indicates the at least two associated information contents that are jointly coded.
  • the scrambling codes or initialization values corresponding to the dynamic information of different high-precision maps are different.
  • an embodiment of the present application further provides an Internet of Vehicles server 700.
  • the Internet of Vehicles server 700 includes a processor 710, a memory 720, and a transceiver 730.
  • the memory 720 stores instructions or programs or data, and the memory 720 may be used to implement the functions of the storage unit 601 in the foregoing embodiment.
  • the processor 710 is configured to read instructions or programs or data stored in the memory 720. When the instructions or programs stored in the memory 720 are executed, the processor 710 is configured to perform the operations performed by the processing unit 602 in the foregoing embodiment, and the transceiver 730 is configured to perform the operations performed by the transceiver unit 603 in the foregoing embodiment.
  • the Internet of Vehicles device 600 or Internet of Vehicles server 700 in the embodiment of the present application may correspond to the Internet of Vehicles server in the dynamic information transmission method (FIG. 2 or FIG. 4) of the embodiment of the present application, and the Internet of Vehicles device 600 or Internet of Vehicles
  • the operation and/or function of each module in the server 700 is to implement the corresponding process of each method in FIG. 2 or FIG. 4, and is not repeated here for brevity.
  • FIG. 8 shows a possible exemplary block diagram of a car networking device involved in an embodiment of the present application, and the device 800 may exist in the form of software.
  • the apparatus 800 may include: a processing unit 802 and a transceiver unit 803.
  • the processing unit 802 is used to implement corresponding processing functions.
  • the transceiver unit 803 is used to support communication between the device 800 and other network entities.
  • the transceiving unit 803 may include a receiving unit and/or a sending unit, which are used to perform receiving and sending operations, respectively.
  • the device 800 may further include a storage unit 801 for storing program codes and/or data of the device 800.
  • the device 800 may be the Internet of Vehicles terminal in any of the foregoing embodiments, or may also be a component such as a chip provided in the Internet of Vehicles terminal.
  • the processing unit 802 may support the device 800 to execute the actions of the car networking terminal in the above method examples.
  • the processing unit 802 mainly executes the internal actions of the Internet of Vehicles terminal in the method example, and the transceiver unit 803 can support the communication between the device 800 and the Internet of Vehicles server.
  • the transceiver unit 803 is configured to receive first indication information sent by the Internet of Vehicles server, where the first indication information is used to indicate dynamic information within an indication range on the high-precision map.
  • the indication range is the indication range of the dynamic information in the high-precision map determined by the Internet of Vehicles server according to the route information of the navigation map;
  • the processing unit 802 is configured to maintain and update the dynamic information within the indication range in the high-precision map according to the first indication information.
  • the dynamic information includes at least one of traffic jam information, traffic accident information, road surface condition information, passable information, pedestrian or bicycle crossing road information, and pedestrian or motor vehicle occupation road information.
  • the transceiver unit 803 is further configured to receive second instruction information sent by the Internet of Vehicles server before receiving the first instruction information sent by the Internet of Vehicles server.
  • the second indication information is used to indicate that the dynamic information is associated with the path information.
  • the transceiver unit 803 when receiving the first instruction information sent by the Internet of Vehicles server, is specifically configured to receive the second instruction information and the first instruction sent by the Internet of Vehicles server.
  • Information the second indication information is used to indicate that the dynamic information is associated with the path information.
  • the transceiver unit 803 when the transceiver unit 803 receives the first instruction information sent by the Internet of Vehicles server, it is specifically configured to receive the first instruction sent by the Internet of Vehicles server in a first format.
  • the first format corresponds to the dynamic information within the indication range corresponding to the path information sent by the Internet of Vehicles server.
  • the first indication information when the dynamic information is road-level dynamic information, includes: road marking information and content of dynamic information corresponding to the road marking information; when the dynamic information is In the case of lane-level dynamic information, the first indication information includes: lane identification information and content of dynamic information corresponding to the lane identification information, and the lane identification information includes road information and lane information.
  • the first indication information indicates the at least two associated information contents that are jointly coded.
  • the scrambling codes or initialization values corresponding to the dynamic information of different high-precision maps are different.
  • the transceiver unit 803 is configured to receive first indication information sent by the Internet of Vehicles server, where the first indication information is used to indicate dynamic information in the high-precision map, where, when the dynamic information is a road
  • the first indication information includes: road identification information and content of dynamic information corresponding to the road identification information
  • the first indication information includes: lane Identification information and content of the dynamic information corresponding to the lane identification information, wherein the lane identification information includes road information and lane information;
  • the processing unit 802 is configured to maintain and update the dynamic information in the high-precision map according to the first instruction information.
  • the first indication information indicates the at least two associated information contents that are jointly coded.
  • the scrambling codes or initialization values corresponding to the dynamic information of different high-precision maps are different.
  • an embodiment of the present application further provides an Internet of Vehicles terminal 900.
  • the Internet of Vehicles terminal 900 includes a processor 910, a memory 920, and a transceiver 930.
  • the memory 920 stores instructions or programs or data, and the memory 920 may be used to implement the functions of the storage unit 801 in the foregoing embodiment.
  • the processor 910 is configured to read instructions or programs or data stored in the memory 920. When the instructions or programs stored in the memory 920 are executed, the processor 910 is configured to execute the operations performed by the processing unit 802 in the foregoing embodiment, and the transceiver 930 is configured to execute the operations performed by the transceiver unit 803 in the foregoing embodiment.
  • the car networking device 800 or the car networking terminal 900 of the embodiment of the present application may correspond to the car networking terminal in the dynamic information transmission method (FIG. 2 or FIG. 4) of the embodiment of the present application, and the car networking device 800 or the car networking terminal 900
  • the operation and/or function of each module in the terminal 900 is to implement the corresponding process of each method in FIG. 2 or FIG. 4, and is not repeated here for brevity.
  • the embodiments of the present application also provide an Internet of Vehicles device.
  • the Internet of Vehicles device may be an Internet of Vehicles terminal or a circuit.
  • the Internet of Vehicles device may be used to perform the actions performed by the Internet of Vehicles terminal in the foregoing method embodiments.
  • FIG. 10 shows a simplified structural diagram of a car networking terminal. It is easy to understand and easy to illustrate.
  • a mobile phone is taken as an example of the Internet of Vehicles terminal.
  • the Internet of Vehicles terminal includes a processor, a memory, a radio frequency circuit, an antenna, and an input and output device.
  • the processor is mainly used to process the communication protocol and communication data, and to control the car networking terminal, execute the software program, and process the data of the software program.
  • the memory is mainly used to store software programs and data.
  • the radio frequency circuit is mainly used for the conversion of baseband signals and radio frequency signals and the processing of radio frequency signals.
  • the antenna is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, keyboards, etc., are mainly used to receive data input by users and output data to users. It should be noted that some types of car networking terminals may not have input and output devices.
  • the processor When data needs to be sent, the processor performs baseband processing on the data to be sent, and then outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and sends the radio frequency signal to the outside in the form of electromagnetic waves through the antenna.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, and the processor converts the baseband signal into data and processes the data .
  • FIG. 10 only one memory and processor are shown in FIG. 10. In actual car networking terminal products, there may be one or more processors and one or more memories.
  • the memory may also be referred to as a storage medium or storage device.
  • the memory may be set independently of the processor, or may be integrated with the processor, which is not limited in the embodiment of the present application.
  • the antenna and radio frequency circuit with the transceiver function can be regarded as the transceiver unit (or communication unit) of the car networking terminal, and the processor with the processing function can be regarded as the processing unit of the car networking terminal.
  • the Internet of Vehicles terminal includes a transceiver unit 1010 and a processing unit 1020.
  • the transceiving unit may also be referred to as a transceiver, a transceiver, a transceiving device, and so on.
  • the processing unit may also be called a processor, a processing board, a processing module, a processing device, and so on.
  • the device for implementing the receiving function in the transceiver unit 1010 can be regarded as the receiving unit, and the device for implementing the sending function in the transceiver unit 1010 as the sending unit, that is, the transceiver unit 1010 includes a receiving unit and a sending unit.
  • the transceiver unit may sometimes be referred to as a transceiver, a transceiver, or a transceiver circuit.
  • the receiving unit may sometimes be called a receiver, a receiver, or a receiving circuit.
  • the transmitting unit may sometimes be called a transmitter, a transmitter, or a transmitting circuit.
  • transceiving unit 1010 is used to perform the sending and receiving operations on the IoV terminal side in the foregoing method embodiment
  • processing unit 1020 is used to perform other operations on the IoV terminal in the foregoing method embodiment except for the transceiving operation.
  • the transceiver unit 1010 is used to perform the sending and receiving operations on the IoV terminal side in S203 of FIG. 2, and/or the transceiver unit 1010 is also used to perform the IoV terminal side operations in the embodiment of the present application.
  • the processing unit 1020 is configured to perform processing operations on the vehicle networking terminal side in S203 in FIG. 2, and/or the processing unit 1020 is also configured to perform other processing steps on the vehicle networking terminal side in the embodiment of the present application.
  • the device may include a transceiver unit and a processing unit.
  • the transceiving unit may be an input/output circuit and/or a communication interface;
  • the processing unit is an integrated processor or microprocessor or integrated circuit.
  • a computer-readable storage medium is provided with instructions stored thereon, and when the instructions are executed, the method on the vehicle networking terminal side in the foregoing method embodiment can be executed.
  • a computer program product containing instructions is provided.
  • the instructions are executed, the method on the vehicle networking terminal side in the foregoing method embodiment can be executed.
  • a chip is provided, the chip is coupled with a memory, and is used to read and execute instructions stored in the memory.
  • the Internet of Vehicles in the above method embodiment can be executed. The method on the terminal side.
  • a computer-readable storage medium is provided, and an instruction is stored thereon.
  • the instruction is executed, the method on the vehicle networking server side in the foregoing method embodiment can be executed.
  • a computer program product containing instructions is provided.
  • the instructions are executed, the method on the vehicle networking server side in the foregoing method embodiment can be executed.
  • a chip is provided, the chip is coupled with a memory, and is used to read and execute instructions stored in the memory.
  • the Internet of Vehicles in the above method embodiment can be executed. Server-side method.
  • each step in the method provided in this embodiment can be completed by an integrated logic circuit of hardware in the processor or instructions in the form of software.
  • the steps of the method disclosed in combination with the embodiments of the present application may be directly embodied as being executed and completed by a hardware processor, or executed and completed by a combination of hardware and software modules in the processor.
  • the processor in the embodiment of the present application may be an integrated circuit chip with signal processing capability.
  • the steps of the foregoing method embodiments can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the above-mentioned processor may be a general-purpose central processing unit (central processing unit, CPU), general-purpose processor, digital signal processing (digital signal processing, DSP), application specific integrated circuits (ASIC), field programmable gate array Field programmable gate array (FPGA) or other programmable logic devices, transistor logic devices, hardware components, or any combination thereof; it can also be a combination of computing functions, such as a combination of one or more microprocessors, DSP and micro-processing The combination of the device and so on.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the memory or storage unit in the embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electrically available Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • static random access memory static random access memory
  • dynamic RAM dynamic RAM
  • DRAM dynamic random access memory
  • synchronous dynamic random access memory synchronous DRAM, SDRAM
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • synchronous connection dynamic random access memory serial DRAM, SLDRAM
  • direct rambus RAM direct rambus RAM
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer programs or instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer program or instruction may be stored in a computer-readable storage medium or transmitted through the computer-readable storage medium.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server integrating one or more available media.
  • the usable medium may be a magnetic medium, such as a floppy disk, a hard disk, and a magnetic tape; it may also be an optical medium, such as a DVD; it may also be a semiconductor medium, such as a solid state disk (SSD).
  • the various illustrative logic units and circuits described in the embodiments of this application can be implemented by general-purpose processors, digital signal processors, application specific integrated circuits (ASICs), and field programmable gate arrays (field programmable gate arrays). , FPGA) or other programmable logic devices, discrete gates or transistor logic, discrete hardware components, or any combination of the above are designed to implement or operate the described functions.
  • the general-purpose processor may be a microprocessor.
  • the general-purpose processor may also be any traditional processor, controller, microcontroller, or state machine.
  • the processor can also be implemented by a combination of computing devices, such as a digital signal processor and a microprocessor, multiple microprocessors, one or more microprocessors combined with a digital signal processor core, or any other similar configuration. achieve.
  • the steps of the method or algorithm described in the embodiments of the present application can be directly embedded in hardware, a software unit executed by a processor, or a combination of the two.
  • the software unit can be stored in RAM, flash memory, ROM, EPROM, EEPROM, register, hard disk, removable disk, CD-ROM or any other storage medium in the field.
  • the storage medium may be connected to the processor, so that the processor can read information from the storage medium, and can store and write information to the storage medium.
  • the storage medium may also be integrated into the processor.
  • the processor and the storage medium can be set in the ASIC, and the ASIC can be set in the car networking terminal.
  • the processor and the storage medium may also be arranged in different components in the car networking terminal.
  • These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, so as to execute on the computer or other programmable equipment.
  • the instructions provide steps for implementing the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Traffic Control Systems (AREA)
  • Navigation (AREA)

Abstract

本申请涉及通信技术领域,公开了一种基于车联网的动态信息发送方法及设备,用以对发送的高精地图的动态信息的范围进行约束,以降低高精地图的动态信息传输量,提高动态信息的传输效率。该方法包括:第一设备根据导航地图的路径信息,确定高精地图中动态信息的指示范围;所述第一设备向第二设备发送第一指示信息,所述第一指示信息用于指示高精地图中所述指示范围内的动态信息。

Description

一种基于车联网的动态信息发送方法及设备
相关申请的交叉引用
本申请要求在2019年11月30日提交中国专利局、申请号为201911209132.4、申请名称为“一种基于车联网的动态信息发送方法及设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种基于车联网的动态信息发送方法及设备。
背景技术
随着社会的发展,智能汽车正在逐步进入人们的日常生活中。智能汽车可以通过低延时无线通信等通信方式,实现车与车,车与道路,车与网络以及所有可连接的设施进行通信,实现高级智能辅助驾驶和自动驾驶。近年来,伴随着自动驾驶产业的发展和完善,基于车载通信的高精地图(自动驾驶地图)成为高级智能辅助驾驶和自动驾驶的重要使能技术。对高级别自动驾驶,如,L3或L3级别以上的自动驾驶汽车而言,高精地图更是必备选项。高精地图包括静态图层部分和动态图层部分,其中静态图层部分主要指的是高精地图中保持常规不动的一些目标物体或对象,可以包括道路、车道、路口、路面标识以及交通标牌、交通灯等道路附属设施等。动态图层部分指自动驾驶过程中正在发生变化或可能发生变化的动态信息,即动态变化的事件信息,如变化的交通流,实时路况,修路或者封路等需要实时推送或者更新的数据。
基于动态图层部分的信息(即动态信息)进行智能网联汽车的通信可以为车辆的定位、决策规划和感知融合提供更精确的依据,从而确保更高级别自动驾驶车辆的行驶安全、舒适性和行驶效率。
然而,动态信息存在不确定性,例如:同一道路路段上的车流及交通拥堵的信息可能随着时间段的变化而变化,晚上7点至9点的车流信息与早晨9点至11点的车流信息可能存在很大差异,因此,实时准确的动态信息应从时间和空间两个维度进行指示,而这会导致车联网服务器向车联网终端发送的动态信息的数据量较为庞大,在带宽一定的情况,如果需要发送的动态信息的数据量较为庞大,会导致传输时间较长,进而影响动态信息的传输效率。
发明内容
本申请实施例提供一种基于车联网的动态信息发送方法及设备,用以解决现有技术中动态信息传输效率低的问题。
第一方面,本申请实施例提供一种基于车联网的动态信息发送方法,该方法中,第一设备根据导航地图的路径信息,确定高精地图中动态信息的指示范围,进一步的,所述第一设备向第二设备发送第一指示信息,所述第一指示信息用于指示高精地图中所述指示范围内的动态信息。
本申请实施例中所描述的方法可以由第一设备执行,也可以由第一设备中的部件,如处理器芯片或电路等执行。上述第一方面中,以第一设备执行为例进行描述。第一设备可以是车联网服务器或路侧单元等设备或者是地图云服务器等云端服务器,所描述的第二设备可以是车联网终端(如车辆、用于导航、高级智能辅助驾驶或自动驾驶的车载单元、车载盒子等)。
采用上述方法,第一设备以导航地图的路径信息,作为指示第二设备的高精地图中的动态信息的范围的约束或限制条件,根据导航地图的路径信息,确定高精地图中动态信息的指示范围,从而不需要将高精地图的所有动态信息发送给第二设备,减少了发送的动态信息的数据量,提高了动态信息的传输效率。另外,第二设备是在导航地图的导航信息对应的指示范围内进行行驶,第一设备根据导航地图的路径信息对高精地图中的动态信息的指示范围进行约束,不仅不会对第二设备在导航信息对应指示范围内的行驶产生影响,并且通过减小向第二设备发送的动态信息的数据量,提高动态信息的传输效率,更有利于第二设备及时获取与行驶有关的动态信息,提高行驶的安全性。
在一种可能的设计中,所述动态信息包括交通拥堵信息、交通事故信息、路面状况信息、可通行信息、行人或自行车穿越马路信息、行人或机动车占用马路信息中的至少一个。上述设计中,通过将实时变化的交通流信息发送给第二设备,有利于第二设备获取路况信息,提高自动驾驶或高级智能辅助驾驶的效率和安全性。
在一种可能的设计中,所述方法还包括:所述第一设备向所述第二设备发送所述第一指示信息之前,向所述第二设备发送第二指示信息所述第二指示信息用于指示所述动态信息与所述路径信息关联。或,所述第一设备向所述第二设备发送所述第一指示信息,包括:向所述第二设备发送第二指示信息和所述第一指示信息,所述第二指示信息用于指示所述动态信息与所述路径信息关联。上述设计中,在第一指示信息指示与导航地图的路径信息对应的指示范围内的动态信息时,通过第二指示信息指示第一指示信息指示的动态信息与导航地图的路径信息关联,有利于第二设备区分第一指示信息指示的是高精度地图系统全局的动态信息,还是与导航地图的路径信息对应的指示范围内的动态信息。
在一种可能的设计中,所述动态信息与所述路径信息关联的情况下,所述第一设备采用第一格式向第二设备发送第一指示信息,所述第一格式对应于所述第一设备向所述第二设备发送所述路径信息对应的所述指示范围内的所述动态信息;在第一指示信息指示的动态信息与导航地图的路径信息不关联的情况下,所述第一设备采用第二格式向所述第二设备发送第一指示信息,其中,所述第一格式与所述第二格式不同。上述设计中,针对动态信息与路径信息是否关联,第一设备采用匹配的格式发送动态信息,有利于第二设备根据第一指示信息的格式,区分第一指示信息指示的是高精度地图系统全局的动态信息,还是与导航地图的路径信息对应的指示范围内的动态信息。
在一种可能的设计中,当所述动态信息为道路级动态信息时,所述第一指示信息包括:道路标识信息和所述道路标识信息对应的动态信息的内容;当所述动态信息为车道级动态信息时,所述第一指示信息包括:车道标识信息和所述车道标识信息对应的动态信息的内容,其中所述车道标识信息包括道路信息和车道信息。上述设计中,根据动态信息的内容类型对动态信息进行分类,并对不同内容类型的动态信息的数据格式进行规范,进行规范化传输,有利于提高动态信息的传输效率,并便于第二设备对动态信息的内容的获取。
在一种可能的设计中,所述第一设备向第二设备发送第一指示信息,包括:当所述动 态信息为低时效动态信息时,所述第一设备根据第一周期向所述第二设备发送所述第一指示信息;当所述动态信息为高时效动态信息时,所述第一设备在所述动态信息对应的触发事件被触发时,所述第一设备向所述第二设备发送所述第一指示信息。上述设计中,对于高时效动态信息在对应的触发事件被触发时,第一设备向第二设备发送第一指示信息,有利于第二设备对高精地图中的动态信息的及时维护或更新,提高行驶的安全性;对于低时效动态信息,第一设备根据第一周期向第二设备发送第一指示信息,有利于节约信令。同时,对于高时效动态信息在对应的触发事件被触发时发送,对于低时效动态信息,根据第一周期发送,避免了同时将所有动态信息发送给第二设备,也有利于提高动态信息传输的可靠性。
在一种可能的设计中,当所述动态信息包括至少两个关联的信息内容时,所述第一指示信息指示联合编码的所述至少两个关联的信息内容。上述设计中,对关联的信息内容进行联合编码,有利于动态信息的绑定传输,也有助于第二设备中高精地图中的动态信息的快速更新,从而提高自动驾驶汽车行驶的安全性。
在一种可能的设计中,不同高精地图的动态信息对应的扰码或初始化值不同。上述设计中,面对高精地图可能存在多个运营商的情况,第一设备可以采用不同的扰码或初始化值对动态信息进行加扰,不同加扰或初始化后的动态信息对应不同图商的高精度地图,即,不同图商的高精度地图对应的动态信息的处理方式或传输格式可以是不同的。
第二方面,本申请实施例提供一种基于车联网的动态信息发送方法,其中第二方面的有益效果可以参照第一方面的有益效果,该方法包括:第一设备向第二设备发送第一指示信息,所述第一指示信息用于指示高精地图中的动态信息,其中,当所述动态信息为道路级动态信息时,所述第一指示信息包括:道路标识信息和所述道路标识信息对应的动态信息的内容;当所述动态信息为车道级动态信息时,所述第一指示信息包括:车道标识信息和所述车道标识信息对应的动态信息的内容,其中所述车道标识信息包括道路信息和车道信息。
在一种可能的设计中,所述第一设备向第二设备发送第一指示信息,包括:
当所述动态信息为低时效动态信息时,所述第一设备根据第一周期向所述第二设备发送所述第一指示信息;当所述动态信息为高时效动态信息时,所述第一设备在所述动态信息对应的触发事件被触发时,所述第一设备向所述第二设备发送所述第一指示信息。
在一种可能的设计中,当所述动态信息包括至少两个关联的信息内容时,所述第一指示信息指示联合编码的所述至少两个关联的信息内容。
在一种可能的设计中,不同高精地图的动态信息对应的扰码或初始化值不同。
第三方面,本申请实施例提供一种基于车联网的动态信息接收方法,其中第三方面的有益效果可以参照第一方面的有益效果,所述方法包括:第二设备接收第一设备发送的第一指示信息,所述第一指示信息用于指示高精地图中指示范围内的动态信息,所述指示范围是所述第一设备根据导航地图的路径信息,确定出的高精地图中所述动态信息的指示范围;所述第二设备根据所述第一指示信息,对高精地图中所述指示范围内的动态信息进行维护和更新。
在一种可能的设计中,所述动态信息包括交通拥堵信息、交通事故信息、路面状况信息、可通行信息、行人或自行车穿越马路信息、行人或机动车占用马路信息中的至少一个。
在一种可能的设计中,所述第二设备接收所述第一设备发送的所述第一指示信息之前, 所述方法还包括:所述第二设备接收所述第一设备发送的第二指示信息,所述第二指示信息用于指示所述动态信息与所述路径信息关联;或所述第二设备接收所述第一设备发送的第一指示信息,包括:接收所述第一设备发送的第二指示信息和所述第一指示信息,所述第二指示信息用于指示所述动态信息与所述路径信息关联。
在一种可能的设计中,所述第二设备接收所述第一设备发送的所述第一指示信息,包括:所述第二设备接收所述第一设备采用第一格式发送的所述第一指示信息,所述第一格式对应于所述第一设备发送所述路径信息对应的所述指示范围内的所述动态信息。
在一种可能的设计中,当所述动态信息为道路级动态信息时,所述第一指示信息包括:道路标识信息和所述道路标识信息对应的动态信息的内容;当所述动态信息为车道级动态信息时,所述第一指示信息包括:车道标识信息和所述车道标识信息对应的动态信息的内容,其中所述车道标识信息包括道路信息和车道信息。
在一种可能的设计中,当所述动态信息包括至少两个关联的信息内容时,所述第一指示信息指示联合编码的所述至少两个关联的信息内容。
在一种可能的设计中,不同高精地图的动态信息对应的扰码或初始化值不同。
第四方面,本申请实施例提供一种基于车联网的动态信息接收方法,其中第四方面的有益效果可以参照第一方面的有益效果,所述方法包括:第二设备接收第一设备发送的第一指示信息,所述第一指示信息用于指示高精地图中的动态信息;其中,当所述动态信息为道路级动态信息时,所述第一指示信息包括:道路标识信息和所述道路标识信息对应的动态信息的内容;当所述动态信息为车道级动态信息时,所述第一指示信息包括:车道标识信息和所述车道标识信息对应的动态信息的内容,其中所述车道标识信息包括道路信息和车道信息;所述第二设备根据所述第一指示信息,对高精地图中的动态信息进行维护和更新。
在一种可能的设计中,所述动态信息包括交通拥堵信息、交通事故信息、路面状况信息、可通行信息、行人或自行车穿越马路信息、行人或机动车占用马路信息中的至少一个。
在一种可能的设计中,当所述动态信息包括至少两个关联的信息内容时,所述第一指示信息指示联合编码的所述至少两个关联的信息内容。
在一种可能的设计中,不同高精地图的动态信息对应的扰码或初始化值不同。
第五方面,本申请实施例提供一种车联网装置,该装置具有实现上述第一方面或者第一方面的任一种可能的设计中方法的功能,或实现上述第二方面或者第二方面的任一种可能的设计中方法的功能,所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块,比如包括收发单元和处理单元。
在一个可能的设计中,该装置可以是芯片或者集成电路。
在一个可能的设计中,该装置包括存储器和处理器,存储器用于存储所述处理器执行的程序,当程序被处理器执行时,所述装置可以执行上述第一方面或者第一方面的任一种可能的设计中所述的方法,或执行上述第二方面或者第二方面的任一种可能的设计中所述的方法。
在一个可能的设计中,该装置可以为车联网服务器或路侧单元。
第六方面,本申请实施例提供一种车联网装置,该装置具有实现上述第三方面或者第三方面的任一种可能的设计中方法的功能,或实现上述第四方面或者第四方面的任一种可 能的设计中方法的功能,所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块,比如包括收发单元和处理单元。
在一个可能的设计中,该装置可以是芯片或者集成电路。
在一个可能的设计中,该装置包括存储器和处理器,存储器用于存储所述处理器执行的程序,当程序被处理器执行时,所述装置可以执行上述第三方面或者第三方面的任一种可能的设计中所述的方法,或执行上述第四方面或者第四方面的任一种可能的设计中所述的方法。
在一个可能的设计中,该装置可以为车联网终端。
第六方面,本申请实施例提供一种计算机可读存储介质,所述存储介质存储有计算机指令,当所述计算机指令被执行时,可以实现上述第一方面或者第一方面的任一种可能的设计中所述的方法,或实现上述第二方面或者第二方面的任一种可能的设计中所述的方法,或实现上述第三方面或者第三方面的任一种可能的设计中所述的方法,或实现上述第四方面或者第四方面的任一种可能的设计中所述的方法。
第七方面,本申请实施例还提供一种计算机程序产品,包括计算机程序或指令,当计算机程序或指令被执行时,可以实现上述第一方面或者第一方面的任一种可能的设计中所述的方法,或实现上述第二方面或者第二方面的任一种可能的设计中所述的方法,或实现上述第三方面或者第三方面的任一种可能的设计中所述的方法,或实现上述第四方面或者第四方面的任一种可能的设计中所述的方法。
附图说明
图1为本申请实施例提供的一种网络架构示意图;
图2为本申请实施例提供的一种动态信息传输过程示意图;
图3为本申请实施例提供的一种导航地图的导航信息示意图;
图4为本申请实施例提供的另一种动态信息传输过程示意图;
图5为本申请实施例提供的一种动态信息传输格式示意图;
图6为本申请实施例提供的一种车联网装置的示意性框图;
图7为本申请实施例提供的一种车联网服务器的示意性框图;
图8为本申请实施例提供的另一种车联网装置的示意性框图;
图9为本申请实施例提供的一种车联网终端的示意性框图;
图10为本申请实施例提供的车联网终端的结构示意图。
具体实施方式
本申请提供一种基于车联网的动态信息发送方法及设备,旨在通过对高精地图动态图层传输的动态信息的范围进行约束,并对动态信息的传输格式进行优化,提高高精地图动态图层的动态信息的传输效率,解决现有技术中实时传输高精地图动态图层的所有动态信息,传输效率低的问题。
在介绍本申请实施例之前,首先对本申请中的部分用语进行解释说明,以便于本领域技术人员理解。
1)车联网终端,在本申请中也可被称为车联网通信装置或车载终端设备。车联网终端可以是具备通信功能的车辆或非机动车的车联网终端、便携设备、可穿戴设备、移动电话(或称为“蜂窝”电话)、便携式、袖珍式、或手持式终端等,或这些设备中的芯片等。车辆是一种典型的车联网终端,在本申请以下实施例中,以车辆为例进行描述,本领域技术人员应该理解的是,本申请中以车辆为例的实施例还可以应用于其它类型的终端。车联网终端具体可以通过其内部的功能单元或装置执行车联网相关业务流程。例如,当车联网终端为车辆时,车辆中一个或多个如下装置可用于执行本申请实施例中车联网终端相关的方法流程,如车载盒子(telematics box,T-Box)、域控制器(domian controller,DC)、多域控制器(multi-domian controller,MDC)、车载单元(on board unit,OBU)或车联网芯片等。
2)路侧单元(road side unit,RSU),可用于通过直接通信(如PC5)或专用短程通信技术(dedicated short range communications,DSRC)等通信方式向车联网终端发送车辆到一切(vehicle to everything,V2X)消息。V2X消息可承载动态信息或者其他需要通知车联网终端的信息。其中,路侧单元与车联网终端之间的通信方式也可被称为车辆与路边基础设施(vehicle to infrastructure,V2I)通信。本申请对于路侧单元的具体部署形态不作具体限定,其可以是一个车联网终端、移动或非移动的终端设备、服务器或芯片等等。路侧单元还可用于将管辖范围内发生的动态信息上报至车联网服务器,如,通过路侧信息(roadside information,RSI)消息上报动态信息。
3)车联网服务器,可以是对车联网终端和/或路侧单元进行管理、提供服务的车联网平台或服务器,包括为高精地图和导航地图提供服务的应用服务器或地图云服务器。车联网服务器的具体部署形态本申请不做限定,具体可以是云端部署,还可以是独立的计算机设备或芯片等。当需要向车联网终端发送V2X消息时,可由车联网服务器将V2X消息发送至路侧单元,并由路侧单元向其覆盖区域内的车联网终端进行广播。当然,也可由车联网服务器直接将V2X消息发送至车联网终端。
另外,需要理解的是,本申请实施例中的术语“系统”和“网络”可被互换使用。“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。以及,除非有相反的说明,本申请实施例提及“第一”、“第二”等序数词是用于对多个对象进行区分,不用于限定多个对象的顺序、时序、优先级或者重要程度。例如,第一车道和第二车道,只是为了区分不同的车道,而并不是表示这两种车道的优先级或者重要程度等的不同。
下面将结合附图,对本申请实施例进行详细描述。
参照图1所示,为本申请实施例适用的一种网络架构,涉及为高精地图和导航地图提供服务的车联网服务器,用于导航、高级智能辅助驾驶或自动驾驶的车联网终端,还可以涉及路侧单元等设备,其中所述车联网服务器可以为为高精地图和导航地图提供服务的应用服务器或地图云服务器,所述车联网终端设备可以为车辆,也可以为设置在车辆中的车 载单元、车载盒子等装置,在此不做具体限定。车联网服务器可以与车联网终端及部署于道路(该道路可包括一个或多个车道)路侧的多个路侧单元进行通信,每个路侧单元也可在各自的覆盖区域内向车联网终端发送V2X消息。为方便理解,不同路侧单元的覆盖区域在图1中以虚线隔开。应理解,在实际应用时,路侧单元的覆盖区域可以为规则的形状如矩形,也可以为不规则的形状;不同路侧单元的覆盖区域可以部分重叠,也可以全部重叠,本申请图1仅为一种可能的示例。
在本申请实施例中,车联网服务器可以通过维护和更新高精地图(high definition map,HD MAP)的信息,为车联网终端提供规划和控制服务,还可以维护和更新导航地图的信息,为车联网终端提供导航服务。例如:可通过路侧单元向车联网终端发送包含高精地图的动态信息的车联网消息。在本申请中,动态信息通常与时变的动态事件对应,为动态事件的信息,动态事件是指随着时间可能发生变化的信息,例如:车道、道路存在的施工事件、交通管制事件、交通事故事件、恶劣天气或自然灾害等等事件,这些动态事件可以通过车联网消息,如,V2X(vehicle to X,俗称V2X)消息向车联网终端进行广播或发送,例如:车道、道路存在的施工事件、交通管制事件、交通事故事件、恶劣天气或自然灾害等等事件中的至少一个出现时,需要将相应事件的信息发送给车联网终端。
在本申请实施例中,可通过导航地图的路径信息对高精地图动态图层传输的动态信息的范围进行约束,以减少待传输的高精度地图中的动态信息的传输量,提高动态信息的传输效率和利用率。
如图2所示,为本申请实施例提供的一种动态信息传输过程示意图,可由车联网服务器作为第一设备、车联网终端(以车辆为例)作为第二设备实施。该方法包括以下步骤。
S201:车联网服务器根据导航地图的路径信息,确定高精地图中动态信息的指示范围。
在本申请实施例中,高精地图中动态信息的指示范围与导航地图的路径信息对应,也即当车联网服务器指示车联网终端的高精地图中的动态信息时,车联网服务器可以以导航地图为车联网终端规划的路径信息,作为指示车联网终端的高精地图中的动态信息的范围约束,以减小动态信息的传输量,从而提高动态信息的传输效率。其中,导航地图的路径信息,如导航地图为车联网终端(车辆)规划的路径信息,可以包括为车联网终端规划的一个或多个行驶路段及车联网终端在每个行驶路段上占用的车道的信息。
对于导航地图为车联网终端规划的路径信息的获取,在一种可能的实施中,当车联网服务器同时作为为车联网终端的高精地图和导航地图的应用服务器或地图云服务器时,车联网服务器可以基于导航地图为车联网终端规划路径信息。示例的:车联网终端将当前所在位置和目的地上报给车联网服务器,车联网服务器根据车联网终端的位置“位置A”和目的地“位置B”,在导航地图中为车联网终端规划出一条或多条路径,并将在导航地图中为车联网终端规划出的一条或多条路径发送给车联网终端。可选的,当车联网服务器为车联网终端在导航地图中仅规划出一条路径时,车联网服务器为车联网终端在导航地图中规划的路径,即为车联网服务器在导航地图中为车联网终端规划的路径信息;当车联网服务器为车联网终端在导航地图中规划出多条路径时,车联网服务器可以根据用户通过车联网终端在导航地图中选择的路径,确定为车联网终端的路径信息。
在另一种可能的实施中,当车联网服务器不作为为车联网终端的导航地图提供服务的应用服务器或地图云服务器时,车联网服务器在向车联网终端发送指示高精地图中的动态信息的指示信息前,可以向车联网终端下发路径信息获取指令,指示车联网终端向车联网 服务器上报导航地图为车联网终端规划的路径信息;当然,也可以由车联网终端运行高精地图时,向车联网服务器上报导航地图为车联网终端规划的路径信息。另外,可以理解的,当车联网服务器不作为为车联网终端的导航地图提供服务的应用服务器或地图云服务器时,车联网服务器也可以通过为车联网终端的导航地图提供服务的应用服务器或地图云服务器,获取导航地图为车联网终端规划的路径信息。
获取导航地图为车联网终端规划的路径信息后,对于动态信息的指示范围的确定,车联网服务器可以以导航地图为车联网终端规划的一个或多个行驶路段,作为高精地图中动态信息的指示范围。示例的:参照图3所示,导航地图为车联网终端规划的路径信息为:A大街(1号路段)—B大街(6号路段)—C路(2号路段),车联网服务器可以确定对高精地图中动态信息的指示范围为:A大街(1号路段)—B大街(6号路段)—C路(2号路段)。
可选的,车联网服务器还可以根据导航地图为车联网终端规划的在每个行驶路段上占用的车道的信息,进一步约束(限制)高精地图中动态信息的指示范围。仍以图3为例,在A大街(1号路段),车联网终端需要左转进入B大街(6号路段),导航地图为车联网终端规划在A大街(1号路段)占用车道2(可左转车道),则车联网服务器可以确定对高精地图中动态信息在A大街(1号路段)的指示范围为车道2。根据导航地图为车联网终端规划的在每个行驶路段上占用的车道的信息,车联网服务器可以确定对高精地图中动态信息的指示范围为:A大街(1号路段)的车道2,B大街(6号路段)的车道1和C路(2号路段)的车道3,进一步缩小了高精地图中动态信息的指示范围。因此,车联网服务器在指示施工事件、交通管制事件、交通事故事件、恶劣天气或自然灾害等动态信息时,仅需要指示A大街(1号路段)的车道2、B大街(6号路段)的车道1和C路(2号路段)的车道3上对应的动态信息。
在另一种可能的实施中,车联网服务器还可以根据车联网终端的导航地图的路径信息,及车联网终端当前位置,将车联网终端当前所在行驶路段确定为高精地图中动态信息的指示范围,例如:车联网终端当前所在的行驶路段为A大街(1号路段),车联网服务器可以将A大街(1号路段)的车道2作为高精地图中动态信息的指示范围。
需要理解的是,随着车联网终端的移动,车联网终端的导航地图的路径信息会进行更新,如在目的地不变的情况下,随着车联网终端移动,车联网终端至目的地的路径会发生改变,车联网服务器确定的高精地图中动态信息的指示范围,会根据更新后的导航地图的路径信息进行更新。
S202:所述车联网服务器向车联网终端发送第一指示信息,所述第一指示信息用于指示高精地图中所述指示范围内的动态信息。
在本申请实施例中,动态信息可以包括如下信息中的至少一种:某一车道的交通拥堵信息、交通事故信息、路面状况信息、可通行信息、行人或自行车穿越马路信息、行人或机动车占用马路信,某一路段的交通拥堵信息、交通事故信息、路面状况信息、可通行信息、行人或自行车穿越马路信息、行人或机动车占用马路信息等,或天气信息等。
例如:第一指示信息指示A大街(1号路段)的车道2的路面状况为路面湿滑。
S203:所述车联网终端接收所述车联网服务器发送的第一指示信息,对高精地图中所述指示范围内的动态信息进行维护和更新。
在本申请实施例中,车联网服务器可以将第一指示消息发送至路侧单元(如覆盖车联网终端的当前位置的路侧单元),由路侧单元将第一指示消息转发给车联网终端,如通过低时延无线通信发送给车联网终端;也可以由车联网服务器直接将第一指示消息发送给车联网终端,这里不做具体限定。
车联网终端接收到第一指示消息后,根据第一指示信息的指示范围,对相应指示范围内的动态信息进行更新,并可以根据更新后的动态信息,调整自动驾驶的决策或辅助驾驶的最优驾驶路线的决策。例如:第一指示信息指示A大街(1号路段)的车道2的路面状况为路面湿滑,车联网终端将A大街(1号路段)的车道2的路面状况为路面湿滑更新至高精地图中,并将在A大街(1号路段)的车道2的行驶速度控制在与路面湿滑相匹配的30km/h以下。
另外,为了保证车联网服务器和车联网终端对第一指示信息指示范围是系统全局的绝对范围,还是与导航地图的路径信息关联的相对范围的理解是一致的,在一种可能的实施中,车联网终端可以默认接收到的车联网服务器发送的第一指示信息与导航地图相结合,即第一指示信息指示的动态信息与导航地图的路径信息关联。在另一种可能的实施中,在第一指示信息用于指示的高精地图中动态信息的范围,是根据导航地图的路径信息确定时,车联网服务器向车联网终端发送第一指示信息之前;或,车联网服务器向车联网终端发送第一指示信息的同时,向车联网终端发送第二指示信息,所述第二指示信息用于指示所述动态信息与所述路径信息关联。即指示所述动态信息为根据所述路径信息确定的指示范围内的相对信息。
为了便于车联网终端区分第一指示信息指示的是高精度地图系统全局的动态信息,还是与导航地图的路径信息对应的指示范围内的动态信息,车联网服务器在第一指示信息指示的动态信息与导航地图的路径信息关联的情况下,车联网服务器还可以采用第一格式向车联网终端发送第一指示信息,在第一指示信息指示的动态信息与导航地图的路径信息不关联的情况下,车联网服务器还可以采用第二格式向车联网终端发送第一指示信息,所述第一格式对应于所述车联网服务器向车联网终端发送路径信息对应的指示范围内的动态信息;所述第二格式对应于所述车联网服务器向车联网终端发送的动态信息与导航地图的路径信息不关联,所述第一格式与所述第二格式不同。示例的,对于系统全局发送的动态信息“暴雨,预计持续4小时”,车联网服务器可以通过一个或多个路侧单元,采用广播格式对所述一个或多个路侧单元覆盖范围内的所有车联网终端广播第一指示信息;对于与某一车联网终端的导航地图的路径信息关联的相对范围内的动态信息“A大街(1号路段)的车道2的路面湿滑信息”车联网服务器采用单播格式,直接或通过覆盖该车联网终端的路侧单元,将第一指示信息发送给该车联网终端。另一个示例中,当动态信息与导航地图的路径信息不关联时,车联网服务器以第二格式指示“A大街(1号路段)的所有4条车道上的路面湿滑信息”,即,每条车道的路面湿滑信息均需被单独通知。
在本申请实施例中,还可以对动态信息的传输格式进行优化,以提高高精地图中动态图层的动态信息的传输效率。与上述实施例相同的内容,可以参照上述实施例的描述,本实施例不再赘述。
如图4所示,为本申请实施例提供的一种动态信息传输过程示意图,可由车联网服务器作为第一设备、车联网终端(以车辆为例)作为第二设备实施。该方法包括以下步骤。
S401:车联网服务器向车联网终端发送第一指示信息,所述第一指示信息用于指示高精地图中的动态信息;
其中,当所述动态信息为道路级动态信息时,所述第一指示信息包括:道路标识信息和所述道路标识信息对应的动态信息的内容;当所述动态信息为车道级动态信息时,所述第一指示信息包括:车道标识信息和所述车道标识信息对应的动态信息的内容,其中所述车道标识信息包括道路信息和车道信息。
S402:所述车联网终端接收所述车联网服务器发送的第一指示信息,对高精地图中的动态信息进行维护和更新。
在本申请实施例中,根据动态信息的内容的覆盖范围,可以将动态信息划分为一般动态信息、道路级动态信息和车道级动态信息。
一般动态信息,也可称为全局级动态信息,通常覆盖范围超过某一路段或多个路段,如天气情况(雨、雪、雾等),是更大范围内的各路段在同一时刻都相同的一个信息。
道路级动态信息,通常覆盖范围为某一路段,如某一道路的交通管制信息、道路施工情况信息、行人或自行车穿越马路信息、道路被占用的信息等。
车道级动态信息,通常覆盖范围为某一车道,如某一车道的交通拥堵信息、交通事故信息、路面状况信息、井盖的起落信息、车道被占用的信息和潮汐车道信息等。
其中,针对不同覆盖范围的动态信息可以有不同传输格式设计。可选的:当动态信息为一般动态信息时,参照图5中的(A)所示,第一指示信息包括信息类型,如天气,和所述信息类型对应的动态信息的内容,如暴雨天气、预计持续4小时。
当动态信息为道路级动态信息时,参照图5中的(B)所示,所述第一指示信息包括:道路标识信息,如信息路3号路段和所述道路标识信息对应的动态信息的内容,如路面施工、限速20km/h;参照图5中的(C)所示,所述第一指示信息还可以包括所述道路标识信息下的信息类型,如施工情况。
当动态信息为车道级动态信息时,参照图5中的(D)所述,所述第一指示信息包括:车道标识信息,如信息路3号路段-车道2和所述车道标识信息对应的动态信息的内容,如轻微拥堵;参照图5中的(E)所示,所述第一指示信息还可以包括所述车道标识信息下的信息类型,如交通拥堵。
根据动态信息的内容的覆盖范围对动态信息进行分类,并对不同内容类型的动态信息的数据格式进行规范,进行规范化传输,有利于提高动态信息的传输效率,并便于车联网终端对动态信息内容的获取。
在一种可能的实施中,为了进一步提高动态信息传输的可靠性,车联网服务器,还可以根据动态信息的时效性,向车联网终端发送用于指示高精地图中动态信息的第一指示信息。
具体来说,可以针对每个动态信息对应的动态事件设置优先级,动态事件的优先级可用于指示动态事件是高时效性动态事件(或称紧急事件)或是低时效性动态事件(或称非紧急事件)。从而指示对应动态事件的动态信息的优先级。例如,优先级达到(或超过)某一阈值的事件为低时效动态事件,反之,优先级低于(或不高于)该阈值的事件为低时效性动态事件。其中,高优先级动态事件,可包括交通事故信息、路面状况信息、可通行信息(如对应的交通指示灯信息)、行人或自行车穿越马路信息、行人或机动车占用马路信息等突发性较强的事件;低优先级动态事件,可包括天气、交通管制等往往预先能够预 测的突发性不强的事件。
车联网服务器向车联网终端发送第一指示消息时,如果第一指示信息指示的高精地图的动态信息对应的动态事件未达到(或未超过)某一阈值,确定动态信息为低时效动态信息时,车联网服务器可按照第一周期广播给车联网终端。其中第一周期是可配置的,或也可以预先配置在车联网服务器。如,车联网服务器每隔20分钟播发一次道路的可通行信息给车联网终端或每隔1小时广播一次天气信息给车联网终端。
如果第一指示信息指示的高精地图的动态信息对应的动态事件的优先级达到(或超过)某一阈值,确定动态信息为高时效动态信息时,车联网服务器根据动态信息对应的触发事件,在所述触发事件被触发时,向车联网终端发送第一指示信息。示例的:当导航地图指示道路发生切换时,车道级的动态信息被触发更新并进行对应的指示。即车道级的动态信息的触发条件包括车道或道路切换。示例的,如果车联网终端的速度在一段时间间隔内连续小于或等于某个门限,车联网终端可能有变换车道或道路的需求,因此车联网服务器可基于车联网终端的变道或道路切换情况,触发道路或车道级动态信息给车联网终端。应理解的是,在本申请实施例中,所描述的动态事件的优先级、及对应动态事件的动态信息的触发事件,可以预先配置,也可以根据需求进行调整。
另外,由于不同高精地图运营商可能采用不同的高精地图数据格式,因此,车联网服务器向采用不同运营商的高精地图的车联网终端发送的动态信息可能采用不同数据格式,例如:一个十字路口的4个红绿灯在不同高精地图中可以有不同的编号呈现方式,如,在图商1的高精地图中4个红绿灯的编号为1、2、3、4,而在图商2的高精地图中4个红绿灯的编号为4、3、2、1,图商3的高精地图中4个红绿灯的编号为2、3、1、4。从而发送给不同图商的红绿灯信息应该采用该图商对应的信息格式。为了便于车联网终端对不同的信息格式进行识别,一种方式为采用不同的扰码或初始化值对发送给不同高精地图运营商的高精地图的动态信息进行加扰。
此外,车联网服务器对动态信息指示时,还可以考虑不同动态信息间的关联(绑定)关系,如天气信息和道路级的路面状况信息存在关联关系,当天气信息为雨或雪等时,将天气信息为雨或雪等和指示道路级的路面状况信息,如湿滑、积水信息等进行关联,进行联合编码指示。而当天气信息为晴时,可以无需指示湿滑、积水信息等。即,建立待指示信息间的依赖关系,如,路面湿滑信息的指示依赖于天气信息的指示。将二者进行联合指示可提高动态信息传输的效率。
另一种示例,可以是当指示道路级动态信息为路面湿滑,积水时,同时关联指示车道级可通行信息等,将这两种动态信息做联合编码。
上述主要从车联网服务器(第一设备)和车联网终端(第二设备)之间交互的角度对本申请提供的方案进行了介绍。可以理解的是,为了实现上述功能,各网元包括了执行各个功能相应的硬件结构和/或软件模块(或单元)。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在采用集成的单元(模块)的情况下,图6示出了本申请实施例中所涉及的一种车联网装置的可能的示例性框图,该车联网装置600可以以软件的形式存在。装置600可以包括:处理单元602和收发单元603。
一种可能的设计中,处理单元602用于实现相应的处理功能。收发单元603用于支持装置600与其他网络实体的通信。可选地,收发单元603可以包括接收单元和/或发送单元,分别用于执行接收和发送操作。可选的,装置600还可以包括存储单元601,用于存储装置600的程序代码和/或数据。
该装置600可以为上述任一实施例中的车联网服务器(比如,车联网服务器为实施例一中的车联网服务器)、或者还可以为设置在车联网服务器中的芯片等部件。处理单元602可以支持装置600执行上文中各方法示例中车联网服务器的动作。或者,处理单元602主要执行方法示例中的车联网服务器内部动作,收发单元603可以支持装置600与车联网终端之间的通信。
具体地,在一个实施例中,处理单元602,用于根据导航地图的路径信息,确定高精地图中动态信息的指示范围;
收发单元603,用于向车联网终端发送第一指示信息,所述第一指示信息用于指示高精地图中所述指示范围内的动态信息。
一种可能的设计中,所述动态信息包括交通拥堵信息、交通事故信息、路面状况信息、可通行信息、行人或自行车穿越马路信息、行人或机动车占用马路信息中的至少一个。
一种可能的设计中,所述收发单元603,还用于向所述车联网终端发送所述第一指示信息之前;向所述车联网终端发送第二指示信息,所述第二指示信息用于指示所述动态信息与所述路径信息关联。
一种可能的设计中,所述收发单元603,向所述车联网终端发送所述第一指示信息时,具体用于向所述车联网终端发送第二指示信息和所述第一指示信息,所述第二指示信息用于指示所述动态信息与所述路径信息关联。
一种可能的设计中,所述动态信息与所述路径信息关联的情况下,所述收发单元603采用第一格式向所述车联网终端发送所述第一指示信息,所述第一格式对应于向所述车联网终端发送所述路径信息对应的所述指示范围内的动态信息。
一种可能的设计中,当所述动态信息为道路级动态信息时,所述第一指示信息包括:道路标识信息和所述道路标识信息对应的动态信息的内容;当所述动态信息为车道级动态信息时,所述第一指示信息包括:车道标识信息和所述车道标识信息对应的动态信息的内容,其中所述车道标识信息包括道路信息和车道信息。
一种可能的设计中,所述收发单元603,具体用于当所述动态信息为低时效动态信息时,根据第一周期向所述车联网终端发送所述第一指示信息;当所述动态信息为高时效动态信息时,在所述动态信息对应的触发事件被触发时,向所述车联网终端发送所述第一指示信息。
一种可能的设计中,当所述动态信息包括至少两个关联的信息内容时,所述第一指示信息指示联合编码的所述至少两个关联的信息内容。
一种可能的设计中,不同高精地图的动态信息对应的扰码或初始化值不同。
在另一个实施例中,处理单元602,用于确定向车联网终端发送第一指示信息,所述第一指示信息用于指示高精地图中的动态信息,其中,当所述动态信息为道路级动态信息 时,所述第一指示信息包括:道路标识信息和所述道路标识信息对应的动态信息的内容;当所述动态信息为车道级动态信息时,所述第一指示信息包括:车道标识信息和所述车道标识信息对应的动态信息的内容,其中所述车道标识信息包括道路信息和车道信息;
收发单元603,用于向所述车联网终端发送所述第一指示信息。
在一种可能的设计中,收发单元603,具体用于当所述动态信息为低时效动态信息时,根据第一周期向所述车联网终端发送所述第一指示信息;当所述动态信息为高时效动态信息时,在所述动态信息对应的触发事件被触发时,向所述车联网终端发送所述第一指示信息。
在一种可能的设计中,当所述动态信息包括至少两个关联的信息内容时,所述第一指示信息指示联合编码的所述至少两个关联的信息内容。
在一种可能的设计中,不同高精地图的动态信息对应的扰码或初始化值不同。
如图7所示,本申请实施例还提供一种车联网服务器700,该车联网服务器700包括处理器710,存储器720与收发器730。
一种可能的设计中,存储器720中存储指令或程序或数据,存储器720可以用于实现上述实施例中存储单元601的功能。处理器710用于读取存储器720中存储的指令或程序或数据。存储器720中存储的指令或程序被执行时,该处理器710用于执行上述实施例中处理单元602执行的操作,收发器730用于执行上述实施例中收发单元603执行的操作。
应理解,本申请实施例的车联网装置600或车联网服务器700可对应于本申请实施例的动态信息传输方法(图2或图4)中的车联网服务器,并且车联网装置600或车联网服务器700中的各个模块的操作和/或功能分别为了实现图2或图4中的各个方法的相应流程,为了简洁,在此不再赘述。
在采用集成的单元(模块)的情况下,图8示出了本申请实施例中所涉及的一种车联网装置的可能的示例性框图,该装置800可以以软件的形式存在。装置800可以包括:处理单元802和收发单元803。
一种可能的设计中,处理单元802用于实现相应的处理功能。收发单元803用于支持装置800与其他网络实体的通信。可选地,收发单元803可以包括接收单元和/或发送单元,分别用于执行接收和发送操作。可选的,装置800还可以包括存储单元801,用于存储装置800的程序代码和/或数据。
该装置800可以为上述任一实施例中的车联网终端、或者还可以为设置在车联网终端中的芯片等部件。处理单元802可以支持装置800执行上文中各方法示例中车联网终端的动作。或者,处理单元802主要执行方法示例中的车联网终端内部动作,收发单元803可以支持装置800与车联网服务器之间的通信。
具体地,在一个可能的实施例中,收发单元803,用于接收车联网服务器发送的第一指示信息,所述第一指示信息用于指示高精地图中指示范围内的动态信息,所述指示范围是所述车联网服务器根据导航地图的路径信息,确定出的高精地图中所述动态信息的指示范围;
处理单元802,用于根据所述第一指示信息,对高精地图中所述指示范围内的动态信息进行维护和更新。
在一种可能的设计中,所述动态信息包括交通拥堵信息、交通事故信息、路面状况信 息、可通行信息、行人或自行车穿越马路信息、行人或机动车占用马路信息中的至少一个。
在一种可能的设计中,所述收发单元803,还用于在接收所述车联网服务器发送的所述第一指示信息之前,接收所述车联网服务器发送的第二指示信息,所述第二指示信息用于指示所述动态信息与所述路径信息关联。
在一种可能的设计中,所述收发单元803,在接收所述车联网服务器发送的第一指示信息时,具体用于接收所述车联网服务器发送的第二指示信息和所述第一指示信息,所述第二指示信息用于指示所述动态信息与所述路径信息关联。
在一种可能的设计中,所述收发单元803,接收所述车联网服务器发送的所述第一指示信息时,具体用于接收所述车联网服务器采用第一格式发送的所述第一指示信息,所述第一格式对应于所车联网服务器发送所述路径信息对应的所述指示范围内的所述动态信息。
在一种可能的设计中,当所述动态信息为道路级动态信息时,所述第一指示信息包括:道路标识信息和所述道路标识信息对应的动态信息的内容;当所述动态信息为车道级动态信息时,所述第一指示信息包括:车道标识信息和所述车道标识信息对应的动态信息的内容,所述车道标识信息包括道路信息和车道信息。
在一种可能的设计中,当所述动态信息包括至少两个关联的信息内容时,所述第一指示信息指示联合编码的所述至少两个关联的信息内容。
在一种可能的设计中,不同高精地图的动态信息对应的扰码或初始化值不同。
在另一个实施例中,收发单元803,用于接收车联网服务器发送的第一指示信息,所述第一指示信息用于指示高精地图中的动态信息,其中,当所述动态信息为道路级动态信息时,所述第一指示信息包括:道路标识信息和所述道路标识信息对应的动态信息的内容;当所述动态信息为车道级动态信息时,所述第一指示信息包括:车道标识信息和所述车道标识信息对应的动态信息的内容,其中所述车道标识信息包括道路信息和车道信息;
处理单元802,用于根据所述第一指示信息,对高精地图中的动态信息进行维护和更新。
在一种可能的设计中,当所述动态信息包括至少两个关联的信息内容时,所述第一指示信息指示联合编码的所述至少两个关联的信息内容。
在一种可能的设计中,不同高精地图的动态信息对应的扰码或初始化值不同。
如图9所示,本申请实施例还提供一种车联网终端900,该车联网终端900包括处理器910,存储器920与收发器930。
一种可能的设计中,存储器920中存储指令或程序或数据,存储器920可以用于实现上述实施例中存储单元801的功能。处理器910用于读取存储器920中存储的指令或程序或数据。存储器920中存储的指令或程序被执行时,该处理器910用于执行上述实施例中处理单元802执行的操作,收发器930用于执行上述实施例中收发单元803执行的操作。
应理解,本申请实施例的车联网装置800或车联网终端900可对应于本申请实施例的动态信息传输方法(图2或图4)中的车联网终端,并且车联网装置800或车联网终端900中的各个模块的操作和/或功能分别为了实现图2或图4中的各个方法的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供一种车联网装置,该车联网装置可以是车联网终端也可以是电路。 该车联网装置可以用于执行上述方法实施例中由车联网终端所执行的动作。
当该车联网装置为车联网终端时,图10示出了一种简化的车联网终端的结构示意图。便于理解和图示方便,图10中,车联网终端以手机作为例子。如图10所示,车联网终端包括处理器、存储器、射频电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对车联网终端进行控制,执行软件程序,处理软件程序的数据等。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的车联网终端可以不具有输入输出装置。
当需要发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到车联网终端时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。为便于说明,图10中仅示出了一个存储器和处理器。在实际的车联网终端产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
在本申请实施例中,可以将具有收发功能的天线和射频电路视为车联网终端的收发单元(或通信单元),将具有处理功能的处理器视为车联网终端的处理单元。如图10所示,车联网终端包括收发单元1010和处理单元1020。收发单元也可以称为收发器、收发机、收发装置等。处理单元也可以称为处理器,处理单板,处理模块、处理装置等。可选的,可以将收发单元1010中用于实现接收功能的器件视为接收单元,将收发单元1010中用于实现发送功能的器件视为发送单元,即收发单元1010包括接收单元和发送单元。收发单元有时也可以称为收发机、收发器、或收发电路等。接收单元有时也可以称为接收机、接收器、或接收电路等。发送单元有时也可以称为发射机、发射器或者发射电路等。
应理解,收发单元1010用于执行上述方法实施例中车联网终端侧的发送操作和接收操作,处理单元1020用于执行上述方法实施例中车联网终端上除了收发操作之外的其他操作。
例如,在一种实现方式中,收发单元1010用于执行图2的S203中车联网终端侧的发送和接收操作,和/或收发单元1010还用于执行本申请实施例中车联网终端侧的其他收发步骤。处理单元1020,用于执行图2中的S203中车联网终端侧的处理操作,和/或处理单元1020还用于执行本申请实施例中车联网终端侧的其他处理步骤。
当该车联网装置为芯片类的装置或者电路时,该装置可以包括收发单元和处理单元。其中,所述收发单元可以是输入输出电路和/或通信接口;处理单元为集成的处理器或者微处理器或者集成电路。
作为本实施例的另一种形式,提供一种计算机可读存储介质,其上存储有指令,该指令被执行时可以执行上述方法实施例中车联网终端侧的方法。
作为本实施例的另一种形式,提供一种包含指令的计算机程序产品,该指令被执行时可以执行上述方法实施例中车联网终端侧的方法。
作为本实施例的另一种形式,提供一种芯片,所述芯片与存储器耦合,用于读取并执 行所述存储器中存储的指令,该指令被执行时可以执行上述方法实施例中车联网终端侧的方法。
作为本实施例的另一种形式,提供一种计算机可读存储介质,其上存储有指令,该指令被执行时可以执行上述方法实施例中车联网服务器侧的方法。
作为本实施例的另一种形式,提供一种包含指令的计算机程序产品,该指令被执行时可以执行上述方法实施例中车联网服务器侧的方法。
作为本实施例的另一种形式,提供一种芯片,所述芯片与存储器耦合,用于读取并执行所述存储器中存储的指令,该指令被执行时可以执行上述方法实施例中车联网服务器侧的方法。
在实现过程中,本实施例提供的方法中的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
应注意,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用中央处理器(central processing unit,CPU),通用处理器,数字信号处理(digital signal processing,DSP),专用集成电路(application specific integrated circuits,ASIC),现场可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合;也可以是实现计算功能的组合,例如包括一个或多个微处理器组合,DSP和微处理器的组合等等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
可以理解,本申请实施例中的存储器或存储单元可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序或指令。在计算机上加载和执行所述计算机程序或指令时,全部或部分地执行本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机程序或指令可以存储在计算机可读存储介质中,或者通过所述计算机可读存储介质进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是集成一个或多个可用介质的服务器等数据存储设备。所述可用介质可以是磁性介质,例如,软盘、硬盘、磁带;也可以是光介质,例 如,DVD;还可以是半导体介质,例如,固态硬盘(solid state disk,SSD)。
本申请实施例中所描述的各种说明性的逻辑单元和电路可以通过通用处理器,数字信号处理器,专用集成电路(application specific integrated circuit,ASIC),现场可编程门阵列(field programmable gate array,FPGA)或其它可编程逻辑装置,离散门或晶体管逻辑,离散硬件部件,或上述任何组合的设计来实现或操作所描述的功能。通用处理器可以为微处理器,可选地,该通用处理器也可以为任何传统的处理器、控制器、微控制器或状态机。处理器也可以通过计算装置的组合来实现,例如数字信号处理器和微处理器,多个微处理器,一个或多个微处理器联合一个数字信号处理器核,或任何其它类似的配置来实现。
本申请实施例中所描述的方法或算法的步骤可以直接嵌入硬件、处理器执行的软件单元、或者这两者的结合。软件单元可以存储于RAM、闪存、ROM、EPROM、EEPROM、寄存器、硬盘、可移动磁盘、CD-ROM或本领域中其它任意形式的存储媒介中。示例性地,存储媒介可以与处理器连接,以使得处理器可以从存储媒介中读取信息,并可以向存储媒介存写信息。可选地,存储媒介还可以集成到处理器中。处理器和存储媒介可以设置于ASIC中,ASIC可以设置于车联网终端中。可选地,处理器和存储媒介也可以设置于车联网终端中的不同的部件中。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管结合具体特征对本申请实施例进行了描述,显而易见的,在不脱离本申请实施例的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请实施例的示例性说明,且视为已覆盖本申请实施例范围内的任意和所有修改、变化、组合或等同物。

Claims (29)

  1. 一种基于车联网的动态信息发送方法,其特征在于,包括:
    根据导航地图的路径信息,确定高精地图中动态信息的指示范围;
    向第二设备发送第一指示信息,所述第一指示信息用于指示高精地图中所述指示范围内的动态信息。
  2. 根据权利要求1所述的方法,其特征在于,向所述第二设备发送所述第一指示信息之前,所述方法还包括:
    向所述第二设备发送第二指示信息,所述第二指示信息用于指示所述动态信息与所述路径信息关联。
  3. 根据权利要求1所述的方法,其特征在于,向所述第二设备发送所述第一指示信息,包括:
    向所述第二设备发送第二指示信息和所述第一指示信息,所述第二指示信息用于指示所述动态信息与所述路径信息关联。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,向所述第二设备发送所述第一指示信息,包括:
    采用第一格式向所述第二设备发送所述第一指示信息,所述第一格式对应于向所述第二设备发送所述路径信息对应的所述指示范围内的所述动态信息。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,向所述第二设备发送所述第一指示信息,包括:
    当所述动态信息为低时效动态信息时,根据第一周期向所述第二设备发送所述第一指示信息;
    当所述动态信息为高时效动态信息时,在所述动态信息对应的触发事件被触发时,向所述第二设备发送所述第一指示信息。
  6. 一种基于车联网的动态信息接收方法,其特征在于,包括:
    接收第一设备发送的第一指示信息,所述第一指示信息用于指示高精地图中指示范围内的动态信息,所述指示范围是所述第一设备根据导航地图的路径信息,确定出的高精地图中所述动态信息的指示范围;
    根据所述第一指示信息,对所述高精地图中所述指示范围内的动态信息进行维护和更新。
  7. 根据权利要求6所述的方法,其特征在于,接收所述第一设备发送的所述第一指示信息之前,所述方法还包括:
    接收所述第一设备发送的第二指示信息,所述第二指示信息用于指示所述动态信息与所述路径信息关联。
  8. 根据权利要求6所述的方法,其特征在于,接收所述第一设备发送的所述第一指示信息,包括:
    接收所述第一设备发送的第二指示信息和所述第一指示信息,所述第二指示信息用于指示所述动态信息与所述路径信息关联。
  9. 根据权利要求6至8中任一项所述的方法,其特征在于,接收所述第一设备发送的所述第一指示信息,包括:
    接收所述第一设备采用第一格式发送的所述第一指示信息,所述第一格式对应于所述第一设备发送所述路径信息对应的所述指示范围内的所述动态信息。
  10. 根据权利要求1至9中任一项所述的方法,其特征在于,所述动态信息包括交通拥堵信息、交通事故信息、路面状况信息、可通行信息、行人或自行车穿越马路信息、行人或机动车占用马路信息中的至少一个。
  11. 根据权利要求1至10中任一项所述的方法,其特征在于,
    当所述动态信息为道路级动态信息时,所述第一指示信息包括:道路标识信息和所述道路标识信息对应的动态信息的内容;
    当所述动态信息为车道级动态信息时,所述第一指示信息包括:车道标识信息和所述车道标识信息对应的动态信息的内容,其中所述车道标识信息包括道路信息和车道信息。
  12. 根据权利要求1至11中任一项所述的方法,其特征在于,
    当所述动态信息包括至少两个关联的信息内容时,所述第一指示信息指示联合编码的所述至少两个关联的信息内容。
  13. 根据权利要求1至12中任一项所述的方法,其特征在于,不同高精地图的动态信息对应的扰码或初始化值不同。
  14. 一种基于车联网的第一设备,其特征在于,包括:
    处理器,用于根据导航地图的路径信息,确定高精地图中动态信息的指示范围;
    收发器,用于向车联网中的第二设备发送第一指示信息,所述第一指示信息用于指示高精地图中所述指示范围内的动态信息。
  15. 根据权利要求14所述的第一设备,其特征在于,所述收发器,还用于向所述第二设备发送所述第一指示信息之前;向所述第二设备发送第二指示信息,所述第二指示信息用于指示所述动态信息与所述路径信息关联。
  16. 根据权利要求14所述的第一设备,其特征在于,所述收发器,向所述第二设备发送所述第一指示信息时,具体用于向所述第二设备发送第二指示信息和所述第一指示信息,所述第二指示信息用于指示所述动态信息与所述路径信息关联。
  17. 根据权利要求14至16中任一项所述的第一设备,其特征在于,所述收发器向所述第二设备发送第一指示信息时,具体用于采用第一格式向所述第二设备发送第一指示信息,所述第一格式对应于向所述第二设备发送所述路径信息对应的所述指示范围内的所述动态信息。
  18. 根据权利要求14至17中任一项所述的装置,其特征在于,所述收发器,具体用于当所述动态信息为低时效动态信息时,根据第一周期向所述第二设备发送所述第一指示信息;当所述动态信息为高时效动态信息时,在所述动态信息对应的触发事件被触发时,向所述第二设备发送所述第一指示信息。
  19. 一种基于车联网的第二设备,其特征在于,包括:
    收发器,用于接收车联网中的第一设备发送的第一指示信息,所述第一指示信息用于指示高精地图中指示范围内的动态信息,所述指示范围是所述第一设备根据导航地图的路径信息,确定出的高精地图中所述动态信息的指示范围;
    处理器,用于根据所述第一指示信息,对所述高精地图中所述指示范围内的动态信息进行维护和更新。
  20. 根据权利要求19所述的第二设备,其特征在于,所述收发器,还用于在接收所 述第一设备发送的所述第一指示信息之前,接收所述第一设备发送的第二指示信息,所述第二指示信息用于指示所述动态信息与所述路径信息关联。
  21. 根据权利要求19所述的第二设备,其特征在于,所述收发器,在接收所述第一设备发送的第一指示信息时,具体用于接收所述第一设备发送的第二指示信息和所述第一指示信息,所述第二指示信息用于指示所述动态信息与所述路径信息关联。
  22. 根据权利要求19至21中任一项所述的第二设备,其特征在于,所述收发器,接收所述第一设备发送的所述第一指示信息时,具体用于接收所述第一设备采用第一格式发送的所述第一指示信息,所述第一格式对应于所述第一设备发送所述路径信息对应的所述指示范围内的所述动态信息。
  23. 根据权利要求14至22中任一项所述的第一设备或第二设备,其特征在于,所述动态信息包括交通拥堵信息、交通事故信息、路面状况信息、可通行信息、行人或自行车穿越马路信息、行人或机动车占用马路信息中的至少一个。
  24. 根据权利要求14至23中任一项所述的第一设备或第二设备,其特征在于,当所述动态信息为道路级动态信息时,所述第一指示信息包括:道路标识信息和所述道路标识信息对应的动态信息的内容;当所述动态信息为车道级动态信息时,所述第一指示信息包括:车道标识信息和所述车道标识信息对应的动态信息的内容,其中所述车道标识信息包括道路信息和车道信息。
  25. 根据权利要求14至24中任一项所述的第一设备或第二设备,其特征在于,当所述动态信息包括至少两个关联的信息内容时,所述第一指示信息指示联合编码的所述至少两个关联的信息内容。
  26. 根据权利要求14至25中任一项所述的第一设备或第二设备,其特征在于,不同高精地图的动态信息对应的扰码或初始化值不同。
  27. 一种车联网系统,其特征在于,包括如权利要求14-18或23-26中任一项所述的基于车联网的第一设备,及如权利要求19-26中任一项所述的基于车联网的第二设备。
  28. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质包括计算机程序,当计算机程序在被一个或多个处理器读取并执行时实现如权利要求1至13中任一项所述的方法。
  29. 一种芯片,其特征在于,所述芯片与存储器耦合,用于读取并执行所述存储器中存储的程序指令,实现如权利要求1至13中任一项所述的方法。
PCT/CN2020/098291 2019-11-30 2020-06-24 一种基于车联网的动态信息发送方法及设备 WO2021103514A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020227021786A KR20220106179A (ko) 2019-11-30 2020-06-24 차량 인터넷 기반의 동적 정보 전송 방법 및 기기
JP2022531354A JP7411803B2 (ja) 2019-11-30 2020-06-24 車両のインターネットベースの動的情報送信方法及びデバイス
EP20891540.5A EP4057647A4 (en) 2019-11-30 2020-06-24 METHOD AND DEVICE BASED ON THE INTERNET OF VEHICLES FOR SENDING DYNAMIC INFORMATION
US17/827,376 US20220292965A1 (en) 2019-11-30 2022-05-27 Internet of Vehicles Based Dynamic Information Sending Method and Device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911209132.4A CN112887913B (zh) 2019-11-30 2019-11-30 一种基于车联网的动态信息发送方法及设备
CN201911209132.4 2019-11-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/827,376 Continuation US20220292965A1 (en) 2019-11-30 2022-05-27 Internet of Vehicles Based Dynamic Information Sending Method and Device

Publications (1)

Publication Number Publication Date
WO2021103514A1 true WO2021103514A1 (zh) 2021-06-03

Family

ID=76039348

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/098291 WO2021103514A1 (zh) 2019-11-30 2020-06-24 一种基于车联网的动态信息发送方法及设备

Country Status (6)

Country Link
US (1) US20220292965A1 (zh)
EP (1) EP4057647A4 (zh)
JP (1) JP7411803B2 (zh)
KR (1) KR20220106179A (zh)
CN (3) CN115696199A (zh)
WO (1) WO2021103514A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114429710B (zh) * 2021-12-17 2023-12-15 华人运通(上海)自动驾驶科技有限公司 一种基于v2x车路云协同的交通流分析方法及系统
CN116955505A (zh) * 2022-04-12 2023-10-27 华为技术有限公司 信息处理方法及相关装置、系统
CN115214705B (zh) * 2022-06-09 2024-01-16 广东省智能网联汽车创新中心有限公司 一种车道偏移预警方法及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102941852A (zh) * 2012-10-30 2013-02-27 青岛海信网络科技股份有限公司 智能车载终端
CN105644567A (zh) * 2015-12-29 2016-06-08 大陆汽车投资(上海)有限公司 基于adas的驾驶辅助系统
WO2019052533A1 (zh) * 2017-09-15 2019-03-21 华为技术有限公司 地图数据的构建方法和设备
CN109774720A (zh) * 2019-01-16 2019-05-21 北京百度网讯科技有限公司 高精度地图可视化方法、装置及存储介质

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7289039B2 (en) * 2004-09-10 2007-10-30 Xanavi Informatics Corporation Apparatus and method for processing and displaying traffic information in an automotive navigation system
CN101937458A (zh) * 2010-08-31 2011-01-05 北京世纪高通科技有限公司 基于交通信息的简易型地图生成、发布方法及装置
CN102230805A (zh) * 2011-06-30 2011-11-02 福建慧翰信息技术有限公司 路径预约规划结果动态更新系统及方法
CN106878934B (zh) * 2015-12-10 2020-07-31 阿里巴巴集团控股有限公司 一种电子地图显示方法及装置
CN106885578A (zh) * 2015-12-16 2017-06-23 北京奇虎科技有限公司 地图更新方法和装置
EP3336492B1 (en) * 2015-12-25 2020-07-22 Huawei Technologies Co., Ltd. Navigation method, and navigation terminal and server
US9905129B2 (en) * 2016-06-01 2018-02-27 Ford Global Technologies, Llc Emergency corridor utilizing vehicle-to-vehicle communication
US10162356B2 (en) * 2016-12-15 2018-12-25 Futurewei Technologies, Inc. Path selection for autonomous vehicles
US10644961B2 (en) * 2018-01-12 2020-05-05 Intel Corporation Self-adjusting data processing system
US10867510B2 (en) * 2018-04-05 2020-12-15 Toyota Jidosha Kabushiki Kaisha Real-time traffic monitoring with connected cars
CN109657031B (zh) * 2018-12-28 2020-08-04 国汽(北京)智能网联汽车研究院有限公司 一种基于智能网联汽车的高精度动态地图生成与应用方法
US11916736B2 (en) * 2019-04-17 2024-02-27 Toyota Motor Engineering & Manufacturing North America, Inc. Reorganizing autonomous entities for improved vehicular micro cloud operation
US11910279B2 (en) * 2019-11-15 2024-02-20 Qualcomm Incorporated V2X communication with sensor assistance

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102941852A (zh) * 2012-10-30 2013-02-27 青岛海信网络科技股份有限公司 智能车载终端
CN105644567A (zh) * 2015-12-29 2016-06-08 大陆汽车投资(上海)有限公司 基于adas的驾驶辅助系统
WO2019052533A1 (zh) * 2017-09-15 2019-03-21 华为技术有限公司 地图数据的构建方法和设备
CN109774720A (zh) * 2019-01-16 2019-05-21 北京百度网讯科技有限公司 高精度地图可视化方法、装置及存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4057647A4 *

Also Published As

Publication number Publication date
EP4057647A1 (en) 2022-09-14
JP7411803B2 (ja) 2024-01-11
CN115696198A (zh) 2023-02-03
JP2023503369A (ja) 2023-01-27
CN112887913B (zh) 2022-10-18
CN112887913A (zh) 2021-06-01
CN115696199A (zh) 2023-02-03
EP4057647A4 (en) 2023-01-04
US20220292965A1 (en) 2022-09-15
KR20220106179A (ko) 2022-07-28

Similar Documents

Publication Publication Date Title
US11521496B2 (en) Lane-borrowing vehicle driving method and control center
EP3500944B1 (en) Adas horizon and vision supplemental v2x
WO2021103514A1 (zh) 一种基于车联网的动态信息发送方法及设备
CN110546695B (zh) 用于交通灯的信号相位和定时的综合管理的方法、装置和计算机程序产品
RU2711036C2 (ru) Головное транспортное средство, транспортное средство и способ для помощи на перекрестках с использованием специализированной связи на коротких расстояниях
US11854389B1 (en) Systems, methods, and devices for communication between traffic controller systems and mobile transmitters and receivers
WO2021147637A1 (zh) 车道推荐方法、装置及车载通信设备
US9435654B2 (en) System and method for creating, storing, and updating local dynamic MAP database with safety attribute
US8892347B1 (en) System and method for node adaptive filtering and congestion control for safety and mobility applications toward automated vehicles system
US11562647B2 (en) Dynamic virtual vehicle detection and adaptive traffic management system
US20120249341A1 (en) Communication of emergency messages with road markers
CN110491147B (zh) 一种交通信息处理方法、交通信息处理装置及终端设备
CN106710276B (zh) 交通信息获取方法及装置
JP7553573B2 (ja) 車両対あらゆるモノ(v2x)によって支援されるローカルナビゲーション
US20220327927A1 (en) Virtualized road traffic sign generation for enhancing road safety
CN112785835A (zh) 一种获取路况信息的方法及装置、车载装置
US20230316907A1 (en) Intersection-based offboard vehicle path generation
WO2023189880A1 (en) Path prediction based on intersection information from map messages
US20230316911A1 (en) Intersection-based map message generation and broadcasting
US20230316921A1 (en) Collision warning based on intersection information from map messages
US20240011795A1 (en) Map Message Sending Method and Apparatus
WO2022209200A1 (ja) 路側中継装置、交通管理システム、及びログ収集方法
CN117877316A (zh) 路口车道属性配置、预警方法、车载单元及车路协同系统
CN116955505A (zh) 信息处理方法及相关装置、系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20891540

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022531354

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020891540

Country of ref document: EP

Effective date: 20220607

ENP Entry into the national phase

Ref document number: 20227021786

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE