WO2019052533A1 - 地图数据的构建方法和设备 - Google Patents

地图数据的构建方法和设备 Download PDF

Info

Publication number
WO2019052533A1
WO2019052533A1 PCT/CN2018/105680 CN2018105680W WO2019052533A1 WO 2019052533 A1 WO2019052533 A1 WO 2019052533A1 CN 2018105680 W CN2018105680 W CN 2018105680W WO 2019052533 A1 WO2019052533 A1 WO 2019052533A1
Authority
WO
WIPO (PCT)
Prior art keywords
security information
data
basic security
vehicle
basic
Prior art date
Application number
PCT/CN2018/105680
Other languages
English (en)
French (fr)
Inventor
刘振春
周经纬
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18855732.6A priority Critical patent/EP3674920A4/en
Priority to JP2020515723A priority patent/JP7059362B2/ja
Publication of WO2019052533A1 publication Critical patent/WO2019052533A1/zh
Priority to US16/818,662 priority patent/US11810454B2/en

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0137Measuring and analyzing of parameters relative to traffic conditions for specific applications
    • G08G1/0141Measuring and analyzing of parameters relative to traffic conditions for specific applications for traffic information dissemination
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/12Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/29Geographical information databases
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C5/00Registering or indicating the working of vehicles
    • G07C5/08Registering or indicating performance data other than driving, working, idle, or waiting time, with or without registering driving, working, idle or waiting time
    • G07C5/0808Diagnosing performance data
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0108Measuring and analyzing of parameters relative to traffic conditions based on the source of data
    • G08G1/0112Measuring and analyzing of parameters relative to traffic conditions based on the source of data from the vehicle, e.g. floating car data [FCD]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/10Protocols in which an application is distributed across nodes in the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/22Parsing or analysis of headers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/44Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for communication between vehicles and infrastructures, e.g. vehicle-to-cloud [V2C] or vehicle-to-home [V2H]
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C5/00Registering or indicating the working of vehicles
    • G07C5/008Registering or indicating the working of vehicles communicating information to a remotely located station

Definitions

  • the present application relates to vehicle networking technologies, and in particular, to a method and a device for constructing map data.
  • V2X Vehicles to X
  • the basic information of vehicles can provide important decision support for the behavior planning and control of driving vehicles based on road traffic information.
  • the basic information of the vehicle includes information such as time stamp, position, speed, acceleration, posture, and external dimensions of the vehicle.
  • the basic information of the vehicle can be transmitted to the surrounding vehicles by the network facility in a broadcast manner, and the vehicle can acquire the map data based on the basic information.
  • the map data may include data such as lane speed limit information, lane line geometry, lane line width, lane topology relationship, and the like.
  • Map data such as lane speed limit information, lane line geometry, lane line width, and lane topological relationship are used to construct maps, and map data can also be optimized by using traffic control and other information.
  • the map constructed by the above method is a real-time static map mainly including lane line information. Therefore, using the map for vehicle behavior planning and control makes road traffic safety and stability low.
  • the present application provides a method and a device for constructing map data, which can reduce some traffic accidents and improve the safety and stability of road traffic.
  • a first aspect of the present application provides a method for constructing map data, the method being applied to a vehicle, including:
  • first basic security information message of the vehicle where the first basic security information message includes an information message of the vehicle collected when a security event occurs;
  • first basic security information data from the first basic security information message, the first basic security information data including parameter information of the vehicle and extended security information, where parameter information of the vehicle is used to represent Describe the driving state and appearance of the vehicle, and the extended safety information is used to indicate the safety state of the vehicle and the road;
  • the first basic security information message of the vehicle is obtained, and the first basic security information data is obtained from the first basic security information message, and is modeled according to the first basic security information data.
  • Processing generates map data. Since the first basic safety information data includes parameter information of the vehicle and extended safety information, the constructed map data includes not only parameter information of the vehicle but also extended safety information, and the self-driving vehicle can expand the safety information according to the extended safety information. Obtain some unsafe factors of vehicles and roads, plan and control the behavior of vehicles, thereby reducing some traffic accidents and improving the safety and stability of road traffic.
  • the acquiring the first basic security information data from the first basic security information packet includes:
  • the first basic security information packet is filtered in the time domain and the spatial domain to obtain the second basic security information packet, and the data quality of the second basic security information packet is verified to obtain the third Basic security information message; sorting and queuing management of the third basic security information message, obtaining the first basic security information data, improving the data quality and reliability of the first basic security information data, and achieving the An orderly management of basic security information data.
  • the first basic security information packet is subjected to a screening process in a time domain and a spatial domain, and the second basic security information packet is obtained, including:
  • the preset time range and the spatial range form a buffer area, and the first basic security information packet in the buffer area is reserved, and the first basic security information packet outside the buffer area is discarded, thereby ensuring the timeliness of the data. , saving memory.
  • the data quality of the second basic security information packet is verified, and the third basic security information packet is obtained, including:
  • the data quality standard includes data integrity and data accuracy
  • the third basic security information packet is output according to a preset confidence level
  • the second basic security information packet does not meet the data quality standard, the second basic security information packet is discarded.
  • the outputting the third basic security information message according to the preset confidence includes:
  • the second basic security information packet is used as the third basic security information packet;
  • the second basic security information packet is discarded.
  • the data quality of the second basic security information packet is controlled, and the second basic security information packet that meets the data quality standard is discarded, and only the second basic security information packet that meets the data quality standard is retained. It can guarantee the integrity and accuracy of the second basic security information message.
  • the third basic security information packet is sorted and queued, and the first basic security information packet is obtained, including:
  • the third basic security information message is configured to construct a basic security information queue, and the basic security information queue is sorted according to a predefined time and space sorting rule to obtain the first basic security information data, which is convenient for the first basic information. View and manage security information data.
  • the modeling, the acquiring, the acquiring, the first basic security information data includes:
  • the basic security information element includes geometric data, metadata, a security data file, and between the geometric data and the security data file Relationship
  • the map data is constructed based on the basic security information element.
  • the first basic security information data is modeled and converted into basic security information elements for constructing the map data, which facilitates the construction of the map data, and makes the structure of the map data clear.
  • the method further includes:
  • the second basic security information data being basic security information data acquired from the cloud server
  • the map data is loaded into a local map database.
  • the second basic security information data is updated according to the map data; if the association degree is less than the preset Threshold, the map data is loaded into the local map database to realize real-time update of the map data to ensure the reliability of the map data.
  • the method further includes:
  • the map data is sent to the cloud server, so that the cloud server updates the database, and the synchronous update of the car end and the cloud data is ensured.
  • the second aspect of the present application provides a method for constructing map data, where the method is applied to a cloud server, including:
  • first basic security information data including parameter information of the vehicle and extended security information
  • the parameter information of the vehicle is used to indicate driving state and appearance information of the vehicle
  • the extension Safety information is used to indicate the safety status of vehicles and roads;
  • the first basic security information data is acquired, and the map data is generated according to the first basic security information data. Since the first basic security information data includes the parameter information of the vehicle and the extended security information, the constructed map is The data includes not only the parameter information of the vehicle, but also the extended safety information.
  • the self-driving vehicle can obtain some unsafe factors of the vehicle and the road according to the extended safety information, and plan and control the behavior of the vehicle, thereby reducing some traffic accidents and improving the traffic accident. Road traffic safety and stability.
  • the modeling, the acquiring, the acquiring, the first basic security information data includes:
  • the basic security information element includes geometric data, metadata, a security data file, and between the geometric data and the security data file Relationship
  • the map data is constructed based on the basic security information element.
  • the first basic security information data is modeled and converted into basic security information elements for constructing the map data, which facilitates the construction of the map data, and makes the structure of the map data clear.
  • the method further includes:
  • the cloud database is updated according to the map data.
  • the database includes a spatial database and a file database
  • the updating the database of the cloud according to the map data includes:
  • the spatial database Storing the map data into the spatial database and the file database, the spatial database storing a vehicle unique identifier, geometric data, and the metadata, the file database storing the secure data file, the spatial database Associated with the metadata by the file database.
  • the map data is stored in the spatial database and the file database, and the map data is classified and stored for convenient storage and management.
  • the database includes a process library, a real library, and a history library;
  • the process library is configured to store the first basic security information data
  • the real library is used to store the map data
  • the history library is used to store all of the map data acquired from the initial time.
  • the updating the database of the cloud according to the map data includes:
  • the map data is loaded into the real library.
  • the map library, the real library, and the history library are used to manage and store the map data, which is convenient for query and management.
  • a third aspect of the present application provides a vehicle terminal, including:
  • a sensing unit configured to acquire a first basic security information message of the vehicle, where the first basic security information message includes an information message of the vehicle collected when a security event occurs;
  • a processing unit configured to acquire, from the first basic security information message, first basic security information data, where the first basic security information data includes parameter information of the vehicle and extended security information, parameters of the vehicle
  • the information is used to indicate a driving state and an appearance form of the vehicle
  • the extended safety information is used to indicate a safety state of the vehicle and the road;
  • an acquiring unit configured to generate the map data according to the first basic security information data.
  • the processing unit includes:
  • a filtering subunit configured to perform a screening process on the first basic security information packet in a time domain and a spatial domain, to obtain a second basic security information packet
  • a quality control sub-unit configured to verify data quality of the second basic security information packet, and obtain a third basic security information packet
  • a queue control unit configured to perform sorting and queue management on the third basic security information packet, and acquire the first basic security information data.
  • the filtering subunit is specifically configured to acquire location information and a current timestamp of the vehicle itself;
  • the quality control sub-unit is specifically configured to check whether the second basic security information message meets a data quality standard; the data quality standard includes data integrity and data accuracy; If the second basic security information packet meets the data quality standard, the third basic security information packet is output according to a preset confidence level; if the second basic security information packet does not meet the data quality standard, the device is discarded.
  • the second basic security information message is described.
  • the quality control sub-unit outputs the third basic security information message according to a preset confidence, which specifically includes:
  • the quality control sub-unit calculates a confidence level of the second basic security information message; if the confidence level of the second basic security information message is greater than or equal to a preset confidence threshold, the second basic And the security information packet is used as the third basic security information packet; if the confidence level of the second basic security information packet is less than the preset confidence threshold, the second basic security information packet is discarded.
  • the queue control unit is specifically configured to construct a basic security information queue according to the third basic security information message
  • the acquiring unit is specifically configured to acquire a data model of the basic security information according to the first basic security information data, and acquire a basic corresponding to the first basic security information data according to the data model.
  • a security information element includes geometric data, metadata, a security data file, and an association relationship between the geometric data and the security data file;
  • the map data is constructed according to the basic security information element.
  • the vehicle terminal further includes:
  • a data management unit configured to determine a degree of association between the second basic security information data and the map data, where the second basic security information data is basic security information data acquired from the cloud server; if the degree of association is greater than or equal to The preset threshold is used to update the second basic security information data according to the map data; if the degree of association is less than a preset threshold, the map data is loaded into the local map database.
  • the vehicle terminal further includes:
  • a sending unit configured to send the map data to the cloud server, so that the cloud server performs an update of the cloud database.
  • a fourth aspect of the present application provides a server, including:
  • an acquiring unit configured to acquire first basic security information data, where the first basic security information data includes parameter information of the vehicle and extended security information, where parameter information of the vehicle is used to indicate a driving state and an appearance of the vehicle Information that is used to indicate the security status of the vehicle and the road;
  • a processing unit configured to perform the modeling process according to the first basic security information data to generate the map data.
  • the processing unit is specifically configured to acquire a data model of the basic security information according to the first basic security information data, and acquire a basic corresponding to the first basic security information data according to the data model.
  • a security information element includes geometric data, metadata, a security data file, and an association relationship between the geometric data and the security data file;
  • the map data is constructed according to the basic security information element.
  • the server further includes:
  • An updating unit configured to update the cloud database according to the map data.
  • the database includes a spatial database and a file database
  • the updating unit is specifically configured to store the map data into the spatial database and the file database, where the spatial database is stored.
  • the database includes a process library, a real library, and a history library;
  • the process library is configured to store the first basic security information data
  • the real library is used to store the map data
  • the history library is used to store all of the map data acquired from the initial time.
  • the updating unit is specifically configured to acquire a degree of association between the map data and the second basic security information data; if the degree of association is greater than or equal to a preset threshold, The map data updates the real library, and loads the map data into the history database; if the degree of association is less than a preset threshold, loading the map data into the real library.
  • a fifth aspect of the present application provides an apparatus, including a processor and a memory,
  • the memory is for storing instructions for executing the memory stored instructions, and when the processor executes the instructions stored by the memory, the apparatus is configured to perform any of the implementations of the first aspect or the second aspect The method described in the example.
  • a sixth aspect of the present application provides a vehicle terminal comprising at least one processing element (or chip) for performing the method of the first aspect or the various embodiments of the first aspect described above.
  • a seventh aspect of the present application provides a server comprising at least one processing element (or chip) for performing the method of the second aspect or the various embodiments of the second aspect described above.
  • An eighth aspect of the present application provides a readable storage medium, where an execution instruction is stored, and when at least one processor of a vehicle terminal executes the execution instruction, the vehicle terminal performs the first aspect or the first aspect A method of constructing map data provided by an embodiment.
  • a ninth aspect of the present application provides a readable storage medium, where an execution instruction is stored, and when the at least one processor of the server executes the execution instruction, the server performs various implementations of the second aspect or the second aspect.
  • the method of constructing the map data provided by the method is not limited to the method.
  • a tenth aspect of the present application provides a program product, the program product comprising an execution instruction stored in a readable storage medium.
  • At least one processor of the vehicle terminal may read the execution instructions from a readable storage medium, and the at least one processor executes the execution instructions such that the vehicle terminal implements the method of constructing the map data provided by the first aspect or various embodiments of the first aspect .
  • An eleventh aspect of the present application provides a program product, the program product comprising an execution instruction stored in a readable storage medium.
  • At least one processor of the server may read the execution instructions from a readable storage medium, and the at least one processor executes the execution instructions such that the server implements the method of constructing the map data provided by the second aspect or the various embodiments of the second aspect.
  • a twelfth aspect of the present application provides a communication system including the vehicle terminal and the server in the above aspect.
  • FIG. 1 is a schematic diagram of an application scenario of a method for constructing map data according to an embodiment of the present application
  • FIG. 2 is a schematic structural diagram of a vehicle hardware and software device according to an embodiment of the present application.
  • FIG. 3 is a flowchart of a method for constructing map data according to an embodiment of the present application
  • FIG. 4 is a flowchart of a method for constructing map data according to another embodiment of the present application.
  • FIG. 5 is a flowchart of a method for constructing map data according to another embodiment of the present application.
  • FIG. 6 is a schematic diagram of a space-time buffer provided by the present application.
  • FIG. 7 is a flowchart of a method for constructing map data according to another embodiment of the present application.
  • FIG. 8 is a flowchart of a method for constructing map data according to still another embodiment of the present application.
  • FIG. 10 is a flowchart of a method for constructing map data according to still another embodiment of the present application.
  • FIG. 11 is a flowchart of a method for constructing map data according to another embodiment of the present application.
  • FIG. 12 is a flowchart of a method for constructing map data according to another embodiment of the present application.
  • FIG. 13 is a flowchart of a method for constructing map data according to still another embodiment of the present application.
  • FIG. 14 is a schematic diagram of a data storage method according to an embodiment of the present application.
  • FIG. 15 is a schematic diagram of another data storage method according to an embodiment of the present disclosure.
  • 16 is a flowchart of a method for constructing map data according to still another embodiment of the present application.
  • FIG. 17 is a block diagram of a vehicle terminal according to an embodiment of the present application.
  • FIG. 18 is a block diagram of a vehicle terminal according to another embodiment of the present application.
  • FIG. 19 is a format of a first basic security information data provided by the present application.
  • FIG. 20 is a block diagram of a vehicle terminal according to another embodiment of the present disclosure.
  • FIG. 21 is a block diagram of a server according to an embodiment of the present application.
  • FIG. 22 is a block diagram of a server according to another embodiment of the present disclosure.
  • FIG. 23 is a block diagram of a wireless communication device according to an embodiment of the present application.
  • FIG. 1 is a schematic diagram of an application scenario of a method for constructing map data according to an embodiment of the present disclosure.
  • the scenario includes vehicle hardware and software equipment, cloud infrastructure, and vehicle to vehicle information exchange (V2V). Terminals, vehicles and people's information exchange (V2P) terminals, vehicles and infrastructure information exchange (V2I) terminals.
  • V2V vehicle to vehicle information exchange
  • the structure diagram of the vehicle hardware and software equipment is shown in Figure 2.
  • the vehicle hardware and software equipment includes an electronic control unit, a dedicated short-range communication device, a Global Positioning System (GPS) receiver, a human-car interaction interface, a memory, and a vehicle.
  • the internal communication network, the visual sensor and the radar sensor, the electronic control unit is the operating environment of the system, software and algorithm provided by the present application, and the information of the Dedicated Short Range Communications (DSRC) device through the antenna and the external vehicle and the outside world.
  • the Vehicles to X (V2X) terminal exchanges data and transmits the data to the electronic control unit.
  • the GPS receiver provides the precise position of the vehicle on the one hand, and provides a time reference on the other hand, and transmits the data to the electronic control unit for storage.
  • HMI Human Machine Interface
  • vehicle internal communication network is connected with hardware components of vehicle end
  • visual sensor and radar sensor are used to sense vehicle.
  • Cloud infrastructure includes distributed storage devices, distributed computing arrays, etc., for storage and computing of cloud dynamic maps.
  • the V2V terminal includes all other vehicle-side communication systems and devices that exchange information with the system; the V2P terminal includes all hand-held wireless communication devices for road pedestrians that exchange information with the system; the V2I terminal includes all roads for information exchange with the system. Side communication facilities.
  • FIG. 3 is a flowchart of a method for constructing map data according to an embodiment of the present application. The method is applied to a vehicle, as shown in FIG. 1, the method includes the following steps:
  • Step 101 Acquire a first basic security information message of the vehicle, where the first basic security information message includes an information message of the vehicle collected when the security event occurs.
  • the security event is a V2X security event
  • the vehicle emergency hardware system outputs abnormal information
  • the vehicle sensor senses that the surrounding dangerous environment is a V2X security event.
  • the vehicle may automatically obtain the first basic security information message, and the first basic security information message may include the time stamp, the position, speed, acceleration, posture, and external dimensions of the vehicle, and the parameter information of the vehicle itself. It may also include weather information, vehicle status events, historical trajectories, trajectory predictions, and the like.
  • the vehicle uses the visual/laser sensor to identify road static environment information and dynamic obstacle information within a certain distance
  • the GPS sensor locates the vehicle position
  • the equipment in the vehicle recognizes the lane edge, the stop line, the crosswalk, the road turn sign, and the road speed reducer.
  • Road static information such as traffic lights and traffic signs, identify road obstacles, non-motor vehicles, motor vehicles and other dynamic obstacles that may affect the movement of the vehicle and static (non-permanent) obstacles.
  • Step 102 Acquire, from the first basic security information message, first basic security information data, where the first basic security information data includes parameter information of the vehicle and extended security information, where the parameter information of the vehicle is used to indicate the driving state and appearance of the vehicle.
  • extended safety information is used to indicate the safety status of vehicles and roads.
  • the first basic security information packet may be filtered, queued, and the like to obtain the first basic security information data.
  • the screening process may include time screening, spatial screening, quality integrity, and correctness screening.
  • the queue control can include sorting the first basic security information by time and space, and the like.
  • Table 1 is a format of a first basic security information packet according to an embodiment of the present disclosure.
  • the first basic security information packet includes Part-1 and Part-2, and Part-1 is The core data of the first basic security information message includes time stamp, vehicle position, speed, acceleration, attitude, external dimensions and other vehicle parameter information;
  • Part-2 is the extended security information of the first basic security information message, Information including weather information, vehicle status events, historical trajectories, trajectory predictions, etc., when the V2X security event is fired, is appended to the Part-1 section and sent as a broadcast.
  • the first basic security information acquired when the V2X networked vehicle is driving, the first basic security information acquired only includes the Part-1 part.
  • the first basic security information acquired when the V2X security event is activated, the first basic security information acquired includes Part- 1, Part-2 two parts.
  • the first basic security information packet including the Part-1 is discarded during the screening process. Therefore, each of the first basic security information packets constituting the first basic security information data includes Part-1 and Part-2. section.
  • the first basic security information packet is filtered and queued, and the information in the first basic security information packet that meets the condition is formed into the first basic security information data, where the first basic security information data is included. It includes not only vehicle parameter information, but also extended safety information.
  • Step 103 Perform modeling processing according to the first basic security information data to generate map data.
  • the first basic security information data is modeled to convert the first basic security information data into a format suitable for constructing the map data.
  • Modeling processing can include data extraction, transformation, management, and the like.
  • the map data constructed in this embodiment stores and organizes the complete basic safety information when all the self-driving vehicles V2X security events are fired in the form of geographic information system (GIS) vector data. Therefore, it is essentially recording the self-driving vehicle.
  • GIS geographic information system
  • the method for constructing the map data provided by the embodiment of the present application, when the security event occurs, acquiring the first basic security information packet of the vehicle, and acquiring the first basic security information data from the first basic security information packet, according to the first
  • the basic safety information data is modeled to generate map data. Since the first basic safety information data includes vehicle parameter information and extended safety information, the constructed map data includes not only vehicle parameter information but also extended safety information, and automatically
  • the driving vehicle can acquire some unsafe factors of the vehicle and the road according to the extended safety information, and plan and control the behavior of the vehicle.
  • the method applies the V2X network to the automatic driving system, and can improve the driving safety of the self-driving vehicle.
  • FIG. 4 is a flowchart of a method for constructing map data according to another embodiment of the present application.
  • the specific implementation of step 102 may include the following steps:
  • Step 201 Perform screening processing on the first basic security information packet in the time domain and the spatial domain to obtain the second basic security information packet.
  • the time-space and spatial-domain filtering processing is performed on the first basic security information packet, which is equivalent to setting a time-space buffer in advance, performing time-space buffer analysis on the first basic security information packet, and filtering out the space-time buffer.
  • the first basic security information packet outside the buffer, and the first basic security information packet in the space-time buffer is the second basic security information packet.
  • step 201 may include the following steps:
  • Step 2011 Obtain the location information of the vehicle itself and the current timestamp.
  • the location information of the vehicle itself and the current time stamp can be acquired by the GPS system.
  • Step 2012 Perform data filtering on the first basic security information packet according to the location information of the vehicle, the current timestamp, the preset time range, and the spatial range, and obtain the second basic security information packet.
  • the input information of the screening process of the first basic security information message is: the location information of the vehicle itself, the current timestamp, and the first basic security information message.
  • the first basic security information message filtering process is: taking the vehicle's own location information as the spatial buffer origin, the current timestamp is the time buffer origin, and constructing a space-time buffer with a preset spatial range and time range; extracting the first The location information and the time information in the basic security information packet; buffer analysis of the first basic security information packet according to the location information and the time information, discarding the data not in the buffer, and retaining the first basic security information in the buffer The message is used as the second basic security information message.
  • FIG. 6 is a schematic diagram of a space-time buffer provided by the present application.
  • the position information of the vehicle itself represented by black squares is the center of the point surface, and the predefined length s is a space buffer range, for example, 200 m. , with
  • as the time buffer range, where t0 represents the current time
  • t0 represents the current time
  • t0 represents the current time
  • build a space-time cylinder and instant empty buffer.
  • Performing a spatiotemporal buffer analysis based on the location information and the timestamp information in the first basic security information packet filtering out the first basic security information packet outside the cylinder, that is, a light gray square, and retaining the first basic in the space-time buffer
  • the security information message is subsequently analyzed, which is a dark gray square.
  • Step 202 Verify the data quality of the second basic security information packet, and obtain the third basic security information packet.
  • the data quality check of the second basic security information packet mainly includes the integrity check, the accuracy check, and the confidence evaluation of the second basic security information message.
  • step 202 includes the following steps:
  • Step 2021 Check whether the second basic security information packet meets the data quality standard. If the second basic security information packet meets the data quality standard, go to step 2022. If the second basic security information packet does not meet the data quality standard, Go to step 2023.
  • data quality standards include data integrity and data accuracy.
  • the data integrity check may include whether the attribute field content, the spatial information, the time information, the extended security information, and the like are missing.
  • checking the integrity of the second basic security information message is mainly to check the second basic security information message.
  • Whether to include extended security information that is, whether to include the Part 2 part of Table 1.
  • the data accuracy check may include inaccurate attribute data types, out of bounds in length, insufficient geometric precision of spatial data, and incorrect topological relationships.
  • the second basic security information packet that does not meet the integrity or accuracy check is determined to be inconsistent with the data quality standard, and the second basic security information packet is directly discarded.
  • Step 2022 Output a third basic security information message according to a preset confidence level.
  • the second basic security information packet conforming to the data quality standard is evaluated for confidence, and the third basic security information packet is output.
  • step 2022 includes the following steps:
  • Step 301 Calculate the confidence of the second basic security information message; if the confidence level of the second basic security information message is greater than or equal to the preset confidence threshold, perform step 302, if the second basic security information message is If the confidence is less than the preset confidence threshold, step 303 is performed.
  • V f(L,p0) (1).
  • Step 3012 Determine whether the number of historical track points in L is greater than 100. If yes, execute step 3014. If no, execute step 3013.
  • Step 3013 does not respond to the operation.
  • Step 3014 presenting historical track points other than the last 100 historical track points.
  • step 3015 a cubic curve model is used to perform LM nonlinear least squares fitting.
  • Step 3016 Calculate the distance S from the current position p0 to the cubic curve.
  • Step 3017 Calculate the confidence V of the second basic safety information message according to the distance S from the current position p0 to the cubic curve.
  • the LM algorithm is used for nonlinear least squares fitting, the distance s from p0 to the cubic fitting curve is calculated, and the confidence V value is calculated according to formula (2):
  • Step 302 The second basic security information packet is used as the third basic security information packet.
  • Step 303 Discard the second basic security information packet.
  • the second basic security information packet is filtered according to a preset confidence threshold.
  • the basic security information packet is output as the third basic security information packet.
  • Step 2023 Discard the second basic security information packet.
  • Step 203 Sort and queue the third basic security information packet to obtain the first basic security information data.
  • step 203 includes the following steps:
  • Step 2031 Construct a basic security information queue according to the third basic security information message.
  • a basic security information queue can be built based on the ZeroMQ message middleware, which is a lightweight high-performance message middleware that can be used for message queue construction and management.
  • Step 2032 Sort the basic security information queue according to a predefined time and space sorting rule, and acquire the first basic security information data.
  • the basic security information queue may be sorted in a near and far distance from the location space of the vehicle itself, and the basic security information queue after sorting may be included in the message middleware.
  • the ordered storage is performed; the first basic security information data can be read and processed in the following mode according to the priority high first out mode.
  • the first basic security information data is an ordered information list arranged according to two dimensions of time and space.
  • the method for constructing the map data performs the filtering process on the first basic security information packet in the time domain and the spatial domain, and obtains the second basic security information packet; and performs the data quality of the second basic security information packet. Verifying, obtaining the third basic security information message; sorting and queuing the third basic security information message, obtaining the first basic security information data, improving the data quality and reliability of the first basic security information data, and The order management of the first basic security information data is realized.
  • FIG. 11 is a flowchart of a method for constructing map data according to another embodiment of the present disclosure.
  • the implementation manner of step 103 includes the following steps:
  • Step 1031 Obtain a data model of basic security information according to the first basic security information data.
  • the first basic security information data may be extracted according to a preset format, and the timestamp, the vehicle position, the vehicle height, the vehicle speed, the lane line width, and the offset in the first basic security information data are extracted. Generate information model by angle and other information.
  • the data model of Table 2 is a programmatic representation of the first basic security information data, and the data model includes: each member field corresponding to the information extracted from the Part 1 part of Table 1 and from Table 1 The file object member corresponding to the information extracted by the Part 2 part, wherein the file object member corresponding to the information extracted by the Part 2 part is in the form of an unstructured binary file.
  • Step 1032 Acquire a basic security information element corresponding to the first basic security information data according to the data model; the basic security information element includes geometric data, metadata, a security data file, and an association relationship between the geometric data and the security data file.
  • the first basic security information data is converted by the data model in step 1031, and the basic security information element corresponding to the first basic security information data is output.
  • the data model is a data structure in which the first basic security information data is converted in Table 3.
  • the model initial expression of the first basic security information data in Table 2 is compared, and the basic security information element table 3 is the first basic security.
  • the further normalized expression of the data model of the information data, the output is the basic security information element corresponding to the first basic security information data, that is, the basic security information element is the expression form of the BSIFeature structure.
  • Each member field in the structure in the Part1 part of the data model is converted into a geometry substructure and a metadata substructure of the BSIFeature structure; the file object member field in the Part 2 structure of the data model is converted into In the file substructure of the BSIFeature structure.
  • Step 1033 Construct map data according to basic security information elements.
  • the basic security information elements corresponding to the plurality of first basic security information data are stored in a database to form map data.
  • the data model of the basic security information is acquired according to the first basic security information data
  • the basic security information element corresponding to the first basic security information data is acquired according to the data model
  • the map data is constructed according to the basic security information element, because the basic security Information elements include geometric data, metadata, security data files, and the relationship between geometric data and security data files.
  • Automated driving vehicles can quickly obtain vehicle's own parameter information and extended safety information from the map data. Planning and control can reduce traffic accidents and avoid losses.
  • FIG. 12 is a flowchart of a method for constructing map data according to another embodiment of the present application.
  • the method for constructing the map data may further include the following steps:
  • Step 401 Determine the degree of association between the second basic security information data and the map data. If the association degree is greater than or equal to the preset threshold, step 402 is performed. If the association degree is less than the preset threshold, step 403 is performed.
  • the second basic security information data is basic security information data obtained from the cloud server.
  • the storage and management of map data includes dynamic update and warehousing of map data. Determining the degree of association between the second basic security information data and the map data, if the degree of association is greater than or equal to the preset threshold, dynamically updating the map data, and if the degree of association is less than the preset threshold, loading the map data into the database.
  • Step 402 Update the second basic security information data according to the map data.
  • the map data update refers to performing a SQLite database update operation by using the dynamic map data obtained in real time, that is, updating the offline second basic security information data downloaded by the vehicle from the cloud.
  • Step 403 Load the map data into the local map database.
  • the map data storage refers to the dynamic map data obtained in real time, performs an insert operation of the SQLite database, loads the map data into the vehicle map database, and executes the create operation of the file system. Load the car map file system.
  • the vehicle end dynamic map update and warehousing includes the steps of updating map data, indexing, loading geometric data and metadata into the spatial database, loading the data file into the file database, and the like.
  • the geometry and attribute data storage engine of the map data is constructed based on the SQLite database at the vehicle end.
  • the passenger inputs the coordinates of the starting point A and the coordinates of the ending point B through the human-car interaction interface shown in FIG. 1, and the automatic driving system running in the electronic control unit receives the passenger-car interaction request.
  • the automatic driving task is started, and the automatic driving system includes the automatic driving map dynamic layer building system proposed by the present application.
  • the basic security information in the SQLite spatial database is dynamically loaded into the dynamic map layer of the basic security information within a certain time and space of the cloud, for example, within a space of 10 km and within 1 hour.
  • the data is converted according to the confidence of the map metadata part, the unique identifier of the vehicle, and the data in the existing dynamic map. If the associated data is found, the updated dynamic map corresponding to the updated map is updated. Record; if the associated data is not found, the converted basic security information map geometry and metadata portion are loaded into the SQLite corresponding data table for persistent storage, and each basic security information message corresponds to a database table record.
  • a B-tree index for the id (the unique identifier of the basic security information message), the vehicle_id (the unique identifier of the self-driving car), the timestamp (time stamp of the basic security information message), and the R-tree spatial index for the geometry; basic security
  • the security extension information (part 2 part) of the information is serialized and stored to the local file system of the vehicle operating system, and the storage path is stored in the SQLite data table in the form of metadata.
  • FIG. 13 is a flowchart of a method for constructing map data according to still another embodiment of the present application. The method is applied to a cloud server, as shown in FIG. 13, the method includes the following steps:
  • Step 501 Acquire first basic security information data, where the first basic security information data includes parameter information of the vehicle and extended security information, the parameter information of the vehicle is used to indicate driving state and appearance information of the vehicle, and the extended security information is used to represent the vehicle and The safe state of the road.
  • the first basic security information data is reported by the vehicle end in real time.
  • the method for obtaining the first basic security information data by the vehicle end has been described in detail in the foregoing embodiment, and details are not described herein again.
  • Step 502 Perform modeling processing according to the first basic security information data to generate map data.
  • the first basic security information data is modeled to convert the first basic security information data into a format suitable for constructing the map data.
  • the modeling process can include data extraction, transformation, management, and the like.
  • the method for constructing map data acquires first basic security information data, performs modeling processing on the first basic security information data, and acquires map data, because the first basic security information data includes parameter information and extended security of the vehicle. Information, therefore, the constructed map data includes not only vehicle parameter information, but also extended safety information.
  • the self-driving vehicle can acquire some unsafe factors of the vehicle and the road according to the extended safety information, and plan and control the behavior of the vehicle, thereby Reduce some traffic accidents and improve the safety and stability of road traffic.
  • the specific implementation manner of the step 502 is the same as the method for obtaining the map data by the vehicle end.
  • the specific implementation manner of the step 502 is the same as the method for obtaining the map data by the vehicle end.
  • the specific implementation manner of the step 502 is the same as the method for obtaining the map data by the vehicle end.
  • the method for constructing the map data may further include: updating the cloud database according to the map data, on the basis of the embodiment illustrated in FIG. 13 .
  • the database includes a spatial database and a file database
  • the cloud database is updated according to the map data, including: storing the map data into the spatial database and the file database, where the spatial database stores the vehicle unique identifier, the geometric data, and the metadata.
  • the file database stores security data files, which are associated with the file database through metadata.
  • FIG. 14 is a schematic diagram of a data storage method according to an embodiment of the present disclosure.
  • the original data of the first basic security information packet is converted, converted, loaded, and the like, and converted into basic elements of dynamic map data. That is, geometric data, metadata, and extended security data files, and establish their relationship, and finally serialize and store them in the spatial database and file system of the corresponding structure, and complete the construction of dynamic map data, as shown in FIG.
  • Part 1 of the first basic security information is extracted as vehicle unique identification (ID), metadata and geometric data, serialized to relational spatial database storage;
  • Part 2 is extracted as a secure data file, serialized to file database storage.
  • the spatial database and the file database are associated by the metadata.
  • each first basic security information message corresponds to a database table row record, and the ID of the first basic security information message Part1, the vehicle location, Metadata such as the status and the index of the Part2 file in the corresponding file database, through which the two pieces of basic security information data are associated.
  • the database includes a process library, a real library, a history library; the process library is configured to store the first basic security information data; the real library is used to store the map data; and the history library is used to store all the maps acquired from the initial time. data.
  • the cloud dynamic map data update and warehousing includes the steps of updating the real library, loading the history database, and the like.
  • Cloud dynamic map data update refers to using the data in the cloud process library to perform the update operation of the real library and update the associated data in the real library.
  • Cloud dynamic map data storage means that the data in the cloud process library is executed, and the loading operation of the real library is performed, and the data is loaded into the real library for storage; and the data in the real library is executed, and the loading operation of the history library is performed. Make persistent storage.
  • FIG. 15 is a schematic diagram of another data storage method according to an embodiment of the present disclosure.
  • a third database based on a process library, a real library, and a history database is constructed in the cloud to form a map data system, and the dynamic map data is stored and managed. Geometric information, attribute information, and data files.
  • the process library receives and temporarily stores the first basic security information data sent by the V2X terminal to the cloud
  • the specific implementation of the database is Kafka distributed message middleware.
  • the real-life inventory stores dynamic map data that matches the real world in the entire airspace within a certain time range (for example, within one day).
  • the database is implemented as a MongoDB distributed NoSQL database.
  • the historical stock stores the historical data of all dynamic maps, which is implemented as HDFS.
  • the Kafka distributed message middleware receives the first basic security information data sent by the V2X terminal in real time, and the streaming calculation engine Spark Streaming performs real-time data quality check and extraction conversion processing on the received first basic security information data.
  • the confidence of the converted dynamic map metadata part and the unique identifier of the vehicle are compared with the data in the existing MongoDB table. If the associated data is found, the record corresponding to the dynamic map is updated, and the corresponding historical data is utilized by Sqoop.
  • the distributed ETL engine batch loads the distributed file system of the historical database according to a certain period of time; if the associated data is not found, the geometric data and metadata of the converted map data are loaded into the persistent data table of MongoDB for persistent storage.
  • MongoDB uses the Key-Value architecture, where Key is designed as a combination of metadata, including message ID, vehicle ID, timestamp, and spatial location; Value is designed as a document consisting of other metadata items and extended security information.
  • Key is designed as a combination of metadata, including message ID, vehicle ID, timestamp, and spatial location
  • Value is designed as a document consisting of other metadata items and extended security information.
  • real-time query based on MongoDB's efficient Key key index, using the high concurrency and high availability features of the distributed system, continuously providing data support for each V2X terminal;
  • MapReduce and Spark Distributed external memory and memory computing framework realizes efficient analysis of historical dynamic map data.
  • Based on extended security information mining deeper road traffic safety information provides more rich behavior planning and control support for the vehicle end.
  • the specific implementation manner of the step of “updating the cloud database according to the map data” includes:
  • Step 601 Obtain the degree of association between the map data and the second basic security information data, that is, the spatial proximity of the data. If the association degree is greater than or equal to the preset threshold, perform step 602. If the association degree is less than the preset threshold, Go to step 603.
  • Step 602 Update the real library according to the map data, and load the updated map data into the history database.
  • Step 603 Load the map data into the real library.
  • the degree of association between the map data and the second basic security information data is acquired; if the degree of association is greater than or equal to the preset threshold, the real library is updated according to the map data, and the map data is loaded into the history database. If the degree of association is less than the preset threshold, the map data is loaded into the real library to implement update and order management of the database.
  • FIG. 17 is a block diagram of a vehicle terminal according to an embodiment of the present invention. As shown in FIG. 17, the vehicle terminal includes a sensing unit 11, a processing unit 12, and an obtaining unit 13.
  • the sensing unit 11 is configured to acquire a first basic security information message of the vehicle, where the first basic security information message includes an information message of the vehicle collected when the security event occurs.
  • the sensing unit 11 may include a self-vehicle sensing system module and a vehicle networking module, wherein the self-vehicle sensing system module refers to a GPS, a security control unit, a visual sensor, a laser sensor, etc., and the vehicle networking module refers to a V2V/V2P. /V2I module, etc.
  • the processing unit 12 is configured to obtain, from the first basic security information message, the first basic security information data, where the first basic security information data includes parameter information of the vehicle and extended security information, where the parameter information of the vehicle is used to indicate the driving state of the vehicle. And appearance form, extended safety information is used to indicate the safety status of vehicles and roads.
  • the obtaining unit 13 is configured to generate map data according to the first basic security information data.
  • FIG. 18 is a block diagram of a vehicle terminal according to another embodiment of the present application.
  • the processing unit 12 includes a filtering subunit 121, a quality control subunit 122, and a queue control unit 123.
  • the filtering sub-unit 121 is configured to perform time domain and spatial domain filtering processing on the first basic security information packet to obtain a second basic security information packet.
  • the filtering sub-unit 121 transmits the self-vehicle of the sensing unit (the self-vehicle sensing system, the vehicle networking system) in real time according to the filtering rules of several dimensions such as time, space, and attributes, and the first basic security of the vehicle. Information messages are filtered.
  • the quality control sub-unit 122 is configured to check the data quality of the second basic security information message to obtain the third basic security information message.
  • the quality control sub-unit 122 calculates the second basic security information according to the structural specification of the second basic security information message, the Dedicated Short Range Communications (DSRC) communication protocol specification, and the confidence evaluation model. The message quality level, discarding data that does not meet the quality requirements.
  • DSRC Dedicated Short Range Communications
  • the queue control unit 123 is configured to sort and queue the third basic security information message to obtain the first basic security information data.
  • the queue control unit 123 sorts the third basic security information message according to the time and space dimensions, and constructs the priority queue to implement the effective arrangement of the packets according to the priority.
  • FIG. 19 is a format of the first basic security information data provided by the present application. As shown in Figure 19, the top-down information is:
  • the timestamp of the packet is recorded in the first line of the basic security information packet.
  • the timestamp is Coordinated Universal Time (UTC Time).
  • Basic safety information Part-1 data including vehicle basic information such as vehicle position and state.
  • vehicle position includes information such as latitude, longitude, elevation, accuracy, and the like
  • vehicle state includes information such as speed, heading, and the like.
  • Basic safety information Part-2 data including vehicle safety information extension data such as Hazard lights, antilock brake system (ABS), emergency braking (HardBraking), and radio data package (RTCM package).
  • vehicle safety information extension data such as Hazard lights, antilock brake system (ABS), emergency braking (HardBraking), and radio data package (RTCM package).
  • RTCM package radio data package
  • the filtering sub-unit 121 is specifically configured to acquire the location information of the vehicle and the current timestamp; and perform the first basic security information message according to the location information of the vehicle, the current timestamp, the preset time range, and the spatial range. Data filtering to obtain the second basic security information packet.
  • the quality control sub-unit 122 is specifically configured to check whether the second basic security information packet meets the data quality standard; the data quality standard includes data integrity and data accuracy; and if the second basic security information packet meets the data quality standard And outputting the third basic security information message according to the preset confidence level; if the second basic security information message does not meet the data quality standard, discarding the second basic security information message.
  • the quality control sub-unit 122 outputs the third basic security information message according to the preset confidence level, and specifically includes: the quality control sub-unit 122 calculates the confidence of the second basic security information message; and if the second basic security information If the confidence of the packet is greater than or equal to the preset confidence threshold, the second basic security information packet is used as the third basic security information packet; if the confidence of the second basic security information packet is less than the preset confidence level The threshold is used to discard the second basic security information packet.
  • the queue control unit 123 is specifically configured to construct a basic security information queue according to the third basic security information message; sort the basic security information queue according to a predefined time and space sorting rule, and acquire the first basic security information data.
  • the obtaining unit 13 is specifically configured to acquire a data model of the basic security information according to the first basic security information data, and acquire a basic security information element corresponding to the first basic security information data according to the data model; the basic security information element includes the geometric data, Metadata, security data files, and associations between geometric data and security data files; building map data based on basic security information elements.
  • the first basic security information data is extracted and converted according to the basic security information data structure specification, Part 1 is extracted as spatial geometric data and metadata, and Part 2 is extracted as a binary data file to form a basic security information dynamic map.
  • the basic data structure is
  • FIG. 20 is a block diagram of a vehicle terminal according to another embodiment of the present application. As shown in FIG. 20, the vehicle terminal further includes a data management unit 14.
  • the data management unit 14 is configured to determine a degree of association between the second basic security information data and the map data, where the second basic security information data is basic security information data acquired from the cloud server; if the degree of association is greater than or equal to a preset threshold, The map data updates the second basic security information data; if the degree of association is less than the preset threshold, the map data is loaded into the local map database.
  • the associated data is updated and indexed, and the unrelated data is directly loaded into the spatial database of the vehicle.
  • File database
  • the vehicle terminal further includes a transmitting unit 15.
  • the sending unit 15 is configured to send the map data to the cloud server, so that the cloud server performs the update of the cloud database.
  • FIG. 21 is a block diagram of a server according to an embodiment of the present disclosure. As shown in FIG. 21, the server includes:
  • the obtaining unit 21 is configured to acquire first basic security information data, where the first basic security information data includes parameter information of the vehicle and extended security information, the parameter information of the vehicle is used to indicate driving state and appearance information of the vehicle, and the extended security information is used to indicate The safety status of vehicles and roads.
  • the processing unit 22 is configured to perform model processing according to the first basic security information data to generate map data.
  • the processing unit 22 is specifically configured to acquire a data model of the basic security information according to the first basic security information data, and acquire a basic security information element corresponding to the first basic security information data according to the data model;
  • the basic security information element includes the geometric data, Metadata, security data files, and associations between geometric data and security data files; building map data based on basic security information elements.
  • the first basic security information data is extracted and converted according to the basic security information data structure specification, Part 1 is extracted as spatial geometric data and metadata, and Part 2 is extracted as a binary data file to form a basic of dynamic map data. data structure. It is also possible to compare the map data with the real library of the current dynamic map data stored in the cloud, update the associated real-world library data, and serialize the historical data to the distributed file system for persistent storage and big data analysis; When the data is used, the process library data is directly loaded into the real library.
  • FIG. 22 is a block diagram of a server according to another embodiment of the present application. As shown in FIG. 22, the server further includes an update unit 23.
  • the updating unit 23 is configured to update the cloud database according to the map data.
  • the database includes a spatial database and a file database
  • the updating unit 23 is specifically configured to store the map data into the spatial database and the file database
  • the spatial database stores the vehicle unique identifier
  • the file database stores the security data file.
  • the spatial database and the file database are associated by metadata.
  • the database includes a process library, a real library, a history library; the process library is configured to store the first basic security information data; the real library is used to store the map data; and the history library is used to store all the maps acquired from the initial time. data.
  • the updating unit 23 is specifically configured to acquire the degree of association between the map data and the second basic security information data; if the degree of association is greater than or equal to the preset threshold, update the real library according to the map data, and the map data is Load the history library; if the degree of association is less than the preset threshold, load the map data into the real library.
  • FIG. 23 is a block diagram of a wireless communication device according to an embodiment of the present disclosure. As shown in FIG. 23, the wireless communication device includes a processor 31 and a memory 32.
  • the memory 32 is used to store instructions, and the processor 31 is configured to execute instructions stored in the memory 32.
  • the wireless communication device is configured to perform any of the embodiments of FIGS. 3-16 described above. The method described.
  • the wireless communication device may further include a transmitter 34, a receiver 33, and a sensor 35, wherein the transmitter 34 is configured to transmit data to other devices, and the receiver 33 is configured to receive the sensor 35. And the data sent by other devices, the sensor 35 is used to collect information such as the speed, temperature and the like of the vehicle itself.
  • the present application further provides a readable storage medium, where the readable storage medium stores instructions for acquiring a map data provided by any one of the foregoing method embodiments when at least one processor of the vehicle terminal executes the instruction. .
  • the present application further provides a readable storage medium.
  • the readable storage medium stores instructions.
  • the server executes the method for acquiring map data provided in any one of the foregoing method embodiments.
  • the application also provides a program product comprising instructions stored in a readable storage medium.
  • At least one processor of the vehicle terminal can read the instruction from a readable storage medium and execute the instruction to cause the vehicle terminal to implement the method of acquiring map data provided in any of the method embodiments.
  • the application also provides a program product comprising instructions stored in a readable storage medium.
  • At least one processor of the server can read the instruction from the readable storage medium and execute the instruction to cause the server to implement the method of obtaining map data provided in any of the above method embodiments.
  • the processor may be a central processing unit (CPU), or may be other general-purpose processors, digital signal processors (DSPs), and application specific integrated circuits. (Application Specific Integrated Circuit, ASIC) and the like.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like. The steps of the method disclosed in connection with the present application may be directly embodied by hardware processor execution or by a combination of hardware and software modules in a processor.
  • All or part of the steps of implementing the above method embodiments may be performed by hardware associated with the program instructions.
  • the aforementioned program can be stored in a readable memory.
  • the program when executed, performs the steps including the foregoing method embodiments; and the foregoing memory (storage medium) includes: read-only memory (ROM), RAM, flash memory, hard disk, solid state hard disk, tape (magnetic tape), floppy disk, optical disc, and any combination thereof.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Databases & Information Systems (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Remote Sensing (AREA)
  • Computer Security & Cryptography (AREA)
  • Health & Medical Sciences (AREA)
  • Computing Systems (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Traffic Control Systems (AREA)
  • Navigation (AREA)
  • Instructional Devices (AREA)

Abstract

本申请提供一种地图数据的构建方法和设备,该方法包括:获取车辆的第一基本安全信息报文,所述第一基本安全信息报文包括在安全事件发生时采集到的所述车辆的信息报文;从所述第一基本安全信息报文中,获取第一基本安全信息数据,所述第一基本安全信息数据包括所述车辆的参数信息和扩展安全信息,所述车辆的参数信息用于表示所述车辆的行驶状态和外观形态,所述扩展安全信息用于表示车辆和道路的安全状态;根据所述第一基本安全信息数据进行模型化处理生成所述地图数据,该方法将V2X网络应用于自动驾驶系统中,可以提高自动驾驶车辆的行车安全。

Description

地图数据的构建方法和设备
本申请要求于2017年09月15日提交中国专利局、申请号为201710831221.7、申请名称为“地图数据的构建方法和设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及车联网技术,尤其涉及一种地图数据的构建方法和设备。
背景技术
近年来,基于车辆与外界信息交换(Vehicles to X,V2X)的车联网技术越来越成熟,车辆的基本信息可基于道路交通信息为驾驶车辆的行为规划和控制提供重要的决策支持。
车辆的基本信息包括时间戳、车辆的位置、速度、加速度、姿态、外形尺寸等信息,车辆的基本信息可以被网络设施以广播的形式发送给周围车辆,车辆可以基于这些基本信息来获取地图数据以构建地图,其中,地图数据可以包括车道限速信息、车道线几何图形、车道线宽度、车道拓扑关系等数据。例如,根据车辆的基本信息中的速度信息分析并输出车道限速信息,利用车辆的基本信息中的历史轨迹拟合出车道线几何图形、分析车道线宽度等属性、构建车道拓扑关系等,根据车道限速信息、车道线几何图形、车道线宽度、车道拓扑关系等地图数据构建地图,还可以利用交通管制等信息优化地图数据。
采用上述方法所构建的地图是一种主要包括车道线信息的实时静态地图,因此,利用该地图进行车辆行为规划和控制,使得道路交通的安全性和稳定性较低。
发明内容
本申请提供一种地图数据的构建方法和设备,可以减少一些交通事故,提高了道路交通的安全性和稳定性。
本申请第一方面提供一种地图数据的构建方法,所述方法应用于车辆,包括:
获取车辆的第一基本安全信息报文,所述第一基本安全信息报文包括在安全事件发生时采集到的所述车辆的信息报文;
从所述第一基本安全信息报文重,获取第一基本安全信息数据,所述第一基本安全信息数据包括所述车辆的参数信息和扩展安全信息,所述车辆的参数信息用于表示所述车辆的行驶状态和外观形态,所述扩展安全信息用于表示车辆和道路的安全状态;
根据所述第一基本安全信息数据进行模型化处理生成所述地图数据。
在上述方案中,在安全事件发生时,获取车辆的第一基本安全信息报文,从第一基本安全信息报文中,获取第一基本安全信息数据,根据第一基本安全信息数据进行模型化处理生成地图数据,由于第一基本安全信息数据包括车辆的参数信息和扩展安全信息,因此,构建的地图数据中不仅包括车辆的参数信息,还包括扩展安全信息,自动驾驶车辆可以根 据扩展安全信息获取车辆与道路的一些不安全因素,对车辆的行为进行规划和控制,从而减少一些交通事故,提高了道路交通的安全性和稳定性。
在一种可能的实现方式中,从所述对所述第一基本安全信息报文中,获取第一基本安全信息数据,包括:
对所述第一基本安全信息报文进行时间域和空间域的筛选处理,获取第二基本安全信息报文;
对所述第二基本安全信息报文的数据质量进行校验,获取第三基本安全信息报文;
对所述第三基本安全信息报文进行排序和队列化管理,获取所述第一基本安全信息数据。
在上述方案中,对第一基本安全信息报文进行时间域和空间域的筛选处理,获取第二基本安全信息报文;对第二基本安全信息报文的数据质量进行校验,获取第三基本安全信息报文;对第三基本安全信息报文进行排序和队列化管理,获取第一基本安全信息数据,提高了第一基本安全信息数据的数据质量和可靠性,并且,实现了对第一基本安全信息数据的有序化管理。
在一种可能的实现方式中,所述对所述第一基本安全信息报文进行时间域和空间域的筛选处理,获取第二基本安全信息报文,包括:
获取所述车辆自身的位置信息和当前时间戳;
根据所述车辆自身的位置信息、当前时间戳、预设的时间范围和空间范围对所述第一基本安全信息报文进行数据过滤,获取所述第二基本安全信息报文。
在上述方案中,预设的时间范围和空间范围构成一个缓冲区域,保留缓冲区域内的第一基本安全信息报文,丢弃缓冲区域外的第一基本安全信息报文,能够保证数据的时效性,节约了内存。
在一种可能的实现方式中,所述对所述第二基本安全信息报文的数据质量进行校验,获取第三基本安全信息报文,包括:
检查所述第二基本安全信息报文是否符合数据质量标准;所述数据质量标准包括数据完整度和数据准确度;
若所述第二基本安全信息报文符合数据质量标准,则根据预设的置信度输出所述第三基本安全信息报文;
若所述第二基本安全信息报文不符合数据质量标准,则丢弃所述第二基本安全信息报文。
在一种可能的实现方式中,所述根据预设的置信度输出所述第三基本安全信息报文,包括:
计算所述第二基本安全信息报文的置信度;
若所述第二基本安全信息报文的置信度大于或者等于预设的置信度阈值,则将所述第二基本安全信息报文作为所述第三基本安全信息报文;
若所述第二基本安全信息报文的置信度小于所述预设的置信度阈值,则丢弃所述第二基本安全信息报文。
在上述方案中,对第二基本安全信息报文进行数据质量的控制,对于不符合数据质量标准的第二基本安全信息报文丢弃,仅保留符合数据质量标准的第二基本安全信息报文, 能保证第二基本安全信息报文的完整性和准确性。
在一种可能的实现方式中,所述对所述第三基本安全信息报文进行排序和队列化管理,获取所述第一基本安全信息报文,包括:
根据所述第三基本安全信息报文构建基本安全信息队列;
根据预先定义的时间和空间排序规则对所述基本安全信息队列进行排序,获取所述第一基本安全信息数据。
在上述方案中,将第三基本安全信息报文构建基本安全信息队列,并根据预先定义的时间和空间排序规则对基本安全信息队列进行排序,获取第一基本安全信息数据,方便对第一基本安全信息数据的查看和管理。
在一种可能的实现方式中,所述对所述第一基本安全信息数据进行模型化处理,获取所述地图数据,包括:
根据所述第一基本安全信息数据获取基本安全信息的数据模型;
根据所述数据模型获取所述第一基本安全信息数据对应的基本安全信息要素;所述基本安全信息要素包括几何数据、元数据、安全数据文件以及所述几何数据和所述安全数据文件之间的关联关系;
根据所述基本安全信息要素构建所述地图数据。
在上述方案中,将第一基本安全信息数据进行模型化处理,转换成构建地图数据的基本安全信息要素,方便构建地图数据,而且,使得地图数据的结构清晰。
在一种可能的实现方式中,所述方法还包括:
确定第二基本安全信息数据与所述地图数据的关联度,所述第二基本安全信息数据为从云端服务器获取到的基本安全信息数据;
若所述关联度大于或等于预设阈值,则根据所述地图数据对所述第二基本安全信息数据进行更新;
若所述关联度小于预设阈值,则将所述地图数据载入本地地图数据库。
在上述方案中,根据确定第二基本安全信息数据与地图数据的关联度,若关联度大于或等于预设阈值,则根据地图数据对第二基本安全信息数据进行更新;若关联度小于预设阈值,则将地图数据载入本地地图数据库,实现对地图数据的实时更新,保证地图数据的可靠性。
在一种可能的实现方式中,所述方法还包括:
将所述地图数据发送给云端服务器,以使所述云端服务器进行云端数据库的更新。
在上述方案中,将地图数据发送给云端服务器,以使云端服务器进行数据库的更新,保证了车端与云端数据的同步更新。
本申请第二方面提供一种地图数据的构建方法,所述方法应用于云端服务器,包括:
获取第一基本安全信息数据,所述第一基本安全信息数据包括所述车辆的参数信息和扩展安全信息,所述车辆的参数信息用于表示所述车辆的行驶状态和外观信息,所述扩展安全信息用于表示车辆和道路的安全状态;
根据所述第一基本安全信息数据进行模型化处理生成所述地图数据。
在上述方案中,获取第一基本安全信息数据,根据第一基本安全信息数据进行模型化处理生成地图数据,由于第一基本安全信息数据包括车辆的参数信息和扩展安全信息,因 此,构建的地图数据中不仅包括车辆的参数信息,还包括扩展安全信息,自动驾驶车辆可以根据扩展安全信息获取车辆与道路的一些不安全因素,对车辆的行为进行规划和控制,从而减少一些交通事故,提高了道路交通的安全性和稳定性。
在一种可能的实现方式中,所述对所述第一基本安全信息数据进行模型化处理,获取所述地图数据,包括:
根据所述第一基本安全信息数据获取基本安全信息的数据模型;
根据所述数据模型获取所述第一基本安全信息数据对应的基本安全信息要素;所述基本安全信息要素包括几何数据、元数据、安全数据文件以及所述几何数据和所述安全数据文件之间的关联关系;
根据所述基本安全信息要素构建所述地图数据。
在上述方案中,将第一基本安全信息数据进行模型化处理,转换成构建地图数据的基本安全信息要素,方便构建地图数据,而且,使得地图数据的结构清晰。
在一种可能的实现方式中,所述方法还包括:
根据所述地图数据对云端数据库进行更新。
在一种可能的实现方式中,所述数据库包括空间数据库和文件数据库,则所述根据所述地图数据对所述云端的数据库进行更新,包括:
将所述地图数据存储到所述空间数据库与所述文件数据库中,所述空间数据库存储车辆唯一标识、几何数据和所述元数据,所述文件数据库存储所述安全数据文件,所述空间数据库与所述文件数据库通过所述元数据关联。
在上述方案中,将地图数据存储到空间数据库与文件数据库中,对地图数据进行分类存储,方便存储和管理。
在一种可能的实现方式中,所述数据库包括过程库、现实库、历史库;
所述过程库用于存储所述第一基本安全信息数据;
所述现实库用于存储所述地图数据;
所述历史库用于存储从初始时刻开始获取到的全部的所述地图数据。
在一种可能的实现方式中,所述根据所述地图数据对云端的数据库进行更新,包括:
获取所述地图数据与所述第二基本安全信息数据之间的关联度;
若所述关联度大于或等于预设阈值,则根据所述地图数据对所述现实库进行更新,并将所述地图数据载入所述历史库;
若所述关联度小于预设阈值,则将所述地图数据载入所述现实库。
在上述方案中,通过过程库、现实库、历史库这三个库来管理和存储地图数据,方便查询和管理。
本申请第三方面提供一种车辆终端,包括:
感知单元,用于获取车辆的第一基本安全信息报文,所述第一基本安全信息报文包括在安全事件发生时采集到的所述车辆的信息报文;
处理单元,用于从所述第一基本安全信息报文中,获取第一基本安全信息数据,所述第一基本安全信息数据包括所述车辆的参数信息和扩展安全信息,所述车辆的参数信息用于表示所述车辆的行驶状态和外观形态,所述扩展安全信息用于表示车辆和道路的安全状态;
获取单元,用于根据所述第一基本安全信息数据进行模型化处理生成所述地图数据。
在一种可能的实现方式中,所述处理单元包括:
过滤子单元,用于对所述第一基本安全信息报文进行时间域和空间域的筛选处理,获取第二基本安全信息报文;
质量控制子单元,用于对所述第二基本安全信息报文的数据质量进行校验,获取第三基本安全信息报文;
队列控制单元,用于对所述第三基本安全信息报文进行排序和队列化管理,获取所述第一基本安全信息数据。
在一种可能的实现方式中,所述过滤子单元具体用于获取所述车辆自身的位置信息和当前时间戳;
根据所述车辆自身的位置信息、当前时间戳、预设的时间范围和空间范围对所述第一基本安全信息报文进行数据过滤,获取所述第二基本安全信息报文。
在一种可能的实现方式中,所述质量控制子单元具体用于检查所述第二基本安全信息报文是否符合数据质量标准;所述数据质量标准包括数据完整度和数据准确度;若所述第二基本安全信息报文符合数据质量标准,则根据预设的置信度输出所述第三基本安全信息报文;若所述第二基本安全信息报文不符合数据质量标准,则丢弃所述第二基本安全信息报文。
在一种可能的实现方式中,所述质量控制子单元根据预设的置信度输出所述第三基本安全信息报文,具体包括:
所述质量控制子单元计算所述第二基本安全信息报文的置信度;若所述第二基本安全信息报文的置信度大于或者等于预设的置信度阈值,则将所述第二基本安全信息报文作为所述第三基本安全信息报文;若所述第二基本安全信息报文的置信度小于所述预设的置信度阈值,则丢弃所述第二基本安全信息报文。
在一种可能的实现方式中,所述队列控制单元具体用于根据所述第三基本安全信息报文构建基本安全信息队列;
根据预先定义的时间和空间排序规则对所述基本安全信息队列进行排序,获取所述第一基本安全信息数据。
在一种可能的实现方式中,所述获取单元具体用于根据所述第一基本安全信息数据获取基本安全信息的数据模型;根据所述数据模型获取所述第一基本安全信息数据对应的基本安全信息要素;所述基本安全信息要素包括几何数据、元数据、安全数据文件以及所述几何数据和所述安全数据文件之间的关联关系;根据所述基本安全信息要素构建所述地图数据。
在一种可能的实现方式中,所述车辆终端还包括:
数据管理单元,用于确定第二基本安全信息数据与所述地图数据的关联度,所述第二基本安全信息数据为从云端服务器获取到的基本安全信息数据;若所述关联度大于或等于预设阈值,则根据所述地图数据对所述第二基本安全信息数据进行更新;若所述关联度小于预设阈值,则将所述地图数据载入本地地图数据库。
在一种可能的实现方式中,所述车辆终端还包括:
发送单元,用于将所述地图数据发送给云端服务器,以使所述云端服务器进行云端数 据库的更新。
本实施例提供的车辆终端的各个单元的实现原理和有益效果可参照第一方面提供的地图数据的构建方法的实施例,此处不再赘述。
本申请第四方面提供一种服务器,包括:
获取单元,用于获取第一基本安全信息数据,所述第一基本安全信息数据包括所述车辆的参数信息和扩展安全信息,所述车辆的参数信息用于表示所述车辆的行驶状态和外观信息,所述扩展安全信息用于表示车辆和道路的安全状态;
处理单元,用于根据所述第一基本安全信息数据进行模型化处理生成所述地图数据。
在一种可能的实现方式中,所述处理单元具体用于根据所述第一基本安全信息数据获取基本安全信息的数据模型;根据所述数据模型获取所述第一基本安全信息数据对应的基本安全信息要素;所述基本安全信息要素包括几何数据、元数据、安全数据文件以及所述几何数据和所述安全数据文件之间的关联关系;根据所述基本安全信息要素构建所述地图数据。
在一种可能的实现方式中,所述服务器还包括:
更新单元,用于根据所述地图数据对云端数据库进行更新。
在一种可能的实现方式中,所述数据库包括空间数据库和文件数据库,则所述更新单元具体用于将所述地图数据存储到所述空间数据库与所述文件数据库中,所述空间数据库存储车辆唯一标识、几何数据和所述元数据,所述文件数据库存储所述安全数据文件,所述空间数据库与所述文件数据库通过所述元数据关联。
在一种可能的实现方式中,所述数据库包括过程库、现实库、历史库;
所述过程库用于存储所述第一基本安全信息数据;
所述现实库用于存储所述地图数据;
所述历史库用于存储从初始时刻开始获取到的全部的所述地图数据。
在一种可能的实现方式中,所述更新单元具体用于获取所述地图数据与所述第二基本安全信息数据之间的关联度;若所述关联度大于或等于预设阈值,则根据所述地图数据对所述现实库进行更新,并将所述地图数据载入所述历史库;若所述关联度小于预设阈值,则将所述地图数据载入所述现实库。
本实施例提供的车辆终端的各个单元的实现原理和有益效果可参照第二方面提供的地图数据的构建方法的实施例,此处不再赘述。
本申请第五方面提供一种设备,包括处理器和存储器,
所述存储器用于存储指令,所述处理器用于执行所述存储器存储的指令,当处理器执行所述存储器存储的指令时,所述装置用于执行如第一方面或第二方面任一实施例所述的方法。
本申请第六方面提供一种车辆终端,包括用于执行上述第一方面或者第一方面的各种实施方式的方法的至少一个处理元件(或芯片)。
本申请第七方面提供一种服务器,包括用于执行上述第二方面或者第二方面的各种实施方式的方法的至少一个处理元件(或芯片)。
本申请第八方面提供一种可读存储介质,可读存储介质中存储有执行指令,当车辆终端的至少一个处理器执行该执行指令时,车辆终端执行上述第一方面或者第一方面的各种 实施方式提供的地图数据的构建方法。
本申请第九方面提供一种可读存储介质,可读存储介质中存储有执行指令,当服务器的至少一个处理器执行该执行指令时,服务器执行上述第二方面或者第二方面的各种实施方式提供的地图数据的构建方法。
本申请第十方面提供一种程序产品,该程序产品包括执行指令,该执行指令存储在可读存储介质中。车辆终端的至少一个处理器可以从可读存储介质读取该执行指令,至少一个处理器执行该执行指令使得车辆终端实施第一方面或者第一方面的各种实施方式提供的地图数据的构建方法。
本申请第十一方面提供一种程序产品,该程序产品包括执行指令,该执行指令存储在可读存储介质中。服务器的至少一个处理器可以从可读存储介质读取该执行指令,至少一个处理器执行该执行指令使得服务器实施上述第二方面或者第二方面的各种实施方式提供的地图数据的构建方法。
本申请第十二方面提供一种通信系统,该网络系统包括上述方面中的车辆终端和服务器。
附图说明
图1为本申请实施例提供的地图数据的构建方法的应用场景示意图;
图2为本申请实施例提供的车辆软硬件设备的结构示意图;
图3为本申请一实施例提供的一种地图数据的构建方法的流程图;
图4为本申请另一实施例提供的一种地图数据的构建方法的流程图;
图5为本申请另一实施例提供的一种地图数据的构建方法的流程图;
图6为本申请提供的一种时空缓冲区的示意图;
图7为本申请另一实施例提供的一种地图数据的构建方法的流程图;
图8为本申请再一实施例提供的一种地图数据的构建方法的流程图;
图9为本申请再一实施例提供的一种地图数据的构建方法的流程图;
图10为本申请再一实施例提供的一种地图数据的构建方法的流程图;
图11为本申请又一实施例提供的一种地图数据的构建方法的流程图;
图12为本申请又一实施例提供的一种地图数据的构建方法的流程图;
图13为本申请再一实施例提供的一种地图数据的构建方法的流程图;
图14为本申请实施例提供的一种数据存储方法示意图;
图15为本申请实施例提供的另一种数据存储方法示意图;
图16为本申请再一实施例提供的一种地图数据的构建方法的流程图;
图17为本申请一实施例提供的一种车辆终端的框图;
图18为本申请另一实施例提供的一种车辆终端的框图;
图19为本申请提供的一种第一基本安全信息数据的格式;
图20为本申请另一实施例提供的一种车辆终端的框图;
图21为本申请一实施例提供的一种服务器的框图;
图22为本申请另一实施例提供的一种服务器的框图;
图23为本申请一实施例提供的一种无线通信设备的框图。
具体实施方式
本申请提供的地图数据的构建方法应用于无线通信系统中,尤其可应用于车联网系统中。图1为本申请实施例提供的地图数据的构建方法的应用场景示意图,如图1所示,该场景包括车辆软硬件设备、云基础设施、车辆与车辆的信息交换(Vehicles to Vehicles,V2V)终端、车辆与人的信息交换(Vehicles to Person,V2P)终端、车辆与基础设施的信息交换(Vehicles to Infrastructure,V2I)终端。
其中,车辆软硬件设备的结构示意图如图2所示,车辆软硬件设备包括电子控制单元、专用短程通信设备、全球定位系统(Global Positioning System,GPS)接收器、人车交互接口、存储器、车端内部通信网络、视觉传感器和雷达传感器,电子控制单元是本申请提供的系统、软件、算法的运行环境,专用短程通信(Dedicated Short Range Communications,DSRC)设备通过天线和外部的车辆与外界的信息交换(Vehicles to X,V2X)终端交互数据,并将数据传输给电子控制单元,GPS接收器一方面提供车辆的精确位置,另一方面提供时间基准,并将数据传输给电子控制单元,存储器存储车辆安全信息和应用数据等,人车交互接口(Human Machine Interface,HMI)用于驾驶员和车端应用的信息交互,车端内部通信网络联接车端各硬件组件,视觉传感器和雷达传感器感知车辆自身以及车辆周边的环境参数,比如速度等,并作为电子控制单元的输入。
云基础设施包括分布式存储设备、分布式计算阵列等,用于云端动态地图的存储和计算。V2V终端包括所有与本系统进行信息交换的其他车端通信系统和设备;V2P终端包括所有与本系统进行信息交换的道路行人的手持无线通信设备;V2I终端包括所有与本系统进行信息交换的路边通信设施。
图3为本申请一实施例提供的一种地图数据的构建方法的流程图。该方法应用于车辆,如图1所示,该方法包括以下步骤:
步骤101、获取车辆的第一基本安全信息报文,第一基本安全信息报文包括在安全事件发生时采集到的车辆的信息报文。
在本实施例中,安全事件为V2X安全事件,例如,车辆应急硬件系统输出异常信息、车辆传感器感知到周围危险环境等事件均为V2X安全事件。当安全事件被激发时,车辆可以自动获取第一基本安全信息报文,第一基本安全信息报文可以包括时间戳、车辆的位置、速度、加速度、姿态、外形尺寸等车辆自身的参数信息,还可以包括天气信息、车辆状态事件、历史轨迹、轨迹预测等信息。例如,车辆通过视觉/激光传感器识别一定距离内的道路静态环境信息和动态障碍物信息,GPS传感器定位自车位置,车辆中的设备识别车道边线、停止线、人行横道、路面转向标志、路面减速带、交通信号灯、交通提示牌等道路静态环境信息,识别路上行人、非机动车、机动车等可能影响车辆行驶的运动和静止(非永久)的障碍物等动态障碍物信息。
步骤102、从第一基本安全信息报文中,获取第一基本安全信息数据,第一基本安全信息数据包括车辆的参数信息和扩展安全信息,车辆的参数信息用于表示车辆的行驶状态和外观形态,扩展安全信息用于表示车辆和道路的安全状态。
在本实施例中,可以对第一基本安全信息报文进行筛选、队列化控制等,获取第一基 本安全信息数据,例如,筛选处理可以包括时间筛选、空间筛选、质量完整性和正确性筛选等,队列化控制可以包括按时间和空间对第一基本安全信息进行排序等。
表1为本申请实施例提供的一种第一基本安全信息报文的格式,如表1所示,第一基本安全信息报文包括Part-1和Part-2两部分,Part-1部分为第一基本安全信息报文的核心数据,包括时间戳、车辆的位置、速度、加速度、姿态、外形尺寸等车辆的参数信息;Part-2部分为第一基本安全信息报文的扩展安全信息,包括天气信息、车辆状态事件、历史轨迹、轨迹预测等信息,当V2X安全事件被激发时,附加在Part-1部分后面以广播形式发送。
表1
Figure PCTCN2018105680-appb-000001
需要说明的是,一般情况下,V2X联网车辆在行驶时,获取到的第一基本安全信息只包括Part-1部分,当V2X安全事件被激发时,获取到的第一基本安全信息包括Part-1,Part-2两部分。对于只包括Part-1的第一基本安全信息报文在筛选处理时会被丢弃,因此,构成第一基本安全信息数据的各第一基本安全信息报文均包括Part-1和Part-2两部分。
在本实施例中,对第一基本安全信息报文进行筛选和队列化处理,将符合条件的第一基本安全信息报文中的信息组成第一基本安全信息数据,第一基本安全信息数据中不仅包括车辆的参数信息,还包括扩展安全信息。
步骤103、根据第一基本安全信息数据进行模型化处理生成地图数据。
在本实施例中,对第一基本安全信息数据进行模型化处理,将第一基本安全信息数据转换成适合构建地图数据的格式。模型化处理可以包括数据抽取、转换、管理等 处理。
本实施例构建的地图数据是以地理信息系统(Geographic Information System,GIS)矢量数据形态存储和组织所有自动驾驶车辆V2X安全事件激发时的完整基本安全信息,因此,其本质上是记录自动驾驶车辆安全属性的离散点矢量地图图层,该图层可服务于道路交通安全分析和自动驾驶行车安全。
本申请实施例提供的地图数据的构建方法,在安全事件发生时,获取车辆的第一基本安全信息报文,从第一基本安全信息报文中,获取第一基本安全信息数据,根据第一基本安全信息数据进行模型化处理生成地图数据,由于第一基本安全信息数据包括车辆的参数信息和扩展安全信息,因此,构建的地图数据中不仅包括车辆的参数信息,还包括扩展安全信息,自动驾驶车辆可以根据扩展安全信息获取车辆与道路的一些不安全因素,对车辆的行为进行规划和控制,该方法将V2X网络应用于自动驾驶系统中,可以提高自动驾驶车辆的行车安全。
图4为本申请另一实施例提供的一种地图数据的构建方法的流程图。在图3所示实施例的基础上,如图4所示,步骤102的具体实现方式可以包括以下步骤:
步骤201、对第一基本安全信息报文进行时间域和空间域的筛选处理,获取第二基本安全信息报文。
在本实施例中,对第一基本安全信息报文进行时间域和空间域的筛选处理,相当于预先设置一个时空缓冲区,对第一基本安全信息报文进行时空缓冲区分析,过滤掉时空缓冲区外的第一基本安全信息报文,时空缓冲区内的第一基本安全报文即为第二基本安全信息报文。
如图5所示,步骤201的实现方式可以包括以下步骤:
步骤2011、获取车辆自身的位置信息和当前时间戳。
在本实施例中,可以通过GPS系统获取车辆自身的位置信息和当前时间戳。
步骤2012、根据车辆自身的位置信息、当前时间戳、预设的时间范围和空间范围对第一基本安全信息报文进行数据过滤,获取第二基本安全信息报文。
在本实施例中,对第一基本安全信息报文的筛选处理的输入信息是:车辆自身的位置信息、当前时间戳、第一基本安全信息报文。第一基本安全信息报文筛选处理过程是:以车辆自身的位置信息为空间缓冲区原点,当前时间戳为时间缓冲区原点,以预设的空间范围和时间范围构建时空缓冲区;提取第一基本安全信息报文中的位置信息和时间信息;根据位置信息和时间信息对第一基本安全信息报文进行缓冲区分析,丢弃不在缓冲区内的数据,保留缓冲区内的第一基本安全信息报文,作为第二基本安全信息报文。
图6为本申请提供的一种时空缓冲区的示意图,如图6所示,以黑色方块表示的车辆自身的位置信息为点面圆心,以预先定义的长度s为空间缓冲区范围,例如200m,以|tn-t0|为时间缓冲区范围,其中t0表示当前时刻,构建时空圆柱体,即时空缓冲区。基于第一基本安全信息报文中的位置信息和时间戳信息执行时空缓冲分析,过滤掉圆柱体外部的第一基本安全信息报文,也就是浅灰色方块,保留时空缓冲区内的第一基本安全信息报文进行后续分析,也就是深灰色方块。第一基本安全信息报文进行数据过滤输出信息是:时空缓冲区内的第一基本安全信息报文。
步骤202、对第二基本安全信息报文的数据质量进行校验,获取第三基本安全信息报文。
在本实施例中,对第二基本安全信息报文的数据质量校验,主要包含第二基本安全信息报文的完整性校验、准确性校验和置信度评估。
如图7所示,步骤202的实现方式包括以下步骤:
步骤2021、检查第二基本安全信息报文是否符合数据质量标准;若第二基本安全信息报文符合数据质量标准,则执行步骤2022,若第二基本安全信息报文不符合数据质量标准,则执行步骤2023。
其中,数据质量标准包括数据完整度和数据准确度。
其中,数据完整度的检查可以包括属性字段内容、空间信息、时间信息、扩展安全信息等是否缺失,尤其是,检验第二基本安全信息报文的完整度主要是检查第二基本安全信息报文中是否包括扩展安全信息,也即是否包括表1中的Part2部分。数据准确度的检查可以包括属性数据类型不准确、长度越界、空间数据的几何精度不足、拓扑关系错误等。对于不符合完整度或准确度检查的第二基本安全信息报文,认定为不符合数据质量标准,直接丢弃该第二基本安全信息报文。
步骤2022、根据预设的置信度输出第三基本安全信息报文。
在本实施例中,对于符合数据质量标准的第二基本安全信息报文进行置信度的评估,输出第三基本安全信息报文。
在本实施例中,如图8所示,步骤2022的实现方式包括以下步骤:
步骤301、计算第二基本安全信息报文的置信度;若第二基本安全信息报文的置信度大于或者等于预设的置信度阈值,则执行步骤302,若第二基本安全信息报文的置信度小于预设的置信度阈值,则执行步骤303。
在本实施例中,对于符合数据质量标准的第二基本安全信息报文,以第二基本安全信息报文中的历史轨迹点L={p1,p2,p3,…,pn}和当前位置p0为输入,建立第二基本安全信息报文的置信度评估模型f,如公式(1)所示,对第二基本安全信息数据进行置信度V的计算,并以此作为后续输出第三基本安全信息报文的重要参考。
V=f(L,p0)           (1)。
利用公式(1)计算得出第二基本安全信息报文的置信度计算流程,如图9所示:
步骤3011、输入历史轨迹点L={p1,p2,p3,…,pn}和当前位置p0。
步骤3012、判断L内的历史轨迹点数是否大于100,若是,则执行步骤3014,若否,则执行步骤3013。
步骤3013、不响应操作。
步骤3014、提出最后100个历史轨迹点之外的历史轨迹点。
步骤3015、采用三次曲线模型,进行LM非线性最小二乘拟合。
步骤3016、计算当前位置p0到三次曲线的距离S。
步骤3017、根据当前位置p0到三次曲线的距离S计算第二基本安全信息报文的置信度V。
在本实施例中,对历史轨迹L中的点集,按时间先后顺序选取最后100个点,对于不足100个点的情况选取全部点集,以三次曲线f(x)=ax3+bx2+cx+d作为非线性模 型,构建条件方程。采用LM算法进行非线性最小二乘拟合,计算p0到三次拟合曲线的距离s,并按照公式(2)计算置信度V值:
Figure PCTCN2018105680-appb-000002
步骤302、将第二基本安全信息报文作为第三基本安全信息报文。
步骤303、丢弃第二基本安全信息报文。
在本实施例中,根据预设的置信度阈值对第二基本安全信息报文进行筛选。例如,预先设定的置信度经验估值T作为置信度阈值,如T=95%,对于置信度V<T的第二基本安全信息报文直接丢弃;对于置信度V>=T的第二基本安全信息报文作为第三基本安全信息报文进行输出。
步骤2023、丢弃第二基本安全信息报文。
步骤203、对第三基本安全信息报文进行排序和队列化管理,获取第一基本安全信息数据。
在本实施例中,如图10所示,步骤203的实现方式包括以下步骤:
步骤2031、根据第三基本安全信息报文构建基本安全信息队列。
在本实施例中,可以基于ZeroMQ消息中间件构建基本安全信息队列,ZeroMQ是轻量级高性能消息中间件,可以用于消息队列的构建和管理。
步骤2032、根据预先定义的时间和空间排序规则对基本安全信息队列进行排序,获取第一基本安全信息数据。
在本实施例中,可以按照距离车辆自身的位置空间由近及远,距当前时刻时间由近及远的方式对基本安全信息队列进行排序,并将排序之后的基本安全信息队列纳入消息中间件进行有序存储;后续可以按照优先级高先出队的模式对第一基本安全信息数据进行读取和处理。
其中,第一基本安全信息数据是按照时间、空间两个维度排列后的有序的信息列表。
本实施例提供的地图数据的构建方法,对第一基本安全信息报文进行时间域和空间域的筛选处理,获取第二基本安全信息报文;对第二基本安全信息报文的数据质量进行检验,获取第三基本安全信息报文;对第三基本安全信息报文进行排序和队列化管理,获取第一基本安全信息数据,提高了第一基本安全信息数据的数据质量和可靠性,并且,实现了对第一基本安全信息数据的有序化管理。
图11为本申请另一实施例提供的一种地图数据的构建方法的流程图,在上述任一实施例所述的基础上,如图11所示,步骤103的实现方式包括以下步骤:
步骤1031、根据第一基本安全信息数据获取基本安全信息的数据模型。
在本实施例中,可以按照预设的格式对第一基本安全信息数据进行抽取,抽取出第一基本安全信息数据中的时间戳、车辆位置、车辆高度、车辆速度、车道线宽度、偏移角度等信息,生成数据模型。
相比较表1的概念化表达,表2数据模型是对第一基本安全信息数据的程序化表达,数据模型中包括:从表1中的Part1部分抽取的的信息对应的各成员字段和从表1 中的Part2部分抽取的信息对应的文件对象成员,其中,Part2部分抽取的信息对应的文件对象成员为非结构化二进制文件的形式。
步骤1032、根据数据模型获取第一基本安全信息数据对应的基本安全信息要素;基本安全信息要素包括几何数据、元数据、安全数据文件以及几何数据和安全数据文件之间的关联关系。
在本实施例中,以步骤1031中的数据模型为输入,对第一基本安全信息数据进行转换操作,输出第一基本安全信息数据对应的基本安全信息要素。数据模型是对表3表示对第一基本安全信息数据进行转换后的数据结构,相比较表2的第一基本安全信息数据的模型化初始表达,基本安全信息要素表3是对第一基本安全信息数据的数据模型的进一步规格化表达,输出是第一基本安全信息数据对应的基本安全信息要素,即基本安全信息要素为BSIFeature结构体的表达形式。数据模型的Part1部分中的结构体中各成员字段转换为BSIFeature结构体的几何(geometry)子结构体和元数据(metadata)子结构体;数据模型的Part2结构体中的文件对象成员字段转换为BSIFeature结构体的file子结构体中。
步骤1033、根据基本安全信息要素构建地图数据。
在本实施例中,将多个第一基本安全信息数据对应的基本安全信息要素存储在数据库中,形成地图数据。
在本实施例中,根据第一基本安全信息数据获取基本安全信息的数据模型,根据数据模型获取第一基本安全信息数据对应的基本安全信息要素,根据基本安全信息要素构建地图数据,由于基本安全信息要素包括几何数据、元数据、安全数据文件以及几何数据和安全数据文件之间的关联关系,自动驾驶车辆从地图数据中可以快速的获取到车辆自身的参数信息和扩展安全信息,对车辆行为进行规划和控制,可以减少交通事故,避免损失。
图12为本申请再一实施例提供的一种地图数据的构建方法的流程图,在上述任一实施例的基础上,获取到地图数据之后,还需要对地图数据进行存储和管理,如图12所示,该地图数据的构建方法还可以包括以下步骤:
步骤401、确定第二基本安全信息数据与地图数据的关联度,若关联度大于或等于预设阈值,则执行步骤402,若关联度小于预设阈值,则执行步骤403。
其中,第二基本安全信息数据为从云端服务器获取到的基本安全信息数据。
在本实施例中,地图数据的存储和管理包括地图数据的动态更新和入库。确定第二基本安全信息数据与地图数据的关联度,若关联度大于或等于预设阈值,则对地图数据动态进行更新,若关联度小于预设阈值,则将地图数据载入数据库。
步骤402、根据地图数据对第二基本安全信息数据进行更新。
在本实施例中,地图数据更新是指利用实时获得的动态地图数据,执行SQLite数据库更新(update)操作,即更新车辆从云端下载的离线的第二基本安全信息数据。
步骤403、将地图数据载入本地地图数据库。
在本实施例中,地图数据入库是指将实时获得的动态地图数据,执行SQLite数据库的载入(insert)操作,将地图数据载入车端地图数据库;并且,执行文件系统的create操作,载入车端地图文件系统。
在本实施例中,车端动态地图更新和入库包括更新地图数据、索引,载入几何数据和元数据到空间数据库,载入数据文件到文件数据库等步骤。并且,在车端基于SQLite数据库构建地图数据的几何、属性数据存储引擎。
对于由A到B的自动驾驶,乘客通过图1所示的人车交互接口输入起始点A的坐标和终止点B的坐标,电子控制单元中运行的自动驾驶系统接收到人车交互请求后,启动自动驾驶任务,自动驾驶系统包含本申请提出的自动驾驶地图动态层构建系统。
在自动驾驶任务开始前,SQLite空间数据库中基本安全信息动态地图表离线载入云端一定时空范围内的基本安全信息动态地图层,例如空间10km范围内,时间1h以内。
在自动驾驶任务进行时,按照数据转换后的地图元数据部分的置信度、车辆唯一标识以及已有的动态地图表中数据进行比对,如果找到关联数据,则更新已有动态地图表对应的记录;如果没有找到关联数据,转换后的基本安全信息地图几何部分及元数据部分载入到SQLite对应数据表中持久化存储,每个基本安全信息消息对应一条数据库表记录。对于id(基本安全信息消息的唯一标识)、vehicle_id(自动驾驶汽车的唯一标识)、timestamp(基本安全信息消息的时间戳)属性构建B-tree索引,对于geometry构建R-tree空间索引;基本安全信息的安全扩展信息(part2部分)序列化后持久存储到车端操作系统本地文件系统,存储路径以元数据的形式存储在SQLite数据表中。
图13为本申请再一实施例提供的一种地图数据的构建方法的流程图。该方法应用于云端服务器,如图13所示,该方法包括以下步骤:
步骤501、获取第一基本安全信息数据,第一基本安全信息数据包括车辆的参数信息和扩展安全信息,车辆的参数信息用于表示车辆的行驶状态和外观信息,扩展安全信息用于表示车辆和道路的安全状态。
在本实施例中,第一基本安全信息数据是由车端实时上报的,在上述实施例中已详细介绍了车端获取第一基本安全信息数据的方法过程,此处不再赘述。
步骤502、根据第一基本安全信息数据进行模型化处理生成地图数据。
在本实施例中,对第一基本安全信息数据进行模型化处理,将第一基本安全信息数据转换成适合构建地图数据的格式。模型化处理可以包括数据抽取、转换、管理等处理。
本实施例提供的地图数据的构建方法,获取第一基本安全信息数据,对第一基本安全信息数据进行模型化处理,获取地图数据,由于第一基本安全信息数据包括车辆的参数信息和扩展安全信息,因此,构建的地图数据中不仅包括车辆的参数信息,还包括扩展安全信息,自动驾驶车辆可以根据扩展安全信息获取车辆与道路的一些不安全因素,对车辆的行为进行规划和控制,从而减少一些交通事故,提高了道路交通的安全性和稳定性。
可选地,在图13所示实施例中,步骤502的具体实现方式与车端获取地图数据的方法相同,具体可参照图11所示实施例,此处不再赘述。
可选地,在图13所述实施例的基础上,该地图数据的构建方法还可以包括:根据地图数据对云端数据库进行更新。
可选地,数据库包括空间数据库和文件数据库,则根据地图数据对云端的数据库进行更新,包括:将地图数据存储到空间数据库与文件数据库中,空间数据库存储车辆唯一标识、几何数据和元数据,文件数据库存储安全数据文件,空间数据库与文件数据库通过元数据关联。
图14为本申请实施例提供的一种数据存储方法示意图,本实施例是将第一基本安全信息报文的原始数据经过抽取、转换、载入等过程,转化为动态地图数据的基本元素,即几何数据、元数据和扩展安全数据文件,并建立其相互关联关系,最后序列化持久存储到对应结构的空间数据库和文件系统中,完成动态地图数据的构建,如图14所示,其中,第一基本安全信息的Part1部分提取为车辆唯一标识(ID)、元数据及几何数据,序列化到关系型空间数据库存储;Part2部分提取为安全数据文件,序列化到文件数据库存储。空间数据库与文件数据库通过元数据进行关联,对于空间数据库中的数据,每一条第一基本安全信息报文对应一条数据库表行记录,存储第一基本安全信息报文Part1部分的ID、车辆位置、状态、以及对应的文件数据库中Part2文件的索引等元数据,通过该索引,实现两部分基本安全信息数据的关联。
可选地,数据库包括过程库、现实库、历史库;过程库用于存储第一基本安全信息数据;现实库用于存储地图数据;历史库用于存储从初始时刻开始获取到的全部的地图数据。
在本实施例中,云端动态地图数据更新和入库包括更新现实库、载入历史库等步骤。云端动态地图数据更新,是指利用云端过程库中的数据,执行现实库的更新操作,更新现实库中相关联的数据。云端动态地图数据入库,是指将云端过程库中的数据,执行现实库的载入操作,将数据载入现实库中存储;并将现实库中的数据,执行历史库的载入操作,进行持久化存储。
图15为本申请实施例提供的另一种数据存储方法示意图,如图15所示,在云端构建基于过程库、现实库、历史库的三库构成地图数据系统,存储和管理动态地图数据的几何信息、属性信息及数据文件。
三库的功能分别如下:过程库接收和临时存储V2X终端发送至云端的第一基本安全信息数据,数据库的具体实现为Kafka分布式消息中间件。现实库存储一定时间范围内(比如1天内)全空域的与现实世界相符的动态地图数据,数据库具体实现为MongoDB分布式NoSQL数据库。历史库存储全部动态地图的历史数据,具体实现为HDFS。
在云端,Kafka分布式消息中间件实时接收V2X终端发送过来的第一基本安全信息数据,流式计算引擎Spark Streaming实时对接收到的第一基本安全信息数据进行数据质量检查和抽取转换等处理,将转换后的动态地图元数据部分的置信度、车辆唯一标识与已有的MongoDB表中数据进行比对,如果找到关联数据,则更新已有动态地图表对应的记录,对应的历史数据利用Sqoop分布式ETL引擎按照一定时间周期批量载入历史库的分布式文件系统;如果没有找到关联数据,转换后的地图数据的几何数据及元数据部分载入到MongoDB对应数据表中持久化存储。
MongoDB采用Key-Value的架构,其中,Key设计为元数据的组合,包括消息ID、车辆ID、时间戳、空间位置;Value设计为其他元数据项和扩展安全信息部分组成的 Document。对于现实库中的数据,基于MongoDB高效的Key键索引进行实时查询,利用分布式系统的高并发、高可用特性,持续为各V2X终端提供数据支持;对于历史库中的数据,基于MapReduce和Spark分布式外存、内存计算框架,实现历史动态地图数据的高效分析,基于扩展安全信息挖掘更深层次的道路交通安全信息,为车端提供更丰富的行为规划和控制支持。
在本实施中,如图16所示,“根据地图数据对云端数据库进行更新”这一步骤的具体实现方式,包括:
步骤601、获取地图数据与第二基本安全信息数据之间的关联度,即数据的空间邻近程度;若关联度大于或等于预设阈值,则执行步骤602,若关联度小于预设阈值,则执行步骤603。
步骤602、根据地图数据对现实库进行更新,并将被更新的地图数据载入历史库。
步骤603、将地图数据载入现实库。
在本实施例中,获取地图数据与第二基本安全信息数据之间的关联度;若关联度大于或等于预设阈值,则根据地图数据对现实库进行更新,并将地图数据载入历史库;若关联度小于预设阈值,则将地图数据载入现实库,以实现对数据库的更新和有序管理。
图17为本申请一实施例提供的一种车辆终端的框图,如图17所示,该车辆终端包括感知单元11、处理单元12和获取单元13。
感知单元11用于获取车辆的第一基本安全信息报文,第一基本安全信息报文包括在安全事件发生时采集到的车辆的信息报文。
在本实施例中,感知单元11可以包含自车感知系统模块和车联网模块,其中自车感知系统模块是指GPS、安全控制单元、视觉传感器和激光传感器等,车联网模块是指V2V/V2P/V2I模块等。
处理单元12用于从第一基本安全信息报文中,获取第一基本安全信息数据,第一基本安全信息数据包括车辆的参数信息和扩展安全信息,车辆的参数信息用于表示车辆的行驶状态和外观形态,扩展安全信息用于表示车辆和道路的安全状态。
获取单元13用于根据第一基本安全信息数据进行模型化处理生成地图数据。
图18为本申请另一实施例提供的一种车辆终端的框图,如图18所示,处理单元12包括过滤子单元121、质量控制子单元122和队列控制单元123。
过滤子单元121用于对第一基本安全信息报文进行时间域和空间域的筛选处理,获取第二基本安全信息报文.
在本实施例中,过滤子单元121根据时间、空间、属性等几个维度的过滤规则,对感知单元(自车感知系统、车联网系统)实时发送的自车、它车的第一基本安全信息报文进行过滤。
质量控制子单元122用于对第二基本安全信息报文的数据质量进行校验,获取第三基本安全信息报文。
在本实施例中,质量控制子单元122根据第二基本安全信息报文的结构规范、专用短程通信技术的(Dedicated Short Range Communications,DSRC)通信协议规范、置信度评估模型计算第二基本安全信息报文质量等级,丢弃不满足质量要求的数据。
队列控制单元123用于对第三基本安全信息报文进行排序和队列化管理,获取第一基本安全信息数据。
在本实施例中,队列控制单元123对第三基本安全信息消息按照时间、空间两个维度进行排序,通过构建优先队列,实现报文按照优先级的有效排列。
在本实施例中,第一基本安全信息报文经过过滤、质量控制、队列控制等操作后,形成第一基本安全信息数据,图19为本申请提供的一种第一基本安全信息数据的格式,如图19所示,自上往下的信息分别是:
基本安全信息报文首行记录报文的时间戳,该时间戳为时间标准时间(Coordinated Universal Time,UTC Time)。
基本安全信息Part-1部分数据,包括车辆位置(Position)和车辆状态(State)等车辆基本信息。其中,车辆位置包括纬度(latitude)、经度(Longitude)、海拔(Elevation)、精度(Accuracy)等信息,车辆状态包括速度(Speed)、航向(Heading)等信息。
基本安全信息Part-2部分数据,包括红绿灯(Hazard lights)、防抱死系统(antilock brake system,ABS)、紧急制动(HardBraking)、无线电数据包(RTCM package)等车辆安全信息扩展数据。这部分数据是动态地图层的核心组成部分,只有包含Part-2部分的基本安全信息才用于地图构图。
可选地,过滤子单元121具体用于获取车辆自身的位置信息和当前时间戳;根据车辆自身的位置信息、当前时间戳、预设的时间范围和空间范围对第一基本安全信息报文进行数据过滤,获取第二基本安全信息报文。
可选地,质量控制子单元122具体用于检查第二基本安全信息报文是否符合数据质量标准;数据质量标准包括数据完整度和数据准确度;若第二基本安全信息报文符合数据质量标准,则根据预设的置信度输出第三基本安全信息报文;若第二基本安全信息报文不符合数据质量标准,则丢弃第二基本安全信息报文。
可选地,质量控制子单元122根据预设的置信度输出第三基本安全信息报文,具体包括:质量控制子单元122计算第二基本安全信息报文的置信度;若第二基本安全信息报文的置信度大于或者等于预设的置信度阈值,则将第二基本安全信息报文作为第三基本安全信息报文;若第二基本安全信息报文的置信度小于预设的置信度阈值,则丢弃第二基本安全信息报文。
可选地,队列控制单元123具体用于根据第三基本安全信息报文构建基本安全信息队列;根据预先定义的时间和空间排序规则对基本安全信息队列进行排序,获取第一基本安全信息数据。
可选地,获取单元13具体用于根据第一基本安全信息数据获取基本安全信息的数据模型;根据数据模型获取第一基本安全信息数据对应的基本安全信息要素;基本安全信息要素包括几何数据、元数据、安全数据文件以及几何数据和安全数据文件之间的关联关系;根据基本安全信息要素构建地图数据。
在本实施例中,根据基本安全信息数据结构规范对第一基本安全信息数据进行抽取和转换,Part1部分提取为空间几何数据及元数据,Part2部分提取为二进制数据文件,形成基本安全信息动态地图的基本数据结构。
图20为本申请另一实施例提供的一种车辆终端的框图,如图20所示,该车辆终端还包括数据管理单元14。
数据管理单元14用于确定第二基本安全信息数据与地图数据的关联度,第二基本安全信息数据为从云端服务器获取到的基本安全信息数据;若关联度大于或等于预设阈值,则根据地图数据对第二基本安全信息数据进行更新;若关联度小于预设阈值,则将地图数据载入本地地图数据库。
在本实施例中,将地图数据与自车从云端下载的第二基本安全信息数据动态比对后,对有关联的数据进行更新和索引重建,无关联的数据直接载入车端的空间数据库和文件数据库。
可选地,如图20所示,车辆终端还包括发送单元15。
发送单元15用于将地图数据发送给云端服务器,以使云端服务器进行云端数据库的更新。
本申请实施例提供的车辆终端的实现原理与有益效果的详细描述可参见图3-图12所述方法实施例,此处不再赘述。
图21为本申请一实施例提供的一种服务器的框图,如图21所示,该服务器包括:
获取单元21用于获取第一基本安全信息数据,第一基本安全信息数据包括车辆的参数信息和扩展安全信息,车辆的参数信息用于表示车辆的行驶状态和外观信息,扩展安全信息用于表示车辆和道路的安全状态。
处理单元22用于根据第一基本安全信息数据进行模型化处理生成地图数据。
可选地,处理单元22具体用于根据第一基本安全信息数据获取基本安全信息的数据模型;根据数据模型获取第一基本安全信息数据对应的基本安全信息要素;基本安全信息要素包括几何数据、元数据、安全数据文件以及几何数据和安全数据文件之间的关联关系;根据基本安全信息要素构建地图数据。
在本实施例中,根据基本安全信息数据结构规范对第一基本安全信息数据进行抽取和转换,Part1部分提取为空间几何数据及元数据,Part2部分提取为二进制数据文件,形成动态地图数据的基本数据结构。还可以将地图数据和云端存储当前动态地图数据的现实库进行比对,对有关联的现实库数据进行更新,同时历史数据序列化到分布式文件系统进行持久化存储和大数据分析;无关联数据时,直接将过程库数据载入现实库。
图22为本申请另一实施例提供的一种服务器的框图,如图22所示,该服务器还包括更新单元23。
更新单元23用于根据地图数据对云端数据库进行更新。
可选地,数据库包括空间数据库和文件数据库,则更新单元23具体用于将地图数据存储到空间数据库与文件数据库中,空间数据库存储车辆唯一标识、几何数据和元数据,文件数据库存储安全数据文件,空间数据库与文件数据库通过元数据关联。
可选地,数据库包括过程库、现实库、历史库;过程库用于存储第一基本安全信息数据;现实库用于存储地图数据;历史库用于存储从初始时刻开始获取到的全部的地图数据。
可选地,更新单元23具体用于获取地图数据与第二基本安全信息数据之间的关联 度;若关联度大于或等于预设阈值,则根据地图数据对现实库进行更新,并将地图数据载入历史库;若关联度小于预设阈值,则将地图数据载入现实库。
本申请实施例提供的服务器的实现原理与有益效果的详细描述可参见图13-图16所述方法实施例,此处不再赘述。
图23为本申请一实施例提供的一种无线通信设备的框图,如图23所示,该无线通信设备包括处理器31和存储器32。
存储器32用于存储指令,处理器31用于执行存储器32存储的指令,当处理器31执行存储器32存储的指令时,该无线通信设备用于执行如上述图3-图16任意一个实施例所述的方法。
可选地,如图23所示,该无线通信设备还可以包括发射器34、接收器33和传感器35,其中,发射器34用于向其它的设备发送数据,接收器33用于接收传感器35和其它设备发送的数据,传感器35用于采集车辆自身的速度、温度等信息。
本申请还提供一种可读存储介质,可读存储介质中存储有指令,当车辆终端的至少一个处理器执行该指令时,车辆终端执行上述任一方法实施例中提供的地图数据的获取方法。
本申请还提供一种可读存储介质,可读存储介质中存储有指令,当服务器的至少一个处理器执行该指令时,服务器执行上述任一方法实施例中提供的地图数据的获取方法。
本申请还提供一种程序产品,该程序产品包括指令,该指令存储在可读存储介质中。车辆终端的至少一个处理器可以从可读存储介质读取该指令,并执行该指令使得车辆终端实施任一方法实施例中提供的地图数据的获取方法。
本申请还提供一种程序产品,该程序产品包括指令,该指令存储在可读存储介质中。服务器的至少一个处理器可以从可读存储介质读取该指令,并执行该指令使得服务器实施上述任一方法实施例中提供的地图数据的获取方法。
在基站或者UE的具体实现中,应理解,处理器可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
实现上述各方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成。前述的程序可以存储于一可读取存储器中。该程序在执行时,执行包括上述各方法实施例的步骤;而前述的存储器(存储介质)包括:只读存储器(read-only memory,ROM)、RAM、快闪存储器、硬盘、固态硬盘、磁带(magnetic tape)、软盘(floppy disk)、光盘(optical disc)及其任意组合。

Claims (30)

  1. 一种地图数据的构建方法,其特征在于,包括:
    获取车辆的第一基本安全信息报文,所述第一基本安全信息报文包括在安全事件发生时采集到的所述车辆的信息报文;
    从所述第一基本安全信息报文中,获取第一基本安全信息数据,所述第一基本安全信息数据包括所述车辆的参数信息和扩展安全信息,所述车辆的参数信息用于表示所述车辆的行驶状态和外观形态,所述扩展安全信息用于表示车辆和道路的安全状态;
    根据所述第一基本安全信息数据进行模型化处理生成地图数据。
  2. 根据权利要求1所述的方法,其特征在于,从所述对所述第一基本安全信息报文中,获取第一基本安全信息数据,包括:
    对所述第一基本安全信息报文进行时间域和空间域的筛选处理,获取第二基本安全信息报文;
    对所述第二基本安全信息报文的数据质量进行校验,获取第三基本安全信息报文;
    对所述第三基本安全信息报文进行排序和队列化管理,获取所述第一基本安全信息数据。
  3. 根据权利要求2所述的方法,其特征在于,所述对所述第一基本安全信息报文进行时间域和空间域的筛选处理,获取第二基本安全信息报文,包括:
    获取所述车辆自身的位置信息和当前时间戳;
    根据所述车辆自身的位置信息、当前时间戳、预设的时间范围和空间范围对所述第一基本安全信息报文进行数据过滤,获取所述第二基本安全信息报文。
  4. 根据权利要求2所述的方法,其特征在于,所述对所述第二基本安全信息报文的数据质量进行校验,获取第三基本安全信息报文,包括:
    检查所述第二基本安全信息报文是否符合数据质量标准;所述数据质量标准包括数据完整度和数据准确度;
    若所述第二基本安全信息报文符合数据质量标准,则根据预设的置信度输出所述第三基本安全信息报文;
    若所述第二基本安全信息报文不符合数据质量标准,则丢弃所述第二基本安全信息报文。
  5. 根据权利要求4所述的方法,其特征在于,所述根据预设的置信度输出所述第三基本安全信息报文,包括:
    计算所述第二基本安全信息报文的置信度;
    若所述第二基本安全信息报文的置信度大于或者等于预设的置信度阈值,则将所述第二基本安全信息报文作为所述第三基本安全信息报文;
    若所述第二基本安全信息报文的置信度小于所述预设的置信度阈值,则丢弃所述第二基本安全信息报文。
  6. 根据权利要求2所述的方法,其特征在于,所述对所述第三基本安全信息报文进行排序和队列化管理,获取所述第一基本安全信息报文,包括:
    根据所述第三基本安全信息报文构建基本安全信息队列;
    根据预先定义的时间和空间排序规则对所述基本安全信息队列进行排序,获取所述第 一基本安全信息数据。
  7. 根据权利要求1-6任一项所述的方法,其特征在于,所述对所述第一基本安全信息数据进行模型化处理,获取所述地图数据,包括:
    根据所述第一基本安全信息数据获取基本安全信息的数据模型;
    根据所述数据模型获取所述第一基本安全信息数据对应的基本安全信息要素;所述基本安全信息要素包括几何数据、元数据、安全数据文件以及所述几何数据和所述安全数据文件之间的关联关系;
    根据所述基本安全信息要素构建所述地图数据。
  8. 根据权利要求1-7任一项所述的方法,其特征在于,所述方法还包括:
    确定第二基本安全信息数据与所述地图数据的关联度,所述第二基本安全信息数据为从云端服务器获取到的基本安全信息数据;
    若所述关联度大于或等于预设阈值,则根据所述地图数据对所述第二基本安全信息数据进行更新;
    若所述关联度小于预设阈值,则将所述地图数据载入本地地图数据库。
  9. 根据权利要求1-8任一项所述的方法,其特征在于,所述方法还包括:
    将所述地图数据发送给云端服务器,以使所述云端服务器进行云端数据库的更新。
  10. 一种地图数据的构建方法,其特征在于,包括:
    获取第一基本安全信息数据,所述第一基本安全信息数据包括所述车辆的参数信息和扩展安全信息,所述车辆的参数信息用于表示所述车辆的行驶状态和外观信息,所述扩展安全信息用于表示车辆和道路的安全状态;
    根据所述第一基本安全信息数据进行模型化处理生成所述地图数据。
  11. 根据权利要求10所述的方法,其特征在于,所述对所述第一基本安全信息数据进行模型化处理,获取所述地图数据,包括:
    根据所述第一基本安全信息数据获取基本安全信息的数据模型;
    根据所述数据模型获取所述第一基本安全信息数据对应的基本安全信息要素;所述基本安全信息要素包括几何数据、元数据、安全数据文件以及所述几何数据和所述安全数据文件之间的关联关系;
    根据所述基本安全信息要素构建所述地图数据。
  12. 根据权利要求11所述的方法,其特征在于,所述方法还包括:
    根据所述地图数据对云端数据库进行更新。
  13. 根据权利要求12所述的方法,其特征在于,所述数据库包括空间数据库和文件数据库,则所述根据所述地图数据对所述云端的数据库进行更新,包括:
    将所述地图数据存储到所述空间数据库与所述文件数据库中,所述空间数据库存储车辆唯一标识、几何数据和所述元数据,所述文件数据库存储所述安全数据文件,所述空间数据库与所述文件数据库通过所述元数据关联。
  14. 根据权利要求12所述的方法,其特征在于,所述数据库包括过程库、现实库、历史库;
    所述过程库用于存储所述第一基本安全信息数据;
    所述现实库用于存储所述地图数据;
    所述历史库用于存储从初始时刻开始获取到的全部的所述地图数据。
  15. 根据权利要求14所述的方法,其特征在于,所述根据所述地图数据对云端的数据库进行更新,包括:
    获取所述地图数据与所述第二基本安全信息数据之间的关联度;
    若所述关联度大于或等于预设阈值,则根据所述地图数据对所述现实库进行更新,并将所述地图数据载入所述历史库;
    若所述关联度小于预设阈值,则将所述地图数据载入所述现实库。
  16. 一种车辆终端,其特征在于,包括:
    感知单元,用于获取车辆的第一基本安全信息报文,所述第一基本安全信息报文包括在安全事件发生时采集到的所述车辆的信息报文;
    处理单元,用于从所述第一基本安全信息报文中,获取第一基本安全信息数据,所述第一基本安全信息数据包括所述车辆的参数信息和扩展安全信息,所述车辆的参数信息用于表示所述车辆的行驶状态和外观形态,所述扩展安全信息用于表示车辆和道路的安全状态;
    获取单元,用于根据所述第一基本安全信息数据进行模型化处理生成所述地图数据。
  17. 根据权利要求16所述的车辆终端,其特征在于,所述处理单元包括:
    过滤子单元,用于对所述第一基本安全信息报文进行时间域和空间域的筛选处理,获取第二基本安全信息报文;
    质量控制子单元,用于对所述第二基本安全信息报文的数据质量进行校验,获取第三基本安全信息报文;
    队列控制单元,用于对所述第三基本安全信息报文进行排序和队列化管理,获取所述第一基本安全信息数据。
  18. 根据权利要求17所述的车辆终端,其特征在于,所述过滤子单元具体用于获取所述车辆自身的位置信息和当前时间戳;
    根据所述车辆自身的位置信息、当前时间戳、预设的时间范围和空间范围对所述第一基本安全信息报文进行数据过滤,获取所述第二基本安全信息报文。
  19. 根据权利要求17所述的车辆终端,其特征在于,所述质量控制子单元具体用于检查所述第二基本安全信息报文是否符合数据质量标准;所述数据质量标准包括数据完整度和数据准确度;若所述第二基本安全信息报文符合数据质量标准,则根据预设的置信度输出所述第三基本安全信息报文;若所述第二基本安全信息报文不符合数据质量标准,则丢弃所述第二基本安全信息报文。
  20. 根据权利要求19所述的车辆终端,其特征在于,所述质量控制子单元根据预设的置信度输出所述第三基本安全信息报文,具体包括:
    所述质量控制子单元计算所述第二基本安全信息报文的置信度;若所述第二基本安全信息报文的置信度大于或者等于预设的置信度阈值,则将所述第二基本安全信息报文作为所述第三基本安全信息报文;若所述第二基本安全信息报文的置信度小于所述预设的置信度阈值,则丢弃所述第二基本安全信息报文。
  21. 根据权利要求17所述的车辆终端,其特征在于,所述队列控制单元具体用于根据所述第三基本安全信息报文构建基本安全信息队列;
    根据预先定义的时间和空间排序规则对所述基本安全信息队列进行排序,获取所述第一基本安全信息数据。
  22. 根据权利要求16-21任一项所述的车辆终端,其特征在于,所述获取单元具体用于根据所述第一基本安全信息数据获取基本安全信息的数据模型;根据所述数据模型获取所述第一基本安全信息数据对应的基本安全信息要素;所述基本安全信息要素包括几何数据、元数据、安全数据文件以及所述几何数据和所述安全数据文件之间的关联关系;根据所述基本安全信息要素构建所述地图数据。
  23. 根据权利要求16-22任一项所述的车辆终端,其特征在于,所述车辆终端还包括:
    数据管理单元,用于确定第二基本安全信息数据与所述地图数据的关联度,所述第二基本安全信息数据为从云端服务器获取到的基本安全信息数据;若所述关联度大于或等于预设阈值,则根据所述地图数据对所述第二基本安全信息数据进行更新;若所述关联度小于预设阈值,则将所述地图数据载入本地地图数据库。
  24. 根据权利要求16-23任一项所述的车辆终端,其特征在于,所述车辆终端还包括:
    发送单元,用于将所述地图数据发送给云端服务器,以使所述云端服务器进行云端数据库的更新。
  25. 一种服务器,其特征在于,包括:
    获取单元,用于获取第一基本安全信息数据,所述第一基本安全信息数据包括所述车辆的参数信息和扩展安全信息,所述车辆的参数信息用于表示所述车辆的行驶状态和外观信息,所述扩展安全信息用于表示车辆和道路的安全状态;
    处理单元,用于根据所述第一基本安全信息数据进行模型化处理生成所述地图数据。
  26. 根据权利要求25所述的服务器,其特征在于,所述处理单元具体用于根据所述第一基本安全信息数据获取基本安全信息的数据模型;根据所述数据模型获取所述第一基本安全信息数据对应的基本安全信息要素;所述基本安全信息要素包括几何数据、元数据、安全数据文件以及所述几何数据和所述安全数据文件之间的关联关系;根据所述基本安全信息要素构建所述地图数据。
  27. 根据权利要求26所述的服务器,其特征在于,所述服务器还包括:
    更新单元,用于根据所述地图数据对云端数据库进行更新。
  28. 根据权利要求27所述的服务器,其特征在于,所述数据库包括空间数据库和文件数据库,则所述更新单元具体用于将所述地图数据存储到所述空间数据库与所述文件数据库中,所述空间数据库存储车辆唯一标识、几何数据和所述元数据,所述文件数据库存储所述安全数据文件,所述空间数据库与所述文件数据库通过所述元数据关联。
  29. 根据权利要求27所述的服务器,其特征在于,所述数据库包括过程库、现实库、历史库;
    所述过程库用于存储所述第一基本安全信息数据;
    所述现实库用于存储所述地图数据;
    所述历史库用于存储从初始时刻开始获取到的全部的所述地图数据。
  30. 根据权利要求29所述的服务器,其特征在于,所述更新单元具体用于获取所述地图数据与所述第二基本安全信息数据之间的关联度;若所述关联度大于或等于预设阈值,则根据所述地图数据对所述现实库进行更新,并将所述地图数据载入所述历史库;若 所述关联度小于预设阈值,则将所述地图数据载入所述现实库。
PCT/CN2018/105680 2017-09-15 2018-09-14 地图数据的构建方法和设备 WO2019052533A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP18855732.6A EP3674920A4 (en) 2017-09-15 2018-09-14 METHOD AND DEVICE FOR CONSTRUCTING MAP DATA
JP2020515723A JP7059362B2 (ja) 2017-09-15 2018-09-14 地図データ構築方法、車両端末、およびサーバ
US16/818,662 US11810454B2 (en) 2017-09-15 2020-03-13 Map data construction method vehicle terminal, and server

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710831221.7A CN109510851B (zh) 2017-09-15 2017-09-15 地图数据的构建方法和设备
CN201710831221.7 2017-09-15

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/818,662 Continuation US11810454B2 (en) 2017-09-15 2020-03-13 Map data construction method vehicle terminal, and server

Publications (1)

Publication Number Publication Date
WO2019052533A1 true WO2019052533A1 (zh) 2019-03-21

Family

ID=65722444

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/105680 WO2019052533A1 (zh) 2017-09-15 2018-09-14 地图数据的构建方法和设备

Country Status (5)

Country Link
US (1) US11810454B2 (zh)
EP (1) EP3674920A4 (zh)
JP (1) JP7059362B2 (zh)
CN (1) CN109510851B (zh)
WO (1) WO2019052533A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210038451A (ko) * 2020-06-09 2021-04-07 베이징 바이두 넷컴 사이언스 테크놀로지 컴퍼니 리미티드 모델링 노선의 검증 방법, 장치, 무인 자동차 및 저장매체
WO2021103514A1 (zh) * 2019-11-30 2021-06-03 华为技术有限公司 一种基于车联网的动态信息发送方法及设备
CN113312410A (zh) * 2021-06-10 2021-08-27 平安证券股份有限公司 数据图谱的构建方法、数据查询方法及终端设备
CN113393592A (zh) * 2021-06-02 2021-09-14 中寰卫星导航通信有限公司黑龙江分公司 基于车载终端的全流程检测方法、装置、设备及介质
EP4113934A4 (en) * 2020-03-20 2023-08-09 Huawei Technologies Co., Ltd. MAP DATA COLLECTION METHOD, DEVICE AND SYSTEM

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109737977A (zh) * 2018-12-10 2019-05-10 北京百度网讯科技有限公司 自动驾驶车辆定位方法、装置及存储介质
CN110971650B (zh) * 2019-03-25 2022-01-11 重庆长安汽车股份有限公司 基于v2x系统的协同感知系统、方法及车辆
CN110275883A (zh) * 2019-05-17 2019-09-24 浙江吉利控股集团有限公司 一种高精度地图存储系统及方法
CN110351177B (zh) * 2019-07-08 2021-07-23 浙江吉利控股集团有限公司 一种数据封装方法及装置
CN110542914B (zh) * 2019-09-10 2023-03-10 江西理工大学 一种3s无缝集成的土地执法野外动态巡查方法
CN113196361A (zh) * 2019-11-30 2021-07-30 华为技术有限公司 一种通信方法及装置
CN112995944A (zh) * 2019-12-18 2021-06-18 启碁科技股份有限公司 车辆预警的方法、远程信息处理控制单元及装置
CN111310230B (zh) * 2020-02-10 2023-04-14 腾讯云计算(北京)有限责任公司 一种空间数据处理方法、装置、设备及介质
CN111986347B (zh) * 2020-07-20 2022-07-22 汉海信息技术(上海)有限公司 设备管理方法、装置、电子设备及存储介质
CN112927384B (zh) * 2021-01-13 2022-02-18 南斗六星系统集成有限公司 一种3d数字沙盘车辆仿真的数据传输方法和系统
CN113268555B (zh) * 2021-05-26 2024-05-14 深圳市有方科技股份有限公司 多类型数据的地图生成方法、装置和计算机设备
CN113890587B (zh) * 2021-09-28 2023-06-23 浙江嘉兴数字城市实验室有限公司 一种基于bds短报文的车辆安全信息数据交换方法
DE102022113112A1 (de) 2022-05-24 2023-11-30 Cariad Se Verfahren und System zum Sammeln von Daten für Fahrzeuge
CN117354374B (zh) * 2023-12-06 2024-02-13 广东车卫士信息科技有限公司 基于物联网的数据传输方法及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104933856A (zh) * 2014-03-17 2015-09-23 径卫视觉科技(上海)有限公司 道路路况实时评估系统及方法
CN105644567A (zh) * 2015-12-29 2016-06-08 大陆汽车投资(上海)有限公司 基于adas的驾驶辅助系统
CN105976606A (zh) * 2016-07-25 2016-09-28 吉林大学 一种智能城市交通管理平台
CN106846863A (zh) * 2017-01-12 2017-06-13 叶昊 基于增强现实和云端智能决策的车联网事故黑点警告系统及方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8250150B2 (en) * 2004-01-26 2012-08-21 Forte Internet Software, Inc. Methods and apparatus for identifying and facilitating a social interaction structure over a data packet network
CN100547582C (zh) * 2004-02-17 2009-10-07 逄晓虎 一种获取交通信息的方法及系统
US20080074423A1 (en) * 2006-09-25 2008-03-27 Raytheon Company Method and System for Displaying Graphical Objects on a Digital Map
CN101334933B (zh) 2007-06-28 2012-04-04 日电(中国)有限公司 路况信息处理设备及其方法和路况信息集成装置及其方法
WO2009037164A1 (de) * 2007-09-13 2009-03-26 Continental Teves Ag & Co. Ohg Erstellung von qualitätsparametern einer digitalen karte
JP5181819B2 (ja) * 2008-05-15 2013-04-10 株式会社デンソー 危険情報収集配信装置
US20130151088A1 (en) * 2011-11-16 2013-06-13 Flextronics Ap, Llc Method and system for vehicle data collection regarding traffic
US9435654B2 (en) * 2013-06-01 2016-09-06 Savari, Inc. System and method for creating, storing, and updating local dynamic MAP database with safety attribute
CN103531024B (zh) * 2013-10-28 2015-04-22 武汉旭云科技有限公司 一种动态交通路网城市道路要素模型及其建模方法
US10410513B2 (en) * 2015-07-20 2019-09-10 Dura Operating, Llc Fusion of non-vehicle-to-vehicle communication equipped vehicles with unknown vulnerable road user
US10223380B2 (en) * 2016-03-23 2019-03-05 Here Global B.V. Map updates from a connected vehicle fleet
CN105929815B (zh) * 2016-05-30 2018-06-26 长安大学 大规模车辆实时监测诊断、远程服务与综合处理方法
CN107031600A (zh) * 2016-10-19 2017-08-11 东风汽车公司 基于高速公路的自动驾驶系统
US10437863B2 (en) * 2016-10-21 2019-10-08 Here Global B.V. Method and apparatus for hierarchical clustering of geographical data
US10429194B2 (en) * 2016-12-30 2019-10-01 DeepMap Inc. High definition map updates with vehicle data load balancing
JP2020514923A (ja) * 2017-03-23 2020-05-21 エルジー エレクトロニクス インコーポレイティド V2x通信装置及びそのv2xメッセージの送受信方法
US10317240B1 (en) * 2017-03-30 2019-06-11 Zoox, Inc. Travel data collection and publication

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104933856A (zh) * 2014-03-17 2015-09-23 径卫视觉科技(上海)有限公司 道路路况实时评估系统及方法
CN105644567A (zh) * 2015-12-29 2016-06-08 大陆汽车投资(上海)有限公司 基于adas的驾驶辅助系统
CN105976606A (zh) * 2016-07-25 2016-09-28 吉林大学 一种智能城市交通管理平台
CN106846863A (zh) * 2017-01-12 2017-06-13 叶昊 基于增强现实和云端智能决策的车联网事故黑点警告系统及方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021103514A1 (zh) * 2019-11-30 2021-06-03 华为技术有限公司 一种基于车联网的动态信息发送方法及设备
EP4113934A4 (en) * 2020-03-20 2023-08-09 Huawei Technologies Co., Ltd. MAP DATA COLLECTION METHOD, DEVICE AND SYSTEM
KR20210038451A (ko) * 2020-06-09 2021-04-07 베이징 바이두 넷컴 사이언스 테크놀로지 컴퍼니 리미티드 모델링 노선의 검증 방법, 장치, 무인 자동차 및 저장매체
US11619498B2 (en) 2020-06-09 2023-04-04 Beijing Baidu Netcom Science Technology Co., Ltd. Verification method and device for modeling route, unmanned vehicle, and storage medium
KR102524988B1 (ko) * 2020-06-09 2023-04-21 베이징 바이두 넷컴 사이언스 테크놀로지 컴퍼니 리미티드 모델링 노선의 검증 방법, 장치, 무인 자동차 및 저장매체
CN113393592A (zh) * 2021-06-02 2021-09-14 中寰卫星导航通信有限公司黑龙江分公司 基于车载终端的全流程检测方法、装置、设备及介质
CN113393592B (zh) * 2021-06-02 2022-11-04 中寰卫星导航通信有限公司黑龙江分公司 基于车载终端的全流程检测方法、装置、设备及介质
CN113312410A (zh) * 2021-06-10 2021-08-27 平安证券股份有限公司 数据图谱的构建方法、数据查询方法及终端设备
CN113312410B (zh) * 2021-06-10 2023-11-21 平安证券股份有限公司 数据图谱的构建方法、数据查询方法及终端设备

Also Published As

Publication number Publication date
CN109510851B (zh) 2022-01-04
US20200219388A1 (en) 2020-07-09
EP3674920A1 (en) 2020-07-01
JP7059362B2 (ja) 2022-04-25
EP3674920A4 (en) 2020-07-01
US11810454B2 (en) 2023-11-07
JP2020533714A (ja) 2020-11-19
CN109510851A (zh) 2019-03-22

Similar Documents

Publication Publication Date Title
WO2019052533A1 (zh) 地图数据的构建方法和设备
US11060882B2 (en) Travel data collection and publication
US11520331B2 (en) Methods and apparatus to update autonomous vehicle perspectives
RU2693400C2 (ru) Виртуальная карта транспортных средств
US10567923B2 (en) Computation service for mobile nodes in a roadway environment
US11367346B2 (en) Digitizing and mapping the public space using collaborative networks of mobile agents and cloud nodes
WO2021063006A1 (zh) 驾驶预警方法、装置、电子设备和计算机存储介质
CN117056558A (zh) 使用边缘计算的分布式视频存储和搜索
JP6997301B2 (ja) デジタル地図のデジタルモデルを作成および/または更新するためのシステム
WO2021135948A1 (zh) 一种数据传输方法和装置
CN110830555B (zh) 无人驾驶设备的数据处理方法、控制装置及存储介质
WO2021036210A1 (zh) 一种定位方法及定位装置
WO2022156309A1 (zh) 一种轨迹预测方法、装置及地图
US20230103687A1 (en) Vehicle driving detection method and apparatus, vehicle driving warning method and apparatus, electronic device, and storage medium
WO2022083487A1 (zh) 生成高精度地图的方法、装置和计算机可读存储介质
CN111380544A (zh) 车道线的地图数据生成方法及装置
WO2023000968A1 (zh) 一种地图、地图生成方法及装置
US20230351053A1 (en) Data Processing Method and Apparatus, and Computer-Readable Storage Medium
CN111291775B (zh) 车辆定位方法、设备及系统
US11024175B2 (en) Adaptive vehicle-infrastructure communications
CN116583891A (zh) 用于车辆核查和验证的危急场景识别
WO2023083043A1 (zh) 一种不可通行区域确认方法、装置、设备及可读存储介质
US20220172295A1 (en) Systems, methods, and devices for aggregating and quantifying telematics data
JP7232727B2 (ja) 地図データ管理装置及び地図データ管理方法
CN112639764A (zh) 汽车出行规律的分析方法、服务器及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18855732

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020515723

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018855732

Country of ref document: EP

Effective date: 20200327