WO2021147637A1 - 车道推荐方法、装置及车载通信设备 - Google Patents

车道推荐方法、装置及车载通信设备 Download PDF

Info

Publication number
WO2021147637A1
WO2021147637A1 PCT/CN2020/141560 CN2020141560W WO2021147637A1 WO 2021147637 A1 WO2021147637 A1 WO 2021147637A1 CN 2020141560 W CN2020141560 W CN 2020141560W WO 2021147637 A1 WO2021147637 A1 WO 2021147637A1
Authority
WO
WIPO (PCT)
Prior art keywords
lane
vehicle
target vehicle
information
acceleration
Prior art date
Application number
PCT/CN2020/141560
Other languages
English (en)
French (fr)
Inventor
张�浩
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2021147637A1 publication Critical patent/WO2021147637A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0968Systems involving transmission of navigation instructions to the vehicle
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]

Definitions

  • This application belongs to the field of communication technology, and in particular relates to a lane recommendation method, device, and vehicle-mounted communication equipment.
  • the problem of vehicle congestion is becoming more and more frequent.
  • the driver usually faces the problem of lane selection, that is, how to choose a suitable lane on the congested road so that the vehicle can efficiently pass the congested road.
  • the vehicle's own sensors such as lidar, video camera, etc., are usually used to perceive the movement of moving objects around the target vehicle, and calculate the flow velocity information of the lane according to the obtained parameters to obtain a better lane selection. Program.
  • the vehicle's sensors are easily restricted by external conditions, they have weak adaptability to the scene, such as blockage of large vehicles or heavy rain, and decreased weather brightness. This reduces the ability of the sensor to collect information.
  • the flow rate information of the lane it is very difficult. It is easy because the accuracy of lane recommendation is not high, which is not conducive to reducing the user's congestion time, the efficiency of passing congested road sections is not high, and the price of radar equipment is usually expensive, which is not conducive to popularization.
  • the embodiments of the present application provide a lane recommendation method, device, and vehicle-mounted communication equipment, which can solve the problem that lane recommendation in the prior art is easily restricted by external conditions and the accuracy of lane recommendation is not high, which is not conducive to reducing user congestion. Time, the efficiency of passing congested road sections is not high, and it is not conducive to the problem of popularization.
  • an embodiment of the present application provides a lane recommendation method.
  • the lane recommendation method includes: obtaining lane information of the road where the target vehicle is currently located through in-vehicle communication technology; receiving vehicle data of surrounding vehicles of the target vehicle through in-vehicle communication technology According to the lane information and the vehicle data, determine the location of the surrounding vehicles in the lane; according to the vehicle data and the location of the surrounding vehicles in the lane, determine the driving parameters of each lane to be selected by the target vehicle; according to the The driving parameters of each lane to be selected by the target vehicle determine the travel time of the target vehicle through the predetermined road section, and the lane recommendation is made according to the determined travel time.
  • the lane information of the current location of the target vehicle can be obtained by parsing the received information.
  • the target vehicle can be obtained, that is, the number of lanes and lane position of the road where the driver is driving the vehicle; the vehicle data sent by the surrounding vehicles of the target vehicle can be received through the on-board communication technology.
  • the vehicle communication technology can effectively avoid the interference of environmental factors and improve the accuracy of the acquired vehicle data.
  • the driving parameters of each lane to be selected by the target vehicle can be further determined.
  • the travel time required for the target vehicle to pass through the predetermined road section in different lanes can be determined.
  • the travel time the lane corresponding to the smaller travel time can be selected and recommended to the user, so that the lane can be selected more accurately.
  • the step of obtaining the lane information of the road where the target vehicle is currently located through the on-board communication technology includes: obtaining the position of the vehicle on the road where the target vehicle is currently located and the change information of the position of the vehicle through the on-board communication technology; The position of the vehicle and the change information of the position of the vehicle are fitted to obtain the lane information in front of the target vehicle. According to the change information of the position of the vehicle, the driving direction of the vehicle on the road where the target vehicle is currently located can be obtained, combined with the driving direction of the target vehicle itself, the vehicle on the road that is in the same driving direction as the target vehicle can be obtained .
  • a vehicle located in front of the target vehicle can be obtained.
  • the lane information in front of the target vehicle can be obtained by fitting.
  • the in-vehicle communication technology is a communication method based on the long-term evolution technology-vehicle communication LTE-V, or an access protocol based on the vehicle-specific short-range communication technology DSRC.
  • the step of performing lane recommendation according to the determined travel time includes: obtaining a driving operation instruction of the target vehicle; according to the driving operation instruction, determining a set of lanes to be selected corresponding to the driving operation instruction; Lane recommendation is performed based on the traffic time-consuming information of the candidate lanes in the candidate lane set. That is, the driving operation instructions of the driver can be collected in real time through the automobile bus, and the corresponding lane information can be selected according to the collected driving operation instructions.
  • the lanes that can be turned left can be filtered according to the lanes around the target vehicle, and the lanes that can be turned left can be filtered out
  • the lane finding the lane with the least passing time is recommended to the driver.
  • the driver's instruction to turn on the right turn light it means that the driver needs to drive to the right.
  • the lanes that can be turned to the right can be filtered according to the lanes of the target vehicle, and the lanes that can be turned to the right can be filtered out It is recommended to the driver to find the lane with the least passing time.
  • the method further includes: obtaining message information included in the vehicle data in each lane; detecting abnormal information of vehicles in each lane according to the message information; and according to the detected abnormal information , Update the drivable parameters of each lane.
  • the vehicle's vehicle condition information can be collected through the vehicle communication device, and the traffic time of the lane can be determined according to the collected vehicle condition information.
  • the abnormal information included in the vehicle condition information may include one of ABS abnormality of the anti-lock brake system, abnormality of the body stability control system, abnormality of the vehicle braking speed, abnormality of the lamp status, abnormality of the tires, abnormality of the airbag, and abnormality of the engine.
  • the abnormal information included in the vehicle condition information may include one of ABS abnormality of the anti-lock brake system, abnormality of the body stability control system, abnormality of the vehicle braking speed, abnormality of the lamp status, abnormality of the tires, abnormality of the airbag, and abnormality of the engine.
  • ABS abnormality of the anti-lock brake system abnormality of the body stability control
  • the step of determining the driving parameters of each lane to be selected by the target vehicle according to the vehicle data and the position of the surrounding vehicles in the lane includes: acquiring the information of each vehicle in front of the target vehicle in the same lane The driving speed, the number of vehicles in front of each vehicle, the angle between the heading of each vehicle and the direction of the lane; the average flow velocity of the lane is determined according to the driving speed of each vehicle, the number of vehicles in front, and the angle; and, obtaining the lane The size information of each vehicle inside; according to the size information of each vehicle, the acceleration of the lane is determined.
  • the average flow velocity of the lane can be determined. Then the acceleration of the lane is further calculated, and the speed of the vehicle in the lane can be determined according to the vehicle flow rate and the acceleration of the lane.
  • the average flow velocity of the lane can be based on the formula Determining, wherein: an average flow of lane V ', n is positioned in the same lane ahead of the target vehicle number of the vehicle, the angle [theta] i is the lane heading direction of the vehicle within the lane i, V i is the i-th vehicle Driving speed.
  • the average flow rate of the lane is not only related to the speed of the vehicle, but also related to the turning information of the vehicle in the lane. When the more vehicles turning in the lane, the smaller the average flow in the lane.
  • the acceleration of the lane can be obtained by obtaining the ratio information of the size information of each vehicle in the same lane to the reference size; formulating the reference acceleration based on the reference size, combining the ratio information, obtaining the size information of each vehicle in the same lane.
  • the acceleration of the vehicle is determined according to the size of the vehicle. Generally speaking, the larger the vehicle, the smaller the acceleration.
  • the acceleration can be adjusted according to the reference acceleration. For example, every time the size of the vehicle increases by X% relative to the reference size, the acceleration decreases by X% relative to the reference size.
  • the minimum acceleration of the vehicle in the lane can be selected based on the comparison of the acceleration of the multiple vehicles in the lane as the acceleration of the lane, that is, the target vehicle in the lane Acceleration.
  • the distance required for the target vehicle to travel through the predetermined road section is further determined according to the position of the target vehicle, and the travel time of the target vehicle through the predetermined road section can be calculated.
  • historical driving information of the target vehicle can also be obtained; according to the historical driving information, the probability corresponding to the different driving directions of the target vehicle at the intersection is determined; when the target vehicle turns left at the intersection Or if the probability of a straight driving direction is greater than a predetermined value, the set of lanes that matches the vehicle driving direction of the target vehicle is determined based on the driving direction with the probability greater than the predetermined value. If it is predicted that the vehicle will turn left at the intersection, the left-turn lane is screened out. For example, it can include, for example, the left one lane, the left two lanes, etc., so as to improve the efficiency of lane screening.
  • the probability of the target vehicle in different driving directions at the intersection can be determined.
  • the direction is determined to determine the target lane of the target vehicle. For example, when the vehicle turns to the left, the target lane with the shortest travel time is selected in the lane ahead of the left of the vehicle.
  • an embodiment of the present application provides a lane recommendation device.
  • the lane recommendation device includes: a lane information receiving unit for acquiring lane information of the road where the target vehicle is currently located through in-vehicle communication technology; and a vehicle data receiving unit using For receiving vehicle data of surrounding vehicles of the target vehicle through on-board communication technology; a vehicle position determining unit for determining the position of surrounding vehicles in the lane according to the lane information and the vehicle data; a driving parameter determining unit for determining the position of surrounding vehicles in the lane according to the lane information and the vehicle data; The vehicle data and the location of the surrounding vehicles in the lane determine the driving parameters of each lane to be selected by the target vehicle; the lane recommendation unit is used to determine the target vehicle's passage schedule according to the driving parameters of each lane to be selected by the target vehicle For the passage time of the road section, the lane recommendation is made according to the determined passage time.
  • an embodiment of the present application provides a vehicle-mounted communication device, including a memory, a processor, and a computer program stored in the memory and running on the processor, and the processor executes the computer program When the vehicle-mounted communication device implements the lane recommendation method according to any one of the first aspect.
  • the embodiments of the present application provide a computer-readable storage medium, and the computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, the first aspect is Any one of the lane recommendations.
  • the embodiments of the present application provide a computer program product, which when the computer program product runs on a terminal device, causes the terminal device to execute the lane recommendation method described in any one of the above-mentioned first aspects.
  • FIG. 1 is a schematic structural diagram of a vehicle-mounted communication device provided by an embodiment of the present application
  • FIG. 2 is a schematic diagram of an application scenario of a lane recommendation method provided by an embodiment of the present application
  • FIG. 3 is a schematic diagram of the implementation process of a lane recommendation method provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of lane information obtained by analyzing information sent by a roadside unit according to an embodiment of the present application
  • FIG. 5 is a schematic diagram of a vehicle-mounted communication device provided by another embodiment of the present application.
  • FIG. 6 is a schematic diagram of an implementation process of determining vehicle acceleration according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of an implementation process of determining a lane speed according to another embodiment of the present application.
  • Fig. 8 is a schematic diagram of a lane recommendation device provided by an embodiment of the present application.
  • the term “if” can be construed as “when” or “once” or “in response to determination” or “in response to detecting “.
  • the phrase “if determined” or “if detected [described condition or event]” can be interpreted as meaning “once determined” or “in response to determination” or “once detected [described condition or event]” depending on the context ]” or “in response to detection of [condition or event described]”.
  • the lane recommendation method provided by the embodiments of this application can be applied to mobile phones, tablet computers, wearable devices, vehicle-mounted devices, augmented reality (AR)/virtual reality (VR) devices, notebook computers, and super mobile personal computers.
  • AR augmented reality
  • VR virtual reality
  • PDA personal digital assistant
  • the embodiments of this application do not impose any restrictions on the specific types of terminal devices.
  • the prompting methods given in the embodiments of the present application include, but are not limited to, one or more of audio reminders, video reminders, vibration reminders, VR/AR reminders, indicator lights, or other auxiliary means or settings that can produce a reminder effect.
  • the terminal device may be a station (STAION, ST) in a WLAN, a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, Personal Digital Assistant (PDA) devices, handheld devices with wireless communication functions, computing devices or other processing devices connected to wireless modems, in-vehicle devices, car networking terminals, computers, laptop computers, handheld communication devices , Handheld computing equipment, satellite wireless equipment, wireless modem cards, TV set top boxes (STB), customer premise equipment (customer premise equipment, CPE), and/or other equipment used to communicate on wireless systems and download
  • a first-generation communication system for example, a mobile terminal in a 5G network or a mobile terminal in a public land mobile network (PLMN) network that will evolve in the future.
  • PLMN public land mobile network
  • the wearable device can also be a general term for applying wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, Watches, clothing and shoes, etc.
  • a wearable device is a portable device that is directly worn on the body or integrated into the user's clothes or accessories.
  • Wearable devices are not only a kind of hardware device, but also realize powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-sized, complete or partial functions that can be implemented without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, and need to be used in conjunction with other devices such as smart phones. , Such as all kinds of smart bracelets and smart jewelry for physical sign monitoring.
  • FIG. 1 is a schematic structural diagram of a vehicle-mounted communication terminal device for implementing the lane recommendation method provided by an embodiment of the application.
  • the vehicle-mounted communication terminal device 1 of this embodiment includes: at least one processor 10 (only one is shown in FIG. 1), a communication module 11, a memory 12, and storage in the memory 12 and available in all A computer program 13 running on at least one processor 10 is described.
  • the processor 10 executes the computer program 13, the steps in any of the foregoing lane recommendation method embodiments are implemented.
  • the vehicle-mounted communication terminal device may include, but is not limited to, a processor 10, a communication module 11, and a memory 12.
  • FIG. 1 is only an example of the vehicle-mounted communication terminal device 1 and does not constitute a limitation on the vehicle-mounted communication terminal device 1. It may include more or less components than those shown in the figure, or a combination of certain components. Or different components, for example, may also include input and output devices, network access devices, and so on.
  • the so-called processor 10 may be a central processing unit (Central Processing Unit, CPU), and the processor 10 may also be other general-purpose processors, digital signal processors (Digital Signal Processors, DSPs), and application specific integrated circuits (Application Specific Integrated Circuits). , ASIC), ready-made programmable gate array (Field-Programmable Gate Array, FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, etc.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the processor can combine positioning data (such as GPS positioning data), vehicle data, and received V2X (car networking wireless communication technology) message data of other vehicles to define the operation monitoring area of the target vehicle, and can pass the V2X vehicle Networked communication technology identifies abnormal vehicles in each lane, such as vehicles with engine failures, vehicles with EPS failures, and so on.
  • positioning data such as GPS positioning data
  • vehicle data such as vehicle data
  • V2X vehicle networking wireless communication technology
  • V2X message data here can be V2X information defined by CSAE in China, or V2X information defined by other countries or regions outside of China.
  • the embodiments of this application mainly provide an implementation method that complies with the Chinese V2X information collection standard.
  • the V2X information mentioned above also exists in the V2X information standard of other countries or regions, so similar methods can still be used to obtain the above V2X information of the vehicle.
  • the communication module 11 can provide applications on network devices including wireless local area networks (WLAN) (such as Wi-Fi networks), Bluetooth, Zigbee, mobile communication networks, and global navigation satellite systems (GNSS). ), frequency modulation (FM), near field communication (NFC), infrared technology (infrared, IR), CAN bus, Ethernet interface and other communication solutions.
  • WLAN wireless local area networks
  • GNSS global navigation satellite systems
  • FM frequency modulation
  • NFC near field communication
  • infrared technology infrared, IR
  • CAN bus Ethernet interface and other communication solutions.
  • the communication module may be one or more devices integrating at least one communication processing module.
  • the communication module may include an antenna, and the antenna may have only one array element or an antenna array including multiple array elements.
  • the communication module can receive electromagnetic waves through an antenna, frequency-modulate and filter the electromagnetic wave signals, and send the processed signals to the processor.
  • the communication module can also receive the signal to be sent from the processor, frequency-modulate and amplify it, and convert it
  • the communication module may include a body bus, which is connected to the electronic control unit ECU of the vehicle, such as engine, wheels, brake sensors, etc., through the body bus to obtain various driving status data of the vehicle, including such as speed, steering wheel angle, high beam, etc. Related status information.
  • the communication module may also include an Ethernet interface, through which the alarm prompt information is sent to other ECUs in the vehicle or a display terminal on the vehicle to display the alarm information.
  • the memory 12 may be an internal storage unit of the vehicle-mounted communication terminal device 1 in some embodiments, such as a hard disk or memory of the vehicle-mounted communication terminal device 1. In other embodiments, the memory 12 may also be an external storage device of the in-vehicle communication terminal device 1, for example, a plug-in hard disk equipped on the in-vehicle communication terminal device 1, a smart memory card (Smart Media Card, SMC). ), Secure Digital (SD) card, Flash Card, etc. Further, the memory 12 may also include both an internal storage unit of the vehicle-mounted communication terminal device 1 and an external storage device.
  • the memory 12 is used to store an operating system, an application program, a boot loader (BootLoader), data, and other programs, such as the program code of the computer program. The memory 12 can also be used to temporarily store data that has been output or will be output.
  • the above-mentioned Figure 1 does not constitute a limitation on the structure of the vehicle-mounted communication device, and may include more or less components than shown in the figure, or a combination of some components, or different components, for example, the vehicle-mounted communication device may also display Screen, indicator lights, motors, controls (such as buttons), gyroscope sensors, acceleration sensors, etc.
  • FIG. 2 is a schematic diagram of an application scenario of a lane recommendation method provided by an embodiment of the application.
  • the front of the target vehicle includes multiple lanes, and each lane contains a number of congested vehicles with different vehicle models.
  • a roadside unit RSU (ROAD SIDE UNIT) is arranged at the corresponding position of the lane, and the vehicles in the lane, including the target vehicle, are provided with on-board communication equipment. in:
  • the roadside unit RSU may include a high-gain directional beam control read-write antenna and a radio frequency controller.
  • the high-gain directional beam control read-write antenna is a microwave transceiver module for data signal transmission and reception, modulation and demodulation, encoding and decoding, and radio frequency control.
  • the device is used to control the transmission and reception of data.
  • the roadside unit may communicate with the vehicle-mounted communication equipment installed on the vehicle through the long-term evolution technology-vehicle communication LTE-V communication method, or an access protocol based on the vehicle-specific short-range communication technology DSRC.
  • the roadside unit may store lane information corresponding to the installation location according to the installation location, and may send the stored lane information to the vehicle-mounted communication device that drives to communicate with it.
  • the lane information may include a lane ID, a location corresponding to the lane ID, and the like.
  • the vehicle-mounted communication device can be connected to the vehicle's electronic control unit ECU via a bus (such as CAN bus, etc.) to collect vehicle data, including basic safety messages BSM such as the vehicle's engine, wheels, and brake sensors, vehicle location information, and vehicle size information
  • a bus such as CAN bus, etc.
  • the vehicle-mounted communication device determines the position of the vehicle in the lane according to the acquired lane information and vehicle data, and determines the average flow velocity of each lane according to the moving speed of the vehicle and the position of the vehicle in the lane, and according to the vehicles in the lane Determine the acceleration of the lanes based on the size information, and calculate the travel time required for the target vehicle to pass through the predetermined road section from different lanes.
  • the lane with the shortest travel time can be selected, and it is recommended that the driver choose.
  • FIG. 3 shows a schematic flowchart of the lane recommendation method provided by the present application.
  • the method can be applied to the above-mentioned in-vehicle communication device 1.
  • the lane recommendation method includes:
  • step S301 the lane information of the road where the target vehicle is currently located is acquired through in-vehicle communication technology
  • the way to obtain the lane information of the road where the target vehicle is currently located through the in-vehicle communication technology may include:
  • Method 1 Obtain the MAP message broadcasted by the roadside unit RSU (Full English name: Road Side Unit) through the on-board communication technology, and analyze the MAP message to obtain the distribution of the lanes corresponding to the installation position of the roadside unit;
  • Method 2 Obtain the location information of other vehicles through on-board communication technology, and determine the location information of the lane based on the location information of other vehicles.
  • the MAP message can be broadcast in a broadcast mode.
  • the MAP message may include the distribution of lanes around the installation location of the roadside unit.
  • the installation location of the roadside unit may be an intersection location, and the MAP information may include the ID of the intersection lane, lane location, and derived point coordinates (coordinate points attributed to the lane derived from the lane, such as lane sensing points, etc.), Or it may also include the lane ID to which the lane is linked.
  • the location information of other vehicles is obtained through on-board communication technology, that is, the location information of other vehicles is obtained through vehicle-to-vehicle communication, or it may also include the size information and/or driving direction of the vehicle, according to the location of other vehicles Information, or also including size information and/or driving direction, can determine the distribution information of each lane and determine the location of each lane.
  • the direction of the lane can be determined according to the driving direction of the target vehicle, or the direction of the lane can also be determined according to the driving direction of other vehicles. direction.
  • the direction of the determined lane combined with the position of the vehicle on the road, it is determined that within the predetermined lane width range, the connected vehicle position points account for the total vehicle position points within the lane width range.
  • the line with greater than the predetermined value is the lane Midline position.
  • the driving direction of the target vehicle is the straight direction of the target vehicle on the congested road section.
  • the target vehicle it is determined that the direction of the vehicle is the north-south direction, within the preset width of the same lane, or within the lane width determined by the size information of other vehicles, and the vehicle position points connected according to the north-south line occupy the same lane width.
  • the line can be determined to be the middle line of the lane, and the influence of the turning vehicle on the lane estimation can be effectively eliminated.
  • the lane recommendation method described in this application may not be activated.
  • the target vehicle is the vehicle itself driven by the driver.
  • the target vehicle may be any vehicle in the lane that needs to pass on a congested road section.
  • the lane information of the road on which the vehicle is traveling can be updated according to the received MAP message sent by the roadside unit.
  • the lane information may include the number of lanes, the direction of the lane, the position of the lane, and the like.
  • the number of lanes included in the current road can be obtained according to the lane information included in the received MAP message.
  • the MAP message may include the driving direction corresponding to each lane, and the driving direction may include forward driving, left turning driving, right turning driving, and the like.
  • the driving direction may be predetermined by the lane position.
  • the location information corresponding to each lane can be determined according to the received MAP message.
  • the position information corresponding to the lane may be determined by the position of the lane line.
  • the position information of the lane may also include the position information of derivative points such as the vehicle sensing point.
  • FIG. 4 is a schematic diagram of lane information obtained by analyzing the information sent by the roadside unit.
  • the vehicle-mounted communication device receives the lane information broadcast by the roadside unit, which may include 5 lanes.
  • the lane position may be a position determined by the boundary line of the lane. In the determined lane, the direction of the left lane is left turn. The direction of the three lanes in the middle is the direction of going straight, and the direction of the right lane is the direction of turning right.
  • the lane information may also include information on whether the vehicle is allowed to change lanes. When the lane of the target vehicle is allowed to change to other lanes, it may further search for the lane with the shortest travel time based on other lanes allowed for lane change.
  • step S302 receiving vehicle data of surrounding vehicles of the target vehicle through in-vehicle communication technology
  • Vehicles passing in the lanes are equipped with on-board communication equipment, and the on-board communication equipment of the target vehicle can receive vehicle position information and the like sent by the on-board communication equipment of each vehicle on the road according to V2X communication.
  • the vehicle-mounted communication device can collect the basic safety information BSM of the target vehicle itself based on the vehicle body bus, and obtain the location information and other safety information of the target vehicle.
  • the in-vehicle communication technology may be a communication method based on the long-term evolution technology-vehicle communication LTE-V, or an access protocol based on the vehicle-specific short-range communication technology DSRC.
  • the LTE-V is a set of communication physical layer protocols based on V2I (vehicle-infrastructure communication) and V2V (vehicle-vehicle communication) of the surveillance communication network.
  • the DSRC is a traffic safety communication protocol based on the 5.9G frequency band, and the target communication range of DSRC is within 1 km. Compared with cellular communication and satellite communication, its communication distance is shorter.
  • FIG. 5 is a schematic diagram of an LTE-V-based in-vehicle communication device or an Internet of Vehicles processing module provided by an embodiment of the application.
  • the LTE-V-based in-vehicle communication equipment includes a vehicle body bus, a vehicle operation data analysis module, an LTE-V data packet data application algorithm processing module, a GPS data processing module, an LTE-V data packet network transmission layer processing module, a radio frequency module, LTE-V data access layer processing module, etc., including:
  • the body bus can be used to connect other electronic control units ECUs of the vehicle, such as transmitters, wheels, brake sensors, etc.
  • Vehicle data can be obtained through the body bus, including various driving status data of the vehicle, including speed, steering wheel angle, high beam switch status and special angle information.
  • the vehicle operation data analysis module can receive the driving state data collected by the vehicle body bus, complete the analysis of the vehicle data, and filter the vehicle data related to the present invention, which may include speed, heading, steering wheel angle, etc.
  • the LTE-V data packet data application algorithm processing module can combine vehicle data such as GPS data of the own vehicle (target vehicle) to process the V2X packet data of the distant vehicle received by the LTE-V network transmission layer processing module, and according to The speed information, size information, heading information, vehicle driving direction, and number of vehicles of other vehicles determine the travel time to pass through the predetermined road section.
  • vehicle data such as GPS data of the own vehicle (target vehicle) to process the V2X packet data of the distant vehicle received by the LTE-V network transmission layer processing module, and according to The speed information, size information, heading information, vehicle driving direction, and number of vehicles of other vehicles determine the travel time to pass through the predetermined road section.
  • the GPS data processing module is used to analyze GPS data received through a GPS antenna to obtain information such as latitude and longitude corresponding to the vehicle.
  • the LTE-V data packet network transmission layer processing module is used to complete the identification and extraction of the LTE-V network layer protocol stack header, and send the application layer data in the packet, such as the basic security message BSM, to the LTE-V data packet (V2X) Data application algorithm processing module.
  • the radio frequency module is used to collect radio frequency signals (wireless data) through the LTE-V antenna.
  • the LTE-V data access layer processing module is used to complete the processing of the 3GPP protocol stack of the LTE-V access layer, so that the air interface data can be correctly identified.
  • the vehicle-mounted communication device may also include an Ethernet driver or interface. Through the Ethernet driver or interface, the finally obtained collision risk of vehicles in the adjacent area can be wirelessly connected to the vehicle through the Ethernet.
  • Other ECUs or display terminals send warning messages to other ECUs in the car or display terminals on the car to display warning information.
  • step S303 determine the position of surrounding vehicles in the lane according to the lane information and the vehicle data
  • the lane information including the lane position can be obtained.
  • the vehicle data of surrounding vehicles in the scene where the target vehicle is located can be obtained.
  • the vehicle data includes the position information of other vehicles. .
  • the location of the surrounding vehicles of the target vehicle can be obtained.
  • the positioning information obtained by the target vehicle such as GPS positioning information, the location of the target vehicle and the driving direction of the target vehicle can be determined, and the vehicle location in the vehicle data of other surrounding vehicles can be combined to obtain the surrounding vehicles relative to the target.
  • the orientation information of the vehicle can determine the front vehicle in the driving direction of the target vehicle.
  • the size information, heading information, speed information, vehicle abnormality information, etc. of the surrounding vehicles can also be obtained according to the vehicle data of the surrounding vehicles of the target vehicle.
  • the vehicle abnormality information may include double flash abnormality, engine failure abnormality, ABS alarm, and the like.
  • step S304 determine the driving parameters of each lane to be selected by the target vehicle according to the vehicle data and the positions of the surrounding vehicles in the lane;
  • the driving parameters of the target vehicle in each lane may include the average flow velocity of the lane where the target vehicle is located, the acceleration of the target vehicle in the lane, and the like.
  • the realization process of determining the average flow velocity of the lane where the target vehicle is located can be obtained by obtaining the driving speed of each vehicle in front of the target vehicle in the same lane, the number of vehicles in front of each vehicle, and the angle between the heading of each vehicle and the direction of the lane. Determine the average flow velocity of the lane according to the driving speed of each vehicle, the number of vehicles in front, and the included angle.
  • the vehicle in front of the target vehicle in the lane After determining the lane where the average flow velocity needs to be calculated, obtain the vehicle in front of the target vehicle in the lane, and obtain the parameter information of the front vehicle, including the driving speed of each vehicle in front of the target vehicle, and the number of vehicles in front of the target vehicle , The heading of each vehicle in front of the target vehicle.
  • the traveling speed of each vehicle in front of the target vehicle can be obtained in real time through the on-board communication device, according to the traveling speed Vi of each vehicle located in the same lane obtained in real time, where i is the serial number of the vehicle in the same lane.
  • the number of vehicles in front of the target vehicle can be obtained in real time through the vehicle-mounted communication device of the number of vehicles included in the predetermined lane in the predetermined road section.
  • the heading of each vehicle can be obtained through the on-board communication device, the direction of the lane of the vehicle can be determined according to the direction of the lane line where the vehicle is located, and the heading and lane of each vehicle can be determined according to the heading of the vehicle and the direction of the lane of the vehicle The angle of the direction.
  • the average flow velocity corresponding to the lane can be determined. For example, you can use the formula Determine the average flow velocity of the lane, where: V′ is the average flow velocity of the lane, n is the number of vehicles in front of the target vehicle in the same lane, ⁇ i is the angle between the heading of the i-th vehicle in the lane and the direction of the lane, V i is the traveling speed of the i-th vehicle.
  • the above method can be used to calculate the average flow velocity corresponding to each lane in front of the target vehicle.
  • the calculated value can be updated according to a predetermined time interval.
  • the average flow velocity of the lane Since the parameters used to calculate the average flow rate, including the speed of each vehicle, the number of vehicles in front of the target vehicle, and the angle between the heading of each vehicle and the lane direction will change, the calculated value can be updated according to a predetermined time interval. The average flow velocity of the lane.
  • the acceleration of a single vehicle can be determined based on the size information of each vehicle in the lane, and then the acceleration of the lane can be determined based on the acceleration of the vehicles in the same lane.
  • the process of determining the acceleration of the lane according to the acceleration of the vehicle in the lane may be as shown in Figure 6, including:
  • step S601 obtain the ratio information of the size information of each vehicle in the same lane to the reference size
  • a corresponding relationship between the reference size and the reference acceleration can be preset.
  • the size of a certain model of vehicle can be selected as the reference size, and the acceleration of the car at the start of the congested section is the reference acceleration.
  • the acceleration of car A on the congested road section is 2.5G, which is about 2.45 m/(sec*sec).
  • step S602 draw up a reference acceleration based on a reference size, and combine the ratio information to obtain the relationship between the actual acceleration and the reference acceleration corresponding to the size information of each vehicle in the same lane;
  • the size information is inversely proportional to the magnitude of the acceleration, and the value corresponding to the reference acceleration can be reduced according to the ratio of the increase in the size of the vehicle to be calculated over the reference vehicle. For example, if the size of the vehicle to be calculated is increased by 10% compared to the reference vehicle, then the actual acceleration of the vehicle to be calculated is the reference acceleration reduced by 10%.
  • the ratio of the dimensions can be determined according to the ratio of the length, width and height of the vehicle. For example, when the length, width, and height of the vehicle to be calculated are increased by 10% on the basis of the length, width, and height of the reference vehicle, the acceleration is reduced by 10% on the basis of the reference acceleration. Actual acceleration.
  • the actual acceleration of the vehicle can also be determined according to the acquired model information of the vehicle.
  • step S603 the actual maximum acceleration limit of the target vehicle in each lane is determined according to the actual acceleration corresponding to each vehicle in the same lane.
  • the target vehicle After determining the actual acceleration of each vehicle in the same lane, the target vehicle will be affected by the acceleration of the vehicle in front of the target vehicle when driving in that lane, and the minimum acceleration of the vehicle in front of the lane restricts the entire lane.
  • the magnitude of the acceleration, therefore, the minimum acceleration in the lane can be selected as the acceleration of the lane.
  • the number of vehicles in the same lane in front of the target vehicle is 3, and it is determined that the acceleration of the first vehicle is 0.7a, the acceleration of the second vehicle is 0.5a, and the acceleration of the third vehicle is 0.9a , Or it can also include that the acceleration of the target vehicle is 1a, where a is the reference acceleration, and the minimum acceleration is selected as the acceleration of the lane, that is, the acceleration of the lane is 0.5a.
  • step S305 according to the driving parameters of the respective lanes to be selected by the target vehicle, the travel time of the target vehicle through the predetermined road section is determined, and the lane recommendation is performed according to the determined travel time.
  • the queuing distance S of the target vehicle through the predetermined road section can be determined according to the end position of the predetermined road section and the position of the target vehicle.
  • the location of the target vehicle can be obtained by the vehicle-mounted communication device through the CAN bus.
  • the travel time of passing the predetermined road section through the lane can be calculated. For example, according to the formula: Determine the transit time of the target vehicle through each lane, where: a is the acceleration of the passage, V'is the current average flow velocity of each lane, S is the queuing distance of the passage, and T is the transit time of the target vehicle through the lane.
  • the recommendation information can not only be used as a reminder to the manual driver, but also as a recommendation input for the automatic driving system.
  • the automatic driving system selects the lane according to the recommendation. .
  • the user's driving operation instruction can be collected in real time through the CAN bus, and when the driving operation instruction includes a steering instruction, the lane to be screened is adjusted in real time. For example, when it is detected that the user turns on the left turn light, the lane to be recommended is determined in the left lane of the target vehicle, and when it is detected that the user turns on the right turn light, the lane to be recommended is determined in the right lane of the target vehicle Lane. When the user does not operate the steering, the lane to be recommended is determined in the lane in front of the target vehicle (including the lane on the left and the lane on the right). According to the user's driving operation instruction, the recommended lane is selected accordingly, so that the recommended information is more effective.
  • the vehicle data of the vehicle ahead of the target vehicle may also include parsing the message information in the vehicle data of the vehicle ahead of the target vehicle to obtain abnormal information existing in the vehicle ahead. It may include one or more of ABS abnormality of the anti-lock braking system, abnormality of the body stability control system, abnormality of the vehicle braking speed, abnormality of the lamp status, abnormality of the tires, abnormality of the airbag, and abnormality of the engine.
  • ABS abnormality of the anti-lock braking system abnormality of the body stability control system
  • abnormality of the vehicle braking speed abnormality of the lamp status
  • abnormality of the tires abnormality of the airbag
  • abnormality of the engine abnormality of the engine.
  • a vehicle in a certain lane when an abnormality of a vehicle in a certain lane is detected, its acceleration can be adjusted to 0.05a, where a is the reference acceleration.
  • the travel time calculated according to the adjusted acceleration will be longer, so that the target vehicle can avoid the lane in time.
  • the safety information of the vehicle transported object can be obtained by analyzing the vehicle data, and the distance between the target vehicle and other vehicles can be determined correspondingly according to the safety information of the vehicle transported object.
  • the driving of the target vehicle may be controlled according to the preset correspondence between the safety index of the transported object and the safety distance, including controlling the driving speed and driving trajectory of the target vehicle.
  • the historical driving information of the target vehicle can also be obtained.
  • the current position of the target vehicle such as the driving data corresponding to the intersection position, can be found.
  • the driving direction is to recommend a lane for the driver according to the direction to be driven.
  • the user's driving direction information can be obtained more intelligently, so that the driver can choose the lane more intelligently.
  • FIG. 8 shows a structural block diagram of a lane recommendation device provided in an embodiment of the present application. For ease of description, only parts related to the embodiment of the present application are shown.
  • the device includes:
  • the lane information receiving unit 801 is configured to obtain lane information of the road where the target vehicle is currently located through the on-board communication technology;
  • the vehicle data receiving unit 802 is configured to receive vehicle data of the surrounding vehicles of the target vehicle through the on-board communication technology
  • the vehicle position determining unit 803 is configured to determine the positions of surrounding vehicles in the lane according to the lane information and the vehicle data;
  • the driving parameter determination unit 804 is configured to determine the driving parameters of each lane to be selected by the target vehicle according to the vehicle data and the position of the surrounding vehicles in the lane;
  • the lane recommendation unit 805 is configured to determine the travel time of the target vehicle through a predetermined road section according to the driving parameters of each lane to be selected by the target vehicle, and perform lane recommendation according to the determined travel time.
  • the lane recommendation unit includes:
  • Operation instruction acquisition subunit used to acquire the driving operation instruction of the target vehicle
  • a to-be-selected lane determination subunit configured to determine, according to the driving operation instruction, a set of to-be-selected lanes corresponding to the driving operation instruction
  • the lane recommendation subunit is used to perform lane recommendation according to the traffic time information of the lane to be selected in the set of lanes to be selected.
  • the lane recommendation device further includes:
  • the message information acquiring unit is used to acquire the message information included in the vehicle data in each lane;
  • An abnormal information detection unit configured to detect abnormal information of vehicles in each lane according to the message information
  • the driving parameter update unit is used to update the driving parameters of each lane according to the detected abnormal information.
  • the abnormal information includes one or more of ABS abnormality of the anti-lock brake system, abnormality of the body stability control system, abnormality of vehicle braking speed, abnormality of vehicle lights, abnormality of tires, abnormality of airbags, and abnormality of engine.
  • the driving parameter determination unit includes:
  • the data acquisition subunit is used to acquire the driving speed of each vehicle in front of the target vehicle in the same lane, the number of vehicles in front of each vehicle, and the angle between each vehicle's heading and the lane direction;
  • the average flow velocity determination subunit is used to determine the average flow velocity of the lane according to the driving speed of each vehicle, the number of vehicles in front, and the included angle;
  • the size information acquisition subunit is used to acquire the size information of each vehicle in the lane;
  • the acceleration determination subunit is used to determine the acceleration of the lane according to the size information of each vehicle.
  • the average flow rate determining subunit is used to:
  • V′ is the average flow velocity of the lane
  • n is the number of vehicles in front of the target vehicle in the same lane
  • ⁇ i is the angle between the heading of the i-th vehicle in the lane and the direction of the lane
  • V i is the traveling speed of the i-th vehicle.
  • the acceleration determining subunit includes:
  • the size ratio obtaining module is used to obtain the ratio information of the size information of each vehicle in the same lane to the reference size
  • the vehicle acceleration acquisition module is used to draw up a reference acceleration based on a reference size, and combine the ratio information to obtain the relationship between the actual acceleration and the reference acceleration corresponding to the size information of each vehicle in the same lane;
  • the lane acceleration acquisition module is used to determine the actual maximum acceleration limit of the target vehicle in each lane according to the actual acceleration corresponding to each vehicle in the same lane.
  • the lane acceleration acquisition module is also used to compare the accelerations corresponding to the vehicles in the same lane, and obtain the smallest acceleration as the acceleration of the lane.
  • the lane recommendation unit includes:
  • the queuing distance acquiring subunit is used to acquire the queuing distance of the predetermined road section corresponding to the target vehicle;
  • the transit time determination subunit is used to determine the transit time of the target vehicle through each lane according to the average flow velocity of each lane, the acceleration of each lane and the queuing distance.
  • the transit time determining subunit is also used to: according to the formula Determine the transit time of the target vehicle through each lane, where: a is the acceleration of the passage, V'is the current average flow velocity of each lane, S is the queuing distance of the passage, and T is the transit time of the target vehicle through the lane.
  • the lane recommendation device further includes:
  • Historical driving information acquisition subunit used to acquire historical driving information of the target vehicle
  • the probability determination subunit is used to determine the probability corresponding to different driving directions of the target vehicle at the intersection according to the historical driving information
  • the target lane determination subunit is used to determine the target lane of the target vehicle according to the driving direction with the probability greater than the predetermined value when the probability of the driving direction of the target vehicle turning left or going straight at the intersection is greater than the predetermined value.
  • the vehicular communication technology is a communication method based on the long-term evolution technology-vehicle communication LTE-V, or an access protocol based on the vehicle-specific short-range communication technology DSRC.
  • the embodiments of the present application also provide a computer-readable storage medium, where the computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, the steps in each of the foregoing method embodiments can be realized.
  • the embodiments of the present application provide a computer program product.
  • the steps in the foregoing method embodiments can be realized when the mobile terminal is executed.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the computer program can be stored in a computer-readable storage medium. When executed by the processor, the steps of the foregoing method embodiments can be implemented.
  • the computer program includes computer program code, and the computer program code may be in the form of source code, object code, executable file, or some intermediate forms.
  • the computer-readable medium may at least include: any entity or device capable of carrying the computer program code to the photographing device/terminal device, recording medium, computer memory, read-only memory (ROM, Read-Only Memory), and random access memory (RAM, Random Access Memory), electric carrier signal, telecommunications signal and software distribution medium.
  • ROM read-only memory
  • RAM random access memory
  • electric carrier signal telecommunications signal and software distribution medium.
  • U disk mobile hard disk, floppy disk or CD-ROM, etc.
  • computer-readable media cannot be electrical carrier signals and telecommunication signals.
  • the disclosed apparatus/network equipment and method may be implemented in other ways.
  • the device/network device embodiments described above are only illustrative.
  • the division of the modules or units is only a logical function division, and there may be other divisions in actual implementation, such as multiple units.
  • components can be combined or integrated into another system, or some features can be omitted or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Traffic Control Systems (AREA)

Abstract

一种车道推荐方法包括:通过车载通信技术获取目标车辆当前所在道路的车道信息;通过车载通信技术接收目标车辆的周围车辆的车辆数据;根据所述车道信息和所述车辆数据,确定周围车辆在车道中的位置;根据所述车辆数据和周围车辆在车道中的位置,确定目标车辆待选择的各个车道的行驶参数;根据所述目标车辆待选择的各个车道的行驶参数,确定目标车辆通过预定路段的通行时长,根据所确定的通行时长进行车道推荐。基于车载通信技术获取数据,可以有效的避免环境因素的干扰,提高车道推荐的准确度,有助于用户缩短拥塞时间,提升通行效率。

Description

车道推荐方法、装置及车载通信设备
本申请要求于2020年1月21日提交国家知识产权局、申请号为202010071162.X、申请名称为“车道推荐方法、装置及车载通信设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请属于通信技术领域,尤其涉及一种车道推荐方法、装置及车载通信设备。
背景技术
随着城市车辆密度的急剧增加,车辆驾驶的拥堵问题越来越频繁。当车辆行驶在拥堵路段时,驾驶员通常会面对车道选择的问题,即如何在拥堵路段选择合适的车道,使得车辆能够高效的通过拥堵路段。为了提高驾驶员的行驶效率,通常会由车辆自身的传感器,比如激光雷达、视频摄像头等感知目标车辆周边的移动物体的运动情况,根据获得的参数计算车道的流速信息,得到较优的车道选择方案。
但是,由于车辆的传感器容易受到外部条件的限制,对场景的适应能力较弱,比如大车阻挡或者暴雨、天气亮度下降等,使得传感器采集信息的能力下降,在计算车道的流速信息时,很容易因为车道推荐的准确度不高,不利于减少用户的拥塞时间,通过拥塞路段的效率不高,并且雷达设备价格通常较为昂贵,不利于推广使用。
发明内容
本申请实施例提供了一种车道推荐方法、装置及车载通信设备,可以解决现有技术中进行车道推荐时,由于容易受到外部条件的限制,车道推荐准确度不高,不利于减少用户的拥塞时间,通过拥塞路段的效率不高,且不利于推广使用的问题。
第一方面,本申请实施例提供了一种车道推荐方法,所述车道推荐方法包括:通过车载通信技术获取目标车辆当前所在道路的车道信息;通过车载通信技术接收目标车辆的周围车辆的车辆数据;根据所述车道信息和所述车辆数据,确定周围车辆在车道中的位置;根据所述车辆数据和周围车辆在车道中的位置,确定目标车辆待选择的各个车道的行驶参数;根据所述目标车辆待选择的各个车道的行驶参数,确定目标车辆通过预定路段的通行时长,根据所确定的通行时长进行车道推荐。
应理解,通过车载通信技术获取所述车道信息的途径,可以包括多种。比如,可以通过接收路侧单元广播的信息,从所接收的信息中解析得到目标车辆当前所在位置的车道信息。或者,也可以通过接收其它车辆发送的车辆位置和车辆行驶信息,确定目标车辆当前所在位置的车道信息。通过接收路侧单元发送的车道信息,可以获取目标车辆,即驾驶员自身所驾驶的车辆所在道路的车道数量、车道位置等;通过车载通信技术接收目标车辆的周围车辆所发送的车辆数据,可以包括车辆位置等信息,将车 辆位置与车道位置融合,即可得到车辆在车道上的位置。通过车辆通信技术可以有效的避免环境因素的干扰,提高所获取的车辆数据的准确性,通过从路侧单元获取车道信息,不需要组建复杂的服务器,有利于降低车载通信设备的成本。并且根据车辆数据和周围车辆在车道中的位置,可进一步确定目标车辆待选择的各个车道的行驶参数,根据所述行驶参数,可以确定目标车辆在不同的车道通过预定路段所需要的通行时长,根据该通行时长,可以选择较小的通行时长所对应的车道,推荐给用户,从而能够更为准确的选择车道。并且不需要使用较为昂贵的雷达设备,有利于推广使用。
其中,所述通过车载通信技术获取目标车辆当前所在道路的车道信息的步骤包括:通过车载通信技术获取目标车辆当前所在道路的车辆的位置和车辆的位置的变化信息;根据所述目标车辆所在道路的车辆的位置和所述车辆的位置的变化信息,拟合得到目标车辆前方车道信息。根据所述车辆的位置的变化信息,可以得到目标车辆当前所在道路的车辆的行驶方向,结合目标车辆自身的行驶方向,可以获取在所述道路中,与所述目标车辆的行驶方向相同的车辆。根据所述道路的车辆的位置,结合所述车辆的行驶方向,可以得到位于所述目标车辆前方的车辆。根据所述目标车辆前方的车辆的位置,可以拟合得到目标车辆前方的车道信息。
所述车载通信技术为基于长期演进技术-车辆通信LTE-V的通信方式,或基于车辆专用短程通信技术DSRC的接入协议。
在一种实现方式中,根据所确定的通行时长进行车道推荐的步骤包括:获取目标车辆的行驶操作指令;根据所述行驶操作指令,确定所述行驶操作指令所对应的待选车道集合;根据所述待选车道集合内的待选车道的通行耗时信息进行车道推荐。也即,可以通过汽车总线实时采集驾驶员的行驶操作指令,并根据所采集的行驶操作指令,选择对应的车道信息。比如,当检测到驾驶员打开左转灯的指令时,表示驾驶员需要向左行驶,则可以根据目标车辆周围车道中筛选出可左转的车道,并可以从所筛选出的可左转的车道寻找通过时长最少的车道推荐给驾驶员。当检测到驾驶员打开右转灯的指令时,表示驾驶员需要向右行驶,则可以根据目标车辆冉冉车道中筛选出可右转的车道,并可以从所筛选出的可右转的车道中寻找通过时长最少的车道推荐给驾驶员。
在一种实现方式中,所述方法还包括:获取各车道中的车辆数据中包括的报文信息;根据所述报文信息检测各车道中车辆存在的异常信息;根据所检测到的异常信息,更新各车道的可行驶参数。为了避免选择由于车辆故障所阻塞的车道,可以通过车辆通信设备采集汽车的车况信息,根据所采集的车况信息确定车道的通行时长。其中,所述车况信息中包括的异常信息可以包括制动防抱死系统ABS异常、车身稳定控制系统异常、车辆刹车速度异常、车灯状态异常、轮胎异常、安全气囊异常、发动机异常中的一种或者多种。
在一种实现方式中,所述根据所述车辆数据和周围车辆在车道中的位置,确定目标车辆待选择的各个车道的行驶参数的步骤包括:获取位于同一车道的目标车辆前方的各个车辆的行驶速度、各个车辆的前方的车辆数量、各个车辆航向与车道方向的夹角;根据各个车辆的行驶速度、前方的车辆数量以及所述夹角,确定所述车道的平均流速;以及,获取车道内的各个车辆的尺寸信息;根据各个车辆的尺寸信息,确定车道的加速度。根据同一车道中各个车辆的行驶速度、车辆在车道中的排队序列,以及 车辆航向与车道方向的夹角,可以确定车道的平均流速。然后进一步计算车道的加速度,根据车辆流速和车道加速度,即可确定车道中的车辆的行驶速度。
其中,所述车道的平均流速,可以根据公式
Figure PCTCN2020141560-appb-000001
确定,其中:V′为车道的平均流速,n为同一车道内位于目标车辆前方的车辆数量,θ i为车道内的第i车辆的航向与车道方向的夹角,V i为第i车辆的行驶速度。车道的平均流速不仅与车辆的速度有关,而且和车道中车辆的转向信息有关,当车道中转向的车辆越多,车道的平均流程越小。
其中,所述车道的加速度可以通过获取同一车道内各个车辆的尺寸信息与基准尺寸的比值信息;拟定基于基准尺寸的基准加速度,结合所述比值信息,获取同一车道内的各个车辆的尺寸信息所对应的实际加速度与基准加速度的关系;根据同一车道内的各个车辆对应的实际加速度,确定目标车辆在各车道内的实际最大加速度限制。根据车辆尺寸的大小确定车辆的加速度大小,一般来说,车辆越大,加速度越小,可以根据车辆尺寸与基准尺寸的比例关系,相应的根据基准加速度调整加速度的大小。比如,车辆尺寸相对于基准尺寸每增加X%,则相对于基准加速度减少X%。
在确定车道中的多个车辆的加速度后,可以根据对车道中的多个车辆的加速度进行比较,选择车道中的车辆的最小加速度,作为所述车道的加速度,也即车道中的目标车辆的加速度。
在确定车道的平均流速以及车道的加速度后,进一步根据目标车辆的位置确定目标车辆通过预定路段所需要通行的距离,可以计算目标车辆通过所述预定路段的通行时长。可以通过公式
Figure PCTCN2020141560-appb-000002
确定所述目标车辆通过各个车道的通行时长,其中:a为通道的加速度,V′为当前各车道的平均流速,S为通道的排队距离,T为目标车辆通过车道的通行时长。
在本申请的又一实施方式中,还可以获取目标车辆的历史驾驶信息;根据所述历史驾驶信息,确定所述目标车辆在路口的不同行驶方向所对应的概率;当目标车辆在路口左转或直行的行驶方向的概率大于预定值,则根据概率大于预定值的行驶方向确定目标车辆的符合车辆行驶方向的车道集合,如预测车辆在该路口将左转,则筛选出左转的车道,比如,可以包括如左一车道、左二车道等,从而提高车道的筛选效率。即根据车载通信设备所记录的目标车辆的历史驾驶信息,可以确定目标车辆在路口的不同行驶方向的概率,当某一方向的概率大于预定值时,则确定该方向确定目标车辆的目标车道,比如车辆向左转时,则在车辆左前方的车道中选择通行时长最小的目标车道。
第二方面,本申请实施例提供了一种车道推荐装置,所述车道推荐装置包括:车道信息接收单元,用于通过车载通信技术获取目标车辆当前所在道路的车道信息;车辆数据接收单元,用于通过车载通信技术接收目标车辆的周围车辆的车辆数据;车辆位置确定单元,用于根据所述车道信息和所述车辆数据,确定周围车辆在车道中的位 置;行驶参数确定单元,用于根据所述车辆数据和周围车辆在车道中的位置,确定目标车辆待选择的各个车道的行驶参数;车道推荐单元,用于根据所述目标车辆待选择的各个车道的行驶参数,确定目标车辆通过预定路段的通行时长,根据所确定的通行时长进行车道推荐。
第三方面,本申请实施例提供了一种车载通信设备,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时,所述车载通信设备实现如第一方面任一项所述车道推荐的方法。
第四方面,本申请实施例提供了一种计算机可读存储介质,计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现如第一方面任一项所述车道推荐的方法。
第五方面,本申请实施例提供了一种计算机程序产品,当计算机程序产品在终端设备上运行时,使得终端设备执行上述第一方面中任一项所述的车道推荐方法。
可以理解的是,上述第二方面至第五方面的有益效果可以参见上述第一方面中的相关描述,在此不再赘述。
附图说明
图1是本申请一实施例提供的一种车载通信设备的结构示意图;
图2是本申请一实施例提供的一种车道推荐方法的应用场景示意图;
图3是本申请一实施例提供的一种车道推荐方法的实现流程示意图;
图4是本申请一实施例提供的根据路侧单元发送的信息解析得到的车道信息的示意图;
图5是本申请另一实施例提供的一种车载通信设备的示意图;
图6是本申请一实施例提供的一种确定车辆加速度的实现流程示意图;
图7是本申请另一实施例提供的一种确定车道速度的实现流程示意图;
图8是本申请实施例提供的一种车道推荐装置的示意图。
具体实施方式
以下描述中,为了说明而不是为了限定,提出了诸如特定系统结构、技术之类的具体细节,以便透彻理解本申请实施例。然而,本领域的技术人员应当清楚,在没有这些具体细节的其它实施例中也可以实现本申请。在其它情况中,省略对众所周知的系统、装置、电路以及方法的详细说明,以免不必要的细节妨碍本申请的描述。
应当理解,当在本申请说明书和所附权利要求书中使用时,术语“包括”指示所描述特征、整体、步骤、操作、元素和/或组件的存在,但并不排除一个或多个其它特征、整体、步骤、操作、元素、组件和/或其集合的存在或添加。
还应当理解,在本申请说明书和所附权利要求书中使用的术语“和/或”是指相关联列出的项中的一个或多个的任何组合以及所有可能组合,并且包括这些组合。
如在本申请说明书和所附权利要求书中所使用的那样,术语“如果”可以依据上下文被解释为“当...时”或“一旦”或“响应于确定”或“响应于检测到”。类似地,短语“如果确定”或“如果检测到[所描述条件或事件]”可以依据上下文被解释为意指“一旦确定”或 “响应于确定”或“一旦检测到[所描述条件或事件]”或“响应于检测到[所描述条件或事件]”。
另外,在本申请说明书和所附权利要求书的描述中,术语“第一”、“第二”、“第三”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
在本申请说明书中描述的参考“一个实施例”或“一些实施例”等意味着在本申请的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点。由此,在本说明书中的不同之处出现的语句“在一个实施例中”、“在一些实施例中”、“在其他一些实施例中”、“在另外一些实施例中”等不是必然都参考相同的实施例,而是意味着“一个或多个但不是所有的实施例”,除非是以其他方式另外特别强调。术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。
本申请实施例提供的车道推荐方法可以应用于手机、平板电脑、可穿戴设备、车载设备、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)设备、笔记本电脑、超级移动个人计算机(ultra-mobile personal computer,UMPC)、上网本、个人数字助理(personal digital assistant,PDA)等终端设备上,本申请实施例对终端设备的具体类型不作任何限制。本申请实施例所给出的提示方式包括但不限于音频提醒、视频提醒、震动提醒、VR/AR提醒、指示灯提醒或其它能产生提醒效果的辅助手段或设置中的一种或者几种。
例如,所述终端设备可以是WLAN中的站点(STAION,ST),可以是蜂窝电话、无绳电话、会话启动协议(Session InitiationProtocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、车联网终端、电脑、膝上型计算机、手持式通信设备、手持式计算设备、卫星无线设备、无线调制解调器卡、电视机顶盒(set top box,STB)、用户驻地设备(customer premise equipment,CPE)和/或用于在无线系统上进行通信的其它设备以及下一代通信系统,例如,5G网络中的移动终端或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的移动终端等。
作为示例而非限定,当所述终端设备为可穿戴设备时,该可穿戴设备还可以是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,如智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
图1为本申请一实施例提供的用于实施所述车道推荐方法的车载通信端设备的结构示意图。如图1所示,该实施例的车载通信端设备1包括:至少一个处理器10(图1中仅示出一个)、通信模块11、存储器12以及存储在所述存储器12中并可在所述至少一个处理器10上运行的计算机程序13,所述处理器10执行所述计算机程序13时实现上述任意各个车道推荐方法实施例中的步骤。
所述车载通信端设备可包括,但不仅限于,处理器10、通信模块11、存储器12。本领域技术人员可以理解,图1仅仅是车载通信端设备1的举例,并不构成对车载通信端设备1的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件,例如还可以包括输入输出设备、网络接入设备等。
所称处理器10可以是中央处理单元(Central Processing Unit,CPU),该处理器10还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
所述处理器可以结合定位数据(比如GPS定位数据)、车辆数据以及接收的其它车辆的V2X(车联网无线通信技术)报文数据,对目标车辆的运行监控区域进行定义,并可以通过V2X车联网通信技术识别各车道内的异常车辆,如发动机故障车辆,EPS故障车辆等等。
需要理解的是,这里的V2X报文数据可以是中国区CSAE定义的V2X信息,也可以是中国以外的其它国家或地区定义的V2X信息。本申请实施例主要提供一种符合中国V2X信息集合标准的实现方法,然而在其它国家或地区的V2X信息标准中也存在上述V2X信息,故仍然可以采用相似的方法获取车辆的上述V2X信息,以实现本申请提出的车道推荐方法。
所述通信模块11可以提供应用在网络设备上的包括无线局域网(wireless localarea networks,WLAN)(如Wi-Fi网络),蓝牙,Zigbee,移动通信网络,全球导航卫星系统(global navigation satellite system,GNSS),调频(frequency modulation,FM),近距离无线通信技术(near field communication,NFC),红外技术(infrared,IR),CAN总线、以太网接口等通信的解决方案。通信模块可以是集成至少一个通信处理模块的一个或多个器件。该通信模块可以包括天线,该天线可以只有一个阵元,也可以是包括多个阵元的天线阵列。该通信模块可以通过天线接收电磁波,将电磁波信号调频以及滤波处理,将处理后的信号发送到处理器。通信模块还可以从处理器接收待发送的信号,对其进行调频、放大,经天线转为电磁波辐射出去。
所述通信模块可以包括车身总线,连接车辆的电子控制单元ECU,如发动机、车轮、制动传感器等,通过车身总线获取车辆的各类行驶状态数据,包括如速度、方向盘转角、远光灯等相关状态信息。
或者,所述通信模块还可以包括以太网接口,通过以太网接口发送告警提示信息至车内其它ECU或车上的显示终端,显示告警信息。
所述存储器12在一些实施例中可以是所述车载通信端设备1的内部存储单元,例如车载通信端设备1的硬盘或内存。所述存储器12在另一些实施例中也可以是所述车载通信端设备1的外部存储设备,例如所述车载通信端设备1上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。进一步地,所述存储器12还可以既包括所述车载通信端设备1的内部存储单元也包括外部存储设备。所述存储器12用于存储操作系统、应用程序、引导装载程 序(BootLoader)、数据以及其他程序等,例如所述计算机程序的程序代码等。所述存储器12还可以用于暂时地存储已经输出或者将要输出的数据。
需要说明的是,上述图1并不构成对车载通信设备结构的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件,例如车载通信设备还可以显示屏、指示灯、马达、控件(例如按键)、陀螺仪传感器、加速度传感器等。
图2为本申请实施例提供的一种车道推荐方法的应用场景示意图。如图2所示,目标车辆在进入到拥堵路段,或者即将进入拥堵路段时,目标车辆的前方包括多个车道,每个车道中拥塞有数量、车型可能不相同的车辆。在所述车道对应位置设置有路侧单元RSU(ROAD SIDE UNIT),所述车道中的车辆,包括目标车辆设置有车载通信设备。其中:
所述路侧单元RSU可以包括高增益定向束控读写天线和射频控制器,高增益定向束控读写天线为微波收发模块,用于数据信号的收发、调制解调、编码解码,射频控制器用于控制发射和接收数据等。所述路侧单元可通过长期演进技术-车辆通信LTE-V的通信方式,或者基于车辆专用短程通信技术DSRC的接入协议,与车辆上设置的车载通信设备进行通信。所述路侧单元可以根据安装位置,存储安装位置所对应的车道信息,并可将所存储的车道信息发送至行驶至与其通信的车载通信设备。所述车道信息可以包括车道ID,以及车道ID所对应的位置等。
所述车载通信设备可以通过总线(比如CAN总线等)连接车辆的电子控制单元ECU,采集车辆数据,包括车辆的发动机、车轮、制动传感器等基础安全消息BSM、车辆的位置信息、车辆尺寸信息等,通过与周围的其它车辆的车载通信设备之间进行通信,可以获取周围其它车辆的车辆数据。
所述车载通信设备根据所获取的车道信息、车辆数据,确定车辆在车道中的位置,并根据车辆的移动速度、车辆在车道中的位置,确定每个车道的平均流速,根据车道内的车辆的尺寸信息,确定车道的加速度,从而计算出目标车辆由不同车道经过预定路段所需要的通行时长。可选择通行时长最短的车道,推荐驾驶员选择。
图3示出了本申请提供的车道推荐方法的示意性流程图,作为示例而非限定,该方法可以应用于上述车载通信设备1中。
所述车道推荐方法包括:
在步骤S301中,通过车载通信技术获取目标车辆当前所在道路的车道信息;
具体的,通过车载通信技术获取目标车辆当前所在道路的车道信息的方式可以包括:
方式1、通过车载通信技术获取由路侧单元RSU(英文全称为:Road Side Unit)所广播的MAP消息,解析所述MAP消息可以得到路侧单元的安装位置所对应的车道的分布情况;
方式2、通过车载通信技术获取其它车辆的位置信息,根据其它车辆的位置信息,确定车道的位置信息。
对于方式1中的路侧单元RSU,可以通过广播的方式播报MAP消息。所述MAP消息可以包括路侧单元安装位置的周边的车道的分布情况。所述路侧单元的安装位置可以为路口位置,所述MAP信息可以包括路口车道的ID、车道位置、衍生点坐标(由 车道所衍生的归属于车道的坐标点,比如车道感知点等),或者还可以包括车道所链接的车道ID等。
对于方式2中通过车载通信技术获取其它车辆的位置信息,即通过车-车通信的方式,获取其它车辆的位置信息,或者还可以包括车辆的尺寸信息和/或行驶方向,根据其它车辆的位置信息,或者还包括尺寸信息和/或行驶方向,可以确定各个车道的分布信息,确定各个车道的位置。
当目标车辆通过车-车通信,获取目标车辆的周围的其它车辆的位置信息时,可以根据目标车辆的行驶方向,确定车道的方向,或者也可以根据其它车辆的行驶方向,确定所述车道的方向。根据所确定的车道的方向,结合道路中车辆的位置,确定在预定的车道宽度范围内,连接的车辆位置点占该车道宽度范围内的总车辆位置点的比例大于预定值的线条为车道的中间线位置。其中,所述目标车辆的行驶方向为目标车辆在拥塞路段的直行的方向。根据目标车辆确定车辆的方向为南北方向,在预设的同一车道宽度范围内,或者也可以根据其它车辆的尺寸信息所确定的车道宽度范围内,根据南北走向的线条连接的车辆位置点占该车道宽度范围内的总车辆位置点的比例大于预定值时,则可确定该线条为车道的中间线,并且可以有效的排除转弯车辆对车道估计的影响。
当部分车道中未行驶车辆时,由于此时道路较为通畅,可以不需要启用本申请所述的车道推荐方法。
所述目标车辆为驾驶员所驾驶的车辆本身。所述目标车辆可以为车道中的任意需要通行拥挤路段的车辆。
车辆在行驶过程中,可以根据所接收到的路侧单元所发送的MAP消息,更新所述车辆所行驶的道路的车道信息。所述车道信息可以包括车道的数量、车道的方向和车道的位置等。
比如,可以根据所接收的MAP消息中包括的车道信息,获取当前道路包括的车道的数量。对于路口位置,所述MAP消息中可以包括每个车道所对应的行驶方向,所述行驶方向可以包括向前行驶、向左转弯行驶、向右转弯行驶等。所述行驶方向可以通过车道位置预先确定。
可以根据所接收的MAP消息,确定每个车道所对应的位置信息。所述车道所对应的位置信息,可以通过车道线的位置确定。当车道中设置有车辆感知点时,所述车道的位置信息还可以包括所述车辆感知点等衍生点位置信息。
比如,图4为根据路侧单元发送的信息所解析得到的车道信息的示意图。车载通信设备接收到路侧单元广播的车道信息中,可以包括车道数量为5个,车道位置可以为车道的边界线所确定的位置,所确定的车道中,其中左一车道的方向为左转方向,中间三条车道的方向为直行方向,右一车道的方向为右转方向。并且,所述车道信息还可以包括是否允许车辆变道的信息,当目标车辆所在的车道允许向其它车道变道时,则可以进一步根据其它允许变道的车道,查找通行时长最短的车道。
在步骤S302中,通过车载通信技术接收目标车辆的周围车辆的车辆数据;
在所述车道通行的车辆,安装有车载通信设备,目标车辆的车载通信设备,可以根据V2X通信,接收到路面上的各个车辆的车载通信设备所发送的车辆位置信息等。 所述车载通信设备可以基于车身总线,采集目标车载本身的基础安全信息BSM,获得目标车辆的位置信息和其它安全信息等。
所述车载通信技术可以为基于长期演进技术-车辆通信LTE-V的通信方式,或基于车辆专用短程通信技术DSRC的接入协议。
其中,所述LTE-V是一组基于监察通信网络的V2I(车-基础设施通信)和V2V(车-车通信)的通信物理层协议。所述DSRC是基于5.9G频带的交通安全通信协议,DSRC的目标通信范围在1千米之内。相对于蜂窝通信和卫星通信来说,其通信距离较短。
图5为本申请实施例提供的一种基于LTE-V的车载通信设备,或者车联网处理模块的示意图,
所述基于LTE-V的车载通信设备包括车身总线、车辆运行数据解析模块、LTE-V数据包数据应用算法处理模块、GPS数据处理模块、LTE-V数据包网络传输层处理模块、射频模块、LTE-V数据接入层处理模块等,其中:
所述车身总线可用于连接车辆其他电子控制单元ECU,如发送机、车轮、制动传感器等。可以通过车身总线获取车辆数据,包括车辆的各类行驶状态数据,包括速度,方向盘转角,远光灯的开关状态和专项角度等信息。
所述车辆运行数据解析模块,可接收到所述车身总线采集的行驶状态数据,完成对车辆数据的解析,筛选出于本发明相关的车辆数据,可以包括如速度,航向,方向盘转角等。
所述LTE-V数据包数据应用算法处理模块,可以结合本车(目标车辆)的GPS数据等车辆数据,通过LTE-V网络传输层处理模块所接收的远车的V2X报文数据,以及根据其它车辆的速度信息、尺寸信息、航向信息、车辆行驶方向、车辆数量确定通过预定路段的通行时长。
所述GPS数据处理模块用于解析通过GPS天线所接收到的GPS数据,得到车辆所对应的经纬度等信息。
所述LTE-V数据包网络传输层处理模块,用于完成LTE-V的网络层协议栈包头的识别和摘取,将包中的应用层数据如基础安全消息BSM发送给LTE-V数据包(V2X)数据应用算法处理模块。
射频模块,用于通过LTE-V天线对射频信号(无线数据)的采集。
所述LTE-V数据接入层处理模块,用于完成LTE-V接入层的3GPP协议栈的处理,使得空口数据得以正确识别。
在一种实现方式中,所述车载通信设备还可以包括以太网驱动或接口,通过所述以太网驱动或接口,将最终获取的临近区域的车辆的碰撞风险,通过以太网无线连接至车内其它ECU或显示终端,发送告警提示信息给到车内其他ECU或者车上的显示终端显示告警信息。
在步骤S303中,根据所述车道信息和所述车辆数据,确定周围车辆在车道中的位置;
根据路侧单元所发送的基础安全消息BSM,可以获取包括车道位置的车道信息,根据车载通信技术,可以获取目标车辆所在场景中的周围车辆的车辆数据,所述车辆 数据包括其它车辆的位置信息。根据所述车辆数据中的车辆位置,以及所述车道信息中的车道位置,可以获取目标车辆的周围车辆所属的位置。根据目标车辆所获取的定位信息,比如GPS定位信息,可以确定目标车辆所属的位置,以及目标车辆的行驶方向,并可结合周围其它车辆的车辆数据中的车辆位置,可以获取周围车辆相对于目标车辆的方位信息,根据所述方位信息,可以确定位于所述目标车辆的行驶方向的前方车辆。在一种实现方式中,还可以根据目标车辆的周围车辆的车辆数据,获取周围车辆的尺寸信息、航向信息、速度信息、车辆异常信息等。所述车辆异常信息可以包括双闪异常、发动机故障异常、ABS报警等。
在步骤S304中,根据所述车辆数据和周围车辆在车道中的位置,确定目标车辆待选择的各个车道的行驶参数;
所述目标车辆在各个车道的行驶参数,可以包括目标车辆所在车道的平均流速、目标车辆在所述车道的加速度等。
其中,确定所述目标车辆所在车道的平均流速的实现流程,可以通过获取位于同一车道的目标车辆前方的各个车辆的行驶速度、各个车辆的前方的车辆数量、各个车辆航向与车道方向的夹角,根据各个车辆的行驶速度、前方的车辆数量以及所述夹角,确定所述车道的平均流速。
在确定需要计算平均流速的车道后,获取该车道中位于目标车辆的前方车辆,并获取所述前方车辆的参数信息,包括目标车辆的前方的各个车辆的行驶速度、目标车辆的前方的车辆数量、目标车辆的前方的各个车辆的航向。
其中,所述目标车辆的前方的各个车辆的行驶速度,可以通过车载通信设备实时获取,根据实时获取的位于同一车道的各个车辆的行驶速度Vi,其中i为同一车道中的车辆的序号。
所述目标车辆的前方的车辆数量,可以通过车载通信设备实时获取预定路段中的预定车道中所包括的车辆数量。
可以通过所述车载通信设备获取各个车辆的航向,可以根据车辆所在车道位置的车道线的方向,确定车辆的车道的方向,根据所述车辆的航向和车辆的车道方向,确定各个车辆航向与车道方向的夹角。
在获取了目标车辆的前方的某一车道的各个车辆的行驶速度、各个车辆的前方的车辆数量和各个车辆航向与车道方向的夹角后,可以确定该车道所对应的平均流速。比如,可以采用公式
Figure PCTCN2020141560-appb-000003
确定所述车道的平均流速,其中:V′为车道的平均流速,n为同一车道内位于目标车辆前方的车辆数量,θ i为车道内的第i车辆的航向与车道方向的夹角,V i为第i车辆的行驶速度。
同样,对于目标车辆前方的每个车道,均可以采用上述方式,计算目标车辆前方的每一个车道所对应的平均流速。
由于计算平均流速所的参数,包括各个车辆的行驶速度、目标车辆的前方车辆的数量以及各个车辆的航向与车道方向的夹角会发生变化,因此,可以根据预定的时间间隔,更新所计算的车道的平均流速。
确定车道的加速度时,可以根据车道内的各个车辆的尺寸信息确定单个车辆的加速度,然后根据同一车道中的车辆的加速度,确定车道的加速度。
其中,根据车道中的车辆的加速度,确定车道的加速度的流程,可以如图6所示,包括:
在步骤S601中,获取同一车道内各个车辆的尺寸信息与基准尺寸的比值信息;
可以预先设定一个基准尺寸与基准加速度的对应关系。可以选择某一型号的车辆的尺寸为基准尺寸,该小轿车在拥塞路段的启动时的加速度为基准加速度。比如,选择轿车A的尺寸为基准尺寸,轿车A在拥塞路段的加速度为2.5G,约为2.45米/(秒*秒)。
在步骤S602中,拟定基于基准尺寸的基准加速度,结合所述比值信息,获取同一车道内的各个车辆的尺寸信息所对应的实际加速度与基准加速度的关系;
其中,所述尺寸信息与所述加速度大小成反比,可以根据待计算车辆的尺寸比基准车辆增加的比例,相应的减小所述基准加速度对应比例的值。比如,待计算车辆的尺寸比基准车辆增加10%,那么,待计算车辆的实际加速度为基准加速度减小10%。
其中,所述尺寸的比值,可以根据车辆的长度、宽度和高度的比值确定。比如,当待计算车辆的长、宽、高方向上,在基准车辆的长、宽、高的基础上增加10%,则在基准加速度的基础上减小10%,作为所述待计算车辆的实际加速度。
当然,还可以根据所获取的车辆的型号信息,确定车辆的实际加速度。
在步骤S603中,根据同一车道内的各个车辆对应的实际加速度,确定目标车辆在各车道内的实际最大加速度限制。
在确定了同一车道中的各个车辆的实际加速度后,由于目标车辆在该车道中行驶时,会受到目标车辆的前方车辆的加速度影响,并且该车道中的前方车辆的最小加速度,制约整个车道的加速度大小,因此,可以选择车道中的最小加速度,作为车道的加速度。
比如图7所示,位于目标车辆前方的同一车道中包括车辆的数量为3,且确定了第一车辆的加速度为0.7a,第二车辆的加速度为0.5a,第三车辆的加速度为0.9a,或者还可以包括目标车辆的加速度为1a,其中a为基准加速度,选择加速度最小值作为该车道的加速度,即该车道的加速度为0.5a。
在步骤S305中,根据所述目标车辆待选择的各个车道的行驶参数,确定目标车辆通过预定路段的通行时长,根据所确定的通行时长进行车道推荐。
在确定了目标车辆在各个车道的行驶参数后,可以根据预定路段的结束位置和目标车辆的位置,确定目标车辆通过所述预定路段的排队距离S。其中,所述目标车辆的位置可以由车载通信设备通过CAN总线的方式获取车辆的定位信息。
根据所确定的车道的加速度、车道的流速以及拥塞路段对应的排队距离S,可以计算得到通过该车道通过所述预定路段的通行时长。比如,可以根据公式:
Figure PCTCN2020141560-appb-000004
确定所述目标车辆通过各个车道的通行时长,其中:a为通道的加速度,V′为当前各车道的平均流速,S为通道的排队距离,T为目标车辆通过车道的通行时长。
分别计算不同车道所对应的通行时长后,可以选择通行时长最小的车道推荐至用户,比如可以向用户发送语音提醒“前方拥堵,请驶入左方第二车道”等。
值得注意的是,根据所确定的通行时长进行车道推荐时,该推荐信息不仅仅可作为对手动驾驶者的提示,也可作为自动驾驶系统的推荐输入,通过自动驾驶系统根据所述推荐选择车道。
在一种实现方式中,车载通信设备选择车道时,可以通过CAN总线实时采集用户的行驶操作指令,当所述行驶操作指令中包括转向指令时,实时的调整待筛选的车道。比如,当检测到用户打开左转灯时,则在目标车辆的左侧的车道中确定待推荐车道,当检测到用户打开右转灯时,则在目标车辆的右侧的车道中确定待推荐车道。当用户未操作转向时,则在目标车辆的前方的车道(包括左侧的车道和右侧的车道)中确定待推荐车道。根据用户的行驶操作指令相应的选择推荐车道,从而使得推荐信息更为有效。
在一种实现方式中,为了更为准确的确定车道的行驶参数,还可以包括对目标车辆的前方车辆的车辆数据中的报文信息进行解析,获取前方车辆存在的异常信息,所述异常信息可以包括制动防抱死系统ABS异常、车身稳定控制系统异常、车辆刹车速度异常、车灯状态异常、轮胎异常、安全气囊异常、发动机异常中的一种或者多种。当检测到车辆出现异常时,可以通过预设的异常类型与加速度大小的关系,减小该车辆所对应的加速度的方式,调整通过所述车道的通行时长。比如,当检测到某一车道中的车辆存在异常,则可以将其加速度调整为0.05a,a为基准加速度。根据调整后的加速度所计算的通行时长将会较大,从而使得目标车辆能够及时的回避该车道。
另外,还可以根据所述车辆数据解析得到车辆运输物安全信息,根据所述车辆运输物的安全信息,相应的确定目标车辆与其它车辆的距离。比如,可以根据预先设定的运输物的安全指数与安全距离的对应关系,控制所述目标车辆的驾驶,包括控制目标车辆的驾驶速度和驾驶轨迹等。
为了进一步提高车辆驾驶的智能性,在一种实现方式中,还可以获取目标车辆的历史驾驶信息,在所获取的历史驾驶信息中,查找目标车辆的当前位置,比如路口位置所对应的驾驶数据,根据所查找的当前位置的驾驶数据,计算目标车辆在该路口位置的不同行驶方向的概率,并且在某一行驶方向的概率大于预定值时,则将该行驶方向作为所述目标车辆的待行驶方向,根据所述待行驶方向为驾驶员推荐车道。通过历史驾驶数据智能分析,可以更为智能的获取用户的驾驶方向信息,从而能够更加智能的为驾驶员选择车道。
应理解,上述实施例中各步骤的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
对应于上文实施例所述的车道推荐方法,图8示出了本申请实施例提供的车道推荐装置的结构框图,为了便于说明,仅示出了与本申请实施例相关的部分。
参照图8,该装置包括:
车道信息接收单元801,用于通过车载通信技术获取目标车辆当前所在道路的车道信息;
车辆数据接收单元802,用于通过车载通信技术接收目标车辆的周围车辆的车辆数据;
车辆位置确定单元803,用于根据所述车道信息和所述车辆数据,确定周围车辆在车道中的位置;
行驶参数确定单元804,用于根据所述车辆数据和周围车辆在车道中的位置,确定目标车辆待选择的各个车道的行驶参数;
车道推荐单元805,用于根据所述目标车辆待选择的各个车道的行驶参数,确定目标车辆通过预定路段的通行时长,根据所确定的通行时长进行车道推荐。
在一种实现方式中,所述车道推荐单元包括:
操作指令获取子单元,用于获取目标车辆的行驶操作指令;
待选车道确定子单元,用于根据所述行驶操作指令,确定所述行驶操作指令所对应的待选车道集合;
车道推荐子单元,用于根据所述待选车道集合内的待选车道的通行耗时信息进行车道推荐。
在一种实现方式中,所述车道推荐装置还包括:
报文信息获取单元,用于获取各车道中的车辆数据中包括的报文信息;
异常信息检测单元,用于根据所述报文信息检测各车道中车辆存在的异常信息;
行驶参数更新单元,用于根据所检测到的异常信息,更新各车道的可行驶参数。
具体的,所述异常信息包括制动防抱死系统ABS异常、车身稳定控制系统异常、车辆刹车速度异常、车灯状态异常、轮胎异常、安全气囊异常、发动机异常中的一种或者多种。
在一种实现方式中,所述行驶参数确定单元包括:
数据获取子单元,用于获取位于同一车道的目标车辆前方的各个车辆的行驶速度、各个车辆的前方的车辆数量、各个车辆航向与车道方向的夹角;
平均流速确定子单元,用于根据各个车辆的行驶速度、前方的车辆数量以及所述夹角,确定所述车道的平均流速;
以及,
尺寸信息获取子单元,用于获取车道内的各个车辆的尺寸信息;
加速度确定子单元,用于根据各个车辆的尺寸信息,确定车道的加速度。
在一种实现方式中,所述平均流速确定子单元用于:
根据公式
Figure PCTCN2020141560-appb-000005
确定所述车道的平均流速,其中:V′为车道的平均流速,n为同一车道内位于目标车辆前方的车辆数量,θ i为车道内的第i车辆的航向与车道方向的夹角,V i为第i车辆的行驶速度。
在一种实现方式中,所述加速度确定子单元包括:
尺寸比值获取模块,用于获取同一车道内各个车辆的尺寸信息与基准尺寸的比值信息;
车辆加速度获取模块,用于拟定基于基准尺寸的基准加速度,结合所述比值信息,获取同一车道内的各个车辆的尺寸信息所对应的实际加速度与基准加速度的关系;
车道加速度获取模块,用于根据同一车道内的各个车辆对应的实际加速度,确定目标车辆在各车道内的实际最大加速度限制。
所述车道加速度获取模块还用于:比较同一车道内的各个车辆对应的加速度,获取最小的加速度作为所述车道的加速度。
在一种实现方式中,所述车道推荐单元包括:
排队距离获取子单元,用于获取所述目标车辆所对应的预定路段的排队距离;
通行时长确定子单元,用于根据各个车道的平均流速、各个车道的加速度和所述排队距离,确定目标车辆通过各个车道的通行时长。
所述通行时长确定子单元还用于:根据公式
Figure PCTCN2020141560-appb-000006
确定所述目标车辆通过各个车道的通行时长,其中:a为通道的加速度,V′为当前各车道的平均流速,S为通道的排队距离,T为目标车辆通过车道的通行时长。
在一种实现方式中,所述车道推荐装置还包括:
历史驾驶信息获取子单元,用于获取目标车辆的历史驾驶信息;
概率确定子单元,用于根据所述历史驾驶信息,确定所述目标车辆在路口的不同行驶方向所对应的概率;
目标车道确定子单元,用于当目标车辆在路口左转或直行的行驶方向的概率大于预定值,则根据概率大于预定值的行驶方向确定目标车辆的目标车道。
在具体的实施方式,所述车载通信技术为基于长期演进技术-车辆通信LTE-V的通信方式,或基于车辆专用短程通信技术DSRC的接入协议。
需要说明的是,上述装置/单元之间的信息交互、执行过程等内容,由于与本申请方法实施例基于同一构思,其具体功能及带来的技术效果,具体可参见方法实施例部分,此处不再赘述。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,仅以上述各功能单元、模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能单元、模块完成,即将所述装置的内部结构划分成不同的功能单元或模块,以完成以上描述的全部或者部分功能。实施例中的各功能单元、模块可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中,上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。另外,各功能单元、模块的具体名称也只是为了便于相互区分,并不用于限制本申请的保护范围。上述系统中单元、模块的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
本申请实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现可实现上述各个方法实施例中的步骤。
本申请实施例提供了一种计算机程序产品,当计算机程序产品在移动终端上运行时,使得移动终端执行时实现可实现上述各个方法实施例中的步骤。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实现上述实 施例方法中的全部或部分流程,可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一计算机可读存储介质中,该计算机程序在被处理器执行时,可实现上述各个方法实施例的步骤。其中,所述计算机程序包括计算机程序代码,所述计算机程序代码可以为源代码形式、对象代码形式、可执行文件或某些中间形式等。所述计算机可读介质至少可以包括:能够将计算机程序代码携带到拍照装置/终端设备的任何实体或装置、记录介质、计算机存储器、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、电载波信号、电信信号以及软件分发介质。例如U盘、移动硬盘、磁碟或者光盘等。在某些司法管辖区,根据立法和专利实践,计算机可读介质不可以是电载波信号和电信信号。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述或记载的部分,可以参见其它实施例的相关描述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在本申请所提供的实施例中,应该理解到,所揭露的装置/网络设备和方法,可以通过其它的方式实现。例如,以上所描述的装置/网络设备实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通讯连接可以是通过一些接口,装置或单元的间接耦合或通讯连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
[根据细则26改正13.01.2021] 
以上所述实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围,均应包含在本申请的保护范围之内。

Claims (16)

  1. 一种车道推荐方法,其特征在于,所述车道推荐方法包括:
    通过车载通信技术获取目标车辆当前所在道路的车道信息;
    通过车载通信技术接收目标车辆的周围车辆的车辆数据;
    根据所述车道信息和所述车辆数据,确定周围车辆在车道中的位置;
    根据所述车辆数据和周围车辆在车道中的位置,确定目标车辆待选择的各个车道的行驶参数;
    根据所述目标车辆待选择的各个车道的行驶参数,确定目标车辆通过预定路段的通行时长,根据所确定的通行时长进行车道推荐。
  2. 根据权利要求1所述的车道推荐方法,其特征在于,所述通过车载通信技术获取目标车辆当前所在道路的车道信息的步骤包括:
    通过车载通信技术获取目标车辆当前所在道路的车辆的位置和车辆的位置的变化信息;
    根据所述目标车辆所在道路的车辆的位置和所述车辆的位置的变化信息,拟合得到目标车辆前方车道信息。
  3. 如权利要求1所述的车道推荐方法,其特征在于,根据所确定的通行时长进行车道推荐的步骤包括:
    获取目标车辆的行驶操作指令;
    根据所述行驶操作指令,确定所述行驶操作指令所对应的待选车道集合;
    根据所述待选车道集合内的待选车道的通行耗时信息进行车道推荐。
  4. 根据权利要求1所述的车道推荐方法,其特征在于,所述方法还包括:
    获取各车道中的车辆数据中包括的报文信息;
    根据所述报文信息检测各车道中车辆存在的异常信息;
    根据所检测到的异常信息,更新各车道的可行驶参数。
  5. 根据权利要求4所述的车道推荐方法,其特征在于,所述异常信息包括制动防抱死系统ABS异常、车身稳定控制系统异常、车辆刹车速度异常、车灯状态异常、轮胎异常、安全气囊异常、发动机异常中的一种或者多种。
  6. 根据权利要求1所述的车道推荐方法,其特征在于,所述根据所述车辆数据和周围车辆在车道中的位置,确定目标车辆待选择的各个车道的行驶参数的步骤包括:
    获取位于同一车道的目标车辆前方的各个车辆的行驶速度、各个车辆的前方的车辆数量、各个车辆航向与车道方向的夹角;
    根据各个车辆的行驶速度、前方的车辆数量以及所述夹角,确定所述车道的平均流速;
    以及,
    获取车道内的各个车辆的尺寸信息;
    根据各个车辆的尺寸信息,确定车道的加速度。
  7. 根据权利要求6所述的车道推荐方法,其特征在于,所述根据各个车辆的行驶速度、前方的车辆数量以及所述夹角,确定所述车道的平均流速的步骤包括:
    根据公式
    Figure PCTCN2020141560-appb-100001
    确定所述车道的平均流速,其中:V′为车道的平均流速,n为同一车道内位于目标车辆前方的车辆数量,θ i为车道内的第i车辆的航向与车道方向的夹角,V i为第i车辆的行驶速度。
  8. 根据权利要求6所述的车道推荐方法,其特征在于,所述根据各个车辆的尺寸信息,确定车道的加速度的步骤包括:
    获取同一车道内各个车辆的尺寸信息与基准尺寸的比值信息;
    拟定基于基准尺寸的基准加速度,结合所述比值信息,获取同一车道内的各个车辆的尺寸信息所对应的实际加速度与基准加速度的关系;
    根据同一车道内的各个车辆对应的实际加速度,确定目标车辆在各车道内的实际最大加速度限制。
  9. 根据权利要求8所述的车道推荐方法,其特征在于,所述根据同一车道内的各个车辆对应的实际加速度,确定目标车辆在各车道内的实际最大加速度限制的步骤包括:
    比较同一车道内的各个车辆对应的加速度,获取最小的加速度作为所述车道的加速度。
  10. 根据权利要求6所述的车道推荐方法,其特征在于,所述根据所述目标车辆待选择的各个车道的行驶参数,确定目标车辆通过预定路段的通行时长的步骤包括:
    获取所述目标车辆所对应的预定路段的排队距离;
    根据各个车道的平均流速、各个车道的加速度和所述排队距离,确定目标车辆通过各个车道的通行时长。
  11. 根据权利要求10所述的车道推荐方法,其特征在于,所述根据各个车道的平均流速、各个车道的加速度和所述排队距离,确定目标车辆通过各个车道的通行时长的步骤包括:
    根据公式
    Figure PCTCN2020141560-appb-100002
    确定所述目标车辆通过各个车道的通行时长,其中:a为通道的加速度,V′为当前各车道的平均流速,S为通道的排队距离,T为目标车辆通过车道的通行时长。
  12. 根据权利要求1所述的车道推荐方法,其特征在于,所述方法还包括:
    获取目标车辆的历史驾驶信息;
    根据所述历史驾驶信息,确定所述目标车辆在路口的不同行驶方向所对应的概率;
    当目标车辆在路口左转或直行的行驶方向的概率大于预定值,则根据概率大于预定值的行驶方向确定目标车辆的符合车辆行驶方向的车道集合。
  13. 根据权利要求1所述的车道推荐方法,其特征在于,所述车载通信技术为基于长期演进技术-车辆通信LTE-V的通信方式,或基于车辆专用短程通信技术DSRC的接入协议。
  14. 一种车道推荐装置,其特征在于,所述车道推荐装置包括:
    车道信息接收单元,用于通过车载通信技术获取目标车辆当前所在道路的车道信息;
    车辆数据接收单元,用于通过车载通信技术接收目标车辆的周围车辆的车辆数据;
    车辆位置确定单元,用于根据所述车道信息和所述车辆数据,确定周围车辆在车道中的位置;
    行驶参数确定单元,用于根据所述车辆数据和周围车辆在车道中的位置,确定目标车辆待选择的各个车道的行驶参数;
    车道推荐单元,用于根据所述目标车辆待选择的各个车道的行驶参数,确定目标车辆通过预定路段的通行时长,根据所确定的通行时长进行车道推荐。
  15. 一种车载通信设备,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现如权利要求1至13任一项所述车道推荐的方法。
  16. 一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求1至13任一项所述车道推荐的方法。
PCT/CN2020/141560 2020-01-21 2020-12-30 车道推荐方法、装置及车载通信设备 WO2021147637A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010071162.XA CN113223313B (zh) 2020-01-21 2020-01-21 车道推荐方法、装置及车载通信设备
CN202010071162.X 2020-01-21

Publications (1)

Publication Number Publication Date
WO2021147637A1 true WO2021147637A1 (zh) 2021-07-29

Family

ID=76992041

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/141560 WO2021147637A1 (zh) 2020-01-21 2020-12-30 车道推荐方法、装置及车载通信设备

Country Status (2)

Country Link
CN (1) CN113223313B (zh)
WO (1) WO2021147637A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113799715A (zh) * 2021-10-25 2021-12-17 北京万集科技股份有限公司 车辆异常原因的确定方法、装置、通信设备及存储介质
CN113978481A (zh) * 2021-10-20 2022-01-28 中汽创智科技有限公司 车道异常提醒方法、装置、存储介质和终端
CN114491739A (zh) * 2021-12-30 2022-05-13 深圳市优必选科技股份有限公司 道路交通系统的构建方法、装置、终端设备及存储介质
CN114537450A (zh) * 2022-04-25 2022-05-27 小米汽车科技有限公司 车辆控制方法、装置、介质、芯片、电子设备及车辆
CN114613160A (zh) * 2022-03-28 2022-06-10 腾讯云计算(北京)有限责任公司 车道使用方法、装置、计算机设备和存储介质
CN114639261A (zh) * 2022-02-15 2022-06-17 江苏大学 一种基于导航的车道级定制服务信息精准推送系统及方法
CN115022370A (zh) * 2022-06-13 2022-09-06 长城汽车股份有限公司 一种路况信息上报方法、装置、设备、存储介质及车辆
CN115691145A (zh) * 2023-01-04 2023-02-03 中国科学技术大学先进技术研究院 车道数目调整方法、装置、设备及存储介质

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114464005A (zh) * 2022-02-28 2022-05-10 重庆长安汽车股份有限公司 一种车辆辅助驾驶的方法及系统
CN115426260A (zh) * 2022-08-04 2022-12-02 浙江大华技术股份有限公司 一种软件升级系统及方法
CN115909709B (zh) * 2022-10-27 2023-10-27 长安大学 一种考虑安全性的多车协同控制策略优化方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009047491A (ja) * 2007-08-16 2009-03-05 Hitachi Ltd ナビゲーション装置
JP2009301132A (ja) * 2008-06-10 2009-12-24 Aisin Aw Co Ltd 運転支援装置、運転支援方法及びプログラム
CN104835321A (zh) * 2015-05-04 2015-08-12 石立公 一种车道车辆流量统计系统及其车道车辆流量统计方法
CN106461406A (zh) * 2014-06-10 2017-02-22 歌乐株式会社 车道选择装置、车辆控制系统及车道选择方法
CN109300325A (zh) * 2018-12-14 2019-02-01 安徽江淮汽车集团股份有限公司 一种基于v2x的车道预测方法及系统

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004077655A (ja) * 2002-08-13 2004-03-11 Pioneer Electronic Corp 情報処理装置およびその方法、ナビゲーション装置およびその表示方法、ならびにそれらのプログラム、および、それらのプログラムを記録する記録媒体
JP5304735B2 (ja) * 2010-06-15 2013-10-02 三菱自動車工業株式会社 追従制御装置
US9146127B2 (en) * 2012-06-27 2015-09-29 International Business Machines Corporation Navigation system providing lane guidance to driver based on driver's driving habits and preferences
KR101362706B1 (ko) * 2012-11-23 2014-02-24 현대엠엔소프트 주식회사 차량의 직진 주행성 확보 시스템 및 그 방법
US20140207377A1 (en) * 2013-01-18 2014-07-24 International Business Machines Corporation Lane determination based on spatial data from local sources
JP2014227866A (ja) * 2013-05-20 2014-12-08 日産自動車株式会社 車両の運転支援装置
CN106959663B (zh) * 2016-01-11 2019-03-12 上海铼钠克数控科技股份有限公司 夹角运动的路径规划方法及装置
US9672734B1 (en) * 2016-04-08 2017-06-06 Sivalogeswaran Ratnasingam Traffic aware lane determination for human driver and autonomous vehicle driving system
CN106256606B (zh) * 2016-08-09 2017-11-03 浙江零跑科技有限公司 一种基于车载双目相机的车道偏离预警方法
CN107784852B (zh) * 2016-08-31 2021-03-30 奥迪股份公司 用于车辆的电子控制装置及方法
US10328973B2 (en) * 2017-03-06 2019-06-25 Ford Global Technologies, Llc Assisting drivers with roadway lane changes
KR101973627B1 (ko) * 2017-07-11 2019-04-29 엘지전자 주식회사 차량에 구비된 차량 제어 장치 및 차량의 제어방법
CN108470469A (zh) * 2018-03-12 2018-08-31 海信集团有限公司 道路障碍物预警方法、装置及终端
CN109147368A (zh) * 2018-08-22 2019-01-04 北京市商汤科技开发有限公司 基于车道线的智能驾驶控制方法装置与电子设备
CN110085037B (zh) * 2019-03-25 2021-09-07 合肥工业大学 一种车路协同环境下交叉口信号控制及车速引导系统
CN110264783B (zh) * 2019-06-19 2022-02-15 华设设计集团股份有限公司 基于车路协同的车辆防碰撞预警系统及方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009047491A (ja) * 2007-08-16 2009-03-05 Hitachi Ltd ナビゲーション装置
JP2009301132A (ja) * 2008-06-10 2009-12-24 Aisin Aw Co Ltd 運転支援装置、運転支援方法及びプログラム
CN106461406A (zh) * 2014-06-10 2017-02-22 歌乐株式会社 车道选择装置、车辆控制系统及车道选择方法
CN104835321A (zh) * 2015-05-04 2015-08-12 石立公 一种车道车辆流量统计系统及其车道车辆流量统计方法
CN109300325A (zh) * 2018-12-14 2019-02-01 安徽江淮汽车集团股份有限公司 一种基于v2x的车道预测方法及系统

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113978481A (zh) * 2021-10-20 2022-01-28 中汽创智科技有限公司 车道异常提醒方法、装置、存储介质和终端
CN113799715A (zh) * 2021-10-25 2021-12-17 北京万集科技股份有限公司 车辆异常原因的确定方法、装置、通信设备及存储介质
CN114491739A (zh) * 2021-12-30 2022-05-13 深圳市优必选科技股份有限公司 道路交通系统的构建方法、装置、终端设备及存储介质
CN114639261A (zh) * 2022-02-15 2022-06-17 江苏大学 一种基于导航的车道级定制服务信息精准推送系统及方法
CN114613160A (zh) * 2022-03-28 2022-06-10 腾讯云计算(北京)有限责任公司 车道使用方法、装置、计算机设备和存储介质
CN114537450A (zh) * 2022-04-25 2022-05-27 小米汽车科技有限公司 车辆控制方法、装置、介质、芯片、电子设备及车辆
CN115022370A (zh) * 2022-06-13 2022-09-06 长城汽车股份有限公司 一种路况信息上报方法、装置、设备、存储介质及车辆
CN115691145A (zh) * 2023-01-04 2023-02-03 中国科学技术大学先进技术研究院 车道数目调整方法、装置、设备及存储介质
CN115691145B (zh) * 2023-01-04 2023-03-28 中国科学技术大学先进技术研究院 车道数目调整方法、装置、设备及存储介质

Also Published As

Publication number Publication date
CN113223313B (zh) 2022-09-16
CN113223313A (zh) 2021-08-06

Similar Documents

Publication Publication Date Title
WO2021147637A1 (zh) 车道推荐方法、装置及车载通信设备
CN110392336B (zh) 用于在连接的车辆间提供协同感知的方法、系统和计算机可读介质
US11615706B2 (en) System and method for driving assistance along a path
US11156474B2 (en) ADAS horizon and vision supplemental V2X
CN108399792B (zh) 一种无人驾驶车辆避让方法、装置和电子设备
TWI662252B (zh) 路側偵測系統、路側裝置及其路側通訊方法
JP7413811B2 (ja) Vehicle-to-Everything通信に基づく車両構成要素の修正
WO2018128946A1 (en) Method for providing vulnerable road user warnings in a blind spot of a parked vehicle
CN110647164B (zh) 辅助飞行无人机选择并接近车辆以实现提高的飞行距离
CN104853972B (zh) 利用板载车辆平台中的图像处理支持扩增车辆的adas特征
CN114248799A (zh) 车辆到一切消息的不当行为检测
CN111292351A (zh) 车辆检测方法及执行其的电子设备
US20200286382A1 (en) Data-to-camera (d2c) based filters for improved object detection in images based on vehicle-to-everything communication
CN112102647B (zh) 用于车辆微云的方法和系统
US20220335728A1 (en) Electronic device, method, and computer readable storage medium for detection of vehicle appearance
KR20210056632A (ko) 메시지 기반의 영상 처리 방법 및 이를 구현하는 전자 장치
WO2021168867A1 (zh) 一种安全驾驶监测的方法和装置
US11979805B2 (en) Control method, communication terminal, and communication system
KR20200039274A (ko) 차량 통신 데이터의 패킷 필터링 방법 및 그를 수행하는 차량용 통신 단말 장치
US20230117467A1 (en) Passing assist system
CN116828417A (zh) 电子设备及其数据处理方法
CN116071946A (zh) 信息处理方法、辅助驾驶方法、路侧感知设备及车载终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20915504

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20915504

Country of ref document: EP

Kind code of ref document: A1