WO2021103319A1 - 以乙烯双吖啶为核的空穴传输材料及有机发光二极管 - Google Patents

以乙烯双吖啶为核的空穴传输材料及有机发光二极管 Download PDF

Info

Publication number
WO2021103319A1
WO2021103319A1 PCT/CN2020/075306 CN2020075306W WO2021103319A1 WO 2021103319 A1 WO2021103319 A1 WO 2021103319A1 CN 2020075306 W CN2020075306 W CN 2020075306W WO 2021103319 A1 WO2021103319 A1 WO 2021103319A1
Authority
WO
WIPO (PCT)
Prior art keywords
hole transport
transport material
organic light
emitting diode
light emitting
Prior art date
Application number
PCT/CN2020/075306
Other languages
English (en)
French (fr)
Inventor
罗佳佳
Original Assignee
武汉华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电半导体显示技术有限公司 filed Critical 武汉华星光电半导体显示技术有限公司
Priority to US16/652,154 priority Critical patent/US11370759B2/en
Publication of WO2021103319A1 publication Critical patent/WO2021103319A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D219/00Heterocyclic compounds containing acridine or hydrogenated acridine ring systems
    • C07D219/02Heterocyclic compounds containing acridine or hydrogenated acridine ring systems with only hydrogen, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D219/00Heterocyclic compounds containing acridine or hydrogenated acridine ring systems
    • C07D219/14Heterocyclic compounds containing acridine or hydrogenated acridine ring systems with hydrocarbon radicals, substituted by nitrogen atoms, attached to the ring nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers

Definitions

  • the present invention relates to the technical field of an organic light-emitting material, in particular to a hole transport material with ethylene bis acridine as the core and a hole transport material prepared by using the hole transport material with ethylene bis acridine as the core Organic light-emitting diodes.
  • Organic light-emitting diodes have broad application prospects in solid-state lighting and flat panel displays, and light-emitting guest materials are the main factor affecting the luminous efficiency of organic light-emitting diodes.
  • the light-emitting guest materials used in organic light-emitting diodes were fluorescent materials, and the ratio of singlet and triplet excitons in organic light-emitting diodes was 1:3. Therefore, theoretically, the internal quantum efficiency of organic light-emitting diodes (internal quantum efficiency) was 1:3.
  • the quantum efficiency (IQE) can only reach 25%, which limits the application of fluorescent electroluminescent devices.
  • the heavy metal complex phosphorescent luminescent material can simultaneously utilize singlet and triplet excitons due to the spin-orbit coupling of heavy atoms, thereby achieving 100% internal quantum efficiency.
  • the heavy metals used in heavy metal complex phosphorescent materials are precious metals such as iridium (Ir) or platinum (Pt), and the heavy metal complex phosphorescent materials still need to be improved in terms of blue light materials.
  • the hole transport material is the thickest layer, and its energy level and hole mobility have always been contradictory.
  • hole transport materials with matching energy levels and high hole mobility are currently lacking. Therefore, it is necessary to provide a novel hole transport material to solve the problems existing in the prior art.
  • the present invention provides a hole transport material with ethylenebisacridine as the core, which has the following structural formula:
  • R1 and R2 are selected from
  • the structural formula of the hole transport material with ethylenebisacridine as the core is:
  • the structural formula of the hole transport material with ethylenebisacridine as the core is:
  • the structural formula of the hole transport material with ethylenebisacridine as the core is:
  • the structural formula of the hole transport material with ethylenebisacridine as the core is:
  • Another embodiment of the present invention provides an organic light emitting diode.
  • the material of the hole transport layer in the organic light emitting diode is the aforementioned hole transport material with ethylenebisacridine as the core.
  • the organic light-emitting diode further includes an anode; a cathode; and a light-emitting structure located between the anode and the cathode, wherein the light-emitting structure includes the aforementioned hole transport material with spirobisacridine as the core .
  • the light emitting structure includes a hole injection layer, the hole transport layer, an electron blocking layer, a light emitting layer, a hole blocking layer, an electron transport layer, and an electron injection layer formed in sequence.
  • the present invention synthesizes a suitable highest occupied molecular orbital (HOMO) energy level and the lowest unoccupied molecular orbital by combining different functional groups on the basis of the structure of ethylene bisacridine as the core.
  • the lowest unoccupied molecular orbital (LUMO) energy level mobility of the hole transport material with ethylene bisacridine as the core has the effect of effectively increasing the luminous efficiency of the light-emitting structure, and the synthesis route also has improved material synthesis efficiency. Furthermore, it is beneficial to realize the preparation of long-life and high-efficiency organic light-emitting diodes.
  • FIG. 1 is a schematic diagram of an organic light emitting diode according to an embodiment of the present invention.
  • the present invention synthesizes a suitable highest occupied molecular orbital (HOMO) energy level and energy level by combining different functional groups on the basis of the structure of ethylene biacridine as the core.
  • the lowest unoccupied molecular orbital (LUMO) energy level mobility hole transport material with ethylene bisacridine as the core which can effectively increase the luminous efficiency of the light-emitting structure, and the synthesis route can also improve
  • the material synthesis efficiency is beneficial to the preparation of long-life, high-efficiency organic light-emitting diodes
  • the hole transport material with ethylenebisacridine as the core provided by the present invention has the structural formula as follows:
  • R1 and R2 are selected from
  • the structural formula of the hole transport material with ethylenebisacridine as the core is:
  • Example 1 Preparation of a hole transport material with the following structural formula
  • reaction solution was introduced into 200 mL ice water, extracted with dichloromethane three times, the organic phases obtained in each extraction were combined, the organic phases were combined, and the silica gel was spun into silica gel.
  • the column chromatography (dichloromethane: n-hexane, v:v , 1:5) for separation and purification, and finally 3.0 g of compound 1 (white powder) was obtained with a yield of 67%.
  • reaction solution was introduced into 200 mL ice water, extracted with dichloromethane three times, the organic phases obtained in each extraction were combined, the organic phases were combined, and the silica gel was spun into silica gel, and column chromatography (dichloromethane: n-hexane, v:v , 1:5) for separation and purification, and finally 2.9 g of compound 2 (obtained as a white powder) was obtained, with a yield of 64%.
  • reaction solution was introduced into 200 mL ice water, extracted with dichloromethane three times, the organic phases obtained in each extraction were combined, the organic phases were combined, and the silica gel was spun into silica gel.
  • the column chromatography (dichloromethane: n-hexane, v:v , 1:5) for separation and purification, and finally 2.6 g of compound 3 (white powder) was obtained with a yield of 53%.
  • the HOMO and LUMO energy levels of the target compound 1-3 are estimated by cyclic voltammetry combined with the optical energy gap (Eg) of the molecule in the film state according to the following calculation formula:
  • [Eonset]ox refers to the value of the redox initiation potential of ferrocene under the test.
  • the organic light emitting diode of the present invention includes a conductive glass anode layer S, a translucent cathode layer 8 and a light outcoupling layer 9, and a light emitting structure formed between the conductive glass anode layer S and the translucent cathode layer 8 .
  • the light emitting structure includes a hole injection layer 1, a hole transport layer 2, an electron blocking layer 3, a light emitting layer 4, a hole blocking layer 5, and an electron transport layer sequentially formed on the conductive glass anode layer S.
  • the conductive glass anode layer S is formed by plating a glass substrate with a conductive indium tin oxide (ITO)/silver (Ag)/indium tin oxide (ITO) total reflection substrate layer.
  • the hole injection layer 1 is composed of 2,3,6,7,10,11-hexacyano-1,4,5,8,9,12-hexaazatriphenylene (HATCN).
  • the hole transport layer 2 is composed of a hole transport material with ethylenebisacridine as the core of the present invention, such as compound 1-3.
  • the electron blocking layer 3 is made of (4-[1-[4-[bis(4-methylphenyl)amino]phenyl]cyclohexyl]-N-(3-methylphenyl)-N-(4- Methylphenyl) aniline (TAPC).
  • the light-emitting layer 4 is composed of 4,4'-bis(9-carbazole)biphenyl (CBP) and tris(1-phenylisoquinoline) iridium(III) (Ir(piq)3).
  • the hole blocking layer 5 is composed of 3,3'-[5'-[3-(3-pyridyl)phenyl][1,1':3',1”- Terphenyl]-3,3”-diyl]bipyridine (TMPyPb).
  • the electron transport layer 6 is composed of 1,3,5-tris[3-(3-pyridyl)phenyl]benzene (TmPyPB) and
  • the electron injection layer 7 is composed of lithium fluoride (LiF).
  • the semi-transparent cathode layer 8 is composed of magnesium and silver.
  • the light coupling output layer 9 is composed of 4,4', 4"-Tris (carbazole-9-yl) triphenylamine (TCTA).
  • the electron injection layer 7 constitutes the light-emitting structure of the organic light-emitting diode of the present invention.
  • the organic light-emitting diode can be completed according to methods known in the technical field of the present invention, for example, the method disclosed in the reference "Adv. Mater. 2003, 15, 277". The specific method is: under high vacuum conditions, on conductive glass, sequentially evaporate and form the aforementioned materials containing the hole transport material (compound 1-3) of the present invention. Here, the compound 1-3 of the present invention is used for preparation.
  • the structure of the organic light-emitting diode I-III from the conductive glass anode layer S to the light coupling-out layer 9 is as follows:
  • Organic light-emitting diode I ITO/Ag/ITO(15nm/140nm/15nm)/HATCN(100nm)/compound 1(130nm)/TAPC(5nm)/CBP:(Ir(piq)3(38nm:2nm)/TMPyPb( 15nm)/TmPyPB:LiQ(15nm:15nm)/LiF(1nm)/Mg:Ag(1nm:10nm)/TCTA(100nm).
  • Organic light-emitting diode II ITO/Ag/ITO(15nm/140nm/15nm)/HATCN(100nm)/compound 2(130nm)/TAPC(5nm)/CBP:(Ir(piq)3(38nm:2nm)/TMPyPb (5nm)/TmPyPB:LiQ(15nm:15nm)/LiF(1nm)/Mg:Ag(1nm:10nm)/TCTA(100nm).
  • Organic light-emitting diode III ITO/Ag/ITO(15nm/140nm/15nm)/HATCN(100nm)/compound 3(130nm)/TAPC(5nm)/CBP:(Ir(piq)3(38nm:2nm)/TMPyPb (5nm)/TmPyPB:LiQ(15nm:15nm)/LiF(1nm)/Mg:Ag(1nm:10nm)/TCTA(100nm).
  • the performance data of the organic light emitting diodes I-III of Examples 4-6 are shown in Table 2 below.
  • the current, brightness and voltage of organic light-emitting diodes are measured by Keithley source measurement system (Keithley 2400 Sourcemeter, Keithley 2000 Currentmeter) with calibrated silicon photodiodes.
  • the electroluminescence spectrum of organic light-emitting diodes is measured by the French JY company. All measurements measured by SPEX CCD3000 spectrometer are done in room temperature atmosphere.
  • the hole transport material with ethylene bis acridine as the core provided by the present invention is synthesized by collocation of different functional groups on the basis of the structure of ethylene bis acridine as the nucleus to have a suitable highest occupied molecular orbital (HOMO) energy level and the lowest unoccupied
  • HOMO highest occupied molecular orbital
  • LUMO molecular orbital
  • the synthetic route of the hole transport material with ethylenebisacridine as the core provided by the embodiment of the present invention also has an improved material synthesis efficiency.
  • the organic light-emitting diode using the hole transport material with ethylenebisacridine as the core of the embodiment of the present invention as the light-emitting structure has high light-emitting efficiency, which is beneficial to realize the preparation of long-life and high-efficiency organic light-emitting diodes, and can be applied to Various display devices and electronic devices.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本发明公开一种以乙烯双吖啶为核的空穴传输材料,其具有如通式(I)所示的结构,并具有合适最高占据分子轨域的能级和最低未占分子轨域的能级的迁移率。再者,本发明公开一种有机发光二极管,其包括一阳极;一阴极;以及位于所述阳极与所述阴极之间的一发光结构,其中所述发光结构具有如通式(I)所示的以乙烯双吖啶为核的空穴传输材料(I)。

Description

以乙烯双吖啶为核的空穴传输材料及有机发光二极管 技术领域
本发明是有关于一种有机发光材料技术领域,特别是有关于一种以乙烯双吖啶为核的空穴传输材料以及使用所述以乙烯双吖啶为核的空穴传输材料所制备的有机发光二极管。
背景技术
有机发光二极管(organic light-emitting diodes,OLEDs)在固态照明及平板显示等领域具有广阔的应用前景,而发光客体材料是影响有机发光二极管的发光效率的主要因素。在早期,有机发光二极管使用的发光客体材料为荧光材料,其在有机发光二极管中的单重态和三重态的激子比例为1:3,因此在理论上有机发光二极管的内量子效率(internal quantum efficiency,IQE)只能达到25%,使荧光电致发光器件的应用受到限制。再者,重金属配合物磷光发光材料由于重原子的自旋轨道耦合作用,而能够同时利用单重态和三重态激子,进而达到100%的内量子效率。然而,通常重金属配合物磷光发光材料所使用的重金属都是铱(Ir)或铂(Pt)等贵重金属,并且重金属配合物磷光发光材料在蓝光材料方面尚有待改良。
对于目前使用的顶发射有机发光二极管中,空穴传输材料作为最厚的一层,其能级以及空穴迁移率一直存在矛盾的关系。然而,目前具备匹配能级以及高空穴迁移率的空穴传输材料还是比较缺乏的。因此,有必要提供一种新颖空穴传输材料,以解决现有技术所存在的问题。
技术问题
对于目前使用的顶发射有机发光二极管中,目前具备匹配能级以及高空穴迁移率的空穴传输材料还是比较缺乏的。因此,有必要提供一种新颖空穴传输材料,以解决现有技术所存在的问题。
技术解决方案
有鉴于此,本发明提供一种以乙烯双吖啶为核的空穴传输材料,其具有结构式如下:
Figure PCTCN2020075306-appb-000001
其中R1及R2选自
Figure PCTCN2020075306-appb-000002
或其任意组合。
在本发明的一实施例中,所述以乙烯双吖啶为核的空穴传输材料的结构式为:
Figure PCTCN2020075306-appb-000003
在本发明的一实施例中,所述以乙烯双吖啶为核的空穴传输材料的结构式为:
Figure PCTCN2020075306-appb-000004
,是通过下述合成路线合成出:
Figure PCTCN2020075306-appb-000005
在本发明的另一实施例中,所述以乙烯双吖啶为核的空穴传输材料的结构式为:
Figure PCTCN2020075306-appb-000006
,是通过下述合成路线合成出:
Figure PCTCN2020075306-appb-000007
在本发明的又一实施例中,所述以乙烯双吖啶为核的空穴传输材料的结构式为:
Figure PCTCN2020075306-appb-000008
,是通过下述合成路线合成出:
Figure PCTCN2020075306-appb-000009
本发明另一实施例提供一种有机发光二极管,所述有机发光二极管中的空穴传输层的材料为前述的以乙烯双吖啶为核的的空穴传输材料。
所述有机发光二极管中还包括一阳极;一阴极;以及位于所述阳极与所述阴极之间的一发光结构,其中所述发光结构包括前述的以螺双吖啶为核的空穴传输材料。所述发光结构包括依序形成的一空穴注入层、所述空穴传输层、一电子阻挡层、一发光层、一空穴阻挡层、一电子传输层及一电子注入层。
有益效果
相较于先前技术,本发明通过在乙烯双吖啶作为核的结构基础上,搭配不同官能团合成了具有合适最高占据分子轨域(highest occupied molecular orbital,HOMO)的能级和最低未占分子轨域(lowest unoccupied molecular orbital,LUMO)的能级的迁移率以乙烯双吖啶为核的空穴传输材料,其具有有效增加发光结构的发光效率的作用,合成路线亦具有提高的材料合成效率,进而有利于实现长寿命、高效率的有机发光二极管的制备。
附图说明
图1是本发明实施例的有机发光二极管的示意图。
本发明的实施方式
因应高性能空穴传输材料的迫切需求,本发明通过在乙烯双吖啶作为核的结构基础上,搭配不同官能团合成了具有合适最高占据分子轨域(highest occupied molecular orbital,HOMO)的能级和最低未占分子轨域(lowest unoccupied molecular orbital,LUMO)的能级的迁移率以乙烯双吖啶为核的空穴传输材料,其具有有效增加发光结构的发光效率的作用,合成路线亦具有提高的材料合成效率,进而有利于实现长寿命、高效率的有机发光二极管的制备
为了达到上述效果,本发明提供的以乙烯双吖啶为核的空穴传输材料,具有结构式如下:
Figure PCTCN2020075306-appb-000010
,其中R1及R2选自
Figure PCTCN2020075306-appb-000011
Figure PCTCN2020075306-appb-000012
或其任意组合。
在本发明的一实施例中,所述以乙烯双吖啶为核的空穴传输材料的结构式为:
Figure PCTCN2020075306-appb-000013
Figure PCTCN2020075306-appb-000014
以下结合实施例和附图来对本发明作进一步的详细说明,其目的在于帮助更好的理解本发明的内容,但本发明的保护范围不仅限于这些实施例。
实施例1:制备结构式如下的空穴传输材料
Figure PCTCN2020075306-appb-000015
,合成路线如下所示:
Figure PCTCN2020075306-appb-000016
化合物1的合成
首先,向250mL二口瓶中加入原料1(3.61g,5mmol),咔唑(2.00g,12mmol),醋酸钯(0.18g,0.8mmol)和三叔丁基膦四氟硼酸盐(0.68g,2.4 mmol)。然后,将二口瓶放到手套箱中,加入NaOt-Bu(1.17g,12mmol)。接着,在氩气氛围下打入100mL事先除水除氧的甲苯(toluene),在120℃反应24小时,冷却至室温后获得反应液。随后,导入反应液至200mL冰水中,用二氯甲烷萃取三次,合并每次萃取取得的有机相,合并有机相,旋成硅胶,并用柱层析法(二氯甲烷:正己烷,v:v,1:5)进行分离纯化,最终获得化合物1(白色粉末)3.0g,产率67%。MS(EI)m/z:[M] +:896.32。
实施例2:制备结构式如下的空穴传输材料
Figure PCTCN2020075306-appb-000017
,合成路线如下所示:
Figure PCTCN2020075306-appb-000018
化合物2的合成
首先,向250mL二口瓶中加入原料1(3.61g,5mmol),二苯胺(2.03g,12mmol),醋酸钯(0.18g,0.8mmol)和三叔丁基膦四氟硼酸盐(0.68g,2.4mmol)。然后,将二口瓶放到手套箱中,加入NaOt-Bu(1.17g,12mmol)。接着,在氩气氛围下打入100mL事先除水除氧的甲苯,在120℃反应24小时,冷却至室温后获得反应液。随后,导入反应液至200mL冰水中,用二氯甲烷萃取三次,合并每次萃取取得的有机相,合并有机相,旋成硅胶, 并用柱层析法(二氯甲烷:正己烷,v:v,1:5)进行分离纯化,最终获得化合物2(得白色粉末)2.9g,产率64%。MS(EI)m/z:[M]+:900.42。
实施例3:制备结构式如下的空穴传输材料
Figure PCTCN2020075306-appb-000019
,合成路线如下所示:
Figure PCTCN2020075306-appb-000020
化合物3的合成
首先,向250mL二口瓶中加入原料1(3.61g,5mmol),9,9-二甲基吖啶(2.51g,12mmol),醋酸钯(0.18g,0.8mmol)和三叔丁基膦四氟硼酸盐(0.68g,2.4mmol)。然后,将二口瓶放到手套箱中,加入NaOt-Bu(1.17g,12mmol)。接着,在氩气氛围下打入100mL事先除水除氧的甲苯,在120℃反应24小时,冷却至室温后获得反应液。随后,导入反应液至200mL冰水中,用二氯甲烷萃取三次,合并每次萃取取得的有机相,合并有机相,旋成硅胶,并用柱层析法(二氯甲烷:正己烷,v:v,1:5)进行分离纯化,最终获得 化合物3(白色粉末)2.6g,产率53%。MS(EI)m/z:[M] +:980.42。
化合物1-3的物理特性:
目标化合物1-3的最高占据分子轨域(HOMO)的能级和最低未占分子轨域(LUMO)的能级,如下表1所示:
Figure PCTCN2020075306-appb-000021
表1
目标化合物1-3的HOMO和LUMO能级采用循环伏安法结合分子在薄膜状态下的光学能隙(Eg)根据以下计算公式估算得到:
HOMO=-([Eonset]ox+4.8)eV,
Eg=LUMO-HOMO,
其中[Eonset]ox是指参照于在测试下二茂铁的氧化还原起始电位值。
实施例4-6:有机发光二极管的制备:
参考图1,本发明有机发光二极管包括一导电玻璃阳极层S、一半透明阴极层8及一光耦合输出层9,及形成在导电玻璃阳极层S及半透明阴极层8之间的一发光结构。具体而言,发光结构包括依序形成在导电玻璃阳极层S上的一空穴注入层1、一空穴传输层2、一电子阻挡层3、一发光层4、一空穴阻挡层5、一电子传输层6及一电子注入层7。具体而言,导电玻璃阳极层S是藉由将玻璃基板镀上可导电的氧化铟锡(indium tin oxide,ITO)/银(Ag)/氧化铟锡(ITO)的全反射衬底层来形成的。空穴注入层1是由2,3,6,7,10,11-六氰基-1,4,5,8,9,12-六氮杂苯并菲(HATCN)所组成。空穴传输层2是由本发明以乙烯双吖啶为核的空穴传输材料所组成,例如为化合物1-3。电子阻挡层3是由(4-[1-[4-[二(4-甲基苯基)氨基]苯基]环己基]-N-(3-甲基苯基)-N-(4-甲基苯基)苯胺(TAPC)所组成。发光层4是由4,4'-二(9-咔唑)联苯(CBP)和三(1-苯基 异喹啉)合铱(III)(Ir(piq)3)所组成。空穴阻挡层5是由3,3'-[5'-[3-(3-吡啶基)苯基][1,1':3',1”-三联苯]-3,3”-二基]二吡啶(TMPyPb)所组成。电子传输层6是由1,3,5-三[3-(3-吡啶基)苯基]苯(TmPyPB)和八羟基喹啉锂(LiQ)所组成。电子注入层7是由氟化锂(LiF)所组成。半透明阴极层8由镁和银所组成。光耦合输出层9是由4,4',4”-三(咔唑-9-基)三苯胺(TCTA)所组成。空穴注入层1、空穴传输层2、电子阻挡层3、发光层4、空穴阻挡层5、电子传输层6、及电子注入层7组成了本发明有机发光二极管的发光结构。有机发光二极管可按本发明技术领域已知的方法完成,例如参考文献「Adv.Mater.2003,15,277」所公开的方法。具体方法为:在高真空条件下,在导电玻璃上,依次蒸镀形成含本发明空穴传输材料(化合物1-3)的前述材料而完成。在此,使用本发明化合物1-3来制备实施例4-6的有机发光二极管I-III。有机发光二极管I-III的结构从导电玻璃阳极层S至光耦合输出层9的结构依次如下所示:
有机发光二极管I:ITO/Ag/ITO(15nm/140nm/15nm)/HATCN(100nm)/化合物1(130nm)/TAPC(5nm)/CBP:(Ir(piq)3(38nm:2nm)/TMPyPb(15nm)/TmPyPB:LiQ(15nm:15nm)/LiF(1nm)/Mg:Ag(1nm:10nm)/TCTA(100nm)。
有机发光二极管II::ITO/Ag/ITO(15nm/140nm/15nm)/HATCN(100nm)/化合物2(130nm)/TAPC(5nm)/CBP:(Ir(piq)3(38nm:2nm)/TMPyPb(5nm)/TmPyPB:LiQ(15nm:15nm)/LiF(1nm)/Mg:Ag(1nm:10nm)/TCTA(100nm)。
有机发光二极管III::ITO/Ag/ITO(15nm/140nm/15nm)/HATCN(100nm)/化合物3(130nm)/TAPC(5nm)/CBP:(Ir(piq)3(38nm:2nm)/TMPyPb(5nm)/TmPyPB:LiQ(15nm:15nm)/LiF(1nm)/Mg:Ag(1nm:10nm)/TCTA(100nm)。
实施例4-6的有机发光二极管I-III的性能数据如下表2所示。有机发光二极管的电流、亮度及电压是由带有校正过的硅光电二极管的Keithley源测 量系统(Keithley 2400 Sourcemeter、Keithley 2000 Currentmeter)所测量的,有机发光二极管的电致发光光谱是由法国JY公司SPEX CCD3000光谱仪所测量的,所有测量均在室温大气中完成。
Figure PCTCN2020075306-appb-000022
表2
本发明提供的乙烯双吖啶为核的空穴传输材料,通过在乙烯双吖啶作为核的结构基础上搭配不同官能团合成了具有合适最高占据分子轨域(HOMO)的能级和最低未占分子轨域(LUMO)的能级的迁移率空穴传输材料,其具有有效增加发光结构的发光效率的作用。再者,本发明实施例所提供的乙烯双吖啶为核的空穴传输材料其合成路线亦具有提高的材料合成效率。最后,使用本发明实施例的乙烯双吖啶为核的空穴传输材料作为发光结构的有机发光二极管具有高发光效率,进而有利于实现具有长寿命,高效率有机发光二极管的制备,可应用于各种显示设备和电子装置中。
虽然本发明结合其具体实施例而被描述,应该理解的是,许多替代、修改及变化对于那些本领域的技术人员将是显而易见的。因此,其意在包含落入所附权利要求书的范围内的所有替代、修改及变化。

Claims (12)

  1. 一种以乙烯双吖啶为核的空穴传输材料,其中所述空穴传输材料的结构式如下:
    Figure PCTCN2020075306-appb-100001
    其中R1及R2选自
    Figure PCTCN2020075306-appb-100002
    或其任意组合。
  2. 根据权利要求1所述的以乙烯双吖啶为核的空穴传输材料,其中所述空穴传输材料的结构式为:
    Figure PCTCN2020075306-appb-100003
  3. 根据权利要求2所述的以乙烯双吖啶为核的空穴传输材料,其中所述空穴传输材料的结构式为:
    Figure PCTCN2020075306-appb-100004
    ,是通过下述合成路线合成出:
    Figure PCTCN2020075306-appb-100005
  4. 根据权利要求2所述的以乙烯双吖啶为核的空穴传输材料,其中所述空穴传输材料的结构式为:
    Figure PCTCN2020075306-appb-100006
    ,是通过下述合成路线合成出:
    Figure PCTCN2020075306-appb-100007
  5. 根据权利要求2所述的以乙烯双吖啶为核的空穴传输材料,其中所述空穴 传输材料的结构式为:
    Figure PCTCN2020075306-appb-100008
    是通过下述合成路线合成出:
    Figure PCTCN2020075306-appb-100009
  6. 一种有机发光二极管,其中所述有机发光二极管中的空穴传输层的材料为以乙烯双吖啶为核的的空穴传输材料,具有结构式如下:
    Figure PCTCN2020075306-appb-100010
    其中R1及R2选自
    Figure PCTCN2020075306-appb-100011
    或其任意组合。
  7. 根据权利要求6所述的有机发光二极管,其中所述空穴传输材料的结构式为:
    Figure PCTCN2020075306-appb-100012
    Figure PCTCN2020075306-appb-100013
  8. 根据权利要求7所述的有机发光二极管,其中所述空穴传输材料的结构式为:
    Figure PCTCN2020075306-appb-100014
    ,是通过下述合成路线合成出:
    Figure PCTCN2020075306-appb-100015
  9. 根据权利要求7所述的有机发光二极管,其中所述空穴传输材料的结构式为:
    Figure PCTCN2020075306-appb-100016
    ,是通过下述合成路线合成出:
    Figure PCTCN2020075306-appb-100017
  10. 根据权利要求7所述的有机发光二极管,其中所述空穴传输材料的结构式为:
    Figure PCTCN2020075306-appb-100018
    ,是通过下述合成路线合成出:
    Figure PCTCN2020075306-appb-100019
  11. 根据权利要求6所述的有机发光二极管,其中所述有机发光二极管还包括一阳极、一阴极、以及位于所述阳极与所述阴极之间的一发光结构,其中所述发光结构包括如权利要求6所述的空穴传输层。
  12. 根据权利要求11所述的有机发光二极管,其中所述发光结构包括依序形成的一空穴注入层、所述空穴传输层、一电子阻挡层、一发光层、一空穴阻挡层、一电子传输层及一电子注入层。
PCT/CN2020/075306 2019-11-26 2020-02-14 以乙烯双吖啶为核的空穴传输材料及有机发光二极管 WO2021103319A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/652,154 US11370759B2 (en) 2019-11-26 2020-02-14 Hole transporting material using ethylene bisacridine as core and organic light emitting diode

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911171547.7A CN111039924A (zh) 2019-11-26 2019-11-26 以乙烯双吖啶为核的空穴传输材料及有机发光二极管
CN201911171547.7 2019-11-26

Publications (1)

Publication Number Publication Date
WO2021103319A1 true WO2021103319A1 (zh) 2021-06-03

Family

ID=70234102

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/075306 WO2021103319A1 (zh) 2019-11-26 2020-02-14 以乙烯双吖啶为核的空穴传输材料及有机发光二极管

Country Status (3)

Country Link
US (1) US11370759B2 (zh)
CN (1) CN111039924A (zh)
WO (1) WO2021103319A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050058853A1 (en) * 2003-09-15 2005-03-17 Eastman Kodak Company Green organic light-emitting diodes
CN104119861A (zh) * 2013-04-27 2014-10-29 广东阿格蕾雅光电材料有限公司 有机电子材料
CN105837570A (zh) * 2016-02-03 2016-08-10 中节能万润股份有限公司 一种电子传输材料及其制备方法和应用
CN110299460A (zh) * 2019-06-24 2019-10-01 武汉华星光电半导体显示技术有限公司 一种空穴传输材料、制备方法及电致发光器件

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6552201B2 (ja) * 2015-01-19 2019-07-31 キヤノン株式会社 有機発光素子
US10541260B2 (en) * 2015-06-05 2020-01-21 Canon Kabushiki Kaisha Organic photoelectric conversion element, optical area sensor, imaging device, and imaging apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050058853A1 (en) * 2003-09-15 2005-03-17 Eastman Kodak Company Green organic light-emitting diodes
CN104119861A (zh) * 2013-04-27 2014-10-29 广东阿格蕾雅光电材料有限公司 有机电子材料
CN105837570A (zh) * 2016-02-03 2016-08-10 中节能万润股份有限公司 一种电子传输材料及其制备方法和应用
CN110299460A (zh) * 2019-06-24 2019-10-01 武汉华星光电半导体显示技术有限公司 一种空穴传输材料、制备方法及电致发光器件

Also Published As

Publication number Publication date
US11370759B2 (en) 2022-06-28
US20220017470A1 (en) 2022-01-20
CN111039924A (zh) 2020-04-21

Similar Documents

Publication Publication Date Title
WO2020211122A1 (zh) 双极性热活化延迟荧光材料及其制备方法与有机电致发光二极管器件
WO2020258651A1 (zh) 一种空穴传输材料、制备方法及电致发光器件
CN111116505B (zh) 一种胺类化合物及其有机发光器件
WO2020124771A1 (zh) 热活化延迟荧光化合物及其制备方法与有机电致发光二极管器件
WO2020211125A1 (zh) 热活化延迟荧光材料及其制备方法与有机电致发光二极管器件
CN110128403A (zh) 化合物、显示面板以及显示装置
WO2020211126A1 (zh) 热活化延迟荧光材料及其制备方法与有机电致发光二极管器件
KR20120130074A (ko) 유기광전소자용 조성물 및 이를 이용한 유기광전소자
WO2021098050A1 (zh) 以二氢吩嗪为核的空穴传输材料及有机发光二极管
TWI471308B (zh) 有機化合物及包含其之有機電激發光裝置
WO2020155525A1 (zh) 热激活延迟荧光材料、有机电致发光器件及显示面板
WO2021103318A1 (zh) P型掺杂剂及有机发光二极管
WO2021103319A1 (zh) 以乙烯双吖啶为核的空穴传输材料及有机发光二极管
CN106800557B (zh) 一种二氧吩恶噻类衍生物及其制备方法和应用
WO2021103317A1 (zh) 以螺双吖啶为核的空穴传输材料及有机发光二极管
WO2022120945A1 (zh) 空穴传输材料及其制备方法、电致发光器件
CN112750957B (zh) 一种有机电致发光器件
JP6860765B1 (ja) 化合物及びこれを含む有機発光素子
CN114262328A (zh) 有机电致发光化合物及其制备方法和有机电致发光器件
WO2020211128A1 (zh) 热活化延迟荧光材料及其制备方法与有机电致发光二极管器件
WO2020211123A1 (zh) 热活化延迟荧光材料及其制备方法与有机电致发光二极管器件
WO2020211121A1 (zh) 热活化延迟荧光材料及其制备方法与有机电致发光二极管器件
US20210159424A1 (en) Hole transporting material using spirobiacridine as core and organic light emitting diode
CN111018874A (zh) 空穴传输材料、其制备方法及有机发光二极管器件
WO2021098049A1 (zh) 热活化延迟荧光材料及使用其所制备的有机发光二极管

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20891737

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20891737

Country of ref document: EP

Kind code of ref document: A1