WO2021098049A1 - 热活化延迟荧光材料及使用其所制备的有机发光二极管 - Google Patents

热活化延迟荧光材料及使用其所制备的有机发光二极管 Download PDF

Info

Publication number
WO2021098049A1
WO2021098049A1 PCT/CN2020/075113 CN2020075113W WO2021098049A1 WO 2021098049 A1 WO2021098049 A1 WO 2021098049A1 CN 2020075113 W CN2020075113 W CN 2020075113W WO 2021098049 A1 WO2021098049 A1 WO 2021098049A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermally activated
activated delayed
delayed fluorescent
fluorescent material
organic light
Prior art date
Application number
PCT/CN2020/075113
Other languages
English (en)
French (fr)
Inventor
罗佳佳
Original Assignee
武汉华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电半导体显示技术有限公司 filed Critical 武汉华星光电半导体显示技术有限公司
Priority to US16/652,422 priority Critical patent/US11430959B2/en
Publication of WO2021098049A1 publication Critical patent/WO2021098049A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/02Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D495/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/12OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • C09K2211/1033Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1092Heterocyclic compounds characterised by ligands containing sulfur as the only heteroatom

Definitions

  • the present invention relates to the technical field of an organic light-emitting material, in particular to a thermally activated delayed fluorescent material and an organic light-emitting diode prepared by using the thermally activated delayed fluorescent material.
  • Organic light-emitting diodes have broad application prospects in solid-state lighting and flat panel displays, and light-emitting guest materials are the main factor affecting the luminous efficiency of organic light-emitting diodes.
  • the light-emitting guest materials used in organic light-emitting diodes were fluorescent materials.
  • the ratio of singlet and triplet excitons in organic light-emitting diodes was 1:3. Therefore, theoretically, the internal quantum efficiency of organic light-emitting diodes (internal quantum efficiency) was 1:3.
  • the quantum efficiency (IQE) can only reach 25%, which limits the application of fluorescent electroluminescent devices.
  • the heavy metal complex phosphorescent luminescent material can simultaneously utilize singlet and triplet excitons due to the spin-orbit coupling of heavy atoms, thereby achieving 100% internal quantum efficiency.
  • the heavy metals used in heavy metal complex phosphorescent materials are precious metals such as iridium (Ir) or platinum (Pt), and the heavy metal complex phosphorescent materials still need to be improved in terms of blue light materials.
  • Purely organic thermally activated delayed fluorescence (TADF) has a low single-triplet energy gap ( ⁇ EST), which enables triplet excitons to pass through reverse intersystem crossing (reverse intersystem crossing).
  • RISC returns to the singlet state, and then emits light through the radiation transition to the ground state, so that singlet excitons and triplet excitons can be used at the same time, and theoretically 100% internal quantum efficiency can also be achieved.
  • thermally activated delayed fluorescent materials For thermally activated delayed fluorescent materials, low single triplet energy level difference, high reverse intersystem crossover constant (kRISC) and high photoluminescence quantum yield (PLQY) are necessary conditions for the preparation of high-efficiency organic light-emitting diodes.
  • kRISC high reverse intersystem crossover constant
  • PLQY photoluminescence quantum yield
  • the present invention provides a thermally activated delayed fluorescent material, which has a structure as shown in formula (I):
  • R is selected from Or any combination thereof.
  • an organic light emitting diode which includes: an anode; a cathode; and a light-emitting layer located between the anode and the cathode, the light-emitting layer comprising the aforementioned thermally activated delayed fluorescent material .
  • the thermally activated delayed fluorescent material is the following compound 1:
  • the compound 1 is synthesized through the following synthetic route:
  • the thermally activated delayed fluorescent material is the following compound 2:
  • the compound 2 is synthesized through the following synthetic route:
  • the thermally activated delayed fluorescent material is the following compound 3:
  • the compound 3 is synthesized through the following synthetic route:
  • the highly thermally activated delayed fluorescent material of the embodiment of the present invention has a lower single triplet energy level difference, a high reverse intersystem crossover constant, and a high photoluminescence quantum yield, which is beneficial to achieve high luminous efficiency.
  • Figure 1 is a photoluminescence spectrum of a thermally activated delayed fluorescent material in a toluene solution at room temperature in an embodiment of the present invention.
  • Fig. 2 is a schematic diagram of an organic light emitting diode according to an embodiment of the present invention.
  • thermally activated delayed fluorescent materials have a molecular structure in which electron donors and electron acceptors are combined.
  • the present invention modulates the structure of the donor unit to change its electron-donating ability, effectively increasing the luminous efficiency of thermally activated delayed fluorescent materials. Conducive to the realization of organic light-emitting diodes with high performance.
  • the thermally activated delayed fluorescent material provided by the present invention mainly has a structure as shown in formula (I):
  • R is selected from Or any combination thereof, wherein the R in the lower left corner and the lower right corner of the structure shown in formula (I) of the present invention are preferably selected from the same substituent, but the present invention may also be designed such that the R in the lower left corner and the lower right corner are selected from different Substituents.
  • reaction solution After cooling to room temperature, the reaction solution in the two-neck flask was poured into 300 mL of ice water. Subsequently, the reaction solution was extracted with dichloromethane. After three extractions, the organic phases obtained from each extraction were combined and separated and purified by column chromatography (dichloromethane: n-hexane, v:v, 2:3). Finally, 2.0 g of target compound 2 (green powder) was obtained, with a yield of 47%. MS(EI) m/z: 854.10.
  • reaction solution After cooling to room temperature, the reaction solution in the two-neck flask was poured into 300 mL of ice water. Subsequently, the reaction solution was extracted with dichloromethane for three times. The organic phases obtained from each extraction were combined and separated and purified by column chromatography (dichloromethane: n-hexane, v: v, 1:1), and finally 1.8 g of target compound 3 (red powder) was obtained with a yield of 45%. MS(EI) m/z: 801.98.
  • the photoluminescence peak of target compound 1-3 (photoluminescence peak, PL peak) lowest singlet energy level (S1), lowest triplet energy level (T1), single triplet energy level difference ( ⁇ EST), highest occupied molecular orbital
  • S1 singlet energy level
  • T1 lowest triplet energy level
  • ⁇ EST single triplet energy level difference
  • HOMO highest occupied molecular orbital
  • LUMO lowest unoccupied molecular orbital
  • Figure 1 is a photoluminescence spectrum of a thermally activated delayed fluorescent material (compound 1-3) in a toluene solution according to an embodiment of the present invention.
  • the PL peak of compound 1-3 is shown in the table 1 said are 460nm, 530nm and 612nm respectively, that is, compounds 1-3 are representative examples of the blue light thermally activated delayed fluorescent material, green light thermally activated delayed fluorescent material and red light thermally activated delayed fluorescent material of the present invention.
  • the organic light emitting diode of the present invention includes a conductive glass anode layer 1, a hole injection layer 2, a hole transport layer 3, a light emitting layer 4, an electron transport layer 5 and a cathode layer 6.
  • the conductive glass anode layer 1 is formed by plating a glass substrate with a layer of conductive indium tin oxide (ITO).
  • the hole injection layer 2 is composed of molybdenum trioxide (MoO3).
  • the hole transport layer 3 is composed of 4,4',4"-tris(carbazol-9-yl)triphenylamine (4,4',4"-tris(carbazol-9-yl)triphenylamine, TCTA).
  • the light-emitting layer 4 is made of bis[2-((oxo)diphenylphosphino]phenyl]ether (bis[2-[(oxo)diphenylphosphino]phenyl]ether, DPEPO) and the thermally activated delayed fluorescent material of the present invention composition.
  • the electron transport layer 5 is composed of 1,3,5-tri[3-(3-pyridyl)phenyl]benzene (1,3,5-tri[(3-pyridyl)-phen-3-yl]benzene, Tm3PyPB ).
  • the cathode layer 60 is composed of lithium fluoride and aluminum.
  • the organic light emitting diode can be completed according to a method known in the technical field of the present invention, for example, the method disclosed in the reference "Adv. Mater. 2003, 15, 277".
  • the specific method is as follows: MoO3, TCTA, DPEPO+the thermally activated delayed fluorescent material of the present invention (compound 1-3), Tm3PyPB, LiF and Al are formed by successive evaporation on ITO conductive glass under high vacuum conditions.
  • the target compounds 1-3 of the present invention are used to prepare organic light-emitting diodes I-III.
  • the structure of the organic light-emitting diodes I-III from the conductive glass anode layer 1 to the cathode layer 6 is as follows:
  • Organic Light Emitting Diode I ITO/MoO3(2nm)/TCTA(35nm)/DPEPO: Compound 1(10%, 20nm)/Tm3PyPB(40nm)/LiF(1nm)+Al(100nm)
  • ITO/MoO3(2nm)/TCTA(35nm)/DPEPO Compound 2(10%20nm)/Tm3PyPB(40nm)/LiF(1nm)+Al(100nm)
  • ITO/MoO3(2nm)/TCTA(35nm)/DPEPO Compound 3(10%20nm)/Tm3PyPB(40nm)/LiF(1nm)+Al(100nm)
  • the performance data of organic light-emitting diodes I-III are shown in Table 2 below.
  • the current, brightness and voltage of organic light-emitting diodes are measured by Keithley source measurement system (Keithley 2400 Sourcemeter, Keithley 2000 Currentmeter) with calibrated silicon photodiodes.
  • the electroluminescence spectrum of organic light-emitting diodes is measured by French JY All measurements measured by SPEX CCD3000 spectrometer are done in room temperature atmosphere.
  • the thermally activated delayed fluorescent materials of the embodiments of the present invention including blue, green and red thermally activated delayed fluorescent materials, all have a low single triplet energy level difference, and further have a high reverse intersystem crossing constant and high photoluminescence quantum yield. rate. Furthermore, the method for preparing the thermally activated delayed fluorescent material provided by the embodiment of the present invention has high synthesis efficiency. Finally, the organic light-emitting diode using the thermally activated delayed fluorescent material of the embodiment of the present invention as the light-emitting layer has high luminous efficiency, and thus has a long life, and can be applied to various display devices and electronic devices.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本发明公开一种热活化延迟荧光材料,其包括如式(I)所示的结构,并具有低单三线态能级差、高反向系间窜越常数及高光致发光量子产率。再者,本发明公开一种有机发光二极管,包括阳极、阴极以及位于阳极与阴极之间的发光层及有机功能层,所述发光层及所述有机功能层中之一或二者包括具有式(I)结构的热活化延迟荧光材料。

Description

热活化延迟荧光材料及使用其所制备的有机发光二极管 技术领域
本发明是有关于一种有机发光材料技术领域,特别是有关于一种热活化延迟荧光材料以及使用所述热活化延迟荧光材料所制备的有机发光二极管。
背景技术
有机发光二极管(organic light-emitting diodes,OLEDs)在固态照明及平板显示等领域具有广阔的应用前景,而发光客体材料是影响有机发光二极管的发光效率的主要因素。在早期,有机发光二极管使用的发光客体材料为荧光材料,其在有机发光二极管中的单重态和三重态的激子比例为1:3,因此在理论上有机发光二极管的内量子效率(internal quantum efficiency,IQE)只能达到25%,使荧光电致发光器件的应用受到限制。再者,重金属配合物磷光发光材料由于重原子的自旋轨道耦合作用,而能够同时利用单重态和三重态激子,进而达到100%的内量子效率。然而,通常重金属配合物磷光发光材料所使用的重金属都是铱(Ir)或铂(Pt)等贵重金属,并且重金属配合物磷光发光材料在蓝光材料方面尚有待改良。纯有机热活化延迟荧光材料(thermally activated delayed fluorescence,TADF)具有低单三重态的能级差(single-triplet energy gap,ΔEST),使得三重态激子可以通过反向系间窜越(reverse intersystem crossing,RISC)回到单重态,再通过辐射跃迁至基态而发光,从而能够同时利用单重态激子及三重态激子,在理论上亦可以实现100%的内量子效率。
技术问题
对于热活化延迟荧光材料,低单三线态能级差、高反向系间窜越常数(kRISC)及高光致发光量子产率(photoluminescence quantum yield,PLQY)是制备高效率有机发光二极管的必要条件。然而,目前具备上述条件的热活化延迟荧光材料相对于重金属配合物而言还是比较缺乏的。因此,有必要提供一种新颖的热活化延迟荧光材料,以解决现有技术所存在的问题。
技术解决方案
有鉴于此,本发明提供一种热活化延迟荧光材料,其具有如式(I)所示的 结构:
Figure PCTCN2020075113-appb-000001
其中R选自
Figure PCTCN2020075113-appb-000002
Figure PCTCN2020075113-appb-000003
Figure PCTCN2020075113-appb-000004
或其任意组合。
本发明另一实施例提供一种有机发光二极管,其包括:一阳极;一阴极;以及位于所述阳极与所述阴极之间的一发光层,所述发光层包括前述的热活化延迟荧光材料。
在本发明的一实施例中,所述热活化延迟荧光材料为下列化合物1:
Figure PCTCN2020075113-appb-000005
在本发明的一实施例中,所述化合物1是通过下述合成路线合成出:
Figure PCTCN2020075113-appb-000006
在本发明的一实施例中,所述热活化延迟荧光材料为下列化合物2:
Figure PCTCN2020075113-appb-000007
在本发明的一实施例中,所述化合物2是通过下述合成路线合成出:
Figure PCTCN2020075113-appb-000008
在本发明的一实施例中,所述热活化延迟荧光材料为下列化合物3:
Figure PCTCN2020075113-appb-000009
在本发明的一实施例中,所述化合物3是通过下述合成路线合成出:
Figure PCTCN2020075113-appb-000010
有益效果
相较于先前技术,本发明实施例的高热活化延迟荧光材料具有较低的单三线态能级差、高反向系间窜越常数及高光致发光量子产率,进而有利于实现具有高发光效率的有机发光二极管。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例的热活化延迟荧光材料在室温下于甲苯溶液中的光致发光光谱。
图2是本发明实施例的有机发光二极管的示意图。
本发明的实施方式
一般热活化延迟荧光材料具有电子给体和电子受体相结合的分子结构,本发明通过调控给体单元的结构来改变其给电子能力,有效的增加热活化延 迟荧光材料的发光效率,进而有利于实现具有高性能的有机发光二极管。本发明提供的热活化延迟荧光材料,其主要具有如式(I)所示的结构:
Figure PCTCN2020075113-appb-000011
其中R选自
Figure PCTCN2020075113-appb-000012
Figure PCTCN2020075113-appb-000013
Figure PCTCN2020075113-appb-000014
或其任意组合,其中本发明式(I)所示的结构的左下角及右下角的R优选是选自相同取代基,但本发明亦可能设计成使左下角及右下角的R选自不同取代基。
以下结合实施例和附图来对本发明作进一步的详细说明,其目的在于帮助更好的理解本发明的内容,但本发明的保护围不仅限于这些实施例。
实施例1:制备结构式如下的热活化延迟荧光材料
Figure PCTCN2020075113-appb-000015
合成步骤如下所示:
Figure PCTCN2020075113-appb-000016
首先,向250mL二口瓶中加入原料1(3.0g,5mmol)、咔唑(2.0g,12mmol)、醋酸钯(90mg,0.4mmol)和三叔丁基膦四氟硼酸盐(0.34g,1.2mmol)。然后,将二口瓶放到手套箱中,并在二口瓶中加入NaOt-Bu(1.16g,12mmol)。接着,在氩气氛围下,于二口瓶中打入100mL事先除水除氧的甲苯,在120℃反应48小时后获得反应液。冷却至室温后,将二口瓶中的反应液倒入300mL冰水中。随后,用二氯甲烷对反应液进行萃取,萃取三次后,合并每次萃取取得的有机相,并用柱层析法(二氯甲烷:正己烷,v:v,1:2)进行分离纯化,最终获得目标化合物1(淡蓝色粉末)2.1g,产率55%。MS(EI)m/z:770.01。
实施例2:制备结构式如下的热活化延迟荧光材料
Figure PCTCN2020075113-appb-000017
合成步骤如下所示:
Figure PCTCN2020075113-appb-000018
首先,向250mL二口瓶中加入原料1(3.0g,5mmol)、9,9-二甲基吖啶(2.5g,12mmol)、醋酸钯(90mg,0.4mmol)和三叔丁基膦四氟硼酸盐(0.34g,1.2mmol)。然后,将二口瓶放到手套箱中,并在二口瓶中加入NaOt-Bu(1.16g,12mmol)。接着,在氩气氛围下,于二口瓶中打入100mL事先除水除氧的甲苯,在120℃反应48小时后获得反应液。冷却至室温后,将二口瓶中的反应液倒入300mL冰水中。随后,用二氯甲烷对反应液进行萃取,萃取三次后,合并每次萃取取得的有机相,并用柱层析法(二氯甲烷:正己烷,v:v,2:3)进行分离纯化,最终获得目标化合物2(绿色粉末)2.0g,产率47%。MS(EI)m/z:854.10。
实施例3:制备结构式如下的热活化延迟荧光材料
Figure PCTCN2020075113-appb-000019
合成步骤如下所示:
Figure PCTCN2020075113-appb-000020
首先,向250mL二口瓶中加入原料1(3.0g,5mmol)、吩恶嗪(2.2g,12 mmol)、醋酸钯(90mg,0.4mmol)和三叔丁基膦四氟硼酸盐(0.34g,1.2mmol)。然后,,将二口瓶放到手套箱中,并在二口瓶中加入NaOt-Bu(1.16g,12mmol)。接着,在氩气氛围下,于二口瓶中打入100mL事先除水除氧的甲苯,在120℃反应48小时后获得反应液。冷却至室温后,将二口瓶中的反应液倒入300mL冰水中。随后,用二氯甲烷对反应液进行萃取,萃取三次,合并每次萃取取得的有机相,并用柱层析法(二氯甲烷:正己烷,v:v,1:1)进行分离纯化,最终获得目标化合物3(红色粉末)1.8g,产率45%。MS(EI)m/z:801.98。
目标化合物1-3的物理特性
目标化合物1-3的光致发光光谱峰值(photoluminescence peak,PL peak)最低单重态能级(S1)、最低三重态能级(T1)、单三重态能级差(ΔEST)、最高占据分子轨域(highest occupied molecular orbital,HOMO)的能级和最低未占分子轨域(lowest unoccupied molecular orbital,LUMO)的能级,如下表1所示:
Figure PCTCN2020075113-appb-000021
表1
参考图1,图1是本发明实施例的热活化延迟荧光材料(化合物1-3)在甲苯溶液中的光致发光光谱,其中化合物1-3的光致发光光谱峰值(PL peak)如表1所述分别为460nm、530nm及612nm,亦即化合物1-3分别为本发明蓝光热活化延迟荧光材料、绿光热活化延迟荧光材料及红光热活化延迟荧光材料的代表实例。
有机发光二极管的制备
参考图2,本发明有机发光二极管包括一导电玻璃阳极层1、一空穴注入层2、一空穴传输层3、一发光层4,一电子传输层5及一阴极层6。具体而言,导电玻璃阳极层1是藉由将玻璃基板镀上一层可导电的氧化铟锡(indium  tin oxide,ITO)来形成的。空穴注入层2是由三氧化钼(MoO3)所组成。空穴传输层3是由4,4',4”-三(咔唑-9-基)三苯胺(4,4',4”-tris(carbazol-9-yl)triphenylamine,TCTA)所组成。发光层4是由二[2-((氧代)二苯基膦基)苯基]醚(bis[2-[(oxo)diphenylphosphino]phenyl]ether,DPEPO)及本发明热活化延迟荧光材料所组成。电子传输层5是由1,3,5-三[3-(3-吡啶基)苯基]苯(1,3,5-tri[(3-pyridyl)-phen-3-yl]benzene,Tm3PyPB)。阴极层60由氟化锂及铝所组成。有机发光二极管可按本发明技术领域已知的方法完成,例如参考文献「Adv.Mater.2003,15,277」所公开的方法。具体方法为:在高真空条件下,在ITO导电玻璃上,依次蒸镀形成MoO3、TCTA、DPEPO+本发明热活化延迟荧光材料(化合物1-3)、Tm3PyPB、LiF及Al。
在此,使用本发明目标化合物1-3来制备有机发光二极管I-III。有机发光二极管I-III的结构从导电玻璃阳极层1至阴极层6的结构依次如下所示:
有机发光二极管I:ITO/MoO3(2nm)/TCTA(35nm)/DPEPO:化合物1(10%,20nm)/Tm3PyPB(40nm)/LiF(1nm)+Al(100nm)
有机发光二极管II:ITO/MoO3(2nm)/TCTA(35nm)/DPEPO:化合物2(10%20nm)/Tm3PyPB(40nm)/LiF(1nm)+Al(100nm)
有机发光二极管III:ITO/MoO3(2nm)/TCTA(35nm)/DPEPO:化合物3(10%20nm)/Tm3PyPB(40nm)/LiF(1nm)+Al(100nm)
有机发光二极管I-III的性能数据如下表2所示。有机发光二极管的电流、亮度及电压是由带有校正过的硅光电二极管的Keithley源测量系统(Keithley 2400 Sourcemeter、Keithley 2000 Currentmeter)所测量的,有机发光二极管的电致发光光谱是由法国JY公司SPEX CCD3000光谱仪所测量的,所有测量均在室温大气中完成。
Figure PCTCN2020075113-appb-000022
表2
本发明实施例的热活化延迟荧光材料,包括蓝光、绿光及红光热活化延迟荧光材料,皆具有低单三重态能级差,进而具有高反向系间窜越常数及高光致发光量子产率。再者,本发明实施例所提供的热活化延迟荧光材料制备方法具有高合成效率。最后,使用本发明实施例的热活化延迟荧光材料作为发光层的有机发光二极管具有高发光效率,进而具有长寿命,可应用于各种显示设备和电子装置中。
虽然本发明结合其具体实施例而被描述,应该理解的是,许多替代、修改及变化对于那些本领域的技术人员将是显而易见的。因此,其意在包含落入所附权利要求书的范围内的所有替代、修改及变化。

Claims (8)

  1. 一种热活化延迟荧光材料,其具有如式(I)所示的结构:
    Figure PCTCN2020075113-appb-100001
    其中R选自
    Figure PCTCN2020075113-appb-100002
    Figure PCTCN2020075113-appb-100003
    Figure PCTCN2020075113-appb-100004
    或其任意组合。
  2. 根据权利要求1所述的热活化延迟荧光材料,其中所述热活化延迟荧光材料为下列化合物1:
    Figure PCTCN2020075113-appb-100005
  3. 根据权利要求2所述的热活化延迟荧光材料,其中所述化合物1是通过下述合成路线合成出:
    Figure PCTCN2020075113-appb-100006
  4. 根据权利要求1所述的热活化延迟荧光材料,其中所述热活化延迟荧光材料为下列化合物2:
    Figure PCTCN2020075113-appb-100007
  5. 根据权利要求4所述的热活化延迟荧光材料,其中所述化合物2是通过下述合成路线合成出:
    Figure PCTCN2020075113-appb-100008
  6. 根据权利要求1所述的热活化延迟荧光材料,其中所述热活化延迟荧光材 料为下列化合物3:
    Figure PCTCN2020075113-appb-100009
  7. 根据权利要求6所述的热活化延迟荧光材料,其中所述化合物3是通过下述合成路线合成出:
    Figure PCTCN2020075113-appb-100010
  8. 一种有机发光二极管,其包括:一阳极;一阴极;以及位于所述阳极与所述阴极之间的一发光层,其中所述发光层包括如权利要求1所述的热活化延迟荧光材料。
PCT/CN2020/075113 2019-11-22 2020-02-13 热活化延迟荧光材料及使用其所制备的有机发光二极管 WO2021098049A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/652,422 US11430959B2 (en) 2019-11-22 2020-02-13 Thermally activated delayed fluorescence material and organic light-emitting diode prepared using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911156722.5A CN111018880B (zh) 2019-11-22 2019-11-22 热活化延迟荧光材料及使用其所制备的有机发光二极管
CN201911156722.5 2019-11-22

Publications (1)

Publication Number Publication Date
WO2021098049A1 true WO2021098049A1 (zh) 2021-05-27

Family

ID=70202789

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/075113 WO2021098049A1 (zh) 2019-11-22 2020-02-13 热活化延迟荧光材料及使用其所制备的有机发光二极管

Country Status (2)

Country Link
CN (1) CN111018880B (zh)
WO (1) WO2021098049A1 (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109111488A (zh) * 2017-06-23 2019-01-01 环球展览公司 有机电致发光材料和装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109111488A (zh) * 2017-06-23 2019-01-01 环球展览公司 有机电致发光材料和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WEN JIE ONG , TIMOTHY M. SWAGER: "Dynamic self-correcting nucleophilic aromatic substitution", NATURE CHEMISTRY, vol. 10, no. 10, 3 September 2018 (2018-09-03), pages 1023 - 1030, XP036596351, ISSN: 1755-4330, DOI: 10.1038/s41557-018-0122-8 *

Also Published As

Publication number Publication date
CN111018880A (zh) 2020-04-17
CN111018880B (zh) 2021-01-15

Similar Documents

Publication Publication Date Title
KR102332160B1 (ko) 불소치환을 함유하는 금속 착물
Schrögel et al. Meta-linked CBP-derivatives as host materials for a blue iridium carbene complex
WO2020124771A1 (zh) 热活化延迟荧光化合物及其制备方法与有机电致发光二极管器件
WO2020211122A1 (zh) 双极性热活化延迟荧光材料及其制备方法与有机电致发光二极管器件
WO2020211125A1 (zh) 热活化延迟荧光材料及其制备方法与有机电致发光二极管器件
TWI507403B (zh) 咔唑衍生物及有機電致發光裝置
CN112759617B (zh) 一种铱配合有机电致发光材料及其制备方法与应用
JP2023503663A (ja) 金属錯体及びその用途
WO2020098146A1 (zh) 一种蓝光热活化延迟荧光材料及其应用
Ren et al. Quinolyl functionalized spiro [fluorene-9, 9′-xanthene] host materials with bipolar characteristics for green and red phosphorescent organic light-emitting diodes
Wang et al. Obtaining highly efficient single-emissive-layer orange and two-element white organic light-emitting diodes by the solution process
KR101765199B1 (ko) 이리듐 착화합물 및 이를 이용한 유기전계 발광소자
CN106749050B (zh) 一种以环状二酮为核心的热激活延迟荧光oled材料及其应用
WO2020211126A1 (zh) 热活化延迟荧光材料及其制备方法与有机电致发光二极管器件
Sun et al. Dimeric SFX host materials for red, green and blue phosphorescent organic light-emitting devices
US20230024427A1 (en) Platinum metal complex and use thereof in organic electroluminescent device
CN108899431A (zh) 一种有机发光器件
US20140326970A1 (en) Host Materials for Single-Layer Phosphorescent OLEDs
Liang et al. Bipolar iridium dendrimers containing carbazolyl dendron and 1, 2, 4-triazole unit for solution-processed saturated red electrophosphorescence
Zhou et al. tert-Butyl-substituted bicarbazole as a bipolar host material for efficient green and yellow PhOLEDs
Tan et al. Nondoped deep-blue fluorescent organic electroluminescent device with CIEy= 0.06 and low efficiency roll-off based on carbazole/oxadiazole derivatives
WO2021098049A1 (zh) 热活化延迟荧光材料及使用其所制备的有机发光二极管
WO2021098050A1 (zh) 以二氢吩嗪为核的空穴传输材料及有机发光二极管
WO2020211128A1 (zh) 热活化延迟荧光材料及其制备方法与有机电致发光二极管器件
WO2020211121A1 (zh) 热活化延迟荧光材料及其制备方法与有机电致发光二极管器件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20890749

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20890749

Country of ref document: EP

Kind code of ref document: A1