CN111018880B - 热活化延迟荧光材料及使用其所制备的有机发光二极管 - Google Patents

热活化延迟荧光材料及使用其所制备的有机发光二极管 Download PDF

Info

Publication number
CN111018880B
CN111018880B CN201911156722.5A CN201911156722A CN111018880B CN 111018880 B CN111018880 B CN 111018880B CN 201911156722 A CN201911156722 A CN 201911156722A CN 111018880 B CN111018880 B CN 111018880B
Authority
CN
China
Prior art keywords
delayed fluorescence
activated delayed
fluorescence material
thermally activated
organic light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911156722.5A
Other languages
English (en)
Other versions
CN111018880A (zh
Inventor
罗佳佳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan China Star Optoelectronics Semiconductor Display Technology Co Ltd
Original Assignee
Wuhan China Star Optoelectronics Semiconductor Display Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan China Star Optoelectronics Semiconductor Display Technology Co Ltd filed Critical Wuhan China Star Optoelectronics Semiconductor Display Technology Co Ltd
Priority to CN201911156722.5A priority Critical patent/CN111018880B/zh
Priority to PCT/CN2020/075113 priority patent/WO2021098049A1/zh
Priority to US16/652,422 priority patent/US11430959B2/en
Publication of CN111018880A publication Critical patent/CN111018880A/zh
Application granted granted Critical
Publication of CN111018880B publication Critical patent/CN111018880B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/02Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D495/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/12OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • C09K2211/1033Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1092Heterocyclic compounds characterised by ligands containing sulfur as the only heteroatom

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本发明公开一种热活化延迟荧光材料,其包括如式(I)所示的结构,并具有低单三线态能级差、高反向系间窜越常数及高光致发光量子产率。再者,本发明公开一种有机发光二极管,包括阳极、阴极以及位于阳极与阴极之间的发光层及有机功能层,所述发光层及所述有机功能层中之一或二者包括具有式(I)结构的热活化延迟荧光材料。
Figure DDA0002285004290000011

Description

热活化延迟荧光材料及使用其所制备的有机发光二极管
技术领域
本发明是有关于一种有机发光材料技术领域,特别是有关于一种热活化延迟荧光材料以及使用所述热活化延迟荧光材料所制备的有机发光二极管。
背景技术
有机发光二极管(organic light-emitting diodes,OLEDs)在固态照明及平板显示等领域具有广阔的应用前景,而发光客体材料是影响有机发光二极管的发光效率的主要因素。在早期,有机发光二极管使用的发光客体材料为荧光材料,其在有机发光二极管中的单重态和三重态的激子比例为1:3,因此在理论上有机发光二极管的内量子效率(internalquantum efficiency,IQE)只能达到25%,使荧光电致发光器件的应用受到限制。再者,重金属配合物磷光发光材料由于重原子的自旋轨道耦合作用,而能够同时利用单重态和三重态激子,进而达到100%的内量子效率。然而,通常重金属配合物磷光发光材料所使用的重金属都是铱(Ir)或铂(Pt)等贵重金属,并且重金属配合物磷光发光材料在蓝光材料方面尚有待改良。纯有机热活化延迟荧光材料(thermally activated delayed fluorescence,TADF)具有低单三重态的能级差(single-triplet energy gap,ΔEST),使得三重态激子可以通过反向系间窜越(reverse intersystem crossing,RISC)回到单重态,再通过辐射跃迁至基态而发光,从而能够同时利用单重态激子及三重态激子,在理论上亦可以实现100%的内量子效率。
对于热活化延迟荧光材料,低单三线态能级差、高反向系间窜越常数(kRISC)及高光致发光量子产率(photoluminescence quantum yield,PLQY)是制备高效率有机发光二极管的必要条件。然而,目前具备上述条件的热活化延迟荧光材料相对于重金属配合物而言还是比较缺乏的。因此,有必要提供一种新颖的热活化延迟荧光材料,以解决现有技术所存在的问题。
发明内容
有鉴于此,本发明提供一种热活化延迟荧光材料,其具有如式(I)所示的结构:
Figure BDA0002285004270000021
其中R选自
Figure BDA0002285004270000022
Figure BDA0002285004270000023
Figure BDA0002285004270000024
或其任意组合。
本发明另一实施例提供一种有机发光二极管,其包括:一阳极;一阴极;以及位于所述阳极与所述阴极之间的一发光层,所述发光层包括前述的热活化延迟荧光材料。
在本发明的一实施例中,所述热活化延迟荧光材料为下列化合物1:
Figure BDA0002285004270000031
在本发明的一实施例中,所述化合物1是通过下述合成路线合成出:
Figure BDA0002285004270000032
在本发明的一实施例中,所述热活化延迟荧光材料为下列化合物2:
Figure BDA0002285004270000033
在本发明的一实施例中,所述化合物2是通过下述合成路线合成出:
Figure BDA0002285004270000034
在本发明的一实施例中,所述热活化延迟荧光材料为下列化合物3:
Figure BDA0002285004270000041
在本发明的一实施例中,所述化合物3是通过下述合成路线合成出:
Figure BDA0002285004270000042
相较于先前技术,本发明实施例的高热活化延迟荧光材料具有较低的单三线态能级差、高反向系间窜越常数及高光致发光量子产率,进而有利于实现具有高发光效率的有机发光二极管。
附图说明
图1是本发明实施例的热活化延迟荧光材料在室温下于甲苯溶液中的光致发光光谱。
图2是本发明实施例的有机发光二极管的示意图。
具体实施方式
一般热活化延迟荧光材料具有电子给体和电子受体相结合的分子结构,本发明通过调控给体单元的结构来改变其给电子能力,有效的增加热活化延迟荧光材料的发光效率,进而有利于实现具有高性能的有机发光二极管。本发明提供的热活化延迟荧光材料,其主要具有如式(I)所示的结构:
Figure BDA0002285004270000043
其中R选自
Figure BDA0002285004270000051
Figure BDA0002285004270000052
Figure BDA0002285004270000053
或其任意组合,其中本发明式(I)所示的结构的左下角及右下角的R优选是选自相同取代基,但本发明亦可能设计成使左下角及右下角的R选自不同取代基。
以下结合实施例和附图来对本发明作进一步的详细说明,其目的在于帮助更好的理解本发明的内容,但本发明的保护围不仅限于这些实施例。
实施例1:制备结构式如下的热活化延迟荧光材料
Figure BDA0002285004270000054
合成步骤如下所示:
Figure BDA0002285004270000061
首先,向250mL二口瓶中加入原料1(3.0g,5mmol)、咔唑(2.0g,12mmol)、醋酸钯(90mg,0.4mmol)和三叔丁基膦四氟硼酸盐(0.34g,1.2mmol)。然后,将二口瓶放到手套箱中,并在二口瓶中加入NaOt-Bu(1.16g,12mmol)。接着,在氩气氛围下,于二口瓶中打入100mL事先除水除氧的甲苯,在120℃反应48小时后获得反应液。冷却至室温后,将二口瓶中的反应液倒入300mL冰水中。随后,用二氯甲烷对反应液进行萃取,萃取三次后,合并每次萃取取得的有机相,并用柱层析法(二氯甲烷:正己烷,v:v,1:2)进行分离纯化,最终获得目标化合物1(淡蓝色粉末)2.1g,产率55%。MS(EI)m/z:770.01。
实施例2:制备结构式如下的热活化延迟荧光材料
Figure BDA0002285004270000062
合成步骤如下所示:
Figure BDA0002285004270000063
首先,向250mL二口瓶中加入原料1(3.0g,5mmol)、9,9-二甲基吖啶(2.5g,12mmol)、醋酸钯(90mg,0.4mmol)和三叔丁基膦四氟硼酸盐(0.34g,1.2mmol)。然后,将二口瓶放到手套箱中,并在二口瓶中加入NaOt-Bu(1.16g,12mmol)。接着,在氩气氛围下,于二口瓶中打入100mL事先除水除氧的甲苯,在120℃反应48小时后获得反应液。冷却至室温后,将二口瓶中的反应液倒入300mL冰水中。随后,用二氯甲烷对反应液进行萃取,萃取三次后,合并每次萃取取得的有机相,并用柱层析法(二氯甲烷:正己烷,v:v,2:3)进行分离纯化,最终获得目标化合物2(绿色粉末)2.0g,产率47%。MS(EI)m/z:854.10。
实施例3:制备结构式如下的热活化延迟荧光材料
Figure BDA0002285004270000071
合成步骤如下所示:
Figure BDA0002285004270000072
首先,向250mL二口瓶中加入原料1(3.0g,5mmol)、吩恶嗪(2.2g,12mmol)、醋酸钯(90mg,0.4mmol)和三叔丁基膦四氟硼酸盐(0.34g,1.2mmol)。然后,,将二口瓶放到手套箱中,并在二口瓶中加入NaOt-Bu(1.16g,12mmol)。接着,在氩气氛围下,于二口瓶中打入100mL事先除水除氧的甲苯,在120℃反应48小时后获得反应液。冷却至室温后,将二口瓶中的反应液倒入300mL冰水中。随后,用二氯甲烷对反应液进行萃取,萃取三次,合并每次萃取取得的有机相,并用柱层析法(二氯甲烷:正己烷,v:v,1:1)进行分离纯化,最终获得目标化合物3(红色粉末)1.8g,产率45%。MS(EI)m/z:801.98。
目标化合物1-3的物理特性:
目标化合物1-3的光致发光光谱峰值(photoluminescence peak,PL peak)最低单重态能级(S1)、最低三重态能级(T1)、单三重态能级差(ΔEST)、最高占据分子轨域(highest occupied molecular orbital,HOMO)的能级和最低未占分子轨域(lowestunoccupied molecular orbital,LUMO)的能级,如下表1所示:
Figure BDA0002285004270000081
表1
参考图1,图1是本发明实施例的热活化延迟荧光材料(化合物1-3)在甲苯溶液中的光致发光光谱,其中化合物1-3的光致发光光谱峰值(PL peak)如表1所述分别为460nm、530nm及612nm,亦即化合物1-3分别为本发明蓝光热活化延迟荧光材料、绿光热活化延迟荧光材料及红光热活化延迟荧光材料的代表实例。
有机发光二极管的制备:
参考图2,本发明有机发光二极管包括一导电玻璃阳极层1、一空穴注入层2、一空穴传输层3、一发光层4,一电子传输层5及一阴极层6。具体而言,导电玻璃阳极层1是藉由将玻璃基板镀上一层可导电的氧化铟锡(indium tin oxide,ITO)来形成的。空穴注入层2是由三氧化钼(MoO3)所组成。空穴传输层3是由4,4',4”-三(咔唑-9-基)三苯胺(4,4',4”-tris(carbazol-9-yl)triphenylamine,TCTA)所组成。发光层4是由二[2-((氧代)二苯基膦基)苯基]醚(bis[2-[(oxo)diphenylphosphino]phenyl]ether,DPEPO)及本发明热活化延迟荧光材料所组成。电子传输层5是由1,3,5-三[3-(3-吡啶基)苯基]苯(1,3,5-tri[(3-pyridyl)-phen-3-yl]benzene,Tm3PyPB)。阴极层60由氟化锂及铝所组成。有机发光二极管可按本发明技术领域已知的方法完成,例如参考文献「Adv.Mater.2003,15,277」所公开的方法。具体方法为:在高真空条件下,在ITO导电玻璃上,依次蒸镀形成MoO3、TCTA、DPEPO+本发明热活化延迟荧光材料(化合物1-3)、Tm3PyPB、LiF及Al。
在此,使用本发明目标化合物1-3来制备有机发光二极管I-III。有机发光二极管I-III的结构从导电玻璃阳极层1至阴极层6的结构依次如下所示:
有机发光二极管I:ITO/MoO3(2nm)/TCTA(35nm)/DPEPO:化合物1(10%,20nm)/Tm3PyPB(40nm)/LiF(1nm)+Al(100nm)
有机发光二极管II:ITO/MoO3(2nm)/TCTA(35nm)/DPEPO:化合物2(10%20nm)/Tm3PyPB(40nm)/LiF(1nm)+Al(100nm)
有机发光二极管III:ITO/MoO3(2nm)/TCTA(35nm)/DPEPO:化合物3(10%20nm)/Tm3PyPB(40nm)/LiF(1nm)+Al(100nm)
有机发光二极管I-III的性能数据如下表2所示。有机发光二极管的电流、亮度及电压是由带有校正过的硅光电二极管的Keithley源测量系统(Keithley2400Sourcemeter、Keithley 2000Currentmeter)所测量的,有机发光二极管的电致发光光谱是由法国JY公司SPEX CCD3000光谱仪所测量的,所有测量均在室温大气中完成。
Figure BDA0002285004270000091
表2
本发明实施例的热活化延迟荧光材料,包括蓝光、绿光及红光热活化延迟荧光材料,皆具有低单三重态能级差,进而具有高反向系间窜越常数及高光致发光量子产率。再者,本发明实施例所提供的热活化延迟荧光材料制备方法具有高合成效率。最后,使用本发明实施例的热活化延迟荧光材料作为发光层的有机发光二极管具有高发光效率,进而具有长寿命,可应用于各种显示设备和电子装置中。
虽然本发明结合其具体实施例而被描述,应该理解的是,许多替代、修改及变化对于那些本领域的技术人员将是显而易见的。因此,其意在包含落入所附权利要求书的范围内的所有替代、修改及变化。

Claims (8)

1.一种热活化延迟荧光材料,其特征在于:所述热活化延迟荧光材料具有如式(I)所示的结构:
Figure FDA0002764120660000011
其中R选自
Figure FDA0002764120660000012
Figure FDA0002764120660000013
Figure FDA0002764120660000014
或其任意组合。
2.根据权利要求1所述的热活化延迟荧光材料,其特征在于:所述热活化延迟荧光材料为下列化合物1:
Figure FDA0002764120660000021
3.根据权利要求2所述的热活化延迟荧光材料,其特征在于:所述化合物1是通过下述合成路线合成出:
Figure FDA0002764120660000022
4.根据权利要求1所述的热活化延迟荧光材料,其特征在于:所述热活化延迟荧光材料为下列化合物2:
Figure FDA0002764120660000023
5.根据权利要求4所述的热活化延迟荧光材料,其特征在于:所述化合物2是通过下述合成路线合成出:
Figure FDA0002764120660000024
6.根据权利要求1所述的热活化延迟荧光材料,其特征在于:所述热活化延迟荧光材料为下列化合物3:
Figure FDA0002764120660000031
7.根据权利要求6所述的热活化延迟荧光材料,其特征在于:所述化合物3是通过下述合成路线合成出:
Figure FDA0002764120660000032
8.一种有机发光二极管,其特征在于:所述有机发光二极管包括:一阳极;
一阴极;以及位于所述阳极与所述阴极之间的一发光层,其中所述发光层包括如权利要求1所述的热活化延迟荧光材料。
CN201911156722.5A 2019-11-22 2019-11-22 热活化延迟荧光材料及使用其所制备的有机发光二极管 Active CN111018880B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201911156722.5A CN111018880B (zh) 2019-11-22 2019-11-22 热活化延迟荧光材料及使用其所制备的有机发光二极管
PCT/CN2020/075113 WO2021098049A1 (zh) 2019-11-22 2020-02-13 热活化延迟荧光材料及使用其所制备的有机发光二极管
US16/652,422 US11430959B2 (en) 2019-11-22 2020-02-13 Thermally activated delayed fluorescence material and organic light-emitting diode prepared using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911156722.5A CN111018880B (zh) 2019-11-22 2019-11-22 热活化延迟荧光材料及使用其所制备的有机发光二极管

Publications (2)

Publication Number Publication Date
CN111018880A CN111018880A (zh) 2020-04-17
CN111018880B true CN111018880B (zh) 2021-01-15

Family

ID=70202789

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911156722.5A Active CN111018880B (zh) 2019-11-22 2019-11-22 热活化延迟荧光材料及使用其所制备的有机发光二极管

Country Status (2)

Country Link
CN (1) CN111018880B (zh)
WO (1) WO2021098049A1 (zh)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180375035A1 (en) * 2017-06-23 2018-12-27 Universal Display Corporation Organic electroluminescent materials and devices

Also Published As

Publication number Publication date
WO2021098049A1 (zh) 2021-05-27
CN111018880A (zh) 2020-04-17

Similar Documents

Publication Publication Date Title
KR102584939B1 (ko) 불소치환을 함유하는 금속 착물
KR101005160B1 (ko) 유기 전계 발광 소자용 화합물 및 유기 전계 발광 소자
Schrögel et al. Meta-linked CBP-derivatives as host materials for a blue iridium carbene complex
KR20100129101A (ko) 유기 전계발광 장치용 물질
KR20110112098A (ko) 신규한 유기 발광 화합물 및 이를 채용하고 있는 유기 전계 발광 소자
CN109721628B (zh) 芴基噻吩并嘧啶发光材料
TW201309675A (zh) 用於有機電激發光裝置之化合物及使用該化合物之有機電激發光裝置
CN112979709B (zh) 一种金属配合物及其应用
EP2426137A1 (en) Novel compound and organic light-emitting diode, display and illuminating device using the same
CN112759617B (zh) 一种铱配合有机电致发光材料及其制备方法与应用
KR20210134517A (ko) 다환 리간드를 구비하는 발광재료
KR20210093180A (ko) 금속 착물, 이를 함유하는 전계 발광소자 및 그 용도
KR20160095175A (ko) 유기 전계발광 소자용 재료 및 이것을 사용한 유기 전계발광 소자
Su et al. Highly efficient green electroluminescence of iridium (iii) complexes based on (1 H-pyrazol-5-yl) pyridine derivatives ancillary ligands with low efficiency roll-off
Lv et al. Regulation of excited-state properties of dibenzothiophene-based fluorophores for realizing efficient deep-blue and HLCT-sensitized OLEDs
US20230024427A1 (en) Platinum metal complex and use thereof in organic electroluminescent device
CN116332933A (zh) 一种稠环有机化合物、发光组合物和有机电致发光器件
CN111018880B (zh) 热活化延迟荧光材料及使用其所制备的有机发光二极管
CN112500396B (zh) 一种二苯并吡喃螺类有机发光化合物及其制备方法和应用
CN108484596A (zh) 一种基于喹吖啶的有机发光材料的制备方法及其发光器件
US20120181515A1 (en) Organic light-emitting diode, display and illuminating device
CN111187254A (zh) 一种基于咔唑的有机电致磷光材料组成物及其应用
CN110981916A (zh) 含金属铱的有机磷发光材料及其制备方法以及有机电致发光器件
Zhang et al. Highly efficient yellow phosphorescent OLEDs based on two novel bipolar host materials
US11430959B2 (en) Thermally activated delayed fluorescence material and organic light-emitting diode prepared using same

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant