WO2021103232A1 - 一种基于脂质膜和金属有机框架的核壳纳米颗粒的制备方法 - Google Patents

一种基于脂质膜和金属有机框架的核壳纳米颗粒的制备方法 Download PDF

Info

Publication number
WO2021103232A1
WO2021103232A1 PCT/CN2019/127924 CN2019127924W WO2021103232A1 WO 2021103232 A1 WO2021103232 A1 WO 2021103232A1 CN 2019127924 W CN2019127924 W CN 2019127924W WO 2021103232 A1 WO2021103232 A1 WO 2021103232A1
Authority
WO
WIPO (PCT)
Prior art keywords
zif
solution
dmpc
nanoparticles
alip
Prior art date
Application number
PCT/CN2019/127924
Other languages
English (en)
French (fr)
Inventor
崔大祥
徐艳
张兆坤
陈玮嘉
朱君
金彩虹
Original Assignee
上海纳米技术及应用国家工程研究中心有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海纳米技术及应用国家工程研究中心有限公司 filed Critical 上海纳米技术及应用国家工程研究中心有限公司
Publication of WO2021103232A1 publication Critical patent/WO2021103232A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/0057Photodynamic therapy with a photosensitizer, i.e. agent able to produce reactive oxygen species upon exposure to light or radiation, e.g. UV or visible light; photocleavage of nucleic acids with an agent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7028Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages
    • A61K31/7034Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin
    • A61K31/704Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin attached to a condensed carbocyclic ring system, e.g. sennosides, thiocolchicosides, escin, daunorubicin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/22Heterocyclic compounds, e.g. ascorbic acid, tocopherol or pyrrolidones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/5005Wall or coating material
    • A61K9/5021Organic macromolecular compounds
    • A61K9/5052Proteins, e.g. albumin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • the invention relates to a preparation method and application of a drug carrier, in particular to a preparation method of a core-shell nanoparticle based on liposomes and a metal organic framework.
  • the invention belongs to the field of nano drug carriers.
  • a new type of nano drug delivery system refers to a drug delivery system that selectively concentrates drugs on target tissues, target organs or internal structures of cells with the help of nano-scale carriers, ligands or antibodies; at the same time, with the support of the drug carrier, it assists in external stimulation Achieve the slow release of the drug to the affected area.
  • nanocarriers there are few nanocarriers with the advantages of good biocompatibility, good targeting, reasonable size, and degradability in vivo. Therefore, the design and research of new responsive nanocarriers is to realize the high-efficiency and low-toxicity treatment of nano-drug delivery systems. The basis of the disease.
  • the current responsive drug carriers mainly include: ultrasound controlled release (Chinese patent: a pullulan-based nano drug carrier for ultrasound controlled release, drug carrier system and preparation method, publication number: CN10849845A.); light Controlled release type (Chinese patent: a near-infrared light-triggered nanocarrier for releasing chemotherapeutic drugs and its preparation method, publication number: CN106512000A.); internal environmental impact type: 1) pH controlled release type (Chinese patent: pH controlled release target Nano drug delivery carrier and its preparation method and application, publication number: CN107952081A.); 2) Redox controlled release type (Chinese patent: a stimulus-responsive polypyrrole nanotube targeted drug carrier and its preparation method, publication number : CN105412936A.).
  • ultrasound controlled release Choinese patent: a pullulan-based nano drug carrier for ultrasound controlled release, drug carrier system and preparation method, publication number: CN10849845A.
  • light Controlled release type Choinese patent: a near-infrared light-
  • the zeolite imidazole skeleton ZIF-8 nanoparticles can be used as a suitable drug-carrying core.
  • ZIF-8 has better characteristics of sustained-release drugs in a slightly acidic tumor environment, and has many advantages such as small size, large specific surface area, good biocompatibility, and biodegradability. It is used for targeted delivery and sustained release of drugs.
  • the drug carrier carries the chemotherapeutic drug into the body, its release may cause damage to normal cells and tissues, so certain methods need to be taken to seal it.
  • the lipid membrane mainly composed of natural soybean phospholipid molecules HSPC and phosphatidylcholine DMPC can be used as the shell of nano-drug delivery system.
  • Lipid membranes have many advantages: good biocompatibility, biodegradability, non-immunogenicity, and low toxicity. Therefore, the use of ZIF-8 as the core and liposome membrane as the shell to prepare drug carriers can not only use the lipid membrane for targeted modification, but also solve the problem of drug leakage in porous structures, which has high research significance and Value.
  • the purpose of the present invention is to provide a method for preparing core-shell nanoparticles based on lipid membranes and metal organic frameworks.
  • the object of the present invention is achieved by the following scheme: a preparation method of core-shell nanoparticles based on lipid membrane and metal organic framework, which is characterized by comprising the following steps:
  • the drug is one or more of anti-tumor drugs or active protein drugs, growth factors, RNA, and peptides, and the preferred drug is doxorubicin hydrochloride (DOX).
  • DOX doxorubicin hydrochloride
  • the target polypeptide-DSPE synthesis method was published on October 8, 2013 in the International Journal of Nanomedicine, Volume 8, Page 3855-3866, entitled A novel application of maleimide for advanced drug delivery: in vitro and in vivo evaluation of The method described in Liposome preparation on page 3857 of maleimide-modified pH-sensitive liposomes.
  • the preferred targeting polypeptide is Abarelix, and the preferred targeting cancer cell is prostate cancer-related cells.
  • the invention provides a liposome-metal organic framework composite multifunctional core-shell structure particle drug-carrying system, which includes particles and their loads.
  • Said nano-particles have the zeolite imidazole skeleton ZIF-8 as the core and can be loaded with a variety of small drug molecules; the lipid film is used as the shell coating material to seal and protect the porous structure of the ZIF-8 core to avoid random release of chemical drugs ;
  • the lipid membrane of the shell is highly modifiable, and the targeted polypeptide and photosensitizer can be embedded in the shell to realize the synergistic effect of the drug carrier in chemotherapy, photothermal and photodynamic therapy.
  • a multifunctional core-shell structure ZIF-8@lipid film(ZIF-8@LIP) nanoparticle drug-carrying system which realizes the delivery of small molecules of different drugs, and at the same time improves the targeting of the carrier to the tumor site through peptide modification, and achieves improved The purpose of drug availability and controlled release of drugs.
  • the present invention prepares the core-shell structure nano composite particles ZIF-M@LIP loaded with anti-tumor related drugs.
  • the drug has good biocompatibility and stability.
  • the liposome shell can modify the targeting material and photosensitizer to realize the aggregation and hyperthermia of the drug carrier in specific target cells or target assembly;
  • ZIF-M core particles The pores can carry drug molecules and act as a stimulus-responsive drug delivery platform to achieve rapid drug release under specific light and tumor slightly acidic environment.
  • the preparation of the drug loading platform is simple, the cost is low, and the prepared particles are uniform and stable, and have great application prospects.
  • the example effect of the present invention is: the present invention uses ZIF-8 nanoparticles (ZIF-D, ZIF-DOX, DOX-loaded ZIF-8 nanoparticles) loaded with the anticancer drug DOX as the core to embed the targeting polypeptide Abarelix and photosensitive
  • the liposome of IR780 is used as the outer shell to prepare the core-shell drug carrier (ZIF-D@ALIP, ZIF-DOX@Abarelix-lipid film, the shell is embedded with the targeting polypeptide Abarelix and the photosensitizer IR780 drug carrier particles), and the prostate Cancer cells and tumor-bearing mice tested the targeting and efficacy of the vector.
  • the effect of the example shows that the drug-carrying system has good targeting, can respond to pH and NIR stimuli for controlled drug release, and is an integrated nanomedicine carrier for integrated imaging, chemotherapy and hyperthermia.
  • the main materials of the nanoparticles of the present invention are ZIF-8 and liposomes, which have low toxicity, good biocompatibility, and good degradation ability, which overcomes the problem of toxic residues in chemical synthesis.
  • the nanoparticles prepared by the present invention have the advantages of high crystallinity, uniform particle size, and stable physical and chemical properties.
  • reaction raw materials are cheap and easily available, the preparation method is simple in process, and the operability is strong, which can further meet the production and application requirements.
  • nanoparticles of the present invention When the nanoparticles of the present invention are embedded in IR780 in the lipid shell, they can achieve controlled release of drugs, that is, pH and near-infrared NIR controlled release of drugs.
  • the nano-lipid shell of the present invention is highly modifiable, and can accurately target the target tumor site under the condition of embedding the targeted polypeptide.
  • the present invention uses prostate cancer as an example model for testing.
  • Figure 1 is a transmission electron microscope image of ZIF-D@ALIP prepared in Example 1;
  • Figure 2 is a P element mapping image of ZIF-D@ALIP prepared in Example 1;
  • Figure 3 is the size distribution diagram of ZIF-8 and ZIF-D@ALIP prepared in Example 1;
  • Figure 4 is the zeta potential diagram of ZIF-8, ZIF-D, ZIF-D@LIP and ZIF-D@ALIP prepared in Example 1;
  • Figure 5 shows the UV spectra of ZIF-D and ZIF-D@ALIP prepared in Example 1;
  • Figure 6 shows the infrared spectra of ZIF-8, IR780, Abarelix-DSPE and ZIF-D@ALIP prepared in Example 1;
  • Fig. 7 is a temperature change chart of ZIF-D@ALIP prepared in Example 1 in response to laser irradiation
  • Figure 8 is a thermal image of the ZIF-D@ALIP prepared in Example 1 in response to laser irradiation
  • Fig. 9 is the drug release curve of ZIF-D@ALIP prepared in Example 1 in response to dual stimulation of pH and NIR;
  • Figure 10 is the cytotoxicity diagram of DOX, IR780, ZIF-8, ZIF-D, ZIF-D@LIP and ZIF-D@ALIP prepared in Example 1;
  • Figure 11 is a graph of cytotoxicity of different concentrations of ZIF-D@ALIP prepared in Example 1;
  • Figure 12 is a confocal image of the ZIF-D@ALIP (targeted polypeptide modification) nanoparticles prepared in Example 1 being phagocytosed by normal prostate cells, RWPE-2 cells;
  • ZIF-D@ALIP targeted polypeptide modification
  • Figure 13 is a confocal imaging image of the ZIF-D@ALIP (targeted polypeptide modification) nanoparticles prepared in Example 1 being phagocytosed by prostate cancer cell PC-3 cells;
  • ZIF-D@ALIP targeted polypeptide modification
  • Figure 14 is a confocal image of the ZIF-D@LIP (without targeting polypeptide modification) prepared in Example 1 being phagocytosed by prostate cancer cell PC-3 cells;
  • Figure 15 is an imaging diagram of the tumor tissue volume of the ZIF-D@ALIP (targeted polypeptide modification) nanoparticles prepared in Example 1 after treatment of tumor-bearing mice.
  • ZIF-D@ALIP targeted polypeptide modification
  • test methods in the following examples are conventional methods used in the field.
  • the reagents used in the following examples are all analytical grade reagents and can be purchased from formal channels.
  • a core-shell type drug carrier in which ZIF-8 carries doxorubicin hydrochloride DOX/anti-tumor active drug as the core drug carrier model, and the surface is modified to embed Abarelix polypeptide and IR780 liposome shell.
  • the present invention uses prostate cancer cells to test ZIF -8 Targeting and tumor cell killing effect, prepared according to the following steps:
  • step (2) 1) Select natural soybean phospholipid molecules HSPC and cholesterol as the outer lipid material of ZIF-D@ALIP; first place the ZIF-D@DMPC particle dispersion prepared in step (2) in a round bottom flask, and add 300 ⁇ L of 28mg at the same time /mL HSPC solution, 100 ⁇ L concentration 20mg/mL cholesterol solution, 150 ⁇ L concentration 2mg/mL IR780 and 50 ⁇ L concentration 15mg/mL targeting peptide-DSPE dissolved in 550 ⁇ L chloroform mixture, the above two mixtures are under low pressure rotary evaporation conditions React for 1 hour, remove the organic solvent, and then vacuum dry at low temperature to obtain the final product;
  • the ZIF-D@ALIP nanoparticles prepared in this example were basically characterized by electron microscopy and infrared. As shown in Figure 1, it can be seen that ZIF-D@ALIP has a shape similar to a sphere with a relatively obvious core-shell The structure, the particle size is about 170nm. The ZIF-8 core is non-spherical, with a particle size of about 80nm.
  • the elemental analysis in Figure 2 shows that there is P element in ZIF-D@ALIP, and the ratio to Zn element is in the expected range.
  • Fig. 3 is a dynamic light scattering image of ZIF-D@ALIP. The measured hydration radius is about 180 nm, which is close to the result of Fig. 1.
  • the Zeta potentials of ZIF-8, ZIF-D, ZIF-D@LIP and ZIF-D@ALIP were determined to be +13.6mV, +14.9mV, -15.1mV and -15.7mV, respectively.
  • the UV spectrum of ZIF-D@ALIP in Figure 5 shows the characteristic absorption peaks of DOX and IR780 at 480 and 780 nm.
  • lipid film encapsulation caused the characteristic peak 2950 cm -1 of IR 780 embedded in ZIF-D@ALIP to stretch.
  • ZIF-D@ALIP nanoparticles showed an Abarelix peptide peak at 1685cm -1.
  • ZIF-D@ALIP clearly showed pH and NIR to stimulate the release behavior of reactive doxorubicin. Specifically, in the acidic microenvironment (pH 6.8 and pH 5.5), the drug was released faster than the pH 7.4 group, and more than 50% of DOX was released within 4 hours. In contrast, there is only 25% of the drug in the pH 7.4 solution. Obviously, the cleavage of Zn-O and Zn-N coordination bonds triggered by acidic pH is the reason for the different release effects.
  • the cell viability was evaluated using CCK-8 analysis.
  • the cells were seeded in a 96-well microtiter plate at a density of 2000 cells/well. After 24 hours of incubation, various concentrations (50, 100, 150, 200, 250, and 300 ⁇ g/mL) of ZIF-D@ALIP NPs were added to each well. At the same time, use the same method for PBS, free+DOX, ZIF-8, ZIF-D, ZIF-D@LIP and ZIF-D@ALIP. After 8 hours of incubation, the cells were treated with or without NIR irradiation at 808 nm. Then, the CCK-8 solution was added to the cells and incubated for a further 0.5 hour. The absorbance of each well was measured at 450nm by IMark/xMark enzyme standard instrument.
  • PBS PBS+NIR
  • free DOX free DOX+NIR
  • ZIF-8 ZIF-8+NIR
  • ZIF-D ZIF-D+NIR
  • ZIF-D ZIF-D
  • the cell viability of @LIP(ZIF-D@LIP+NIR) and ZIF-D@ALIP(ZIF-D@ALIP+NIR) were 95.4% (93.9%), 67.5% (63.8%), 87.0% (67.1%), respectively ), 94.9% (91.7%), 60.4% (59.6%), 74.1% (50.7%) and 59.6% (20.8%).
  • ZIF-D@ALIP+NIR 300 ⁇ g mL -1
  • PC-3 cells of prostate cancer cells and RWPE-2 cells of normal prostate cells were seeded in 35 mm petri dishes and grown for 12 hours. Then, the cells were incubated with a culture medium containing 120 ⁇ g/mL DOX-labeled ZIF-D@LIP NP (no targeted modification) and 120 ⁇ g/mL DOX-labeled ZIF-D@ALIP NP (targeted modification) at 37°C8 hour. Next, the cells were washed 3 times with cold PBS solution and stained with Hoechst 33258 for 10 minutes. Analyze cell phagocytosis by imaging on a confocal microscope.
  • Figure 12 shows that the targeted modified ZIF-D@ALIP cannot be phagocytosed by normal prostate cells RWPE-2 cells.
  • Figure 13 shows that obvious drug carrier fluorescence is observed around the PC3 cell nucleus, indicating that ZIF-D@ALIP NPs can be effectively swallowed by cancer cells.
  • the unmodified ZIF-D@LIP nanoparticles in Figure 14 show poor cellular uptake ability.
  • mice were injected with PBS (150 ⁇ L), ZIF-D (DOX concentration is 1mg/mL150 ⁇ L), ZIF-D@LIP (equivalent DOX concentration is ZIF-D, 150 ⁇ L) and ZIF-D@ALIP (equivalent DOX concentration) ZIF-D, 150 ⁇ L) laser irradiation was performed on the first day and the ninth day after injection. The tumor size and mouse body weight were measured every day. All mice were sacrificed 18 days after inoculation, and then tumors were excised and weighed. Figure 15 shows that the tumor tissue volume treated with ZIF-D@ALIP is the smallest, and the tumor inhibition rate can reach 90%.
  • the easy modification of the lipid shell is prepared according to the following steps:
  • a preparation method of core-shell nanoparticles based on lipid membrane and metal organic framework according to the following steps: (1) Preparation of ZIF-8@DOX(ZIF-D) nanoparticles:
  • step (2) Use natural soybean phospholipid molecules HSPC and cholesterol as the outer lipid material of ZIF-M@LIP; first place the ZIF-M@PVP/DMPC particle dispersion prepared in step (2) in a round bottom flask, and add 300 ⁇ L of 28 mg /mL HSPC solution, 100 ⁇ L concentration 20mg/mL cholesterol solution, 150 ⁇ L concentration 2mg/mL IR780 and 50 ⁇ L concentration 15mg/mL targeting peptide-DSPE dissolved in 550 ⁇ L chloroform mixture, the above two mixtures are under low pressure rotary evaporation conditions React for 1 hour, remove the organic solvent, and then vacuum dry at low temperature to obtain the final product;
  • the easy modification of the lipid shell is prepared according to the following steps:
  • step (2) Use natural soybean phospholipid molecules HSPC and cholesterol as the outer lipid material of ZIF-D@ALIP; first place the ZIF-D@PVP/DMPC dispersion prepared in step (2) in a round bottom flask, and at the same time, 300 ⁇ L of 28mg/ mL of HSPC solution, 100 ⁇ L of 20mg/mL cholesterol solution, 150 ⁇ L of 2mg/mL IR780 and 50 ⁇ L of 15mg/mL targeting peptide-DSPE lipid membrane microemulsion dissolved in 550 ⁇ L of chloroform solution, the above dispersion and The mixed solution is reacted for 1 hour under low-pressure rotary evaporation conditions, and the organic solvent is removed, and then vacuum-dried at low temperature to obtain the final product;
  • the easy modification of the lipid shell is prepared according to the following steps:
  • step (2) Use natural soybean phospholipid molecules HSPC and cholesterol as the outer lipid material of ZIF-D@ALIP; first place the ZIF-D@PVP/DMPC dispersion prepared in step (2) in a round bottom flask, and at the same time, 300 ⁇ L of 28mg/ mL of HSPC solution, 100 ⁇ L of 20mg/mL cholesterol solution, 150 ⁇ L of 2mg/mL IR780 and 50 ⁇ L of 15mg/mL Abarelix-DSPE lipid membrane microemulsion dissolved in 550 ⁇ L of chloroform solution.
  • the above dispersion and mixture are in React under low-pressure rotary evaporation for 1 hour, remove the organic solvent, and then vacuum dry at low temperature to obtain the final product;

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

一种药物载体的制备方法和应用,包括ZIF-M纳米颗粒、ZIF-M@PVP/DMPC纳米颗粒和ZIF-M@LIP纳米颗粒的制备。所述纳米颗粒以ZIF-8和脂质体为主要原料,其具有毒性低、生物相容性好,降解能力较好的特点。所得纳米颗粒结晶度高、颗粒均一、物理化学性质稳定。所得纳米颗粒在脂质外壳嵌入IR780时,可实现药物在pH和近红外NIR条件下的控制释放。

Description

一种基于脂质膜和金属有机框架的核壳纳米颗粒的制备方法 技术领域
本发明涉及一种药物载体的制备方法和应用,具体涉及一种基于脂质体和金属有机框架的核壳纳米颗粒的制备方法,发明属于纳米药物载体领域。
背景技术
纳米技术在人们生活、医疗和科技发展中的应用受到日益广泛的关注,特别的,新型纳米给药系统因其载药量高、靶向性好和毒副作用小,极具应用潜力。新型纳米给药系统是指借助纳米级载体、配体或抗体将药物选择性地浓集于靶组织、靶器官或细胞内部结构的给药系统;同时借助药物载体的承载作用,辅助以外界刺激实现将药物缓慢释放至患处。然而,具有生物相容性好、靶向性好、尺寸合理、可体内降解等优点的纳米载体少之又少,因此设计并研究新型响应型纳米载体是实现纳米给药系统高效、低毒治疗疾病的基础。
目前响应型的药物载体主要有:超声控释型(中国专利:一种基于普鲁兰多糖的用于超声控制释放的纳米药物载体、药物载体系统及制备方法,公开号:CN10849845A。);光控释型(中国专利:一种近红外光触发释放化疗药物的纳米载体及其制备方法,公开号:CN106512000A。);内环境影响型:1)pH控释型(中国专利:pH控释靶向药物纳米运输载体及其制备方法和应用,公开号:CN107952081A。);2)氧化还原控释型(中国专利:一种刺激响应型聚吡咯纳米管靶向药物载体及其制备方法,公开号:CN105412936A。)。然而针对复杂的生理环境,单一响应型药物载体难以实现最佳的药物递送和治疗效果,因此急需制备多刺激响应型、良好生物相容性的新型药物载体。
综合考虑材料本身的生物毒性、降解能力以及载药性能,沸石咪唑骨架ZIF-8纳米颗粒可以作为合适的载药核心。在药物控释性能方面,ZIF-8在肿瘤微酸环境下具有较好的缓释药物的特点,并且具有尺寸小、比表面积大、生物相容性好、可体内降解等多项优点,常被用于靶向递送和缓释药物。然而药物载体载带化疗药物进入机体后,其释放可能会造成正常细胞和组织的损伤,因此需要采取一定方法将其封闭。考虑易被修饰材料的低毒性和外壳保护性,以天然大豆磷脂分子HSPC和磷脂酰胆碱DMPC两者材料为主的脂质膜可作为纳米药物传递系统外壳。脂质膜具有很多的优点:生物相容性好、生物可降解、无免疫原性、毒性低等。因此,使用ZIF-8作为核心,同时结合脂质体膜作为壳体制备药物载体,不 仅可以利用脂质膜可以进行靶向修饰,而且可以解决多孔结构药物泄露问题,具有较高的研究意义和应用价值。
发明内容
针对现有技术存在的不足,本发明目的在于提供一种基于脂质膜和金属有机框架的核壳纳米颗粒的制备方法。
本发明目的通过下述方案实现:一种基于脂质膜和金属有机框架的核壳纳米颗粒的制备方法,其特征在于包括以下步骤:
(1)ZIF-M纳米颗粒制备:
1)选用六水合硝酸锌和2-甲基咪唑为ZIF-8合成材料,将0.5-0.9g 2-甲基咪唑溶解于0.9mL水溶液,随后在溶液中加入0-0.5mL化疗药物溶液(1.5-2mg),于在37℃条件下搅拌均匀;
2)在上述溶液中加入0.1mL六水合硝酸锌(10-15mg)溶液,随后混合液于37℃,300-800rpm/min搅拌速度下反应15-240min;3)反应结束后,以3500-6500rpm/min离心30min分离去除上清液,洗涤三次得到ZIF-M纳米颗粒(其中M代表药物,可被所采用药物英文首字母代替);
(2)中ZIF-M@PVP/DMPC纳米颗粒制备:
1)选用聚乙烯吡咯烷酮PVP(k30)和磷脂酰胆碱DMPC作为ZIF-M内脂质修饰材料;
2)首先将150mg ZIF-M颗粒分散溶解于4mL水溶液,随后依次加入0.5mL PVP(20-30mg)溶液,0.5mL DMPC(25-40mg)溶液,上述混合液在37℃与低压条件下,以300-800rpm/min的搅拌速度下反应1-2h;
3)反应结束后,以3500-6500rpm/min离心20min分离去除上清液,洗涤三次,产物分散在1mL去离子水中,得到最终产物ZIF-M@PVP/DMPC;
(3)ZIF-M@LIP纳米颗粒制备:
1)选用天然大豆磷脂分子HSPC和胆固醇作为ZIF-M@LIP外脂质材料;首先将步骤(2)制备的ZIF-M@PVP/DMPC颗粒溶于圆底烧瓶,依次加入300μL HSPC溶液(25-30mg/mL),100μL再加入胆固醇溶液(18-27mg/mL),0-150μL IR780(2mg/mL),0-50μL靶向多肽-DSPE(18-20mg/mL)和550μL氯仿溶液,上诉混合液在低压旋转蒸发条件下反应1-3h;
2)反应结束后,先加入水溶液在温和超声条件下将吸附在烧瓶壁上的产物溶 解,溶解物分别经过核孔膜为400nm、200nm的挤压处理5-10次,并经过3500-6500rpm/min离心20min分离去除上清液,洗涤三次得到最终产物ZIF-M@LIP。
所述药物为抗肿瘤药物或者活性蛋白药物、生长因子、RNA、肽类的一种或者多种,其中优选的药物为盐酸阿霉素(DOX)。
所述的靶向多肽-DSPE合成方法采用2013年10月8日发表在International Journal of Nanomedicine第8卷第3855-3866页题为A novel application of maleimide for advanced drug delivery:in vitro and in vivo evaluation of maleimide-modified pH-sensitive liposomes中第3857页中Liposome preparation所记载的方法。
优选的靶向多肽为Abarelix,优选的靶向癌细胞为前列腺癌相关细胞。
本发明提供一种脂质体-金属有机框架复合的多功能核壳结构颗粒载药体系,包括颗粒及其负载物。所述的纳米颗粒以沸石咪唑骨架ZIF-8为核心,可加载多种药物小分子;以脂质膜为外壳包被材料,将多孔结构ZIF-8核心进行密封保护,避免化学药物的随机释放;同时外壳脂质膜可修饰性强,可将靶向多肽及光敏剂嵌入壳体,实现药物载体在化疗、光热和光动力疗法的协同作用。
一种多功能核壳结构ZIF-8@lipid film(ZIF-8@LIP)纳米粒子载药体系,实现对不同药物小分子的递送,同时通过多肽修饰提高载体对肿瘤部位靶向性,达到提高药物利用度和可控释药的目的。
本发明的有益效果为:本发明制备了负载抗肿瘤相关药物的核壳结构纳米复合粒子ZIF-M@LIP。该药物具有很好的生物相容性和稳定性,其中脂质体壳层可修饰靶向材料和光敏剂,实现药物载体在特定靶细胞或靶组装的聚集和热疗;ZIF-M内核颗粒的孔隙中可以载带药物分子,并作为刺激响应型药物递送平台,在特定光照和肿瘤微酸性环境下实现药物快速释放。该载药平台的制备简单、成本较低、制备的颗粒均一稳定,极具应用前景。
本发明的实例效果为:本发明以负载抗癌药物DOX的ZIF-8纳米颗粒(ZIF-D,ZIF-DOX,负载DOX的ZIF-8纳米颗粒)作为内核,以嵌入靶向多肽Abarelix和光敏剂IR780的脂质体作为外壳,制备核壳药物载体(ZIF-D@ALIP,ZIF-DOX@Abarelix-lipid film,外壳嵌入了靶向多肽Abarelix和光敏剂IR780的药物载体颗粒),并以前列腺癌细胞及荷瘤小鼠测试该载体的靶向性和药效。实 例效果显示,该载药体系具有很好的靶向性,可以响应pH和NIR刺激进行药物可控释放,是集成像、化疗和热疗等一体化的纳米药物载体。
本发明的优点在于:
(1)本发明纳米颗粒的主要材料为ZIF-8和脂质体,其本身毒性低、生物相容性好,同时降解能力较好,克服了化学合成法中有毒残留的问题。
(2)本发明制备的纳米颗粒具有高结晶度、颗粒均一、物理化学性质稳定的优点。
(3)本发明中反应原料廉价易得,制备方法工艺简单,可操作性强,能进一步满足生产和应用需求。
(4)本发明纳米颗粒在脂质外壳嵌入IR780时,可以实现药物可控释放,即pH和近红外NIR控制释放药物。
(5)本发明纳米脂质外壳可修饰性强,在嵌入靶向多肽条件下,可以实现精准靶向目标肿瘤部位,本发明以前列腺癌为实例模型进行测试。
附图说明
附图1为实施例1所制备ZIF-D@ALIP的透射电镜成像图;
附图2为实施例1所制备ZIF-D@ALIP的P元素映射图像;
附图3为实施例1所制备的ZIF-8和ZIF-D@ALIP的尺寸分布图;
附图4为实施例1所制备的ZIF-8、ZIF-D、ZIF-D@LIP和ZIF-D@ALIP的zeta电位图;
附图5为实施例1所制备的ZIF-D和ZIF-D@ALIP的紫外光谱;
附图6为实施例1所制备的ZIF-8、IR780、Abarelix-DSPE和ZIF-D@ALIP红外光谱;
附图7为实施例1所制备的ZIF-D@ALIP响应激光照射后温度变化图谱;
附图8为实施例1所制备的ZIF-D@ALIP响应激光照射后热成像图;
附图9为实施例1所制备的ZIF-D@ALIP响应pH和NIR双重刺激的释药曲线;
附图10为实施例1所制备的DOX、IR780、ZIF-8、ZIF-D、ZIF-D@LIP和ZIF-D@ALIP的细胞毒性图;
附图11为实施例1所制备的不同浓度ZIF-D@ALIP的细胞毒性图;
附图12为实施例1所制备的ZIF-D@ALIP(有靶向多肽修饰)纳米颗粒被前列腺正常细胞RWPE-2细胞吞噬的共聚焦成像图;
附图13为实施例1所制备的ZIF-D@ALIP(有靶向多肽修饰)纳米颗粒被前列腺癌细胞PC-3细胞吞噬的共聚焦成像图;
附图14为实施例1所制备的ZIF-D@LIP(无靶向多肽修饰)被前列腺癌细胞PC-3细胞吞噬的共聚焦成像图;
附图15为实施例1所制备的ZIF-D@ALIP(有靶向多肽修饰)纳米颗粒处理荷瘤小鼠后的肿瘤组织体积成像图。
具体实施方式
以下通过具体的实施例对本发明的技术方案作进一步描述。以下的实施例是对本发明的进一步说明,而不限制本发明的范围。
本发明所用的试剂除非特别指明,以下实施例所有的试验方法均为本领域中所用的常规方法。
除非特别说明,以下实施例中所使用的试剂均为分析纯级试剂,且可以从正规渠道购买获得。
实施例1
一种核壳式药物载体,其中ZIF-8载带盐酸阿霉素DOX/抗肿瘤活性药物为核心载药模型,表面修饰嵌入Abarelix多肽和IR780脂质体外壳,本发明采用前列腺癌细胞测试ZIF-8靶向性和肿瘤细胞杀伤效果,按如下步骤制备:
(1)ZIF-D纳米颗粒制备:
1)选用六水合硝酸锌和2-甲基咪唑为ZIF-8的合成材料,将0.786g的2-MIM溶解于0.9mL水中得到水溶液,随后在溶液中加入0.5mL含1.6mg DOX的水溶液,于在37℃条件下混合并搅拌2分钟搅拌均匀;
2)在上述溶液中加入0.1mL含12.6mg的Zn(NO 3) 2·6H 2O水溶液,随后混合液于37℃,300-800rpm/min搅拌速度下反应15分钟;
3)反应结束后,以6500rpm/min离心20min分离去除上清液,洗涤三次得到载药DOX的沸石咪唑骨架材料ZIF-D纳米颗粒;
(2)ZIF-D@Abarelix-lipid film(ZIF-D@ALIP)核壳纳米结构的合成:
1)选用聚乙烯吡咯烷酮PVP(k30)和磷脂酰胆碱DMPC作为ZIF-D内脂质修饰材料;
2)首先将150mg ZIF-D颗粒分散溶解于4mL水溶液,随后在连续搅拌下快速依次加入0.5mL含26mg PVP的溶液,0.5mL含32mg DMPC的溶液,在 搅拌下反应1h;
3)反应结束后,离心去除上清液,洗涤三次,产物分散在1mL去离子水中,得到最终产物ZIF-D/DMPC;
(3)ZIF-D@ALIP纳米颗粒制备:
1)选用天然大豆磷脂分子HSPC和胆固醇作为ZIF-D@ALIP外脂质材料;首先将步骤(2)制备的ZIF-D@DMPC颗粒分散液置于圆底烧瓶中,同时加入将300μL浓度28mg/mL HSPC的溶液、100μL浓度20mg/mL胆固醇溶液、150μL浓度2mg/mL IR780和50μL浓度15mg/mL靶向多肽-DSPE溶解于550μL氯仿的混合液,上述二种混合液在低压旋转蒸发条件下反应1h,并除去有机溶剂,再低温真空干燥获得最终产物;
2)反应结束后,将产物分散在水溶液中,进行快速超声,将吸附在烧瓶壁上的产物溶解,溶解物分别经过规格为400nm、200nm的多孔膜挤压处理10次,并经过6500rpm/min离心20min分离去除上清液,洗涤三次得到最终产物ZIF-D@ALIP。
本实施例制备的ZIF-D@ALIP纳米颗粒,通过电子显微镜和红外进行基本表征,如附图1所示,可以看出ZIF-D@ALIP呈现近似圆球的形状,有比较明显的核壳结构,粒径大约在170nm左右。而ZIF-8内核呈现非圆球状,粒径大约在80nm左右。附图2中的元素分析显示,ZIF-D@ALIP中有P元素,且与Zn元素的比例在预期范围。附图3为ZIF-D@ALIP的动态光散射图,测得其水合半径为180nm左右,与附图1结果接近。附图4测定ZIF-8、ZIF-D、ZIF-D@LIP和ZIF-D@ALIP的Zeta电位分别为+13.6mV,+14.9mV,-15.1mV and-15.7mV。附图5中ZIF-D@ALIP的UV光谱在480和780nm处显示了DOX和IR780的特征吸收峰。附图6的红外数据显示ZIF-8粒子在2330cm -1处出现明显的峰,这是由于C=O与Zn 2+离子形成配位键所致。与纯IR 780相比,脂质膜包裹引起了嵌入在ZIF-D@ALIP中的IR 780的特征峰2950cm -1出现拉伸。特别是ZIF-D@ALIP纳米粒子在1685cm -1处出现了一个Abarelix多肽峰。
测试ZIF-D@ALIP纳米颗粒的光热效应:
将不同浓度的ZIF-D@ALIP核壳纳米结构分散在PBS溶液中,浓度范围为0mg/mL、0.05mg/mL、0.1mg/mL至0.2mg/mL。将不同的样品用808nm NIR激光(1W cm -2)照射8分钟,并通过温度计每20s记录这些溶液的温度。如附 图7和附图8所示,在近红外辐射下,ZIF-D@ALIP(0.2mg/mL)溶液的温度在6min内从24.8℃迅速升高到60.8℃。相比较,在相同条件下PBS溶液的温度改变仅为6.9℃,表明ZIF-D@ALIP的脂质膜上成功负载IR780,具有显著的光热效应。
测试ZIF-D@ALIP颗粒的pH的响应性:
将相同量的纳米粒子添加到每个样品管中,并将溶液的pH分别调节至对应的pH 7.4、6.5或5.5。我们将其分为六组:NIR照射+pH 5.5、无NIR照射+pH 5.5、NIR照射+pH 6.5、无NIR照射、pH 6.5组、NIR照射+pH 7.4和无NIR照射+pH 7.4。每组包含三个平行样品,NIR激光的功率调整为1.0W。将试管在黑暗条件下于室温振荡器下孵育。在相同的时间间隔后,通过离心收集溶液,并通过UV光谱法对释放的DOX的量进行定量。如附图9所示,ZIF-D@ALIP明显显示出pH和NIR刺激反应性阿霉素的释放行为。具体来说,在酸性微环境(pH 6.8和pH 5.5)显然比pH 7.4组药物释放快,并且在4小时内释放了超过50%的DOX。相比之下,在pH 7.4溶液中只有25%的药物。显然,pH酸性条件引发的Zn-O和Zn-N配位键断裂是造成不同释放效果的原因。
测试ZIF-D@ALIP纳米颗粒的生物相容性:
使用CCK-8分析评估了其细胞活力。将细胞以2000个细胞/孔的密度接种在96孔微孔板中。孵育24小时后,将各种浓度(50、100、150、200、250和300μg/mL)的ZIF-D@ALIP NPs加入每个孔中。同时,以相同的方式对PBS,free+DOX,ZIF-8,ZIF-D,ZIF-D@LIP和ZIF-D@ALIP。温育8小时后,在有或没有808nm的NIR照射下处理细胞。然后,将CCK-8溶液加入细胞中,并进一步孵育0.5小时。通过IMark/xMark酶标准仪器在450nm处测量每个孔的吸光度。
如附图10和11所示,PBS(PBS+NIR),free DOX(free DOX+NIR),ZIF-8(ZIF-8+NIR),ZIF-D(ZIF-D+NIR),ZIF-D@LIP(ZIF-D@LIP+NIR)and ZIF-D@ALIP(ZIF-D@ALIP+NIR)的细胞活性分别为95.4%(93.9%),67.5%(63.8%),87.0%(67.1%),94.9%(91.7%),60.4%(59.6%),74.1%(50.7%)及59.6%(20.8%)。其中ZIF-D@ALIP+NIR(300μg mL -1)对前列腺癌PC3细胞的优异的肿瘤细胞杀伤率为79.2%,表明光热疗法和化学疗法的协同作用的治疗效果。
测试前列腺相关细胞对ZIF-D@ALIP颗粒的吞噬效果:
为了研究靶向吞噬作用的效果,将前列腺癌细胞PC-3细胞和前列腺正常细胞RWPE-2细胞接种在35毫米培养皿中生长12小时。然后,将细胞与含有120μg/mL DOX标记的ZIF-D@LIP NP(无靶向修饰)和120μg/mL DOX标记的ZIF-D@ALIP NP(靶向修饰)的培养液在37℃孵育8小时。接下来,将细胞用冷PBS溶液洗涤3次,并用Hoechst 33258染色10分钟。通过在共聚焦显微镜成像来分析细胞吞噬作用。附图12显示,靶向修饰的ZIF-D@ALIP并不能被前列腺正常细胞RWPE-2细胞吞噬。同时附图13显示,在PC3细胞核周围观察到明显的药物载体的荧光,表明ZIF-D@ALIP NPs可以被癌细胞有效地吞噬。与之相较,附图14中未修饰的ZIF-D@LIP纳米颗粒表现出较差的细胞摄取能力。这些结果表明,ZIF-D@ALIP可以用作高性能纳米载体,具有高效的靶向性能,并且可改善细胞摄取效果,具有治疗前列腺癌的潜力。
本实施例验证了ZIF-D@ALIP的杀伤肿瘤组织的效果:将1×10 6PC3细胞注入5周龄雄性小鼠后腿右后侧皮下,制备荷瘤小鼠。待肿瘤体积长至约100mm 2时,荷瘤小鼠随机分为四组:PBS、ZIF-D、ZIF-D@LIP和ZIF-D@ALIP,每组3只。小鼠尾静脉注射PBS(150μL)、ZIF-D(DOX浓度为1mg/mL150μL)、ZIF-D@LIP(等效DOX浓度为ZIF-D,150μL)和ZIF-D@ALIP(等效DOX浓度为ZIF-D,150μL)注射后第1天和第9天分别进行激光照射。每天测量肿瘤大小和小鼠体重。接种后18天处死所有小鼠,然后切除肿瘤并称重。附图15显示,经ZIF-D@ALIP处理的肿瘤组织体积最小,肿瘤抑制率可达90%。
以上是本发明的优选实施方式,本发明的保护范围并不仅局限于上述实施例,凡属于本发明思路的技术方案均属于本发明的保护范围。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理前提下的若干改进和润饰,这些改进和润饰也应该为本发明的保护范围。
实施例2
一种以盐酸阿霉素DOX/抗肿瘤活性药物为核心载药模型,同时以Abarelix多肽和IR780嵌入脂质壳体为模型的ZIF-D@ALIP载药体系,来测试ZIF-8载药性和脂质壳体的易修饰性,按下述步骤制备:
一种基于脂质膜和金属有机框架的核壳纳米颗粒的制备方法,按以下步骤:(1)ZIF-8@DOX(ZIF-D)纳米颗粒制备:
1)选用六水合硝酸锌和2-甲基咪唑为ZIF-8的合成材料,将0.786g 2-甲基 咪唑溶解于0.9mL水溶液,随后在溶液中加入0.5mL含1.8mgDOX的水溶液,于在37℃条件下混合并搅拌2分钟;然后,
2)在上述溶液中缓慢加入0.1mL含12.6mg六水合硝酸锌的水溶液,随后混合液于37℃,300-800rpm/min搅拌速度下反应30min;
3)反应结束后,以6500rpm/min离心20min分离去除上清液,洗涤三次得到载药M的沸石咪唑骨架材料ZIF-D纳米颗粒;
(2)ZIF-D@PVP/DMPC纳米颗粒制备:
1)选用聚乙烯吡咯烷酮PVP(k30)和磷脂酰胆碱DMPC作为ZIF-M内脂质修饰材料;
2)首先将150mg ZIF-D颗粒分散溶解于4mL水溶液,随后在连续搅拌下快速依次加入0.5mL含26mg PVP的溶液和0.5mL含32mg DMPC的溶液,上述混合液搅拌反应1h;
3)反应结束后,离心分离去除上清液,收集产物ZIF-D/DMPC,洗涤三次,产物分散在1mL去离子水中,得到最终产物分散液;
(3)ZIF-D@ALIP纳米颗粒制备:
1)选用天然大豆磷脂分子HSPC和胆固醇作为ZIF-M@LIP外脂质材料;首先将步骤(2)制备的ZIF-M@PVP/DMPC颗粒分散液置于圆底烧瓶,加入将300μL浓度28mg/mL HSPC的溶液、100μL浓度20mg/mL胆固醇溶液、150μL浓度2mg/mL IR780和50μL浓度15mg/mL靶向多肽-DSPE溶解于550μL氯仿的混合液,上述二种混合液在低压旋转蒸发条件下反应1h,并除去有机溶剂,再低温真空干燥获得最终产物;
2)反应结束后,将产物分散在水溶液中,进行快速超声处理溶解,然后,溶解物分别经过400nm、200nm的核孔膜挤压处理10次,并经过3500-6500rpm/min离心20min分离去除上清液,洗涤三次得到最终产物ZIF-D@ALIP。
实施例3
一种以盐酸阿霉素DOX/抗肿瘤活性药物为核心载药模型,同时以Abarelix多肽和IR780嵌入脂质壳体为模型的ZIF-D@ALIP载药体系,来测试ZIF-8载药性和脂质壳体的易修饰性,按以下步骤制备:
(1)ZIF-8@DOX(ZIF-D)的合成:
1)选用六水合硝酸锌和2-甲基咪唑为ZIF-8的合成材料,将0.8g 2-甲基咪 唑溶解于0.9mL水溶液,随后在溶液中加入0.5mL含1.6mgDOX水溶液,于在37℃条件下混合并搅拌2分钟;然后,
2)在上述溶液中缓慢加入0.1mL含12.6mg六水合硝酸锌的水溶液,随后混合液于37℃,300-800rpm/min搅拌速度下反应60min;
3)反应结束后,以6500rpm/min离心20min分离去除上清液,回收ZIF-8@DOX(ZIF-D)纳米颗粒,洗涤三次;
(2)ZIF-M@PVP/DMPC纳米颗粒制备:
1)选用聚乙烯吡咯烷酮PVP(k30)和磷脂酰胆碱DMPC作为ZIF-D内脂质修饰材料;
2)首先将150mg ZIF-D颗粒重新分散溶解于4mL水溶液中,随后连续搅拌下快速依次加入0.5mL含26mg PVP的溶液和0.5mL含32mg DMPC的溶液,上述混合液在搅拌下反应1h;
3)反应结束后,离心收集产物ZIF-D/DMPC,洗涤三次,产物分散在1mL去离子水中,得到最终产物ZIF-D@DMPC分散液;
(3)ZIF-D@Abarelix-lipid film(ZIF-D@ALIP)核壳纳米结构的合成:
1)选用天然大豆磷脂分子HSPC和胆固醇作为ZIF-D@ALIP外脂质材料;首先将步骤(2)制备的ZIF-D@PVP/DMPC分散液置于圆底烧瓶,同时将300μL浓度28mg/mL HSPC的溶液、100μL浓度20mg/mL胆固醇溶液、150μL浓度2mg/mL IR780和50μL浓度15mg/mL靶向多肽-DSPE脂质膜的微乳液溶解于550μL氯仿溶液中的混合液,上述分散液和混合液在低压旋转蒸发条件下反应1h,并除去有机溶剂,再低温真空干燥获得最终产物;
2)反应结束后,将产物分散在水溶液中,进行快速超声,将吸附在烧瓶壁上的产物溶解,溶解物分别经过400nm、200nm的核孔膜挤压处理10次,并经过3500-6500rpm/min离心20min分离去除上清液,洗涤三次得到最终产物ZIF-D@ALIP。
实施例4
一种以盐酸阿霉素DOX/抗肿瘤活性药物为核心载药模型,同时以Abarelix多肽和IR780嵌入脂质壳体为模型的ZIF-D@ALIP载药体系,来测试ZIF-8载药性和脂质壳体的易修饰性,按以下步骤制备:
(1)ZIF-M纳米颗粒制备:
1)选用六水合硝酸锌和2-甲基咪唑为ZIF-8的合成材料,将0.8g 2-甲基咪唑溶解于0.9mL水溶液,随后在溶液中加入0.5mL含1.8mgDOX水溶液,混合并搅拌2分钟;然后,
2)在上述溶液中缓慢加入0.1mL含12.6mg六水合硝酸锌的水溶液,随后混合液于37℃,300-800rpm/min搅拌速度下反应120min;
3)反应结束后,以6500rpm/min离心20min分离去除上清液,回收ZIF-8@DOX(ZIF-D)纳米颗粒,洗涤三次;
(2)ZIF-D@DMPC纳米颗粒制备:
1)选用聚乙烯吡咯烷酮PVP(k30)和磷脂酰胆碱DMPC作为ZIF-M内脂质修饰材料;
2)首先将150mg ZIF-D颗粒重新分散溶解于4mL水中,然后在连续搅拌下快速加入0.5mL含26mg PVP的溶液,0.5mL含32mg DMPC的溶液,反应1h;
3)反应结束后,离心去除上清液,收集产物ZIF-D/DMPC,洗涤三次,产物分散在1mL去离子水中,得到最终产物ZIF-D@DMPC分散液;
(3)ZIF-D@Abarelix-lipid film(ZIF-D@ALIP)核壳纳米结构的合成:
1)选用天然大豆磷脂分子HSPC和胆固醇作为ZIF-D@ALIP外脂质材料;首先将步骤(2)制备的ZIF-D@PVP/DMPC分散液置于圆底烧瓶,同时将300μL浓度28mg/mL HSPC的溶液、100μL浓度20mg/mL胆固醇溶液、150μL浓度2mg/mL IR780和50μL浓度15mg/mLAbarelix-DSPE脂质膜的微乳液溶解于550μL氯仿溶液中的混合液,上述分散液和混合液在低压旋转蒸发条件下反应1h,并除去有机溶剂,再低温真空干燥获得最终产物;
2)反应结束后,将产物分散在水溶液中,进行快速超声,将吸附在烧瓶壁上的产物溶解,溶解物分别经过400nm、200nm的核孔膜挤压处理10次,并经过3500-6500rpm/min离心20min分离去除上清液,洗涤三次得到最终产物ZIF-D@ALIP。

Claims (7)

  1. 一种基于脂质膜和金属有机框架的核壳纳米颗粒的制备方法,其特征在于包括以下步骤:
    (1)ZIF-M纳米颗粒制备:
    1)选用六水合硝酸锌和2-甲基咪唑为ZIF-8的合成材料,将0.5-0.9g 2-甲基咪唑溶解于0.9mL水溶液,随后在溶液中加入0-0.5mL含1.5-2mg化疗药物(M)的溶液,于在37℃条件下搅拌均匀,其中,所述药物为抗肿瘤药物或者活性蛋白药物、生长因子、RNA、靶向多肽的一种或者多种;
    2)在上述溶液中加入0.1mL含10-15mg六水合硝酸锌的溶液,随后混合液于37℃,300-800rpm/min搅拌速度下反应15-240min;
    3)反应结束后,以3500-6500rpm/min离心30min分离去除上清液,洗涤三次得到载药M的沸石咪唑骨架材料ZIF-M纳米颗粒;
    (2)ZIF-M@PVP/DMPC纳米颗粒制备:
    1)选用聚乙烯吡咯烷酮PVP(k30)和磷脂酰胆碱DMPC作为ZIF-M内脂质修饰材料;
    2)首先将150mg ZIF-M颗粒分散溶解于4mL水溶液,随后依次加入0.5mL含20-30mg PVP的溶液,0.5mL含25-40mg DMPC的溶液,上述混合液在37℃与低压条件下,以300-800rpm/min的搅拌速度下反应1-2h;
    3)反应结束后,离心分离去除上清液,洗涤三次,产物分散在1mL去离子水中,得到最终产物ZIF-M@PVP/DMPC的分散液;
    (3)ZIF-M@LIP纳米颗粒制备:
    1)选用天然大豆磷脂分子HSPC和胆固醇作为ZIF-M@LIP外脂质材料;首先将步骤(2)制备的ZIF-M@PVP/DMPC颗粒的分散液置于圆底烧瓶,同时,加入将300μL浓度25-30mg/mL HSPC的溶液、100μL浓度18-27mg/mL胆固醇溶液、0-150μL浓度2mg/mL IR780和0-50μL浓度18-20mg/mL靶向多肽-DSPE溶解于550μL氯仿得混合溶液,上述分散液和混合液在低压旋转蒸发条件下反应1-3h;
    2)反应结束后,先加入水溶液在温和超声条件下将吸附在烧瓶壁上的产物溶解,溶解物分别经过核孔膜为400nm、200nm的挤压处理5-10次,并经过3500-6500rpm/min离心20min分离去除上清液,洗涤三次得到最终产物 ZIF-M@LIP。
  2. 根据权利要求1所述基于脂质膜和金属有机框架的核壳纳米颗粒的制备方法,其特征在于:所述抗肿瘤药物为盐酸阿霉素(DOX)。
  3. 根据权利要求1所述基于脂质膜和金属有机框架的核壳纳米颗粒的制备方法,其特征在于:所述的靶向多肽为Abarelix,靶向癌细胞为前列腺癌相关细胞。
  4. 根据权利要求1至3任一项所述基于脂质膜和金属有机框架的核壳纳米颗粒的制备方法,其特征在于:一种核壳式药物载体ZIF-D@ALIP,其中ZIF-8载带盐酸阿霉素(DOX)/抗肿瘤活性药物为核心载药模型,表面修饰嵌入Abarelix多肽和IR780脂质体外壳,按如下步骤制备:
    (1)ZIF-D纳米颗粒制备:
    1)选用六水合硝酸锌和2-甲基咪唑为ZIF-8的合成材料,将0.786g的2-MIM溶解于0.9mL水中得到水溶液,随后在溶液中加入0.5mL含1.6mg DOX的水溶液,于在37℃条件下混合并搅拌2分钟搅拌均匀;
    2)在上述溶液中加入0.1mL含12.6mg的Zn(NO 3) 2·6H 2O水溶液,随后混合液于37℃,300-800rpm/min搅拌速度下反应15分钟;
    3)反应结束后,以6500rpm/min离心20min分离去除上清液,洗涤三次得到载药DOX的沸石咪唑骨架材料ZIF-D纳米颗粒;
    (2)ZIF-D@Abarelix-lipid film(ZIF-D@ALIP)核壳纳米结构的合成:
    1)选用聚乙烯吡咯烷酮PVP(k30)和磷脂酰胆碱DMPC作为ZIF-D内脂质修饰材料;
    2)首先将150mg ZIF-D颗粒分散溶解于4mL水溶液,随后在连续搅拌下快速依次加入0.5mL含26mg PVP的溶液和0.5mL含32mg DMPC的溶液,在搅拌下反应1h;
    3)反应结束后,离心去除上清液得产物,洗涤三次,洗涤后产物分散在1mL去离子水中,得到ZIF-D/DMPC分散液;
    (3)ZIF-D@ALIP纳米颗粒制备:
    1)选用天然大豆磷脂分子HSPC和胆固醇作为ZIF-D@ALIP外脂质材料;首先将步骤(2)制备的ZIF-D@DMPC分散液置于圆底烧瓶中,同时加入将300μL浓度28mg/mL HSPC的溶液、100μL浓度20mg/mL胆固醇溶液、150μL浓 度2mg/mL IR780和50μL浓度15mg/mL靶向多肽-DSPE溶解于550μL氯仿的混合液,上述分散液和混合液在低压旋转蒸发条件下反应1h,并除去有机溶剂,再低温真空干燥获得最终产物;
    2)反应结束后,将产物分散在水溶液中,进行快速超声溶解,溶解物分别经过规格为400nm、200nm的多孔膜挤压处理10次,并经过6500rpm/min离心20min分离去除上清液,洗涤三次得到ZIF-D@ALIP。
  5. 根据权利要求1至3任一项所述基于脂质膜和金属有机框架的核壳纳米颗粒的制备方法,其特征在于:一种核壳式药物载体ZIF-D@ALIP,按如下步骤制备:
    (1)ZIF-8@DOX(ZIF-D)纳米颗粒制备:
    1)选用六水合硝酸锌和2-甲基咪唑为ZIF-8的合成材料,将0.786g 2-甲基咪唑溶解于0.9mL水溶液,随后在溶液中加入0.5mL含1.8mgDOX的水溶液,于在37℃条件下混合并搅拌2分钟;然后,
    2)在上述溶液中缓慢加入0.1mL含12.6mg六水合硝酸锌的水溶液,随后混合液于37℃,300-800rpm/min搅拌速度下反应30min;
    3)反应结束后,以6500rpm/min离心20min分离去除上清液,洗涤三次得到载药M的沸石咪唑骨架材料ZIF-D纳米颗粒;
    (2)ZIF-D@PVP/DMPC纳米颗粒制备:
    1)选用聚乙烯吡咯烷酮PVP(k30)和磷脂酰胆碱DMPC作为ZIF-M内脂质修饰材料;
    2)首先将150mg ZIF-D颗粒分散溶解于4mL水溶液,随后在连续搅拌下快速依次加入0.5mL含26mg PVP的溶液和0.5mL含32mg DMPC的溶液,上述混合液搅拌反应1h;
    3)反应结束后,离心分离去除上清液,收集产物ZIF-D/DMPC,洗涤三次,产物分散在1mL去离子水中,得到最终产物分散液;
    (3)ZIF-D@ALIP纳米颗粒制备:
    1)选用天然大豆磷脂分子HSPC和胆固醇作为ZIF-M@LIP外脂质材料;首先将步骤(2)制备的ZIF-M@PVP/DMPC颗粒分散液置于圆底烧瓶,加入将300μL浓度28mg/mL HSPC的溶液、100μL浓度20mg/mL胆固醇溶液、150μL浓度2mg/mL IR780和50μL浓度15mg/mL靶向多肽-DSPE溶解于550μL氯 仿的混合液,上述二种混合液在低压旋转蒸发条件下反应1h,并除去有机溶剂,再低温真空干燥获得最终产物;
    2)反应结束后,将产物分散在水溶液中,进行快速超声处理溶解,然后,溶解物分别经过400nm、200nm的核孔膜挤压处理10次,并经过3500-6500rpm/min离心20min分离去除上清液,洗涤三次得到最终产物ZIF-D@ALIP。
  6. 根据权利要求1至3任一项所述基于脂质膜和金属有机框架的核壳纳米颗粒的制备方法,其特征在于:一种核壳式药物载体ZIF-D@ALIP,按如下步骤制备:
    (1)ZIF-8@DOX(ZIF-D)的合成:
    1)选用六水合硝酸锌和2-甲基咪唑为ZIF-8的合成材料,将0.8g 2-甲基咪唑溶解于0.9mL水溶液,随后在溶液中加入0.5mL含1.6mgDOX水溶液,于在37℃条件下混合并搅拌2分钟;然后,
    2)在上述溶液中缓慢加入0.1mL含12.6mg六水合硝酸锌的水溶液,随后混合液于37℃,300-800rpm/min搅拌速度下反应60min;
    3)反应结束后,以6500rpm/min离心20min分离去除上清液,回收ZIF-8@DOX(ZIF-D)纳米颗粒,洗涤三次;
    (2)ZIF-M@PVP/DMPC纳米颗粒制备:
    1)选用聚乙烯吡咯烷酮PVP(k30)和磷脂酰胆碱DMPC作为ZIF-D内脂质修饰材料;
    2)首先将150mg ZIF-D颗粒重新分散溶解于4mL水溶液中,随后连续搅拌下快速依次加入0.5mL含26mg PVP的溶液和0.5mL含32mg DMPC的溶液,上述混合液在搅拌下反应1h;
    3)反应结束后,离心收集产物ZIF-D/DMPC,洗涤三次,产物分散在1mL去离子水中,得到最终产物ZIF-D@DMPC分散液;
    (3)ZIF-D@Abarelix-lipid film(ZIF-D@ALIP)核壳纳米结构的合成:
    1)选用天然大豆磷脂分子HSPC和胆固醇作为ZIF-D@ALIP外脂质材料;首先将步骤(2)制备的ZIF-D@PVP/DMPC分散液置于圆底烧瓶,同时将300μL浓度28mg/mL HSPC的溶液、100μL浓度20mg/mL胆固醇溶液、150μL浓度2mg/mL IR780和50μL浓度15mg/mL靶向多肽-DSPE脂质膜的微乳液溶解于550μL氯仿溶液中的混合液,上述分散液和混合液在低压旋转蒸发条件下反应 1h,并除去有机溶剂,再低温真空干燥获得最终产物;
    2)反应结束后,将产物分散在水溶液中,进行快速超声,将吸附在烧瓶壁上的产物溶解,溶解物分别经过400nm、200nm的核孔膜挤压处理10次,并经过3500-6500rpm/min离心20min分离去除上清液,洗涤三次得到最终产物ZIF-D@ALIP。
  7. 根据权利要求1至3任一项所述基于脂质膜和金属有机框架的核壳纳米颗粒的制备方法,其特征在于:一种核壳式药物载体ZIF-D@ALIP,按如下步骤制备:
    (1)ZIF-M纳米颗粒制备:
    1)选用六水合硝酸锌和2-甲基咪唑为ZIF-8的合成材料,将0.8g 2-甲基咪唑溶解于0.9mL水溶液,随后在溶液中加入0.5mL含1.8mgDOX水溶液,混合并搅拌2分钟;然后,
    2)在上述溶液中缓慢加入0.1mL含12.6mg六水合硝酸锌的水溶液,随后混合液于37℃,300-800rpm/min搅拌速度下反应120min;
    3)反应结束后,以6500rpm/min离心20min分离去除上清液,回收ZIF-8@DOX(ZIF-D)纳米颗粒,洗涤三次;
    (2)ZIF-D@DMPC纳米颗粒制备:
    1)选用聚乙烯吡咯烷酮PVP(k30)和磷脂酰胆碱DMPC作为ZIF-M内脂质修饰材料;
    2)首先将150mg ZIF-D颗粒重新分散溶解于4mL水中,然后在连续搅拌下快速加入0.5mL含26mg PVP的溶液,0.5mL含32mg DMPC的溶液,反应1h;
    3)反应结束后,离心去除上清液,收集产物ZIF-D/DMPC,洗涤三次,产物分散在1mL去离子水中,得到最终产物ZIF-D@DMPC分散液;
    (3)ZIF-D@Abarelix-lipid film(ZIF-D@ALIP)核壳纳米结构的合成:
    1)选用天然大豆磷脂分子HSPC和胆固醇作为ZIF-D@ALIP外脂质材料;首先将步骤(2)制备的ZIF-D@PVP/DMPC分散液置于圆底烧瓶,同时加入将300μL浓度28mg/mL HSPC的溶液、100μL浓度20mg/mL胆固醇溶液、150μL浓度2mg/mL IR780和50μL浓度15mg/mLAbarelix-DSPE脂质膜的微乳液溶解于550μL氯仿中的混合液,上述分散液和混合液在低压旋转蒸发条件下反应 1h,并除去有机溶剂,再低温真空干燥获得最终产物;
    2)反应结束后,将产物分散在水溶液中,进行快速超声,将吸附在烧瓶壁上的产物溶解,溶解物分别经过400nm、200nm的核孔膜挤压处理10次,并经过3500-6500rpm/min离心20min分离去除上清液,洗涤三次得到最终产物ZIF-D@ALIP。
PCT/CN2019/127924 2019-11-25 2019-12-24 一种基于脂质膜和金属有机框架的核壳纳米颗粒的制备方法 WO2021103232A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911167233.XA CN111265533B (zh) 2019-11-25 2019-11-25 一种基于脂质膜和金属有机框架的核壳纳米颗粒的制备方法
CN201911167233.X 2019-11-25

Publications (1)

Publication Number Publication Date
WO2021103232A1 true WO2021103232A1 (zh) 2021-06-03

Family

ID=70990935

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/127924 WO2021103232A1 (zh) 2019-11-25 2019-12-24 一种基于脂质膜和金属有机框架的核壳纳米颗粒的制备方法

Country Status (2)

Country Link
CN (1) CN111265533B (zh)
WO (1) WO2021103232A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114437183A (zh) * 2022-02-17 2022-05-06 中国农业科学院兰州兽医研究所 一种基于金属有机框架仿生矿化提高病毒样颗粒热稳定性的方法
CN115152742A (zh) * 2022-07-06 2022-10-11 中国人民解放军空军军医大学 一种细胞外囊泡保存方法
CN115317624A (zh) * 2021-12-01 2022-11-11 武汉纺织大学 一种主动靶向骨肿瘤的液态金属-金属有机框架纳米载药材料及其制备方法和应用
WO2022261191A1 (en) * 2021-06-08 2022-12-15 University Of Georgia Research Foundation, Inc. Nanoparticles for treating prostate cancer
WO2022261186A1 (en) * 2021-06-08 2022-12-15 University Of Georgia Research Foundation, Inc. Nanoparticles for preventing peri/post-menopausal bone loss and/or obesity
WO2022261213A1 (en) * 2021-06-08 2022-12-15 University Of Georgia Research Foundation, Inc. Nanoparticles for targeted non-surgical spaying and neutering
CN115569201A (zh) * 2022-09-28 2023-01-06 四川大学华西医院 一种导航干细胞靶向肾脏病灶组织的多酚纳米颗粒及其制备方法
CN116350591A (zh) * 2022-12-22 2023-06-30 济南大学 pH响应双驱动Pt/FePc@Mn-MOF Janus型纳米马达及制备方法和应用
CN115152742B (zh) * 2022-07-06 2024-05-31 中国人民解放军空军军医大学 一种细胞外囊泡保存方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111437399B (zh) * 2020-05-27 2021-07-09 山东大学 一种基因与化学小分子共递送系统及在肿瘤治疗中的应用
CN111700881B (zh) * 2020-07-02 2021-05-18 四川大学 Wnt蛋白\ZIF-8纳米复合体、其制备方法及其应用
CN111643673B (zh) * 2020-07-08 2022-09-13 福建医科大学孟超肝胆医院(福州市传染病医院) 一种同时包载光敏剂和蛋白质的肿瘤靶向纳米药物及其应用
CN114652854B (zh) * 2022-03-04 2023-05-12 中国科学院海洋研究所 一种双锁mof材料及其制备和应用
CN115260508B (zh) * 2022-06-06 2023-09-19 西北工业大学 一种zif-8以及谷胱甘肽响应型空心微球的制备方法
CN115260566B (zh) * 2022-07-05 2023-06-06 北京林业大学 一种基于zif-8的琼脂糖多孔微球的制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009042802A1 (en) * 2007-09-25 2009-04-02 The Regents Of The University Of California Edible and biocompatible metal-organic frameworks
CN107095861A (zh) * 2017-06-29 2017-08-29 中国医学科学院生物医学工程研究所 基于egcg与金属离子的双刺激响应药物及制备方法
CN107189074A (zh) * 2017-05-26 2017-09-22 西安电子科技大学 基于脂质体膜的金属有机骨架材料的表面功能化修饰方法
CN107648606A (zh) * 2017-11-09 2018-02-02 上海纳米技术及应用国家工程研究中心有限公司 集化疗与热疗一体化核壳纳米材料的制备方法及其产品和应用
CN107998404A (zh) * 2017-12-09 2018-05-08 浙江大学 一种负载抗癌药物的叶酸靶向载体及其制备方法和应用
CN109512797A (zh) * 2018-12-21 2019-03-26 上海纳米技术及应用国家工程研究中心有限公司 基于金属有机框架的纳米药物载体的制备方法及其产品
CN109985247A (zh) * 2019-04-03 2019-07-09 河南科技学院 一种用于药物释放的杂化金属有机骨架化合物的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009042802A1 (en) * 2007-09-25 2009-04-02 The Regents Of The University Of California Edible and biocompatible metal-organic frameworks
CN107189074A (zh) * 2017-05-26 2017-09-22 西安电子科技大学 基于脂质体膜的金属有机骨架材料的表面功能化修饰方法
CN107095861A (zh) * 2017-06-29 2017-08-29 中国医学科学院生物医学工程研究所 基于egcg与金属离子的双刺激响应药物及制备方法
CN107648606A (zh) * 2017-11-09 2018-02-02 上海纳米技术及应用国家工程研究中心有限公司 集化疗与热疗一体化核壳纳米材料的制备方法及其产品和应用
CN107998404A (zh) * 2017-12-09 2018-05-08 浙江大学 一种负载抗癌药物的叶酸靶向载体及其制备方法和应用
CN109512797A (zh) * 2018-12-21 2019-03-26 上海纳米技术及应用国家工程研究中心有限公司 基于金属有机框架的纳米药物载体的制备方法及其产品
CN109985247A (zh) * 2019-04-03 2019-07-09 河南科技学院 一种用于药物释放的杂化金属有机骨架化合物的制备方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022261191A1 (en) * 2021-06-08 2022-12-15 University Of Georgia Research Foundation, Inc. Nanoparticles for treating prostate cancer
WO2022261186A1 (en) * 2021-06-08 2022-12-15 University Of Georgia Research Foundation, Inc. Nanoparticles for preventing peri/post-menopausal bone loss and/or obesity
WO2022261213A1 (en) * 2021-06-08 2022-12-15 University Of Georgia Research Foundation, Inc. Nanoparticles for targeted non-surgical spaying and neutering
CN115317624A (zh) * 2021-12-01 2022-11-11 武汉纺织大学 一种主动靶向骨肿瘤的液态金属-金属有机框架纳米载药材料及其制备方法和应用
CN114437183A (zh) * 2022-02-17 2022-05-06 中国农业科学院兰州兽医研究所 一种基于金属有机框架仿生矿化提高病毒样颗粒热稳定性的方法
CN115152742A (zh) * 2022-07-06 2022-10-11 中国人民解放军空军军医大学 一种细胞外囊泡保存方法
CN115152742B (zh) * 2022-07-06 2024-05-31 中国人民解放军空军军医大学 一种细胞外囊泡保存方法
CN115569201A (zh) * 2022-09-28 2023-01-06 四川大学华西医院 一种导航干细胞靶向肾脏病灶组织的多酚纳米颗粒及其制备方法
CN115569201B (zh) * 2022-09-28 2024-05-28 四川大学华西医院 一种导航干细胞靶向肾脏病灶组织的多酚纳米颗粒及其制备方法
CN116350591A (zh) * 2022-12-22 2023-06-30 济南大学 pH响应双驱动Pt/FePc@Mn-MOF Janus型纳米马达及制备方法和应用
CN116350591B (zh) * 2022-12-22 2024-04-09 济南大学 pH响应双驱动Pt/FePc@Mn-MOF Janus型纳米马达及制备方法和应用

Also Published As

Publication number Publication date
CN111265533B (zh) 2023-07-18
CN111265533A (zh) 2020-06-12

Similar Documents

Publication Publication Date Title
WO2021103232A1 (zh) 一种基于脂质膜和金属有机框架的核壳纳米颗粒的制备方法
A Santos et al. Multifunctional porous silicon for therapeutic drug delivery and imaging
Fu et al. Mesoporous platinum nanoparticle-based nanoplatforms for combined chemo-photothermal breast cancer therapy
CN109078183B (zh) 一种基于癌细胞膜的仿生多功能纳米制剂及其制备方法和应用
US20190224238A1 (en) Tumor therapeutic drug
CN106344924B (zh) 一种联合代谢阻断的纳米剂型及其耐药逆转应用
CN106421784A (zh) 一种具有光热效应的纳米药物载体及其制备方法及应用
CN109091452B (zh) 一种基于海藻酸钠的粒径可变门控型抗肿瘤药物递送系统的制备及应用
CN104288093B (zh) 纳米药物透皮制剂在肿瘤中的应用
Pourmadadi et al. Synthesis and characterization of biological macromolecules double emulsion based on carboxymethylcellulose/gelatin hydrogel incorporated with ZIF-8 as metal organic frameworks for sustained anti-cancer drug release
US20140255502A1 (en) Nanoparticle drug carrier, pharmaceutical composition and manufacturing method thereof
CN106512027A (zh) 四氧化三铁/壳聚糖/吲哚菁绿复合粒子及其制备与应用
CN107970224A (zh) 一种脂质修饰磁性氧化石墨烯复合材料的制备方法及应用
CN109602917B (zh) 一种兼具肺癌靶向及增强光动力治疗效果的介孔过氧化钛纳米药物组合物及其制备方法
TWI543778B (zh) 蛋白質/石墨烯奈米複合藥物載體
CN115192708B (zh) 负载抗肿瘤药物的纳米复合材料、纳米载药体系及制备与应用
CN114601921B (zh) 多孔Pt纳米花负载乳酸氧化酶的纳米制剂及其制备和应用
CN116251062A (zh) 一种细菌膜-脂质体载药系统的制备方法及其应用
CN108309940A (zh) β-榄香烯与铂类药物共载脂质体及其制备方法
Zheng et al. Thermosensitive magnetoliposome–Novel carrier for targeted delivery and triggered release of coix seed oil
CN108014092A (zh) 一种磁性氧化石墨烯-鱼精蛋白/羧甲基纤维素钠复合物的制备方法及应用
CN110343255B (zh) 聚合物载体及其制备方法、抗肿瘤纳米粒子
KR101686341B1 (ko) 약물 표적화를 위한 초상자성 산화철 나노입자의 제조방법
JP6771509B2 (ja) 免疫磁気組成物、その調製方法、その使用方法及び癌治療用キット
Gan et al. Drug delivery system for the extended-release of larotrectinib based on a biocompatible Fe-based metal-organic framework: synthesis, characterization, in vitro release properties and antitumor evaluation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19953908

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19953908

Country of ref document: EP

Kind code of ref document: A1