CN114409729B - 一种菜籽肽及其在制备药物纳米载体方面的应用 - Google Patents

一种菜籽肽及其在制备药物纳米载体方面的应用 Download PDF

Info

Publication number
CN114409729B
CN114409729B CN202111331274.5A CN202111331274A CN114409729B CN 114409729 B CN114409729 B CN 114409729B CN 202111331274 A CN202111331274 A CN 202111331274A CN 114409729 B CN114409729 B CN 114409729B
Authority
CN
China
Prior art keywords
hcpt
drug
tumor
rapeseed peptide
mixed solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111331274.5A
Other languages
English (en)
Other versions
CN114409729A (zh
Inventor
何荣
王志高
鞠兴荣
袁建
邹智鹏
黄家强
王明洁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Finance and Economics
Original Assignee
Nanjing University of Finance and Economics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Finance and Economics filed Critical Nanjing University of Finance and Economics
Priority to CN202111331274.5A priority Critical patent/CN114409729B/zh
Priority to LU504660A priority patent/LU504660B1/en
Priority to PCT/CN2021/130617 priority patent/WO2023082243A1/zh
Publication of CN114409729A publication Critical patent/CN114409729A/zh
Application granted granted Critical
Publication of CN114409729B publication Critical patent/CN114409729B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/06Linear peptides containing only normal peptide links having 5 to 11 amino acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/47Quinolines; Isoquinolines
    • A61K31/4738Quinolines; Isoquinolines ortho- or peri-condensed with heterocyclic ring systems
    • A61K31/4745Quinolines; Isoquinolines ortho- or peri-condensed with heterocyclic ring systems condensed with ring systems having nitrogen as a ring hetero atom, e.g. phenantrolines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/42Proteins; Polypeptides; Degradation products thereof; Derivatives thereof, e.g. albumin, gelatin or zein
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/513Organic macromolecular compounds; Dendrimers
    • A61K9/5169Proteins, e.g. albumin, gelatin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5192Processes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Nanotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Epidemiology (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Optics & Photonics (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biotechnology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Medical Informatics (AREA)
  • Manufacturing & Machinery (AREA)
  • Botany (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicinal Preparation (AREA)

Abstract

本发明提供一种菜籽肽及其在制备药物纳米载体方面的应用,涉及生物医药材料技术领域。该菜籽肽序列如SEQ ID NO:1所示,可以应用于制备药物纳米载体。本发明还提供以所述多肽为载体制备抗肿瘤药物的方法,包括以下步骤:将所述菜籽肽和抗肿瘤药物依次溶解在三氯甲烷中,得到混合液A。将所述混合液A逐滴加入到磷酸缓冲液中,然后再加入吐温80,搅拌均匀,得到混合液B。除去混合液B中三氯甲烷,制得抗肿瘤药物。本发明菜籽肽,是优良的抗肿瘤药物的纳米载体,对药物包埋率高,显著降低了药物的IC50,减少药物使用剂量。

Description

一种菜籽肽及其在制备药物纳米载体方面的应用
技术领域
本发明涉及生物医药材料技术领域,尤其是涉及一种菜籽肽及其在制备药物纳米载体方面的应用。
背景技术
近年来,药物治疗仍是很多疾病治疗的主要手段。但由于许多药物存在选择性差、毒副作用大、药物释放不可控等问题,因此导致治疗效果不理想。为提高药物疗效,往往要增加药物浓度和给药次数,但过多的药物会损害正常的组织和器官,导致长期治疗效果欠佳。
随着纳米医学技术和高分子材料的发展,纳米材料传输药物体系逐渐成为一个新的纳米医学领域,一些纳米材料如胶束、脂质体、水凝胶、磁性颗粒等纳米材料相继被应用于药物传输领域,但亲水性的传统水凝胶缺乏与疏水性药物相互作用的配体,它对药物的装载与控释能力均有限,同时高分子材料还存在着毒副作用大、生物相容性差等缺点。两亲性多肽作为一种新型载体材料,分子量小,可被人体降解吸收,具有良好的生物相容性和优良的自组装性能,同时避开了高分子材料的难降解、毒副作用大的缺点,成为国际上的自组装材料方面研究的热点之一。但是,现有技术中缺乏载药效果好、能够显著降低药物IC50的两亲性多肽。
发明内容
本发明的目的是提供一种菜籽肽,是优良的抗肿瘤药物的纳米载体,对药物包埋率高,显著降低了药物的IC50,减少药物使用剂量。
本发明的另一目的是提供上述菜籽肽在制备药物纳米载体方面的应用。
本发明还提供以所述多肽为载体制备抗肿瘤药物的方法,该方法简单,制备得到的抗肿瘤药物具有良好的pH和CathB的双重响应性,载药效果好、在溶酶体及肿瘤微环境下纳米载体的释放速率比在生理环境条件下更高,释药速度适中且稳定性好。
为实现这一目的,本发明提供如下方案:
一种菜籽肽,序列如SEQ ID NO:1所示。
本发明还提供所述菜籽肽在制备药物纳米载体方面的应用。
在本发明中,所述药物为羟基喜树碱。
在本发明中,菜籽肽与羟基喜树碱的质量比为5-15:1。
本发明还提供以所述多肽为载体制备抗肿瘤药物的方法,包括以下步骤:
(1)将所述菜籽肽和抗肿瘤药物依次溶解在三氯甲烷中,得到混合液A;
(2)将所述混合液A逐滴加入到磷酸缓冲液中,然后再加入吐温80,搅拌均匀,得到混合液B。
(3)除去混合液B中三氯甲烷,制得抗肿瘤药物。
在本发明中,所述菜籽肽和羟基喜树碱的质量比为5-15:1。
在本发明中,所述混合液A中菜籽肽的质量浓度为5-15mg/mL。
在本发明中,所述磷酸缓冲液与混合液A的体积比为1:8-15,混合液B中吐温80的质量百分含量为0.5-1.5%。
在本发明中,步骤(3)中除去混合液B中的三氯甲烷后,过滤,得到抗肿瘤纳米药物。
在本发明中,过滤中使用的过滤膜的孔径为0.4-0.8μm。
本发明提供的菜籽肽,是优良的抗肿瘤药物的纳米载体,对药物包埋率高,显著降低了药物的IC50,减少了药物的使用剂量。采用本发明菜籽肽SVIRPPL制备的抗肿瘤药物具有良好的pH和CathB的双重响应性,药物载体特异性高、载药效果好、在溶酶体及肿瘤微环境下纳米载体的释放速率比在生理环境条件下更高,释药速度适中且稳定性好。本发明创造性的将两亲多肽菜籽肽SVIRPPL作为载体材料,避免了蛋白质纳米载体在肝脏的聚集,提高纳米载体的肿瘤渗透力,减少体内生物识别,进而提高靶向运输效率。
附图说明
图1显示了采用菜籽肽C制备的抗肿瘤纳米药物在4℃储藏不同时间的动态光散射粒径,纵坐标是平均粒径,横坐标是时间,单位是天。
图2显示了采用菜籽肽C制备的抗肿瘤药物在4℃储藏不同时间的PDI变化,横坐标是时间,单位是天。
图3是无HCPT的菜籽肽C空白纳米载体(A)与抗肿瘤药物(B)的透射电镜(TEM)图。
图4不同HCPT包埋浓度的抗肿瘤药物和不同浓度HCPT水溶液对HepG2肿瘤细胞存活率的影响,其中HCPT表示HCPT水溶液,SVIRPPL-HCPT/NP表示抗肿瘤药物,横坐标为HCPT水溶液的浓度或者抗肿瘤药物中HCPT的包埋浓度。不同字母之间表示具有显著性差异。
图5不同HCPT包埋浓度的抗肿瘤药物和不同浓度HCPT水溶液对MKN-28肿瘤细胞存活率的影响,其中HCPT表示HCPT水溶液,SVIRPPL-HCPT/NP表示抗肿瘤药物,横坐标为HCPT水溶液的浓度或者抗肿瘤药物中HCPT的包埋浓度,纵坐标为MKN-28肿瘤细胞存活率。不同字母之间表示具有显著性差异。
图6不同HCPT包埋浓度的抗肿瘤药物和不同浓度HCPT水溶液对A549肿瘤细胞存活率的影响,其中HCPT表示HCPT水溶液,SVIRPPL-HCPT/NP表示抗肿瘤药物,横坐标为HCPT水溶液的浓度或者抗肿瘤药物中HCPT的包埋浓度,纵坐标为A549肿瘤细胞存活率。不同字母之间表示具有显著性差异。
图7不同HCPT包埋浓度的抗肿瘤药物和不同浓度HCPT水溶液对MCF-7肿瘤细胞存活率的影响,其中HCPT表示HCPT水溶液,SVIRPPL-HCPT/NP表示抗肿瘤药物,横坐标为HCPT水溶液的浓度或者抗肿瘤药物中HCPT的包埋浓度,纵坐标为MCF-7肿瘤细胞存活率。不同字母之间表示具有显著性差异。
图8SVIRPPL-HCPT/NP在不同pH与CathB的HCPT药物释放曲线。图9是各组治疗后的肝肿瘤组织的病理切片,其中Saline是生理盐水组,SVIRPPLNP是SVIRPPLNP组,HCPT是HCPT水溶液组,SVIRPPL-HCPT是SVIRPPL-HCPT/NP组。
图10各组小鼠在首次注射D-荧光素前(记为0天)、首次注射D-荧光素后第7天和第15天时的生物发光成像。其中Saline是生理盐水组,SVIRPPLNP是SVIRPPLNP组,HCPT是HCPT水溶液组,SVIRPPL-HCPT NP是SVIRPPL-HCPT/NP组。
图11各组小鼠在首次注射D-荧光素前(记为0天)、首次注射D-荧光素后第7天、第15天和第19天时的肝肿瘤的荧光定量分析。其中Saline是生理盐水组,SVIRPPLNP是SVIRPPLNP组,HCPT是HCPT水溶液组,SVIRPPL-HCPT NP是SVIRPPL-HCPT/NP组。不同字母之间表示具有显著性差异。
图12显示了Cy5.5标记的SVIRPPL-HCPT/NP注射后不同时间抗肿瘤药物在全身和离体器官中的分布情况。
具体实施方式
下面结合具体实例及附图,进一步阐述本发明,但本发明的实施方式不仅限于此。
以下实施例中如无特殊说明,所使用原料均来源于市售,所采用方法均为本领域技术人员公知的常规操作方法。
实施例1
将菜籽蛋白采用碱性蛋白酶水解并分离后,发现序列为SVIRPPL的小肽(SEQ IDNO:1),该小肽是一种两亲性多肽,命名为菜籽肽C。由杰肽公司按照常规的固态合成方法,制备菜籽肽C,用于本发明中的实验。
采用菜籽肽C制备抗肿瘤药物,包括如下步骤:
(1)将10mg菜籽肽C粉末加入1mL三氯甲烷中,搅拌至溶解,得到菜籽肽C的三氯甲烷溶液;再将0.1mL含有1mg的HCPT(羟基喜树碱)的水溶液按8mL/h速度缓慢滴加到菜籽肽C的三氯甲烷溶液中,在15℃、避光条件下超声至HCPT完全溶解,得到混合液A。超声条件:功率为70kW。
(2)将步骤(1)获得的混合液A按8mL/h的速度,全部滴加到10mL浓度为0.01M、pH为7.4的PBS磷酸盐缓冲液(购买于索莱宝公司)中,然后加入吐温80,在4℃、转速为600r/min条件下搅拌8h,得到体系均一的混合液B。混合液B中吐温80的体积百分浓度为1%。滴加过程中,PBS磷酸盐缓冲液中以600r/min进行磁力搅拌。
(3)将步骤(2)获得的混合液B在4℃超声分散1min后,在25℃、转速为100r/min条件下搅拌,以挥发去除三氯甲烷。去除三氯甲烷后,采用孔径为0.45μm的膜过滤,即制备获得抗肿瘤药物(缩写为SVIRPPL-HCPT/NP)。超声的功率为300KW。
按照抗肿瘤药物的制备方法制备无HCPT的菜籽肽C空白纳米载体(缩写为SVIRPPLNP),不同之处仅在于以0.1mL水替代0.1mL含有1mg的HCPT的水溶液。
实施例2
本实施例用于说明实施例1制备的抗肿瘤药物的表征。
使用Malvern Zetasizer Nano ZS仪器(He-He作为激光器:633nm;散射角:173°)检测实施例1制备的抗肿瘤药物在4℃储藏的动态光散射粒径和多分散指数(PDI)。包埋率的测定方法如下:取1mL实施例1中步骤(3)挥发除去三氯甲烷后的药物,离心后取沉淀,即得未包埋的HCPT,在该沉淀中加入1mL三氯甲烷溶液,制备成HCPT溶液,在367nm下使用分光光度计测定HCPT的浓度,通过计算得到抗肿瘤药物中未包埋HCPT的含量,用以计算HCPT的包埋率。包埋率计算公式如下:
Figure BDA0003348929920000051
经实验测试发现,实施例1制备的抗肿瘤药物是透明的溶液,刚制备好时,平均粒径为178nm,平均PDI值为0.26;贮藏实验结果如图1-图2所示,在4℃下储藏30天后,平均粒径为195nm,PDI小于0.3,说明该抗肿瘤药物能保持较好的胶体稳定性。通过检测发现,该抗肿瘤药物对HCPT的包埋率为78.5%。
该抗肿瘤药物和无HCPT的菜籽肽C空白纳米载体制备结束后6h,通过透射电镜分析,结果如图3所示,可以看到空载体和抗肿瘤药物的形状近似为球形,颗粒分布均匀,为直径160~180nm的球体,与动态光散射测定结果相一致,进一步说明了两亲性菜籽肽C可通过自组装形成具有较好稳定性的纳米载药载体。
实施例3
本实施例用于说明实施例1制备的抗肿瘤药物对四种肿瘤细胞的抗肿瘤活性。
根据实施例2计算的包埋率,参照实施例1的方法制得HCPT包埋浓度为7.8μM的抗肿瘤药物,然后用0.01M、pH7.4的PBS磷酸盐缓冲液稀释成HCPT包埋浓度为0.01μM、0.05μM、0.1μM、0.25μM、0.5μM、1μM六种不同浓度的抗肿瘤药物,作为样品。按照实施例1的方法制备无HCPT的菜籽肽C空白纳米载体,不同之处仅在于采用0.1mL水替代0.1mL含有1mg的HCPT(羟基喜树碱)的水溶液,即不添加HCPT;然后,用0.01M、pH7.4的PBS缓冲液稀释成HCPT包埋浓度为0.01μM、0.05μM、0.1μM、0.25μM、0.5μM、1μM的抗肿瘤药物对应的菜籽肽C空白纳米载体,作为样品。另外,将HCPT溶于浓度为0.01M、pH7.4的PBS磷酸盐缓冲液中,制备0.01μM、0.05μM、0.1μM、0.25μM、0.5μM、1μM不同浓度的HCPT水溶液,作为样品。
将肝癌细胞HepG2、胃癌细胞MKN-28、肺癌细A549和乳腺癌细胞MCF-7四种肿瘤细胞(购买于江苏申基生物有限公司)以5×103个/孔的密度分别接种到一个96孔板中,留若干不接种的孔作为空白孔,因此共接种了4个96孔板,在37℃孵育过夜。培养接种有各肿瘤细胞的96孔板,均设置样品孔(包括各包埋浓度的抗肿瘤药物,各菜籽肽C空白纳米载体,各浓度的HCPT水溶液的样品孔)、对照孔和空白孔。每个样品孔(铺有细胞)中分别加入100μL样品。每个对照孔(铺有细胞)中分别加入100μL浓度为0.01M、pH7.4的PBS磷酸盐缓冲液替代样品。每个空白孔中无细胞,仅加入0.01M、pH7.4的PBS磷酸盐缓冲液100μL。将四个96孔板置于37℃恒温CO2培养箱中,孵育24h后,弃去上清,用0.01M、pH7.4的PBS磷酸盐缓冲液洗去残留的液体,每个孔内加入1mg/mL的MTT(四甲基偶氮唑蓝)溶液120μL;置于37℃恒温CO2培养箱中继续培养4h后,弃上清,在每孔中加入100μL的二甲基亚砜,于37℃恒温CO2培养箱中震荡20min,然后在波长490nm的条件下测各孔的吸光度(OD值),计算各浓度抗肿瘤药物、各菜籽肽C空白纳米载体、各浓度的HCPT水溶液干预后的肿瘤细胞存活率。
Figure BDA0003348929920000061
结果如图4-7所示,HCPT水溶液和抗肿瘤药物都表现出了明显的浓度依赖性的肿瘤细胞增殖抑制特性。与HCPT水溶液相比,抗肿瘤纳米药物显著增强了HCPT对上述四种肿瘤细胞的抑制作用,说明菜籽肽C是优良的载体,可以有效地提高HCPT的抗肿瘤效果,提高其生物利用度。
通过计算,发现抗肿瘤药物对肝癌细胞HepG2、胃癌细胞MKN-28、肺癌细A549和乳腺癌细胞MCF-7四种细胞的IC50分别为0.17、0.18、0.25和0.27μM,HCPT水溶液对将肝癌细胞HepG2、胃癌细胞MKN-28、肺癌细A549和乳腺癌细胞MCF-7四种细胞的IC50分别为0.45μM、0.37μM、0.46μM和0.48μM。
菜籽肽C空白纳米载体对肝癌细胞HepG2、胃癌细胞MKN-28、肺癌细A549和乳腺癌细胞MCF-7四种细胞的IC50分别为0.57、0.81、0.97和1.10mM。
上述结果说明了菜籽肽C作为纳米载体能够有效降低HCPT对肿瘤细胞的IC50值,可有效提高抗肿瘤药物对肿瘤细胞的抑制作用,降低HCPT浓度大引起的生物毒性。
实施例4
本实施例用于说明在不同pH和有无Cath B时,实施例1制备的抗肿瘤药物中HCPT的释放曲线。
采用标准透析法对实施例1制备的抗肿瘤药物的体外释放特性进行研究。将实施例1制备的抗肿瘤药物5mL装在透析袋中(MWCO:500Da),然后将透析袋分别置于溶液1、2、3、4(表1)中,37℃下100rpm/min搅拌透析袋外的溶液,考察不同pH和有无Cath B(组织蛋白酶B)时,实施例1制备的抗肿瘤药物中HCPT的释放曲线。在1、2、4、8、12、16、24、36及48h时,分别取透析袋外溶液2mL,然后加入2mL的原溶液(此处原溶液是指透析袋外初始状态的溶液,即表1中溶液)。将每次取出的溶液通过紫外分光光度计在367nm下测量HCPT的含量,并绘制出HCPT的释放动力学曲线。
根据实施例1制备方法可知,实施例1制备的抗肿瘤药物中HCPT浓度为100μg/mL,根据实施例2测算的包埋率(78.5%),可计算出每5mL抗肿瘤药物中包埋有0.4mg的HCPT。为了证明在透析袋外检测到的HCPT不是由于透析袋本身造成的,同时设置对照:取0.4mgHCPT溶于5mL、0.01M的PBS磷酸缓冲盐溶液中,装在透析袋中(MWCO:500Da),分别置于溶液1、2、3、4(见表1)中,然后采用上述相同方法测量HCPT水溶液在透析袋中的释放特性,绘制出HCPT的释放动力学曲线。
表1透析袋外的溶液的组成
Figure BDA0003348929920000071
如图8所示,实施例1制备的抗肿瘤药物表现出了pH依赖性释放特性,在溶酶体(pH5.0且含有CathB)及肿瘤微环境(pH 6.5)下抗肿瘤药物的释放速率比在生理环境(pH 7.4)条件下更高,在pH 7.4中抗肿瘤药物释放缓慢,表现出良好的体外稳定性。透析袋中的HCPT水溶液在各溶液中的释放不具有pH依赖性,其快速透过透析袋在5h内释放率高达到70%。抗肿瘤药物在pH 5.0的条件下加入CathB时会进一步加速HCPT从抗肿瘤药物中的释放,并且抗肿瘤药物在CathB中48h的释放效率是其在pH 7.4中释放效率的两倍,说明酸性条件会破坏抗肿瘤药物中菜籽肽与HCPT等药物之间的结合,导致了药物的快速释放。通过蛋白酶CathB的酸依赖特性,特别是在非常酸性的溶酶体和弱酸性肿瘤微环境中,抗肿瘤药物将通过pH和CathB的响应实现药物的加速释放。
实施例5小鼠实验
1.SVIRPPL-HCPT/NP的治疗实验
雄性NOD SCID小鼠(6周龄)购自北京维通利华实验动物技术有限公司,并在无病原体的条件下饲养。沿小鼠的左肋缘下方开腹,暴露出肝脏左叶,注射30μL含有1×106个HepG2细胞的悬液,进行原位肝癌的构建。三周后当肿瘤体积达到100mm3时,进行治疗实验。
为评估SVIRPPL-HCPT/NP的体内治疗效果,将荷瘤小鼠随机分为四组:生理盐水组,HCPT水溶液组,SVIRPPLNP(无HCPT的菜籽肽C空白纳米载体,实施例1制备)组和SVIRPPL-HCPT/NP(实施例1制备)组。各组小鼠通过尾静脉注射给药,每三天给药一次,治疗期间共给药4次。每次给药方法如下:HCPT水溶液组以HCPT水溶液按照HCPT剂量为5.0mg/kg进行给药;SVIRPPL-HCPT/NP组以SVIRPPL-HCPT/NP(实施例1制备)按照HCPT剂量为5.0mg/kg进行给药;生理盐水组给予相同体积的生理盐水;SVIRPPLNP组给予相同体积的无HCPT的菜籽肽C空白纳米载体(实施例1制备)。
在最后一次给药后,每组随机取一只小鼠处死,取肿瘤组织进行切片分析。将取出的肿瘤组织在10%中性福尔马林中固定,用梯度乙醇溶液脱水,石蜡包埋。随后用组织切片机切片,制片,用苏木精-伊红(H&E)染色,树脂封片。最后使用光学显微镜观察肿瘤组织病理变化。
结果如图9,肝肿瘤组织的病理切片分析发现,生理盐水组处理对肿瘤组织无明显影响,在经过SVIRPPL NP、HCPT水溶液和SVIRPPL-HCPT/NP组治疗后,肿瘤组织出现不同程度的坏死。由于HCPT在体内易被清除,导致HCPT在肿瘤处的积累较少,HCPT水溶液组的肿瘤组织染色后仅出现部分组织的坏死,范围较小。SVIRPPL-HCPT/NP组肿瘤组织染色后出现大范围的肿瘤组织坏死,SVIRPPL NP组肿瘤组织也出现了少部分的坏死组织。生理盐水组为中度分化肝细胞癌,癌细胞呈片状,弥漫性排列,核质深染;SVIRPPL NP组与HCPT水溶液组为轻度分化肝细胞癌,可见团状癌细胞与癌旁正常组织,癌细胞胞核深染;SVIRPPL-HCPT/NP组仅有少量癌细胞分布,存在一定炎症浸润。上述结果表明了SVIRPPL-HCPT/NP能够有效地转运至肿瘤处并抑制肿瘤细胞的生长。
为了充分了解SVIRPPL-HCPT/NP在荷HepG2肝肿瘤小鼠体内的治疗效果,在最后一次给药后,各组小鼠每七天注射一次150mg/kg剂量的D-荧光素,共注射3次。其间,通过生物发光成像观察小鼠肝癌肿瘤的生长。首次注射D-荧光素前(记为0天)、首次注射D-荧光素后第7天和第15天时的生物发光成像(图10)显示,SVIRPPL-HCPT/NP能够有效抑制肝癌肿瘤的增长,生物荧光强度明显低于生理盐水治疗组。肝肿瘤的荧光定量分析(图11)后发现,在第7天SVIRPPL-HCPT/NP治疗后小鼠肿瘤部位的荧光与治疗之前相比并没有显著上升,而生理盐水组,HCPT水溶液组和SVIRPPL NP组均有明显上升,且SVIRPPL-HCPT/NP组的平均荧光强度显著低于其他各组,活体成像结果再次证明了SVIRPPL-HCPT/NP具有良好的抗肿瘤能力。
2.SVIRPPL-HCPT/NP的生物分布研究
雄性NOD SCID小鼠(6周龄)购自北京维通利华实验动物技术有限公司,并在无病原体的条件下饲养。沿小鼠的左肋缘下方开腹,暴露出肝脏左叶,注射30μL含有1×106个HepG2细胞的悬液,进行原位肝癌的构建。当肿瘤体积达到200mm3,开始活体荧光成像实验和生物分布实验。
活体荧光成像实验和生物分布实验的方法如下:用近红外荧光菁染料Cy5.5活性酯对SVIRPPL-HCPT/NP(实施例1制备的抗肿瘤药物)进行标记,使用近红外成像系统IVISLuminaXRⅢ(ex/em=680nm/700nm)分析抗肿瘤药物在全身和离体器官中的分布。将Cy5.5标记的SVIRPPL-HCPT/NP以HCPT给药剂量为5mg/kg体重,在尾静脉处注射荷瘤小鼠,在注射后不同时间,使用2%异氟烷麻醉小鼠,并利用IVIS LuminaXRⅢ成像仪在ex/em=680nm/700nm进行全身成像。
结果如图12,在注射2h后,SVIRPPL-HCPT/NP在肿瘤部位便可监测到,8h后SVIRPPL-HCPT/NP在肿瘤部位的积累量达到最高,24h后SVIRPPL-HCPT/NP在肿瘤部位仍然可以监测到并持续到了48h。这些结果说明SVIRPPL-HCPT/NP可以有效靶向到肿瘤部位并在肿瘤处积聚。
SEQUENCE LISTING
<110> 南京财经大学
<120> 一种菜籽肽及其在制备药物纳米载体方面的应用
<130> 20211112
<160> 1
<170> PatentIn version 3.3
<210> 1
<211> 7
<212> PRT
<213> 菜籽
<400> 1
Ser Val Ile Arg Pro Pro Leu
1 5

Claims (9)

1.一种菜籽肽,序列如SEQ ID NO:1所示。
2.权利要求1所述菜籽肽在制备药物纳米载体方面的应用,所述药物为羟基喜树碱。
3.根据权利要求2所述应用,其特征在于菜籽肽与羟基喜树碱的质量比为5-15:1。
4.一种以权利要求1所述菜籽肽为载体制备抗肿瘤药物的方法,其特征在于包括以下步骤:
(1)将权利要求1所述菜籽肽和羟基喜树碱依次溶解在三氯甲烷中,得到混合液A;
(2)将所述混合液A逐滴加入到磷酸缓冲液中,然后再加入吐温80,搅拌均匀,得到混合液B;
(3)除去混合液B中三氯甲烷,制得抗肿瘤药物。
5.根据权利要求4所述方法,其特征在于所述菜籽肽和羟基喜树碱的质量比为5-15:1。
6.根据权利要求5所述方法,其特征在于所述混合液A中菜籽肽的质量浓度为5-15mg/mL。
7.根据权利要求6所述方法,其特征在于所述磷酸缓冲液与混合液A的体积比为1:8-15,混合液B中吐温80的质量百分含量为0.5-1.5%。
8.根据权利要求7所述方法,其特征在于步骤(3)中除去混合液B中的三氯甲烷后,过滤,得到抗肿瘤纳米药物。
9.根据权利要求8所述方法,其特征在于过滤中使用的过滤膜的孔径为0.4-0.8μm。
CN202111331274.5A 2021-11-11 2021-11-11 一种菜籽肽及其在制备药物纳米载体方面的应用 Active CN114409729B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202111331274.5A CN114409729B (zh) 2021-11-11 2021-11-11 一种菜籽肽及其在制备药物纳米载体方面的应用
LU504660A LU504660B1 (en) 2021-11-11 2021-11-15 Rapeseed peptide and use thereof in preparation of nanocarrier for drug
PCT/CN2021/130617 WO2023082243A1 (zh) 2021-11-11 2021-11-15 一种菜籽肽及其在制备药物纳米载体方面的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111331274.5A CN114409729B (zh) 2021-11-11 2021-11-11 一种菜籽肽及其在制备药物纳米载体方面的应用

Publications (2)

Publication Number Publication Date
CN114409729A CN114409729A (zh) 2022-04-29
CN114409729B true CN114409729B (zh) 2023-06-20

Family

ID=81265042

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111331274.5A Active CN114409729B (zh) 2021-11-11 2021-11-11 一种菜籽肽及其在制备药物纳米载体方面的应用

Country Status (3)

Country Link
CN (1) CN114409729B (zh)
LU (1) LU504660B1 (zh)
WO (1) WO2023082243A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993021320A1 (en) * 1991-02-22 1993-10-28 University Technologies International, Inc. Oil-body proteins as carriers of high-value peptides in plants
EP1761634A2 (en) * 2004-06-28 2007-03-14 Pioneer-Hi-Bred International, Inc. Cell number polynucleotides and polypeptides and methods of use thereof
CN101917866A (zh) * 2007-04-16 2010-12-15 索莱有限责任公司 具有改善的感官特性和物理特性的蛋白质水解产物组合物
WO2011116963A2 (en) * 2010-03-24 2011-09-29 Lipotec S.A. Lipid nanoparticle capsules
CN102676621A (zh) * 2012-04-28 2012-09-19 南京财经大学 一种降血压菜籽肽及其制备方法和应用
CN103038195A (zh) * 2010-06-22 2013-04-10 乌尔里希·迪茨 通过微乳化或纳米乳化用于增溶、分离、除去和反应在油、脂肪、含水溶液或有机溶液中的羧酸的装置和方法
WO2013064583A1 (en) * 2011-11-04 2013-05-10 Lipotec, S.A. Peptides which inhibit activated receptors and their use in cosmetic or pharmaceutical compositions
WO2020127975A1 (en) * 2018-12-20 2020-06-25 Basf Plant Science Company Gmbh Native delivery of biomolecules into plant cells using ionic complexes with cell-penetrating peptides

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8222372B2 (en) * 2007-04-16 2012-07-17 Novozymes A/S Whey protein hydrolysate
WO2013188674A1 (en) * 2012-06-14 2013-12-19 Basf Corporation Treated non-woven fabric comprising functional additive and a method of preparing a treated non-woven fabric
CN104489237B (zh) * 2014-12-26 2017-08-29 南京财经大学 一种改性菜籽蛋白、微胶囊及制备方法
CA2898513A1 (en) * 2015-07-27 2017-01-27 Stephan HEATH Methods, products, and systems relating to making, providing, and using nanocrystalline (nc) products comprising nanocrystalline cellulose (ncc), nanocrystalline (nc) polymers and/or nanocrystalline (nc) plastics or other nanocrystals of cellulose composites or structures, in combination with other materials
CN107619844A (zh) * 2017-10-13 2018-01-23 南京财经大学 一种用β‑环糊精包埋菜籽多肽的方法
CN110483812A (zh) * 2019-09-05 2019-11-22 南京财经大学 一种菜籽蛋白基纳米凝胶及其应用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993021320A1 (en) * 1991-02-22 1993-10-28 University Technologies International, Inc. Oil-body proteins as carriers of high-value peptides in plants
EP1761634A2 (en) * 2004-06-28 2007-03-14 Pioneer-Hi-Bred International, Inc. Cell number polynucleotides and polypeptides and methods of use thereof
CN101917866A (zh) * 2007-04-16 2010-12-15 索莱有限责任公司 具有改善的感官特性和物理特性的蛋白质水解产物组合物
WO2011116963A2 (en) * 2010-03-24 2011-09-29 Lipotec S.A. Lipid nanoparticle capsules
CN103038195A (zh) * 2010-06-22 2013-04-10 乌尔里希·迪茨 通过微乳化或纳米乳化用于增溶、分离、除去和反应在油、脂肪、含水溶液或有机溶液中的羧酸的装置和方法
WO2013064583A1 (en) * 2011-11-04 2013-05-10 Lipotec, S.A. Peptides which inhibit activated receptors and their use in cosmetic or pharmaceutical compositions
CN102676621A (zh) * 2012-04-28 2012-09-19 南京财经大学 一种降血压菜籽肽及其制备方法和应用
WO2020127975A1 (en) * 2018-12-20 2020-06-25 Basf Plant Science Company Gmbh Native delivery of biomolecules into plant cells using ionic complexes with cell-penetrating peptides

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Affinity purification and characterisation of zinc chelating peptides from rapeseed protein hydrolysates: Possible contribution of characteristic amino acid residues;Ningning Xie等;Food Chemistry;第173卷;第210-217页 *
菜籽多肽结构鉴定及其包封β-胡萝卜素的机制;罗发莉等;食品与发酵工程(第16期);第18-23页 *

Also Published As

Publication number Publication date
CN114409729A (zh) 2022-04-29
LU504660A1 (en) 2023-07-05
LU504660B1 (en) 2023-11-07
WO2023082243A1 (zh) 2023-05-19

Similar Documents

Publication Publication Date Title
Zhao et al. Improving drug accumulation and photothermal efficacy in tumor depending on size of ICG loaded lipid-polymer nanoparticles
Liao et al. Polymer hybrid magnetic nanocapsules encapsulating IR820 and PTX for external magnetic field-guided tumor targeting and multifunctional theranostics
Li et al. Core–satellite nanomedicines for in vivo real-time monitoring of enzyme-activatable drug release by fluorescence and photoacoustic dual-modal imaging
Fan et al. Intranuclear biophotonics by smart design of nuclear-targeting photo-/radio-sensitizers co-loaded upconversion nanoparticles
Kim et al. Gemcitabine-loaded DSPE-PEG-PheoA liposome as a photomediated immune modulator for cholangiocarcinoma treatment
Mao et al. A biomimetic nanocomposite made of a ginger-derived exosome and an inorganic framework for high-performance delivery of oral antibodies
Shen et al. Microfluidics‐assisted engineering of pH/enzyme dual‐activatable ZIF@ polymer nanosystem for Co‐delivery of proteins and chemotherapeutics with enhanced deep‐tumor penetration
Song et al. Surface-modified PLGA nanoparticles with PEG/LA-chitosan for targeted delivery of arsenic trioxide for liver cancer treatment: Inhibition effects enhanced and side effects reduced
Li et al. Magnetic iron oxide nanoparticles/10-hydroxy camptothecin co-loaded nanogel for enhanced photothermal-chemo therapy
Wang et al. Magnetically targeted erythrocyte membrane coated nanosystem for synergistic photothermal/chemotherapy of cancer
Anilkumar et al. Dual targeted magnetic photosensitive liposomes for photothermal/photodynamic tumor therapy
CN108126189B (zh) 分级组装的纳米复合载体递药系统及其应用
Ak et al. Brain-targeted, drug-loaded solid lipid nanoparticles against glioblastoma cells in culture
US20210393780A1 (en) Thermosensitive hydrogel for cancer therapeutics and methods of preparation thereof
US20220378712A1 (en) Hybrid membrane camouflaged nanomedicine loaded with oxidative phosphorylation inhibitor and preparing method thereof
Chen et al. A bubble bursting-mediated oral drug delivery system that enables concurrent delivery of lipophilic and hydrophilic chemotherapeutics for treating pancreatic tumors in rats
CN114259477B (zh) 一种促渗透、缓解肿瘤缺氧并能靶向肿瘤细胞的纳米递送体系及其制备方法和应用
Wang et al. Laser-triggered polymeric lipoproteins for precision tumor penetrating theranostics
Lee et al. Gold-stabilized carboxymethyl dextran nanoparticles for image-guided photodynamic therapy of cancer
Zhang et al. Highly stable near-infrared dye conjugated cerasomes for fluorescence imaging-guided synergistic chemo-photothermal therapy of colorectal cancer
Chen et al. Leveraging tumor cell ferroptosis for colorectal cancer treatment via nanoelicitor-activated tumoricidal immunity
Chen et al. Macrophage‐hitchhiked orally administered β‐glucans‐functionalized nanoparticles as “precision‐guided stealth missiles” for targeted pancreatic cancer therapy
Jin et al. Improved anti-tumor efficiency against prostate cancer by docetaxel-loaded PEG-PCL micelles
CN109953974B (zh) 一种酶-还原双响应性透明质酸-聚硫化丙烯共聚物纳米胶囊的制备方法
CN114409729B (zh) 一种菜籽肽及其在制备药物纳米载体方面的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant