WO2021101076A1 - 스테인리스강 산세용 이온성 액체 및 이를 이용한 스테인리스강의 산세방법 - Google Patents
스테인리스강 산세용 이온성 액체 및 이를 이용한 스테인리스강의 산세방법 Download PDFInfo
- Publication number
- WO2021101076A1 WO2021101076A1 PCT/KR2020/014199 KR2020014199W WO2021101076A1 WO 2021101076 A1 WO2021101076 A1 WO 2021101076A1 KR 2020014199 W KR2020014199 W KR 2020014199W WO 2021101076 A1 WO2021101076 A1 WO 2021101076A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- anion
- cation
- pickling
- stainless steel
- ionic liquid
- Prior art date
Links
- 0 CCCC*1C=[N+]C=C1 Chemical compound CCCC*1C=[N+]C=C1 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23G—CLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
- C23G1/00—Cleaning or pickling metallic material with solutions or molten salts
- C23G1/28—Cleaning or pickling metallic material with solutions or molten salts with molten salts
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23G—CLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
- C23G1/00—Cleaning or pickling metallic material with solutions or molten salts
- C23G1/02—Cleaning or pickling metallic material with solutions or molten salts with acid solutions
- C23G1/04—Cleaning or pickling metallic material with solutions or molten salts with acid solutions using inhibitors
- C23G1/06—Cleaning or pickling metallic material with solutions or molten salts with acid solutions using inhibitors organic inhibitors
- C23G1/063—Cleaning or pickling metallic material with solutions or molten salts with acid solutions using inhibitors organic inhibitors heterocyclic compounds
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23G—CLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
- C23G1/00—Cleaning or pickling metallic material with solutions or molten salts
- C23G1/02—Cleaning or pickling metallic material with solutions or molten salts with acid solutions
- C23G1/08—Iron or steel
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23G—CLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
- C23G1/00—Cleaning or pickling metallic material with solutions or molten salts
- C23G1/24—Cleaning or pickling metallic material with solutions or molten salts with neutral solutions
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23G—CLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
- C23G1/00—Cleaning or pickling metallic material with solutions or molten salts
- C23G1/28—Cleaning or pickling metallic material with solutions or molten salts with molten salts
- C23G1/32—Heavy metals
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25F—PROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
- C25F1/00—Electrolytic cleaning, degreasing, pickling or descaling
- C25F1/02—Pickling; Descaling
- C25F1/12—Pickling; Descaling in melts
- C25F1/14—Iron or steel
Definitions
- the present invention relates to an ionic liquid for pickling stainless steel and a method for pickling stainless steel using the same, and more specifically, for pickling stainless steel capable of removing oxidized scale of stainless steel at room temperature at high speed without using nitric acid or hydrofluoric acid. It relates to an ionic liquid and a method for pickling stainless steel using the same.
- Stainless steel cold rolled steel sheet undergoes a heat treatment process of 800 to 1150°C to obtain mechanical properties after cold rolling, and at this time, high temperature oxygen in the furnace reacts with the surface of the cold rolled steel sheet, and is typically 100 to 300 nm thick oxidized scale (SiO). 2 , (Cr,Fe) 3 O 4 ) and the like are formed, resulting in lower surface quality and lower corrosion resistance.
- a pickling process is performed to remove such oxide scale.
- the pickling process is performed alone or in combination with various methods such as physical descaling (brush, short ball blasting), electrolytic descaling (sodium sulfate, sulfuric acid, nitric acid electrolyte), and chemical descaling (salt bath, mixed acid).
- the conventional pickling process was usually carried out in two steps. After immersing stainless steel in a solution containing sodium sulfate electrolyte, electric current is applied, or by immersing stainless steel in a high temperature salt bath of 400°C or higher containing sodium hydroxide and sodium nitrate to first remove oxidized scale, and after that, beautiful surface quality In order to secure corrosion resistance by forming the overpassive film evenly, it was secondarily pickled using nitric acid or a mixed acid containing nitric acid and hydrofluoric acid at a high temperature of 80°C or higher.
- nitric acid has an effect of lowering the pH in the pickling tank to increase the activity of hydrofluoric acid, and maintaining an oxidation-reduction potential suitable for pickling by oxidizing divalent iron ions dissolved on the surface of the steel sheet to trivalent.
- nitric acid has many environmental problems.
- the use of nitric acid-containing salts and nitric acid generates NOx, which is a regulated substance for air emission, and nitrate nitrogen (NO 3 -N) is included in waste acid and washing water.
- NOx a regulated substance for air emission
- NO 3 -N nitrate nitrogen
- the production cost is significantly increased due to the additional installation and operation cost of environmental pollution prevention facilities in the pickling process due to the restriction of total nitrogen in the discharged effluent and the concentration of NOx in air emission facilities.
- nitric acid-free pickling method As a conventional technique for solving this problem, a nitric acid-free pickling method has been developed in which nitric acid is replaced by hydrochloric acid, sulfuric acid, etc. in the pickling process, and insufficient oxidizing power is replaced by hydrogen peroxide, potassium permanganate, trivalent iron ions, and air injection. .
- Patent Document 1 which uses sulfuric acid, hydrofluoric acid, and iron sulfate as a pickling solution and maintains the oxidation-reduction potential of the pickling solution over 300mV by adding hydrogen peroxide, the oxidation-reduction of hydrofluoric acid, iron ions, air, hydrogen peroxide, and solutions since the 1990s.
- Patent Literature 2, Patent Literature 3, etc. having changed the appropriate range of Oxidation-reduction Potential (ORP), have been continuously applied.
- ORP Oxidation-reduction Potential
- Patent Document 4 it contains sulfuric acid, hydrofluoric acid, and iron salt, and hydrogen peroxide is added regularly, and the composition of wetting agents, brightening agents, and corrosion inhibitors is adjusted to perform pickling. It's taking the way.
- the CLEANOX352 product which is a pickling liquid, has been commercialized and is being used most widely in the world.
- this method has been commercialized and used, but the product production cost is 20% higher than that of the existing one, and a complex solution composition and management method are adopted.
- Patent Document 5 an improved patent of this patent, attempted to increase the pickling rate by adding copper and chlorine ions to the pickling composition, but the open circuit potential (OCP) formed on the surface of the ferritic stainless steel sheet was copper. If the ion oxidation-reduction potential is lower than 0.1V, there is a concern that copper particles may precipitate on the surface of the steel sheet during the pickling process, resulting in discoloration of the steel sheet. In addition, there is a risk of pitting corrosion when chlorine ions are contained in a certain concentration or more in the pickling solution.
- OCP open circuit potential
- Patent Document 0001 DE Publication No. DE 3937438
- Patent Document 0002 US registration number US 5154774
- Patent Document 0003 EP Publication No. EP 0236354
- Patent Document 0004 US Registration No. US 5908511
- Patent Document 0005 US Registration No. US 6554908
- the present invention is designed to solve the above-described problems, and provides an ionic liquid for pickling stainless steel that can remove oxidized scale of stainless steel at room temperature at high speed without using nitric acid or hydrofluoric acid, and a method for pickling stainless steel using the same. I want to.
- the ionic liquid for pickling stainless steel is an imidazolium cation, betainium cation, sulfonium cation, piperidinium cation, phosphonium cation, ammonium cation, pyri Contains at least one of a dium cation, a pyrrolidinium cation, and a morpholinium cation as a cationic functional group, and a halide anion, a sulfonate anion, an alkyl sulfate anion, a phosphinate anion, a salicylate anion, a nitrate anion, a tetra At least one of a fluoroborate anion, a hexafluorophosphate anion, and a bistripleimide anion may be included as an anionic functional group.
- Each stainless steel pickling ionic liquid according to an example of the present invention may be represented by one of the following compounds (a) to (c).
- the method for pickling stainless steel according to an example of the present invention is an imidazolium cation, betainium cation, sulfonium cation, piperidinium cation, phosphonium cation, ammonium cation, pyri Contains at least one of a dium cation, a pyrrolidinium cation, and a morpholinium cation as a cationic functional group, and a halide anion, a sulfonate anion, an alkyl sulfate anion, a phosphinate anion, a salicylate anion, a nitrate anion, a tetra It may include electrolytic pickling treatment by immersing stainless steel in a pickling solution containing an ionic liquid containing at least one of a fluoroborate anion, a hexafluorophosphate anion, and a bistripleimi
- the ionic liquid may be represented by one of the following compounds (a) to (c).
- the ionic liquid may be contained in the pickling solution of 2M or less.
- the pickling solution may contain an ionic liquid in a hydrochloric acid solution of 1 M or less or a neutral solution containing at least one of sodium chloride, potassium chloride, magnesium chloride, sodium sulfate, and potassium sulfate.
- a hydrochloric acid solution of 1 M or less or a neutral solution containing at least one of sodium chloride, potassium chloride, magnesium chloride, sodium sulfate, and potassium sulfate.
- the temperature of the pickling liquid may be 15 to 25°C.
- the electrolytic pickling treatment maintains the surface potential of the stainless steel at -1.5 to 1.5 V using a silver/silver chloride electrode as a reference electrode, and a current of 0.5 to 1.3 A/cm 2 It can be done by applying a density.
- a time required until the oxide scale is completely removed may be within 1 minute.
- oxidized scale of stainless steel can be environmentally removed without the use of nitric acid or hydrofluoric acid.
- the number of times the electric potential is repeatedly applied until the oxide scale is completely removed by immersing stainless steel in a pickling solution of 15 to 25° C. not higher than 80° C. is less than 5 times, and the time required is 1 It can be within minutes.
- the acidic solution or the neutral solution in the pickling solution can remove oxidized scale at a low concentration rather than a high concentration.
- the ionic liquid for pickling stainless steel is an imidazolium cation, a betainium cation, a sulfonium cation, a piperidinium cation, a phosphonium cation, an ammonium cation, a pyridinium cation, a pyrrolidinium cation, and a parent.
- a bistripleimide anion may be included as an anionic functional group.
- stainless steel in the present specification refers to a stainless cold-rolled steel sheet subjected to annealing heat treatment after cold rolling by a process for manufacturing a conventional stainless cold-rolled steel sheet.
- it is not necessarily limited thereto and is not interpreted, and refers to stainless steel having oxide scale formed on the surface within a range that can be clearly recognized by a person skilled in the art.
- ionic liquid in the present specification refers to a material that is a chlorinated compound composed of a metal cation and a non-metal anion, and exists as a liquid at a temperature of 100°C or less.
- the present invention relates to a method of removing oxidized scale formed on the surface of stainless steel by immersing stainless steel in a pickling solution and then electrolytic pickling treatment.
- the pickling solution of the present invention refers to a solution containing an ionic liquid in an acidic solution or a neutral solution.
- the inventors of the present application have found that the pickling efficiency of stainless steel can be improved by adding an ionic liquid to the pickling liquid of stainless steel.
- the ionic liquid according to the present invention is an imidazolium cation, betainium cation, sulfonium cation, piperidinium cation, phosphonium cation, ammonium cation.
- the ionic liquid of the present invention may be represented by one of the following compounds (a) to (c).
- the ionic liquid of the present invention When the ionic liquid of the present invention is added to the pickling solution, the ionic liquid performs a function of allowing the metal to be dissolved in the metal oxide. Accordingly, according to the present invention, by adding an ionic liquid to the pickling solution, it is possible to environmentally remove the oxidized scale of stainless steel without the use of nitric acid or hydrofluoric acid. In addition, the oxidized scale of stainless steel can be removed at high speed by immersing stainless steel in a pickling solution at room temperature rather than at a high temperature of 80°C or higher, and the acidic solution or neutral solution in the pickling solution can sufficiently remove the oxidized scale even at a low concentration rather than a high concentration. I can. In addition, there is an economical effect by reducing the conventional pickling process performed in two or more steps to an electrolytic pickling process in one step.
- the ionic liquid is added to the pickling liquid.
- the ionic liquid may be contained in the pickling solution of 2M or less.
- the pickling efficiency can be sufficiently improved even with a small amount of 0.2M or less.
- the molar concentration of the ionic liquid corresponds to a value calculated relative to the total volume of the pickling solution.
- the acidic solution may be a hydrochloric acid solution of 1M or less.
- the molar concentration of the hydrochloric acid solution corresponds to the calculated value compared to the total volume of the pickling solution.
- the neutral solution according to the present invention may be subjected to electrolytic pickling treatment after immersing stainless steel, and it is sufficient if it contains a water-soluble electrolyte generally used in the electrochemical field, and is not particularly limited.
- the electrolyte include sodium chloride (NaCl), potassium chloride (KCl), magnesium chloride (MgCl 2 ), sodium sulfate (Na 2 SO 4 ), and potassium sulfate (K 2 SO 4 ).
- the concentration of the neutral solution is sufficient as long as it can be subjected to electrolytic pickling, and is not particularly limited.
- the neutral solution according to an example may be a 1M to 2M sodium chloride solution.
- the present invention it is possible to remove oxidized scale at high speed by immersing stainless steel in a pickling solution of 15 to 25° C. rather than a high temperature of 80° C. or higher.
- the number of times the electric potential is repeatedly applied until the oxide scale of stainless steel is completely removed is less than 5 times, and the required time may be less than 1 minute.
- the electrolytic pickling treatment according to the present invention is a treatment process in which stainless steel is immersed in a pickling solution containing an ionic liquid in an acidic solution or a neutral solution, followed by electrolytic pickling to remove oxidized scale formed on the surface of the stainless steel.
- the electrolytic pickling treatment may be performed by maintaining the surface potential of stainless steel at -1.5 to 1.5V using a silver/silver chloride electrode as a reference electrode, and applying a current density of 0.5 to 1.3A/cm 2.
- the electrolytic pickling may be performed in an AC electrolysis or DC electrolysis for applying a current, or a constant voltage method for applying a voltage.
- STS 304 steel grade containing 18% by weight of Cr and 8% by weight of Ni was cold-rolled by the process of manufacturing a conventional stainless cold-rolled steel sheet, followed by annealing heat treatment.
- STS 304 steel grade was used, but stainless steel having other compositional composition in which oxidized scale is formed on the surface may also be pickled according to the pickling method of the present invention.
- stainless steel was immersed in the pickling solution of Table 1 below at 15 to 25°C, followed by electrolytic pickling treatment.
- the surface potential of the stainless steel was maintained at -1.5 to 1.5 V using a silver/silver chloride electrode as a reference electrode, and the potential was repeatedly applied several times at a scan rate of 0.5 V/s until the oxide scale was completely removed. . Whether or not the oxide scale was removed was confirmed through an optical microscope and an electron microscope.
- the composition of the pickling solution (acidic solution or neutral solution, ionic liquid) is described in order by molar concentration (M), and composition compound.
- M molar concentration
- the molar concentration is a value calculated relative to the volume of the total pickling solution.
- the current density (A/cm 2 ) in Table 1 refers to the current density applied to stainless steel, and the number of repetitions refers to the number of times the potential is repeatedly applied until the oxide scale is completely removed.
- the time (seconds) in Table 1 means the time it takes for the oxide scale to be completely removed.
- the oxidized scale of stainless steel can be eco-friendlyly removed without the use of nitric acid or hydrofluoric acid.
- the oxidized scale of stainless steel can be completely removed at high speed within 1 minute or less 5 times the number of times the electric potential is repeatedly applied by immersing stainless steel in a pickling solution at room temperature rather than at a high temperature of 80°C have.
- the acidic solution or the neutral solution in the pickling solution can remove oxidized scale at a low concentration rather than a high concentration.
- nitric acid or hydrofluoric acid since nitric acid or hydrofluoric acid is not used, it is eco-friendly, and it is possible to rapidly remove oxidized scale of stainless steel at room temperature, thereby providing an economical stainless steel ionic liquid and a method for pickling stainless steel using the same.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Electrochemistry (AREA)
- Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
Abstract
본 명세서에서는 질산이나 불산을 사용하지 않고, 상온에서 스테인리스강의 산화 스케일을 고속으로 제거할 수 있는 스테인리스강 산세용 이온성 액체 및 이를 이용한 스테인리스강의 산세방법을 개시한다. 개시되는 스테인리스강의 산세방법의 일 실시예에 따르면, 이미다졸륨 양이온, 베타이늄 양이온, 설포늄 양이온, 피페리디늄 양이온, 포스포늄 양이온, 암모늄 양이온, 피리디움 양이온, 피롤리디늄 양이온 및 모폴리늄 양이온 중 적어도 하나를 양이온성 작용기로 포함하고, 할로겐화물 음이온, 설포네이트 음이온, 알킬설페이트 음이온, 포스피네이트 음이온, 살리실레이트 음이온, 나이트레이트 음이온, 테트라플루오로보레이트 음이온, 헥사플루오로포스페이트 음이온 및 비스트리플이미드 음이온 중 적어도 하나를 음이온성 작용기로 포함하는 이온성 액체를 함유하는 산세액에 스테인리스강을 침지하여 전해 산세 처리하는 것을 포함한다.
Description
본 발명은 스테인리스강 산세용 이온성 액체 및 이를 이용한 스테인리스강의 산세방법에 관한 것으로, 보다 상세하게는 질산이나 불산을 사용하지 않고, 상온에서 스테인리스강의 산화 스케일을 고속으로 제거할 수 있는 스테인리스강 산세용 이온성 액체 및 이를 이용한 스테인리스강의 산세방법에 관한 것이다.
스테인리스 냉연강판은 냉간 압연 후 기계적 성질을 얻기 위해 800~1150℃의 열처리 과정을 거치게 되고, 이때 로(爐) 내의 고온의 산소와 냉연강판 표면이 반응하여 통상적으로 100 내지 300nm 두께의 산화 스케일(SiO
2, (Cr,Fe)
3O
4) 등이 형성되어 표면 품질이 저하되며, 내식성이 저하된다.
이에 따라 표면 품질이 미려하고, 내식성이 우수한 스테인리스 냉연강판을 제조하기 위하여 이러한 산화 스케일을 제거하기 위하여 산세공정이 수행된다. 일반적으로 산세공정은 물리적 디스케일링(브러쉬, 숏볼 블라스팅), 전해 디스케일링(황산나트륨, 황산, 질산 전해질), 화학적 디스케일링 (염욕, 혼산) 등의 다양한 방법을 단독 또는 조합하여 수행된다.
종래의 산세공정은 통상적으로 2단계로 수행되었다. 황산나트륨 전해질을 포함하는 용액에 스테인리스강을 침지한 후 전류를 인가하거나, 수산화나트륨과 질산나트륨이 포함된 400℃ 이상의 고온의 염욕에 스테인리스강을 침지하여 1차로 산화 스케일을 제거하고, 이후 미려한 표면품질과 부동태 피막을 고르게 형성하여 내식성을 확보하기 위해 80℃ 이상의 고온의 질산 또는 질산 및 불산이 포함된 혼산을 이용하여 2차로 산세하였다. 여기서, 질산은 산세조 내의 pH를 낮추어 불산의 활동도를 높이고, 강판 표면에서 용해된 2가 철이온을 3가로 산화시켜 산세에 적정한 산화환원전위를 유지시켜주는 효과가 있다.
그러나, 질산은 환경적으로 문제가 많다. 질산이 포함된 염 및 질산이 사용되는 것에 의해 대기배출 규제물질인 NOx가 발생하고, 폐산 및 세척수에서 질산성 질소(NO
3-N)가 포함된다. 또한, 국내외 환경 규제 강화에 의해 배출 방류수의 총 질소 제한, 대기 배출시설의 NOx 농도 제한 등으로 산세공정에 환경오염방지시설의 추가 설치 및 운용비용에 의해 생산단가가 현저히 증가한다는 문제점이 발생한다.
이러한 문제점을 해결하기 위한 종래 기술로는 산세과정에서 질산을 염산, 황산 등으로 대체하고, 부족한 산화력은 과산화수소, 과망간산칼륨, 3가 철이온 및 공기주입에 의해 대체한 무질산 산세방법이 개발되어 왔다.
황산, 불산, 황산철을 산세액으로 이용하고 과산화수소를 첨가하여 산세액의 산화환원전위를 300mV이상 유지하는 특허문헌 1을 시작으로 90년대 이후 주로 불산과 철이온, 공기, 과산화수소, 용액의 산화환원전위(Oxidation-reduction Potential, ORP)의 적정범위를 변경한 특허문헌 2, 특허문헌 3 등이 계속 출원되어왔다. 하지만 이들 방법은 대부분 제품의 품질이 까다롭지 않은 선재, 봉강, 후판 등의 제품에 제한적으로 적용될 수 있는 문제가 있다.
특허문헌 4에서는 황산, 불산, 철염을 함유하며 과산화수소를 정기적으로 투입하고, 습윤제, 광택제, 부식억제제 등의 조성을 조절하여 산세를 하며, 산세액의 관리는 Fe(III) 및 이에 따른 ORP로서 자동제어 방식을 취하고 있다. 이를 통해 산세액인 CLEANOX352 제품을 상용화하여 전세계적으로 가장 널리 사용되고 있다. 이 방법은 선재 및 열연제품의 경우 실용화되어 사용되고 있으나, 제품생산단가가 기존대비 20%이상 높고, 복잡한 용액조성과 관리방법을 채택하고 있다. 결정적으로 산세감량속도가 1.5~3 g/m
2·min 정도의 비교적 느린 산세속도를 갖고 있어 고속산세(TV=130이상)에는 적합하지 않다. 또한, 이 특허의 개량특허인 특허문헌 5는 구리 및 염소이온을 산세 조성물에 추가하여 산세속도를 높이는 방법을 꾀하였지만, 페라이트계 스테인레스 강판표면에 형성되는 표면전위(Open circuit potential, OCP)가 구리이온의 산화환원전위인 0.1V 보다 낮을 경우 산세과정에서 강판표면에 구리입자가 석출되어 강판을 변색시킬 우려가 있다. 또한, 산세액에 염소이온이 일정농도 이상 함유될 경우 공식(pitting corrosion)이 발생할 위험이 있다.
이와 같이 최근까지 무질산 산세액 조성에 대해서 다양한 기술이 연구되고 있다. 그러나, 종래의 산세공정은 고농도의 산세액을 사용하여야 하며, 고온의 산세액에 스테인리스강을 침지하여 산세를 하여야 하며, 산세 시 장시간이 소요되는 문제가 있다.
(특허문헌 0001) DE공개번호 DE 3937438
(특허문헌 0002) US등록번호 US 5154774
(특허문헌 0003) EP공개번호 EP 0236354
(특허문헌 0004) US등록번호 US 5908511
(특허문헌 0005) US등록번호 US 6554908
본 발명은 상술한 문제점을 해결하기 위해 고안된 것으로, 질산이나 불산을 사용하지 않고, 상온에서 스테인리스강의 산화 스케일을 고속으로 제거할 수 있는 스테인리스강 산세용 이온성 액체 및 이를 이용한 스테인리스강의 산세방법을 제공하고자 한다.
상술한 목적을 달성하기 위한 수단으로서 본 발명의 일 예에 따른 스테인리스강 산세용 이온성 액체는 이미다졸륨 양이온, 베타이늄 양이온, 설포늄 양이온, 피페리디늄 양이온, 포스포늄 양이온, 암모늄 양이온, 피리디움 양이온, 피롤리디늄 양이온 및 모폴리늄 양이온 중 적어도 하나를 양이온성 작용기로 포함하고, 할로겐화물 음이온, 설포네이트 음이온, 알킬설페이트 음이온, 포스피네이트 음이온, 살리실레이트 음이온, 나이트레이트 음이온, 테트라플루오로보레이트 음이온, 헥사플루오로포스페이트 음이온 및 비스트리플이미드 음이온 중 적어도 하나를 음이온성 작용기로 포함할 수 있다.
본 발명의 일 예에 따른 각 스테인리스강 산세용 이온성 액체는 하기 화합물 (a)~(c) 중 하나로 표현될 수 있다.
(a)
(b)
(c)
또한, 상술한 목적을 달성하기 위한 다른 수단으로서 본 발명의 일 예에 따른 스테인리스강의 산세방법은 이미다졸륨 양이온, 베타이늄 양이온, 설포늄 양이온, 피페리디늄 양이온, 포스포늄 양이온, 암모늄 양이온, 피리디움 양이온, 피롤리디늄 양이온 및 모폴리늄 양이온 중 적어도 하나를 양이온성 작용기로 포함하고, 할로겐화물 음이온, 설포네이트 음이온, 알킬설페이트 음이온, 포스피네이트 음이온, 살리실레이트 음이온, 나이트레이트 음이온, 테트라플루오로보레이트 음이온, 헥사플루오로포스페이트 음이온 및 비스트리플이미드 음이온 중 적어도 하나를 음이온성 작용기로 포함하는 이온성 액체를 함유하는 산세액에 스테인리스강을 침지하여 전해 산세 처리하는 것을 포함할 수 있다.
본 발명의 일 예에 따른 각 스테인리스강의 산세방법에 있어서, 이온성 액체는 하기 화합물 (a)~(c) 중 하나로 표현될 수 있다.
(a)
(b)
(c)
본 발명의 일 예에 따른 각 스테인리스강의 산세방법에 있어서, 이온성 액체는 2M 이하로 산세액에 함유될 수 있다.
본 발명의 일 예에 따른 각 스테인리스강의 산세방법에 있어서, 산세액은 1M 이하의 염산용액 또는 염화나트륨, 염화칼륨, 염화마그네슘, 황산나트륨 및 황산칼륨 중 적어도 하나를 포함하는 중성용액에 이온성 액체를 함유할 수 있다.
본 발명의 일 예에 따른 각 스테인리스강의 산세방법에 있어서, 산세액의 온도는 15 내지 25℃일 수 있다.
본 발명의 일 예에 따른 각 스테인리스강의 산세방법에 있어서, 전해 산세 처리는 스테인리스강의 표면전위를 은/염화은 전극을 기준전극으로 -1.5 내지 1.5V로 유지하고, 0.5 내지 1.3A/cm
2의 전류 밀도를 인가하여 수행될 수 있다.
본 발명의 일 예에 따른 각 스테인리스강의 산세방법은 산화 스케일이 완전히 제거될 때까지의 소요시간이 1분 이내일 수 있다.
본 발명에 따르면 산세액에 이온성 액체를 첨가하여 질산이나 불산의 사용 없이 친환경적으로 스테인리스강의 산화 스케일을 제거할 수 있다.
또한, 본 발명에 따르면 80℃ 이상의 고온이 아닌 15 내지 25℃의 산세액에 스테인리스강을 침지하여 산화 스케일이 완전히 제거될 때까지 전위를 반복 인가한 횟수가 5회 이내이며, 소요되는 시간은 1분 이내일 수 있다.
또한, 본 발명에 따르면 산세액 내 산성용액 또는 중성용액이 고농도가 아닌 저농도에서 산화 스케일을 제거할 수 있다.
또한, 본 발명에 따르면 종래 2단계 이상으로 수행되는 산세공정을 1단계의 전해 산세 공정으로 감축하여 경제적인 효과가 있다.
본 발명의 일 예에 따른 스테인리스강 산세용 이온성 액체는 이미다졸륨 양이온, 베타이늄 양이온, 설포늄 양이온, 피페리디늄 양이온, 포스포늄 양이온, 암모늄 양이온, 피리디움 양이온, 피롤리디늄 양이온 및 모폴리늄 양이온 중 적어도 하나를 양이온성 작용기로 포함하고, 할로겐화물 음이온, 설포네이트 음이온, 알킬설페이트 음이온, 포스피네이트 음이온, 살리실레이트 음이온, 나이트레이트 음이온, 테트라플루오로보레이트 음이온, 헥사플루오로포스페이트 음이온 및 비스트리플이미드 음이온 중 적어도 하나를 음이온성 작용기로 포함할 수 있다.
이하에서는 본 발명의 바람직한 실시형태들을 설명한다. 그러나, 본 발명의 실시형태는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 기술적 사상이 이하에서 설명하는 실시형태로 한정되는 것은 아니다. 또한, 본 발명의 실시형태는 당해 기술분야에서 평균적인 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위해서 제공되는 것이다.
본 출원에서 사용하는 용어는 단지 특정한 예시를 설명하기 위하여 사용되는 것이다. 때문에 가령 단수의 표현은 문맥상 명백하게 단수여야만 하는 것이 아닌 한, 복수의 표현을 포함한다. 덧붙여, 본 출원에서 사용되는 "포함하다" 또는 "구비하다" 등의 용어는 명세서 상에 기재된 특징, 단계, 기능, 구성요소 또는 이들을 조합한 것이 존재함을 명확히 지칭하기 위하여 사용되는 것이지, 다른 특징들이나 단계, 기능, 구성요소 또는 이들을 조합한 것의 존재를 예비적으로 배제하고자 사용되는 것이 아님에 유의해야 한다.
한편, 다르게 정의되지 않는 한, 본 명세서에서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가진 것으로 보아야 한다. 따라서, 본 명세서에서 명확하게 정의하지 않는 한, 특정 용어가 과도하게 이상적이거나 형식적인 의미로 해석되어서는 안 된다. 가령, 본 명세서에서 단수의 표현은 문맥상 명백하게 예외가 있지 않는 한, 복수의 표현을 포함한다.
또한, 본 명세서의 "약", "실질적으로" 등은 언급한 의미에 고유한 제조 및 물질 허용오차가 제시될 때 그 수치에서 또는 그 수치에 근접한 의미로 사용되고, 본 발명의 이해를 돕기 위해 정확하거나 절대적인 수치가 언급된 개시 내용을 비양심적인 침해자가 부당하게 이용하는 것을 방지하기 위해 사용된다.
또한, 본 명세서의 "스테인리스강"은 통상의 스테인리스 냉연강판을 제조하기 위한 공정에 의하여 냉간 압연 후 소둔 열처리된 스테인리스 냉연강판을 의미한다. 그러나, 반드시 이에 제한되어 해석되는 것은 아니며, 해당 기술분야의 통상의 기술자가 자명하게 인지할 수 있는 범위 내에서 산화 스케일이 표면에 형성된 스테인리스강을 의미한다.
또한, 본 명세서의 "이온성 액체"는 금속 양이온과 비금속 음이온으로 이루어진 염화합물로 100℃ 이하의 온도에서 액체로 존재하는 물질을 의미한다.
본 발명은 스테인리스강을 산세액에 침지한 후 전해 산세 처리하여 스테인리스강의 표면에 형성된 산화 스케일을 제거하는 방법에 관한 것이다. 본 발명의 산세액은 산성용액 또는 중성용액에 이온성 액체를 함유한 용액을 의미한다.
본 출원의 발명자들은 이온성 액체를 스테인리스강의 산세액에 첨가하면 스테인리스강의 산세 효율을 향상시킬 수 있음을 발견하였다. 본 발명에 따른 이온성 액체는 이미다졸륨(imidazolium) 양이온, 베타이늄(betainium) 양이온, 설포늄(sulfonium) 양이온, 피페리디늄(piperidinium) 양이온, 포스포늄(phosphonium) 양이온, 암모늄(ammonium) 양이온, 피리디움(pyridium) 양이온, 피롤리디늄(pyrrolidinium) 양이온 및 모폴리늄(morpholinium) 양이온 중 적어도 하나를 양이온성 작용기로 포함하고, 할로겐화물(halide) 음이온, 설포네이트(sulfonate) 음이온, 알킬설페이트(alkylsulfate) 음이온, 포스피네이트(phosphinate) 음이온, 살리실레이트(salicylate) 음이온, 나이트레이트(nitrate) 음이온, 테트라플루오로보레이트(tetrafluoroborate) 음이온, 헥사플루오로포스페이트(hexafluorophosphate) 음이온 및 비스트리플이미드(bistriflimide) 음이온 중 적어도 하나를 음이온성 작용기로 포함할 수 있다.
또한, 일 예에 따르면 본 발명의 이온성 액체는 하기 화합물 (a)~(c) 중 하나로 표현될 수 있다.
(a)
(b)
(c)
(a)부터 (c)까지 차례대로 트리헥실(테트라데실)포스포늄 클로라이드(trihexyl(tetradecyl)phosphonium chloride), 메틸트리옥틸암모늄 클로라이드(methyltrioctylammonium chloride), 1-부틸-3-메틸이미다졸륨 클로라이드(1-butyl-3-methylimidazolium chloride)이다.
본 발명의 이온성 액체를 산세액에 첨가하게 되면 이온성 액체가 금속 산화물에서 금속이 용해될 수 있도록 하는 기능을 수행한다. 이에 따라, 본 발명에 따르면 산세액에 이온성 액체를 첨가하여 질산이나 불산의 사용 없이 친환경적으로 스테인리스강의 산화 스케일을 제거할 수 있다. 또한, 80℃ 이상의 고온이 아닌 상온의 산세액에 스테인리스강을 침지하여 스테인리스강의 산화 스케일을 고속으로 제거할 수 있으며, 산세액 내 산성용액 또는 중성용액이 고농도가 아닌 저농도에서도 산화 스케일을 충분히 제거할 수 있다. 또한, 종래 2단계 이상으로 수행되는 산세공정을 1단계의 전해 산세 공정으로 감축하여 경제적인 효과가 있다.
본 발명에 따르면, 이온성 액체는 산세액에 첨가된다. 일 예에 따르면, 이온성 액체는 2M 이하로 산세액에 함유될 수 있다. 단, 산성용액에 이온성 액체를 첨가하는 경우에는 0.2M 이하의 소량으로도 산세 효율을 충분히 향상시킬 수 있다. 여기서, 이온성 액체의 몰농도는 전체 산세액 부피 대비 산출된 값에 해당한다.
본 발명에 따르면 이온성 액체를 산세액에 첨가하여 산성용액이 고농도가 아닌 저농도인 경우에도 산화 스케일을 충분히 제거할 수 있다. 일 예에 따르면, 산성용액은 1M 이하의 염산용액일 수 있다. 여기서, 염산용액의 몰농도는 전체 산세액 부피 대비 산출된 값에 해당한다.
본 발명에 따른 중성용액은 스테인리스강을 침지한 후 전해 산세 처리할 수 있으며, 전기화학 분야에서 일반적으로 사용되는 수용성 전해질을 포함하면 충분하고, 특별히 제한되지 않는다. 전해질의 예로는 염화나트륨(NaCl), 염화칼륨(KCl), 염화마그네슘(MgCl
2), 황산나트륨(Na
2SO
4), 황산칼륨(K
2SO
4) 등을 들 수 있다. 또한, 중성용액의 농도는 전해 산세 처리할 수 있으면 충분하며, 특별히 제한되지 않는다. 일 예에 따른 중성용액은 1M 내지 2M의 염화나트륨용액일 수 있다.
본 발명에 따르면, 80℃ 이상의 고온이 아닌 15 내지 25℃의 산세액에 스테인리스강을 침지하여 산화 스케일을 고속으로 제거할 수 있다. 본 발명의 일 예에 따르면 스테인리스강의 산화 스케일이 완전히 제거될 때까지 전위를 반복 인가한 횟수가 5회 이내이며, 소요되는 시간은 1분 이내일 수 있다.
본 발명에 따른 전해 산세 처리는 스테인리스강을 산성용액 또는 중성용액에 이온성 액체를 함유한 산세액에 침지한 후 전해 산세 처리하여 스테인리스강의 표면에 형성된 산화 스케일을 제거하는 처리 공정이다. 일 예에 따르면, 전해 산세 처리는 스테인리스강의 표면전위를 은/염화은 전극을 기준전극으로 -1.5 내지 1.5V로 유지하고, 0.5 내지 1.3A/cm
2의 전류 밀도를 인가하여 수행될 수 있다. 전해산세는 전류를 인가하는 교류전해 또는 직류전해이거나, 전압을 인가하는 정전압 방식으로 수행될 수 있다.
이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명하고자 한다. 다만, 하기의 실시예는 본 발명을 예시하여 보다 상세하게 설명하기 위한 것일 뿐, 본 발명의 권리범위를 한정하기 위한 것이 아니라는 점에 유의할 필요가 있다. 본 발명의 권리범위는 특허청구범위에 기재된 사항과 이로부터 합리적으로 유추되는 사항에 의해 결정되는 것이기 때문이다.
{실시예}
18중량%의 Cr, 8중량%의 Ni을 함유한 STS 304 강종을 통상적인 스테인리스 냉연강판을 제조하는 공정에 의하여 냉간 압연한 후 소둔 열처리하였다. 본 발명의 실시예에서는 STS 304 강종을 사용하였으나, 표면에 산화 스케일이 형성된 다른 성분조성의 스테인리스강 역시 본 발명의 산세방법에 따라 산세될 수 있다.
소둔 열처리로 형성된 산화 스케일을 제거하기 위하여 15 내지 25℃의 아래 표 1의 산세액에 스테인리스강을 침지한 다음, 전해 산세 처리하였다. 전해 산세 처리는 스테인리스강의 표면 전위를 은/염화은 전극을 기준전극으로 -1.5 내지 1.5V로 유지하고, 0.5V/s의 스캔속도로 산화 스케일이 완전히 제거될 때까지 수 회 반복하여 전위를 인가하였다. 산화 스케일의 제거 유무는 광학현미경, 전자현미경을 통해 확인하였다.
아래 표 1에서, 산세액의 조성(산성용액 또는 중성용액, 이온성 액체)은 몰농도(M), 조성 화합물을 순으로 차례대로 기재하였다. 여기서, 몰농도는 전체 산세액 부피 대비 산출된 값이다. 표 1의 전류밀도(A/cm
2)는 스테인리스강에 인가되는 전류밀도를 의미하며, 반복횟수는 산화 스케일이 완전히 제거될 때까지 전위를 반복 인가한 횟수를 의미한다. 표 1의 시간(초)은 산화 스케일이 완전히 제거되기까지 소요되는 시간을 의미한다.
산세액 | 전류밀도(A/cm 2) | 반복횟수(회) | 시간(초) | ||||
산성용액또는 중성용액 | 이온성 액체 | ||||||
몰농도 | 조성 화합물 | 몰농도 | 조성 화합물 | ||||
발명예1 | 1 M | HCl | 0.17 M | 1.01 | 4 | 24 | |
발명예2 | 1 M | NaCl | 0.17 M | 0.492 | 5 | 30 | |
발명예3 | 1 M | NaCl | 0.17 M | 0.643 | 5 | 30 | |
발명예4 | 1 M | NaCl | 0.17 M | 0.669 | 5 | 30 |
표 1의 결과를 참조하면, 본 발명에 따르면 산세액에 이온성 액체를 첨가하여 질산이나 불산의 사용 없이 친환경적으로 스테인리스강의 산화 스케일을 제거할 수 있음을 확인할 수 있다. 또한, 본 발명에 따르면 80℃ 이상의 고온이 아닌 상온의 산세액에 스테인리스강을 침지하여 스테인리스강의 산화 스케일을 전위를 반복 인가한 횟수 5회 이하, 1분 이내로 고속으로 완전히 제거할 수 있음을 알 수 있다. 또한, 본 발명에 따르면 산세액 내 산성용액 또는 중성용액이 고농도가 아닌 저농도에서 산화 스케일을 제거할 수 있음을 알 수 있다. 또한, 본 발명에 따르면 종래 2단계 이상으로 수행되는 산세공정을 1단계의 전해 산세 공정으로 감축할 수 있음을 알 수 있다.상술한 바에 있어서, 본 발명의 예시적인 실시예들을 설명하였지만, 본 발명은 이에 한정되지 않으며 해당 기술 분야에서 통상의 지식을 가진 자라면 다음에 기재하는 청구범위의 개념과 범위를 벗어나지 않는 범위 내에서 다양한 변경 및 변형이 가능함을 이해할 수 있을 것이다.
본 발명에 따르면 질산이나 불산을 사용하지 않아 친환경적이고, 상온에서 스테인리스강의 산화 스케일을 고속으로 제거할 수 있어 경제적인 스테인리스강 이온성 액체 및 이를 이용한 스테인리스강의 산세방법을 제공할 수 있다.
Claims (9)
- 이미다졸륨 양이온, 베타이늄 양이온, 설포늄 양이온, 피페리디늄 양이온, 포스포늄 양이온, 암모늄 양이온, 피리디움 양이온, 피롤리디늄 양이온 및 모폴리늄 양이온 중 적어도 하나를 양이온성 작용기로 포함하고,할로겐화물 음이온, 설포네이트 음이온, 알킬설페이트 음이온, 포스피네이트 음이온, 살리실레이트 음이온, 나이트레이트 음이온, 테트라플루오로보레이트 음이온, 헥사플루오로포스페이트 음이온 및 비스트리플이미드 음이온 중 적어도 하나를 음이온성 작용기로 포함하는 스테인리스강 산세용 이온성 액체.
- 이미다졸륨 양이온, 베타이늄 양이온, 설포늄 양이온, 피페리디늄 양이온, 포스포늄 양이온, 암모늄 양이온, 피리디움 양이온, 피롤리디늄 양이온 및 모폴리늄 양이온 중 적어도 하나를 양이온성 작용기로 포함하고,할로겐화물 음이온, 설포네이트 음이온, 알킬설페이트 음이온, 포스피네이트 음이온, 살리실레이트 음이온, 나이트레이트 음이온, 테트라플루오로보레이트 음이온, 헥사플루오로포스페이트 음이온 및 비스트리플이미드 음이온 중 적어도 하나를 음이온성 작용기로 포함하는 이온성 액체를 함유하는 산세액에 스테인리스강을 침지하여 전해 산세 처리하는 것을 포함하는 스테인리스강의 산세방법.
- 제3항에 있어서,상기 이온성 액체는 2M 이하로 산세액에 함유되는 스테인리스강의 산세방법.
- 제3항에 있어서,상기 산세액은 1M 이하의 염산용액 또는 염화나트륨, 염화칼륨, 염화마그네슘, 황산나트륨 및 황산칼륨 중 적어도 하나를 포함하는 중성용액에 이온성 액체를 함유하는 스테인리스강의 산세방법.
- 제3항에 있어서,상기 산세액의 온도는 15 내지 25℃인 스테인리스강의 산세방법.
- 제3항에 있어서,상기 전해 산세 처리는,상기 스테인리스강의 표면전위를 은/염화은 전극을 기준전극으로 -1.5 내지 1.5V로 유지하고, 0.5 내지 1.3A/cm 2의 전류 밀도를 인가하여 수행되는 스테인리스강의 산세방법.
- 제3항에 있어서,산화 스케일이 완전히 제거될 때까지의 소요시간이 1분 이내인 스테인리스강의 산세방법.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202080086975.4A CN114829682A (zh) | 2019-11-21 | 2020-10-16 | 用于酸洗不锈钢的离子液体和通过使用其酸洗不锈钢的方法 |
US17/777,907 US20230059039A1 (en) | 2019-11-21 | 2020-10-16 | Ionic liquid for pickling stainless steel and method for pickling stainless steel by using same |
EP20889474.1A EP4056737A4 (en) | 2019-11-21 | 2020-10-16 | IONIC LIQUID FOR PICKLING STAINLESS STEEL AND METHOD FOR PICKLING STAINLESS STEEL USING THE SAME |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020190150288A KR102300834B1 (ko) | 2019-11-21 | 2019-11-21 | 스테인리스강 산세용 이온성 액체 및 이를 이용한 스테인리스강의 산세방법 |
KR10-2019-0150288 | 2019-11-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021101076A1 true WO2021101076A1 (ko) | 2021-05-27 |
Family
ID=75981320
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2020/014199 WO2021101076A1 (ko) | 2019-11-21 | 2020-10-16 | 스테인리스강 산세용 이온성 액체 및 이를 이용한 스테인리스강의 산세방법 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20230059039A1 (ko) |
EP (1) | EP4056737A4 (ko) |
KR (1) | KR102300834B1 (ko) |
CN (1) | CN114829682A (ko) |
WO (1) | WO2021101076A1 (ko) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102693618B1 (ko) * | 2024-01-03 | 2024-08-12 | 주식회사 투에이치플러스 | 스테인리스의 나노코팅 시공 방법 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0236354A1 (fr) | 1985-09-19 | 1987-09-16 | Ugine Gueugnon Sa | Procede de decapage acide de produits en acier inoxydable. |
DE3937438A1 (de) | 1989-02-23 | 1990-08-30 | Krupp Stahl Ag | Verfahren zum beizen von stahl |
US5154774A (en) | 1985-09-19 | 1992-10-13 | Ugine Aciers De Chatillon Et Gueugnon | Process for acid pickling of stainless steel products |
JPH07216600A (ja) * | 1994-01-31 | 1995-08-15 | Daiso Co Ltd | ステンレス鋼板の電解酸洗方法及びそれに使用される電極 |
US5908511A (en) | 1992-08-06 | 1999-06-01 | Itb S.R.L. | Process for stainless steel pickling and passivation without using nitric acid |
US6554908B1 (en) | 1999-05-03 | 2003-04-29 | Henkel Kommanditgesellschaft Auf Aktien | Process for pickling stainless steel in the absence of nitric acid and in the presence of chloride ions |
EP1538237B1 (en) * | 2002-09-10 | 2009-09-30 | Nippon Mining & Metals Co., Ltd. | Method for metal plating and pre-treating agent |
KR20130047078A (ko) * | 2011-10-31 | 2013-05-08 | 이병록 | 너트의 내경 표면처리 방법 및 너트의 내경 표면처리 장치 |
KR101592147B1 (ko) * | 2015-08-19 | 2016-02-04 | 이대석 | 알루미늄 기판의 산화막 형성방법 |
KR20170053748A (ko) * | 2009-06-08 | 2017-05-16 | 바스프 에스이 | 금속 피복을 위한 플라스틱 표면의 전처리를 위한 이온성 액체의 용도 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101324497B1 (ko) * | 2005-02-14 | 2013-11-01 | 로버트 제이 스몰 | 반도체 세정 방법 |
WO2010052123A1 (en) * | 2008-11-05 | 2010-05-14 | Henkel Ag & Co. Kgaa | Ionic liquid composition for the removal of oxide scale |
KR101359098B1 (ko) * | 2012-07-31 | 2014-02-12 | 주식회사 포스코 | 오스테나이트계 스테인리스 냉연강판을 제조하기 위한 고속 산세 프로세스 |
CN108505066A (zh) * | 2018-06-27 | 2018-09-07 | 东北大学 | 一种离子液体中高效电化学制备铝的方法 |
-
2019
- 2019-11-21 KR KR1020190150288A patent/KR102300834B1/ko active IP Right Grant
-
2020
- 2020-10-16 US US17/777,907 patent/US20230059039A1/en active Pending
- 2020-10-16 CN CN202080086975.4A patent/CN114829682A/zh active Pending
- 2020-10-16 WO PCT/KR2020/014199 patent/WO2021101076A1/ko unknown
- 2020-10-16 EP EP20889474.1A patent/EP4056737A4/en active Pending
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0236354A1 (fr) | 1985-09-19 | 1987-09-16 | Ugine Gueugnon Sa | Procede de decapage acide de produits en acier inoxydable. |
US5154774A (en) | 1985-09-19 | 1992-10-13 | Ugine Aciers De Chatillon Et Gueugnon | Process for acid pickling of stainless steel products |
DE3937438A1 (de) | 1989-02-23 | 1990-08-30 | Krupp Stahl Ag | Verfahren zum beizen von stahl |
US5908511A (en) | 1992-08-06 | 1999-06-01 | Itb S.R.L. | Process for stainless steel pickling and passivation without using nitric acid |
JPH07216600A (ja) * | 1994-01-31 | 1995-08-15 | Daiso Co Ltd | ステンレス鋼板の電解酸洗方法及びそれに使用される電極 |
US6554908B1 (en) | 1999-05-03 | 2003-04-29 | Henkel Kommanditgesellschaft Auf Aktien | Process for pickling stainless steel in the absence of nitric acid and in the presence of chloride ions |
EP1538237B1 (en) * | 2002-09-10 | 2009-09-30 | Nippon Mining & Metals Co., Ltd. | Method for metal plating and pre-treating agent |
KR20170053748A (ko) * | 2009-06-08 | 2017-05-16 | 바스프 에스이 | 금속 피복을 위한 플라스틱 표면의 전처리를 위한 이온성 액체의 용도 |
KR20130047078A (ko) * | 2011-10-31 | 2013-05-08 | 이병록 | 너트의 내경 표면처리 방법 및 너트의 내경 표면처리 장치 |
KR101592147B1 (ko) * | 2015-08-19 | 2016-02-04 | 이대석 | 알루미늄 기판의 산화막 형성방법 |
Non-Patent Citations (1)
Title |
---|
See also references of EP4056737A4 |
Also Published As
Publication number | Publication date |
---|---|
KR20210062272A (ko) | 2021-05-31 |
US20230059039A1 (en) | 2023-02-23 |
KR102300834B1 (ko) | 2021-09-13 |
EP4056737A4 (en) | 2023-01-11 |
EP4056737A1 (en) | 2022-09-14 |
CN114829682A (zh) | 2022-07-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101289147B1 (ko) | 표면품질이 우수한 저크롬 페라이트계 스테인리스 냉연강판을 제조하기 위한 친환경 고속 산세 프로세스 | |
RU2395622C2 (ru) | Композиция для обработки поверхности металлов, действующая жидкость для обработки поверхности, способ обработки поверхности и металлический материал с обработанной поверхностью | |
KR0173975B1 (ko) | 스테인레스강의 탈스케일 방법 및 그 장치 | |
KR100650961B1 (ko) | 무질산 용액을 사용한 전해 산세척 방법 | |
KR101461815B1 (ko) | 고크롬 페라이트계 스테인리스강의 산세 방법 | |
US20040031696A1 (en) | Continous electrolytic pickling method for metallic products using alternate current supplied cells | |
EP0011800B1 (de) | Verfahren zum Ätzen von Oberflächen aus Kupfer oder Kupferlegierungen | |
WO2021101076A1 (ko) | 스테인리스강 산세용 이온성 액체 및 이를 이용한 스테인리스강의 산세방법 | |
KR890001379B1 (ko) | 산화물 스케일형성조절 및 스케일제거를 포함하는 금속 제품의 제조공정 | |
TW418264B (en) | Halogen tin composition and electrolytic plating process | |
KR101359098B1 (ko) | 오스테나이트계 스테인리스 냉연강판을 제조하기 위한 고속 산세 프로세스 | |
JP2015523469A (ja) | オーステナイト系ステンレス冷延鋼板を製造するための高速酸洗プロセス | |
JP3792335B2 (ja) | ステンレス鋼帯の脱スケールにおける仕上げ電解酸洗方法 | |
CN1079846C (zh) | 不锈钢的中性盐电解液的处理方法 | |
KR101382934B1 (ko) | 내식성 향상을 위한 오스테나이트계 스테인리스 냉연강판의 고속 산세 프로세스 | |
JPH0713320B2 (ja) | 特殊鋼の細長片の電解酸洗い方法 | |
KR101353856B1 (ko) | 오스테나이트계 스테인리스 냉연강판을 제조하기 위한 저온 고속 산세 프로세스 | |
JPH05306497A (ja) | リン酸塩化成処理方法 | |
CN102677140A (zh) | 一种不锈钢铸件的表面清洗工艺 | |
WO2018148960A1 (zh) | 一种铝制品表面处理方法 | |
KR100368207B1 (ko) | 오스테나이트계스텐레스냉연소둔강판의전해산세액 | |
KR100213470B1 (ko) | 알루미늄과 그 합금의 표면처리 조성물 및 그 처리방법 | |
KR20070045502A (ko) | 오스테나이트계 스테인레스강의 고속산세방법 | |
JP3252660B2 (ja) | 中性塩電解液処理方法とその処理装置およびステンレス鋼の脱スケール方法とその装置 | |
JPH01147100A (ja) | ステンレス冷延・焼鈍鋼帯の脱スケール方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20889474 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020889474 Country of ref document: EP Effective date: 20220608 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |