WO2021100767A1 - メタネーション反応装置 - Google Patents

メタネーション反応装置 Download PDF

Info

Publication number
WO2021100767A1
WO2021100767A1 PCT/JP2020/043017 JP2020043017W WO2021100767A1 WO 2021100767 A1 WO2021100767 A1 WO 2021100767A1 JP 2020043017 W JP2020043017 W JP 2020043017W WO 2021100767 A1 WO2021100767 A1 WO 2021100767A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
reactor
transfer medium
heat storage
heat transfer
Prior art date
Application number
PCT/JP2020/043017
Other languages
English (en)
French (fr)
Inventor
今田 典幸
横山 公一
佐々木 郷紀
Original Assignee
三菱パワー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱パワー株式会社 filed Critical 三菱パワー株式会社
Publication of WO2021100767A1 publication Critical patent/WO2021100767A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/12Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon dioxide with hydrogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C9/00Aliphatic saturated hydrocarbons
    • C07C9/02Aliphatic saturated hydrocarbons with one to four carbon atoms
    • C07C9/04Methane
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/16Materials undergoing chemical reactions when used

Definitions

  • the present invention relates to a metanation reaction method, a metanation reaction device, and an operation method thereof. More specifically, the present invention relates to a metanation reaction method, a metanation reaction apparatus, and an operation method thereof, which have improved energy efficiency related to energy storage.
  • Methane is the main component of city gas and can be widely used, and at the same time, it has the advantage of being able to use carbon dioxide secondarily.
  • Patent Document 1 is a method for catalytically methanizing carbon dioxide and / or carbon monoxide using hydrogen by a reactor, and hydrogen gas is produced by electrolysis of water.
  • a method configured such that the catalytic methanation of carbon dioxide and / or carbon monoxide is carried out using the obtained hydrogen in the first step.
  • the electrical energy required for electrolysis is extracted from a renewable energy source, such as wind energy, at which time the catalyst used for the methanation has a high heat storage capacity, preferably formed as a honeycomb structure.
  • a method is disclosed which is arranged on a carrier structure and is characterized in that the carrier structure is used as a heat storage material for reaction heat generated during the methanation.
  • Patent Document 2 describes a methane gas synthesizer that synthesizes methane gas using at least hydrogen and carbon dioxide as raw material gases, a raw material gas introduction path for introducing the raw material gas into the methane gas synthesizer, and a generated gas generated by the methane gas synthesizer.
  • a temperature swing adsorption type gas purification device provided through the raw material gas introduction path and / or the generated gas delivery path to remove impurities in the gas, and the temperature swing adsorption type gas.
  • the regenerated gas introduction path for introducing the high-temperature regenerated gas and the low-temperature regenerated gas that drive the desorption process in the temperature swing adsorption type gas purification device into the purification device, and the high-temperature regenerated gas to be introduced in the temperature swing adsorption type gas purification device.
  • a heat utilization type gas refining system characterized in that a heat storage unit for storing the heat to be applied is provided and the reaction heat of the methane gas synthesizer is applied to the high temperature regenerated gas sent in the regenerated gas introduction path. ing.
  • An object of the present invention relates to a metanation reaction method, a metanation reaction device, and an operation method thereof, which have improved energy efficiency related to energy storage.
  • a reactor for synthesizing methane from hydrogen and carbon dioxide Raw material supply channels for supplying hydrogen and carbon dioxide to the reactor, A product extraction path for extracting synthesized methane from the reactor, A heat transfer medium circulation path for circulating the heat transfer medium, A heat storage device with a heat storage material composition and Have,
  • the heat transfer medium circulation path is configured to allow heat exchange between the heat transfer medium and the heat storage material composition in combination with the heat storage device, and the heat transfer medium and the substance existing in the reactor are combined with the reactor. Includes a configuration that allows heat exchange between Metanation reactor.
  • the chemical heat storage material is composed of magnesium hydroxide or oxide, strontium hydroxide or oxide, barium hydroxide or oxide, calcium hydroxide or oxide, and calcium sulfate.
  • a preheater for bringing hydrogen or carbon dioxide to a predetermined temperature is further provided in the middle of the raw material supply path. Any of [1] to [3], further comprising a configuration in which the heat transfer medium circulation path is combined with a preheater to exchange heat between the heat transfer medium and hydrogen or carbon dioxide existing in the raw material supply path.
  • a reactor for synthesizing methane from hydrogen and carbon dioxide Raw material supply channels for supplying hydrogen and carbon dioxide to the reactor, A product extraction path for extracting synthesized methane from the reactor, A heat transfer medium circulation path for circulating the heat transfer medium, A heat storage device with a heat storage material composition and Have,
  • the heat transfer medium circulation path is configured to allow heat exchange between the heat transfer medium and the heat storage material composition in combination with the heat storage device, and the heat transfer medium and the substance existing in the reactor are combined with the reactor.
  • the heat storage material composition contains a chemical heat storage material. Transferring heat from the heat storage material composition to the heat transfer medium includes causing the heat storage material composition to absorb water to generate heat, and transferring heat from the heat transfer medium to the heat storage material composition.
  • a group in which the chemical heat storage material is composed of magnesium hydroxide or oxide, strontium hydroxide or oxide, barium hydroxide or oxide, calcium hydroxide or oxide, and calcium sulfate. The method according to [6], which comprises at least one selected from.
  • the metanation reactor further has a preheater for bringing hydrogen or carbon dioxide in the raw material supply path to a predetermined temperature in the middle of the raw material supply path, and the heat transfer medium circulation path is a preheater. It further includes a configuration that can be combined to exchange heat between the heat transfer medium and hydrogen or carbon dioxide in the raw material supply path.
  • the heat generated by the metanation reaction is stored in the heat storage material composition, and the stored heat is used for initiating the metanation reaction. Therefore, it is not necessary to supply the heat generated by the surplus electric power or the heat generated by the combustion of the fossil fuel to the metanation reactor at the start of operation, and the energy efficiency related to the energy storage can be greatly improved.
  • the heat storage material composition contains a chemical heat storage material, the heat storage and heat dissipation can be easily controlled by a reaction gas such as water vapor, and the amount of heat storage per unit mass is high, so that the metanation reaction apparatus can be made compact. ..
  • the metanation reaction method of the present invention is to release heat from the heat storage material composition to warm the reactor, to react hydrogen and carbon dioxide in the reactor to synthesize methane, and to generate methane during the reaction. Includes absorbing and storing heat in a heat storage material composition.
  • hydrogen those produced from fossil fuels such as lignite, those produced by electrolysis of water, and the like can be used.
  • carbon dioxide gas emitted from a thermal power plant, a steel mill, or the like can be used.
  • the exhaust gas may contain carbon monoxide.
  • the heat storage material composition includes a heat storage material such as a chemical heat storage material, a sensible heat storage material, and a latent heat storage material. Of these heat storage materials, chemical heat storage materials are preferable.
  • the chemical heat storage material preferably comprises magnesium hydroxide or oxide, strontium hydroxide or oxide, barium hydroxide or oxide, calcium hydroxide or oxide, and calcium sulfate. Those containing at least one selected from the group, more preferably those containing a hydroxide or oxide of magnesium can be mentioned.
  • a hydroxide or oxide of magnesium utilizes chemical heat storage that utilizes heat storage when magnesium hydroxide is dehydrated and converted to magnesium oxide and heat dissipation when magnesium oxide is hydrated and converted to magnesium hydroxide. It is a material.
  • the heat storage operating temperature of magnesium hydroxide or oxide is around 350 ° C.
  • Hydroxides or oxides of strontium utilize chemical heat storage that utilizes heat storage when strontium hydroxide is dehydrated and converted to strontium oxide and heat dissipation when strontium oxide is hydrated and converted to strontium hydroxide. It is a material.
  • a hydroxide or oxide of barium is a chemical heat storage that utilizes heat storage when barium hydroxide is dehydrated and converted to barium oxide and heat dissipation when barium oxide is hydrated and converted to barium hydroxide. It is a material.
  • Hydroxides or oxides of calcium utilize chemical heat storage that utilizes heat storage when calcium hydroxide dehydrates and changes to calcium oxide, and heat dissipation when calcium oxide hydrates and changes to calcium hydroxide. It is a material.
  • the heat storage operating temperature of calcium hydroxide or oxide is around 500 ° C.
  • Calcium sulfate stores heat when calcium sulfate 0.5 hydrate dehydrates and changes to anhydrous calcium sulfate, and dissipates heat when anhydrous calcium sulfate hydrates and changes to calcium sulfate 0.5 hydrate. It is a chemical heat storage material that utilizes. The heat storage operating temperature of calcium sulfate is around 90 ° C.
  • the heat storage material composition used in the present invention may contain additives such as a heat conductive filler, reinforcing fibers, and a binder in addition to the above heat storage material.
  • the methanation reactor of the present invention has a reactor 1, a raw material supply path, a product extraction path, a heat transfer medium circulation path, and a heat storage device 3, and if necessary, the preheater 2 and / Alternatively, it also has a heat recovery device 6.
  • the reactor 1 is for carrying out a reaction for synthesizing methane from hydrogen and carbon dioxide, and the raw material supply path is for supplying hydrogen and carbon dioxide to the reactor 1, and is a product extraction path. Is for extracting the synthesized methane from the reactor 1.
  • the reactor 1 may be provided with a methanation catalyst.
  • the methanation catalyst a nickel aluminate (NiAl x O y), Ru / NiAl x O y, etc. Ru / Al 2 O 3, Ru / TiO 2, Ni / TiO 2, Ru-Ni / TiO 2 and the like ..
  • the methanation catalyst can be encapsulated in a reactor as a catalyst formed in the shape of granules, pellets, Raschig rings, honeycombs, flat plates, corrugated sheets, corrugates, porous materials and the like.
  • the reactor 1 further includes a configuration that is combined with a heat transfer medium circulation path to allow heat exchange between the heat transfer medium and the substance present in the reactor.
  • the substance in the reactor can be brought to a predetermined temperature, preferably a temperature of 250-300 ° C.
  • the substance in the reactor contains hydrogen, carbon dioxide, etc., which are reaction raw materials, and methane, which is a reaction product.
  • the heat storage device 3 is provided with a heat storage material composition.
  • the heat storage material composition can be installed in the heat storage device as a heat storage body in the form of granules, pellets, Raschig rings, honeycombs, flat plates, corrugated plates, corrugates, porous materials, and the like.
  • the heat storage device includes a configuration capable of heat exchange between the heat transfer medium and the heat storage material composition in combination with the heat transfer medium circulation path.
  • the heat storage device 3 including the heat storage material composition containing the chemical heat storage material may further include a mechanism (reaction control mechanism) for controlling the endothermic reaction and the exothermic reaction of the chemical heat storage material.
  • the reaction control mechanism adjusts the amount of water or water vapor in the heat storage material container containing the chemical heat storage material.
  • Can include configurations.
  • the reaction control mechanism there is a heat storage material container 4 in which a chemical heat storage material is sealed, and a reaction gas container 5 in which a reaction gas such as water vapor is sealed, which is connected to the heat storage material container 4 via a valve V5. it can.
  • a heat storage material container 4 in which a chemical heat storage material is sealed
  • a reaction gas container 5 in which a reaction gas such as water vapor is sealed
  • the heat storage material container 4 is heated with a heat transfer medium and the reaction gas container 5 is cooled (maintained at room temperature) with the valve V5 open
  • the chemical heat storage material undergoes a dehydration reaction, and this dehydration reaction occurs.
  • the water vapor generated in (1) moves to the reaction gas container 5 and is condensed, and water or water vapor collects in the reaction gas container 5.
  • valve V5 When the valve V5 is closed when the dehydration reaction is completed and the heat storage material container 4 is returned to room temperature in that state, the pressure inside the heat storage material container becomes negative. The pressure inside the reaction gas vessel remains normal pressure (saturated water vapor pressure). Next, when the valve V5 is opened, water vapor moves from the reaction gas container 5 to the heat storage material container 4, the chemical heat storage material undergoes a hydration reaction, and heat is generated by this hydration reaction. At the same time, the temperature of the reaction gas container 5 decreases as the water vapor evaporates.
  • reaction control mechanism there can be mentioned one having a heat storage material container in which a chemical heat storage material is sealed and a water storage container connected to the heat storage material by a steam discharge passage and a water supply passage.
  • a condenser is provided in the middle of the steam discharge path.
  • a valve is provided in the water supply path.
  • the preheater 2 is installed in the middle of the raw material supply path and is for bringing hydrogen or carbon dioxide in the raw material supply path to a predetermined temperature, preferably a temperature of 250 to 300 ° C.
  • the preheater 2 includes a configuration capable of heat exchange between the heat transfer medium and hydrogen or carbon dioxide existing in the raw material supply path in combination with the heat transfer medium circulation path.
  • the heat recovery device 6 is for transferring a part of the heat generated by the reaction of synthesizing methane from hydrogen and carbon dioxide to the heat recovery medium.
  • the heat recovery device includes a configuration capable of heat exchange between the heat transfer medium and the heat recovery medium in combination with the heat transfer medium circulation path. With the heat recovery device, the excess heat generated in the reactor can be taken out by the heat recovery medium and used for other purposes. The heat of the heat transfer medium may be directly utilized for other purposes without going through the heat recovery device and the heat recovery medium.
  • the heat transfer medium circulation path is for circulating the heat transfer medium.
  • the heat transfer medium circulation path may be switched by a valve or the like so that the heat transfer medium circulates in at least two of a reactor, a preheater, a heat recovery device, and a heat storage device according to the heat utilization pattern. it can.
  • the heat transfer medium circulation path has a structure capable of exchanging heat between the heat transfer medium and the heat storage material composition in combination with the heat storage device, and the heat transfer medium and the substance existing in the reactor in combination with the reactor.
  • a configuration that allows heat exchange between, a configuration that allows heat exchange between the heat transfer medium and hydrogen or carbon dioxide in the raw material supply path in combination with a preheater, or a heat transfer medium that can be combined with a heat recovery device. Includes a configuration that allows heat exchange between and the heat recovery medium.
  • Methods of operating the metanation reactor include (1) operation start operation, (2) normal operation operation, (3) heat storage operation operation, and (4) operation stop operation.
  • (1) In the operation start operation heat is transferred from the heat storage material composition to the heat transfer medium in the heat storage device, and heat is transferred from the heat transfer medium to the substance in the reactor in the reactor to be in the reactor. Includes initiating a reaction to synthesize methane from hydrogen and carbon dioxide by warming the reactor to a predetermined temperature and supplying hydrogen and carbon dioxide to the reactor through a raw material supply channel.
  • the operation start operation may further include transferring heat from the heat transfer medium from the heat transfer medium to hydrogen and carbon dioxide in the raw material supply path in the preheater to warm the hydrogen and carbon dioxide in the raw material supply path to a predetermined temperature.
  • the valves V4, V6 and V1 are closed and the valves V7, V5, V3 and V2 are opened, the heat storage device dissipates heat, and the heat transfer medium stores heat. It circulates in the order of vessel, reactor and preheater.
  • the reaction of synthesizing methane from hydrogen and carbon dioxide is continued by supplying hydrogen and carbon dioxide to the reactor through the raw material supply path, and the reaction is in the reactor in the reactor. It involves transferring heat from a substance to a heat transfer medium to keep the substance in the reactor at a predetermined temperature. Normal operation is to transfer heat from the heat transfer medium to hydrogen and carbon dioxide in the raw material supply path in the preheater to warm the hydrogen and carbon dioxide in the raw material supply path to a predetermined temperature, and / or in the heat recovery device. Further may include transferring heat from the heat transfer medium to the heat recovery medium.
  • valves V5, V6, V3 and V2 are closed and valves V4, V7 and V1 are open, and the heat transfer medium is a reactor, preheater and heat. It circulates in the order of the collector.
  • hydrogen and carbon dioxide are supplied to the reactor through the raw material supply path to continue the reaction of synthesizing methane from hydrogen and carbon dioxide, and the substance existing in the reactor in the reactor. It includes transferring heat from carbon dioxide to a heat transfer medium to maintain a substance in the reactor at a predetermined temperature, and transferring heat from the heat transfer medium to a heat storage material composition in the heat storage device to store the material.
  • the heat storage operation is to transfer heat from the heat transfer medium to hydrogen and carbon dioxide in the raw material supply path in the preheater to warm the hydrogen and carbon dioxide in the raw material supply path to a predetermined temperature, and / or in the heat recovery device. Further may include transferring heat from the heat transfer medium to the heat recovery medium.
  • the valves V3, V6 and V1 are closed and the valves V5, V7, V4 and V2 are opened, the heat storage device stores heat, and the heat transfer medium stores heat. It circulates in the order of vessel, reactor, preheater and heat recovery.
  • the operation stop operation includes stopping the reaction of synthesizing methane from hydrogen and carbon dioxide by stopping the supply of hydrogen or carbon dioxide to the reactor.
  • the operation stop operation is to transfer heat from the substance in the reactor to the heat transfer medium in the reactor and cool the substance in the reactor to a predetermined temperature such as room temperature, and to heat from the heat transfer medium in the heat storage device. May further include transferring and storing heat in the heat storage material composition and / or transferring heat from the heat transfer medium to the heat recovery medium in the heat recovery device.
  • valves V3, V5, V7 and V2 are closed and valves V6, V4 and V1 are open, and the heat transfer medium is the reactor and heat recovery device. It circulates in order.
  • a valve (not shown) is used to prevent the heat transfer medium from circulating in the heat recovery device. It can also be manipulated or the flow of the heat transfer medium in the heat transfer medium circulation path can be stopped.
  • transferring heat from the heat storage material composition to a heat transfer medium causes the heat storage material composition to absorb a reaction gas such as water, and the heat storage material composition generates heat.
  • transferring heat from the heat transfer medium to the heat storage material composition includes removing a reaction gas such as water from the heat storage material composition and absorbing the heat in the heat storage material composition. Heat generation and endothermic heat can be switched by adjusting the amount of reaction gas such as water by the above-mentioned reaction control mechanism or the like.
  • the metanation reaction apparatus of the present invention its operation method, and the metanation reaction method, when the metanation reaction is continued, the heat generated by the reaction is stored in the heat storage material composition, and the stored heat is stored in the heat storage material composition. Since it is used to start the metanation reaction, it is not necessary to supply the heat generated by the surplus electricity or the heat generated by the combustion of fossil fuel to the metanation reaction device at the start of operation, and the energy efficiency related to energy storage is eliminated. Can be greatly improved.
  • the heat storage material composition contains a chemical heat storage material, the heat storage and heat dissipation can be easily controlled by a reaction gas such as water vapor, and the amount of heat storage per unit mass is high, so that the metanation reaction apparatus can be made compact. ..

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Abstract

水素と二酸化炭素とからメタンを合成する反応を行うための反応器と、水素および二酸化炭素を反応器に供給するための原料供給路と、合成されたメタンを反応器から抜出すための生成物抜出路と、伝熱媒体を循環させるための伝熱媒体循環路と、蓄熱材組成物を備える蓄熱器と、を有し、伝熱媒体循環路が、蓄熱器と組み合わされて伝熱媒体と蓄熱材組成物との間で熱交換ができる構成および反応器と組み合わされて伝熱媒体と反応器内に在る物質との間で熱交換ができる構成を含んでいる、メタネーション反応装置。

Description

メタネーション反応装置
 本発明は、メタネーション反応方法、メタネーション反応装置およびその運用方法に関する。より詳細に、本発明は、エネルギー貯蔵に係るエネルギー効率を向上させた、メタネーション反応方法、メタネーション反応装置およびその運用方法に関する。
 脱炭素の観点から再生可能エネルギーによる発電の検討が行われている。太陽光や風力といった自然エネルギーを使うものは、発電量が天候に左右されるため、発電量が、消費電力量に対して、多くなることがある。
 再生可能エネルギーによる発電などで生じる、余剰電力で水素を作り、その水素によって二酸化炭素をメタン化して、エネルギーを貯蔵する技術(メタネーション)が注目されている。メタンは都市ガスの主成分であり、広く使うことができると同時に、二酸化炭素の二次利用ができるという利点もある。
 メタネーションの方法として、例えば、特許文献1は、二酸化炭素および/または一酸化炭素を反応器により水素を用いて触媒的メタン化するための方法であって、水の電気分解によって水素ガスが製造される第一のステップを有し、第二のステップにおいて、得られた水素を用いて二酸化炭素および/または一酸化炭素の前記触媒的メタン化が行なわれるように構成した方法であって、前記電気分解に要される電気エネルギーが、再生可能エネルギー源、たとえば風力エネルギー、から取り出され、その際、前記メタン化に使用される触媒が、好ましくはハニカム構造物として形成された高い蓄熱能を有するキャリア構造物上に配置され、前記キャリア構造物が前記メタン化中に発生する反応熱の蓄熱材料として使用されることを特徴とする方法を開示している。
 特許文献2は、少なくとも水素と二酸化炭素を原料ガスとしてメタンガスを合成するメタンガス合成装置と、前記原料ガスを前記メタンガス合成装置に導入する原料ガス導入路と、前記メタンガス合成装置で生成された生成ガスを送出する生成ガス送出路と、前記原料ガス導入路および/または前記生成ガス送出路に介して設けられ、ガス中の不純物を除去する温度スイング吸着式ガス精製装置と、前記温度スイング吸着式ガス精製装置に、温度スイング吸着式ガス精製装置における脱着プロセスを駆動する高温再生ガスと低温再生ガスとをそれぞれ導入する再生ガス導入路と、前記温度スイング吸着式ガス精製装置に導入する高温再生ガスに付与する熱の蓄熱を行う蓄熱部を備え、前記再生ガス導入路で送られる高温再生ガスに前記メタンガス合成装置の反応熱が付与されていることを特徴とする熱利用型ガス精製システムを開示している。
特表2018-537532号公報 特開2019-052224号公報
田中ら「自動車排熱利用のための蓄熱技術の開発」古河電工時報第137号(平成30年2月)pp28-32
 ところが、余剰電力は、上記のとおり天候に左右されるため、水素による二酸化炭素のメタン化反応(メタネーション反応)の開始と停止が頻繁に行われることが想定される。二酸化炭素のメタン化を行うためには、一般的に、250~300℃の雰囲気が要求される。メタネーション反応装置が完全に停止した状態からメタネーション反応装置を起動(コールドスタート)するためには、メタネーション反応装置に多量の熱を供給する必要がある。その熱は、化石燃料または余剰電力によって発生させている。そのため、メタネーションによるエネルギー貯蔵に係るエネルギー効率を低下させる。
 本発明の課題は、エネルギー貯蔵に係るエネルギー効率を向上させた、メタネーション反応方法、メタネーション反応装置およびその運用方法に関するものである。
 上記課題を解決すべく検討した結果、以下のような態様を包含する本発明を完成するに至った。
〔1〕 水素と二酸化炭素とからメタンを合成する反応を行うための反応器と、
 水素および二酸化炭素を反応器に供給するための原料供給路と、
 合成されたメタンを反応器から抜出すための生成物抜出路と、
 伝熱媒体を循環させるための伝熱媒体循環路と、
 蓄熱材組成物を備える蓄熱器と、
を有し、
 伝熱媒体循環路が、蓄熱器と組み合わされて伝熱媒体と蓄熱材組成物との間で熱交換ができる構成および反応器と組み合わされて伝熱媒体と反応器内に在る物質との間で熱交換ができる構成を含んでいる、
メタネーション反応装置。
〔2〕 蓄熱材組成物が、化学蓄熱材を含むものである、〔1〕に記載のメタネーション反応装置。
〔3〕 化学蓄熱材が、マグネシウムの水酸化物または酸化物、ストロンチウムの水酸化物または酸化物、バリウムの水酸化物または酸化物、カルシウムの水酸化物または酸化物、および硫酸カルシウムからなる群から選ばれる少なくとも一つを含むものである、〔2〕に記載のメタネーション反応装置。
〔4〕 原料供給路の途中に水素若しくは二酸化炭素を所定温度にするための予熱器をさらに有し、
 伝熱媒体循環路が、予熱器と組み合わされて伝熱媒体と原料供給路内に在る水素若しくは二酸化炭素との間で熱交換ができる構成をさらに含む、〔1〕~〔3〕のいずれかひとつに記載のメタネーション反応装置。
〔5〕 水素と二酸化炭素とからメタンを合成する反応を行うための反応器と、
 水素および二酸化炭素を反応器に供給するための原料供給路と、
 合成されたメタンを反応器から抜出すための生成物抜出路と、
 伝熱媒体を循環させるための伝熱媒体循環路と、
 蓄熱材組成物を備える蓄熱器と、
を有し、
 伝熱媒体循環路が、蓄熱器と組み合わされて伝熱媒体と蓄熱材組成物との間で熱交換ができる構成および反応器と組み合わされて伝熱媒体と反応器内に在る物質との間で熱交換ができる構成を含んでいる、
メタネーション反応装置を運用する方法であって、
(1) 蓄熱器において蓄熱材組成物から熱を伝熱媒体に受け渡し、反応器において伝熱媒体から熱を反応器内に在る物質に受け渡して反応器内に在る物質を所定温度に温め、且つ原料供給路を通して水素および二酸化炭素を反応器に供給することによって、水素と二酸化炭素とからメタンを合成する反応を開始すること、
(2) 原料供給路を通して水素および二酸化炭素を反応器に供給することによって、水素と二酸化炭素とからメタンを合成する反応を継続し、且つ反応器において反応器内に在る物質から熱を伝熱媒体に受け渡して反応器内に在る物質を所定温度に維持すること、
(3) 原料供給路を通して水素および二酸化炭素を反応器に供給することによって、水素と二酸化炭素とからメタンを合成する反応を継続し、反応器において反応器内に在る物質から熱を伝熱媒体に受け渡して反応器内に在る物質を所定温度に維持し、且つ蓄熱器において伝熱媒体から熱を蓄熱材組成物に受け渡して蓄えること、および
(4) 水素または二酸化炭素の反応器への供給を停止することによって、水素と二酸化炭素とからメタンを合成する反応を停止する、
ことを含む、方法。
〔6〕 蓄熱材組成物が化学蓄熱材を含むものであり、
 蓄熱材組成物から熱を伝熱媒体に受け渡すことが蓄熱材組成物に水を吸わせて蓄熱材組成物が発熱することを含み、伝熱媒体から熱を蓄熱材組成物に受け渡すことが蓄熱材組成物から水を除去して蓄熱材組成物が吸熱することを含む、〔5〕に記載の方法。
〔7〕 化学蓄熱材が、マグネシウムの水酸化物または酸化物、ストロンチウムの水酸化物または酸化物、バリウムの水酸化物または酸化物、カルシウムの水酸化物または酸化物、および硫酸カルシウムからなる群から選ばれる少なくとも一つを含むものである、〔6〕に記載の方法。
〔8〕 メタネーション反応装置が、原料供給路の途中に原料供給路内に在る水素若しくは二酸化炭素を所定温度にするための予熱器をさらに有し、伝熱媒体循環路が、予熱器と組み合わされて伝熱媒体と原料供給路内の水素若しくは二酸化炭素との間で熱交換ができる構成をさらに含み、
 予熱器において伝熱媒体から熱を原料供給路内に在る水素若しくは二酸化炭素に受け渡すことをさらに含む、〔5〕~〔7〕のいずれかひとつに記載の方法。
〔9〕 蓄熱材組成物から熱を放出して反応器を温めること、
 該反応器において水素と二酸化炭素とを反応させてメタンを合成すること、および
 該反応時に発生する熱を蓄熱材組成物に吸収させて蓄えること、
を含む、メタネーション反応方法。
 本発明のメタネーション反応装置およびその運用方法ならびにメタネーション反応方法によると、メタネーション反応によって発生する熱を蓄熱材組成物に蓄え、その蓄えられた熱をメタネーション反応の開始のために使用するので、余剰電力によって発生させた熱または化石燃料の燃焼によって発生させた熱を運転開始時にメタネーション反応装置に供給する必要が無くなり、エネルギー貯蔵に係るエネルギー効率を大幅に向上させることができる。蓄熱材組成物が化学蓄熱材を含むものである場合、蓄熱および放熱が水蒸気などの反応ガスによって容易に制御でき、且つ単位質量当たりの蓄熱量が高いので、メタネーション反応装置をコンパクトにすることができる。
本発明のメタネーション反応装置の一例を示す図である。 メタネーション反応装置の運転開始操作時における伝熱媒体循環路の態様の一例を示す図である。 メタネーション反応装置の平常運転操作時における伝熱媒体循環路の態様の一例を示す図である。 メタネーション反応装置の蓄熱運転操作時における伝熱媒体循環路の態様の一例を示す図である。 メタネーション反応装置の運転停止操作時における伝熱媒体循環路の態様の一例を示す図である。
 本発明のメタネーション反応方法は、蓄熱材組成物から熱を放出して反応器を温めること、該反応器において水素と二酸化炭素とを反応させてメタンを合成すること、および該反応時に発生する熱を蓄熱材組成物に吸収させて蓄えること、を含む。
 水素としては、褐炭などの化石燃料から生成したもの、水の電気分解で生成したものなど、を使用することができる。
 二酸化炭素としては、火力発電所、製鉄所などから排出されるガスなどを使用することができる。排出ガスには一酸化炭素が含まれていてもよい。
 蓄熱材組成物は、化学蓄熱材、顕熱蓄熱材、潜熱蓄熱材などの蓄熱材を含む。これら蓄熱材のうち化学蓄熱材が好ましい。
 化学蓄熱材としては、好ましくは、マグネシウムの水酸化物または酸化物、ストロンチウムの水酸化物または酸化物、バリウムの水酸化物または酸化物、カルシウムの水酸化物または酸化物、および硫酸カルシウムからなる群から選ばれる少なくとも一つを含むもの、より好ましくはマグネシウムの水酸化物または酸化物を含むものを挙げることができる。
 マグネシウムの水酸化物または酸化物は、水酸化マグネシウムが脱水して酸化マグネシウムに変化する際の蓄熱と、酸化マグネシウムが水和して水酸化マグネシウムに変化する際の放熱とを利用する、化学蓄熱材である。マグネシウムの水酸化物または酸化物による蓄熱作動温度は350℃前後である。
 ストロンチウムの水酸化物または酸化物は、水酸化ストロンチウムが脱水して酸化ストロンチウムに変化する際の蓄熱と、酸化ストロンチウムが水和して水酸化ストロンチウムに変化する際の放熱とを利用する、化学蓄熱材である。
 バリウムの水酸化物または酸化物は、水酸化バリウムが脱水して酸化バリウムに変化する際の蓄熱と、酸化バリウムが水和して水酸化バリウムに変化する際の放熱とを利用する、化学蓄熱材である。
 カルシウムの水酸化物または酸化物は、水酸化カルシウムが脱水して酸化カルシウムに変化する際の蓄熱と、酸化カルシウムが水和して水酸化カルシウムに変化する際の放熱とを利用する、化学蓄熱材である。カルシウムの水酸化物または酸化物による蓄熱作動温度は500℃前後である。
 硫酸カルシウムは、硫酸カルシウム0.5水和物が脱水して無水硫酸カルシウムに変化する際の蓄熱と、無水硫酸カルシウムが水和して硫酸カルシウム0.5水和物に変化する際の放熱とを利用する、化学蓄熱材である。硫酸カルシウムによる蓄熱作動温度は90℃前後である。
 本発明に用いられる蓄熱材組成物は、上記の蓄熱材以外に、熱伝導性フィラ、補強繊維、バインダなどの添加剤を含んでいてもよい。
 本発明のメタネーション反応方法を行うために、本発明のメタネーション反応装置を用いることが好ましい。
 本発明のメタネーション反応装置は、反応器1と、原料供給路と、生成物抜出路と、伝熱媒体循環路と、蓄熱器3とを有し、必要に応じて、予熱器2および/または熱回収器6をさらに有する。
 反応器1は、水素と二酸化炭素とからメタンを合成する反応を行うためのものであり、原料供給路は、水素および二酸化炭素を反応器1に供給するためのものであり、生成物抜出路は、合成されたメタンを反応器1から抜出すためのものである。
 反応器1には、メタネーション触媒が具備されていてもよい。メタネーション触媒としては、ニッケルアルミネート(NiAlxy)、Ru/NiAlxy、Ru/Al23、Ru/TiO2、Ni/TiO2、Ru-Ni/TiO2などが挙げられる。メタネーション触媒は、顆粒、ペレット、ラシヒリング、ハニカム、平板、波板、コルゲート、多孔質などの形状に成された触媒体として、反応器に封入することができる。
 反応器1は、伝熱媒体循環路と組み合わされて、伝熱媒体と反応器内に在る物質との間で熱交換ができる構成をさらに含む。この構成によって、反応器内に在る物質は、所定の温度、好ましくは250~300℃の温度にすることができる。ここで、反応器内に在る物質は、反応原料である水素、二酸化炭素など、反応生成物であるメタンなどを含むものである。
 蓄熱器3には、蓄熱材組成物が具備されている。蓄熱材組成物は、顆粒、ペレット、ラシヒリング、ハニカム、平板、波板、コルゲート、多孔質などの形に成された蓄熱体として、蓄熱器に設置することができる。蓄熱器は、伝熱媒体循環路と組み合わされて、伝熱媒体と蓄熱材組成物との間で熱交換ができる構成を含む。
 化学蓄熱材を含む蓄熱材組成物を具備する蓄熱器3は、化学蓄熱材の吸熱反応および発熱反応を制御する機構(反応制御機構)をさらに含んでいてもよい。例えば、脱水反応および水和反応を利用して蓄熱および放熱を行うことができる化学蓄熱材においては、反応制御機構は、化学蓄熱材を封入した蓄熱材容器内の水または水蒸気の量を調節する構成を含むことができる。
 反応制御機構の一例として、化学蓄熱材を封入した蓄熱材容器4と、それにバルブV5を介して流路で接続した水蒸気などの反応ガスを封入した反応ガス容器5とを有するものを挙げることができる。これにおいては、バルブV5を開いた状態で、蓄熱材容器4を伝熱媒体で加熱し、反応ガス容器5を冷却する(常温に保つ)と、化学蓄熱材が脱水反応を起こし、この脱水反応で生成した水蒸気が反応ガス容器5に移動し凝縮され、水または水蒸気が反応ガス容器5に溜まる。脱水反応が完了した時点でバルブV5を閉じ、その状態で、蓄熱材容器4を常温に戻すと、蓄熱材容器内は負圧となる。反応ガス容器内は常圧(飽和水蒸気圧)のままである。次に、バルブV5を開くと、水蒸気が反応ガス容器5から蓄熱材容器4に移動し、化学蓄熱材が水和反応を起こし、この水和反応で熱が発生する。同時に反応ガス容器5においては水蒸気の蒸発に伴い温度が下がる。
 反応制御機構の別の一例として、化学蓄熱材を封入した蓄熱材容器と、それに水蒸気排出路および水供給路で接続した水貯蔵容器とを有するものを挙げることができる。水蒸気排出路の途中に凝縮器が設けられている。水供給路にはバルブが設けられている。これにおいては、水供給路のバルブを閉じた状態で、蓄熱材容器を伝熱媒体で加熱すると、化学蓄熱材が脱水反応を起こし、この脱水反応で生成した水蒸気が水蒸気排出路を経て凝縮器に移動し凝縮され、凝縮した水が水貯蔵容器に溜まる。次に、水供給路のバルブを開いた状態にすると、水が水貯蔵容器から水供給路を経て蓄熱材容器に移動し、化学蓄熱材が水和反応を起こし、この水和反応で熱が発生する。発生した熱で蓄熱材容器に供給した余剰の水が水蒸気となり、水蒸気排出路を経て水貯蔵容器に移動し凝縮され、水貯蔵容器に溜まる。
 予熱器2は、原料供給路の途中に設置され、原料供給路内に在る水素若しくは二酸化炭素を所定の温度、好ましくは250~300℃の温度にするためのものである。予熱器2は、伝熱媒体循環路と組み合わされて伝熱媒体と原料供給路内に在る水素若しくは二酸化炭素との間で熱交換ができる構成を含む。
 熱回収器6は、水素と二酸化炭素とからメタンを合成する反応によって生成した熱の一部を、熱回収媒体に受け渡すためのものである。熱回収器は、伝熱媒体循環路と組み合わされて、伝熱媒体と熱回収媒体との間で熱交換ができる構成を含む。熱回収器によって、反応器において生成した熱のうち余剰分を熱回収媒体によって外部に取り出し、他の用途に活用することができる。なお、熱回収器および熱回収媒体を介さずに直接に他の用途に伝熱媒体の熱を活用してもよい。
 伝熱媒体循環路は、伝熱媒体を循環させるためのものである。伝熱媒体循環路は、熱の利用形態に応じて、反応器、予熱器、熱回収器または蓄熱器の少なくとも二つに伝熱媒体が循環するように、バルブ等によって流路を切り替えることができる。
 伝熱媒体循環路は、蓄熱器と組み合わされて伝熱媒体と蓄熱材組成物との間で熱交換ができる構成、反応器と組み合わされて伝熱媒体と反応器内に在る物質との間で熱交換ができる構成、予熱器と組み合わされて伝熱媒体と原料供給路内に在る水素若しくは二酸化炭素との間で熱交換ができる構成、または熱回収器と組み合わされて伝熱媒体と熱回収媒体との間で熱交換ができる構成を含む。
 メタネーション反応装置を運用する方法は、(1)運転開始操作、(2)平常運転操作、(3)蓄熱運転操作および(4)運転停止操作を含む。
 (1)運転開始操作は、蓄熱器において蓄熱材組成物から熱を伝熱媒体に受け渡し、反応器において伝熱媒体から熱を反応器内に在る物質に受け渡して反応器内に在る物質を所定温度に温め、且つ原料供給路を通して水素および二酸化炭素を反応器に供給することによって、水素と二酸化炭素とからメタンを合成する反応を開始することを含む。運転開始操作は、予熱器において伝熱媒体から熱を原料供給路内にある水素および二酸化炭素に受け渡し原料供給路内にある水素および二酸化炭素を所定温度に温めることをさらに含んでもよい。これに限定されないが、図2に示す伝熱媒体循環路においては、バルブV4、V6およびV1が閉じ且つバルブV7、V5、V3およびV2が開いて、蓄熱器が放熱し、伝熱媒体が蓄熱器、反応器および予熱器の順に循環する。
 (2)平常運転操作は、原料供給路を通して水素および二酸化炭素を反応器に供給することによって、水素と二酸化炭素とからメタンを合成する反応を継続し、且つ反応器において反応器内に在る物質から熱を伝熱媒体に受け渡して反応器内に在る物質を所定温度に維持することを含む。平常運転操作は、予熱器において伝熱媒体から熱を原料供給路内にある水素および二酸化炭素に受け渡し原料供給路内にある水素および二酸化炭素を所定温度に温めること、および/または熱回収器において伝熱媒体から熱を熱回収媒体に受け渡すこと、をさらに含んでもよい。これに限定されないが、図3に示す伝熱媒体循環路においては、バルブV5、V6、V3およびV2が閉じ且つバルブV4、V7およびV1が開いて、伝熱媒体が反応器、予熱器および熱回収器の順に循環する。
 (3)蓄熱運転操作は、原料供給路を通して水素および二酸化炭素を反応器に供給することによって、水素と二酸化炭素とからメタンを合成する反応を継続し、反応器において反応器内に在る物質から熱を伝熱媒体に受け渡して反応器内に在る物質を所定温度に維持し、且つ蓄熱器において伝熱媒体から熱を蓄熱材組成物に受け渡して蓄えることを含む。蓄熱運転操作は、予熱器において伝熱媒体から熱を原料供給路内にある水素および二酸化炭素に受け渡し原料供給路内にある水素および二酸化炭素を所定温度に温めること、および/または熱回収器において伝熱媒体から熱を熱回収媒体に受け渡すこと、をさらに含んでもよい。これに限定されないが、図4に示す伝熱媒体循環路においては、バルブV3、V6およびV1が閉じ且つバルブV5、V7、V4およびV2が開いて、蓄熱器が蓄熱し、伝熱媒体が蓄熱器、反応器、予熱器および熱回収器の順に循環する。
 (4)運転停止操作は、水素または二酸化炭素の反応器への供給を停止することによって、水素と二酸化炭素とからメタンを合成する反応を停止することを含む。運転停止操作は、反応器において反応器内に在る物質から熱を伝熱媒体に受け渡し反応器内に在る物質を常温などの所定の温度に冷ますこと、蓄熱器において伝熱媒体から熱を蓄熱材組成物に受け渡して蓄えることおよび/または熱回収器において伝熱媒体から熱を熱回収媒体に受け渡すこと、をさらに含んでもよい。これに限定されないが、図5に示す伝熱媒体循環路においては、バルブV3、V5、V7およびV2が閉じ且つバルブV6、V4およびV1が開いて、伝熱媒体が反応器および熱回収器の順に循環する。また、反応器に在る熱を外部に放出しないようにする(反応器の温度が高い状態を保つようにする)ために、図示しないが、熱回収器に伝熱媒体を循環させないようにバルブ操作するか、または伝熱媒体循環路における伝熱媒体の流れを止めることもできる。
 蓄熱材組成物が化学蓄熱材を含むものである場合、蓄熱材組成物から熱を伝熱媒体に受け渡すことは、蓄熱材組成物に水などの反応ガスを吸わせて蓄熱材組成物が発熱することを含み、また、伝熱媒体から熱を蓄熱材組成物に受け渡すことは、蓄熱材組成物から水などの反応ガスを除去して蓄熱材組成物が吸熱することを含む。発熱および吸熱は、前述の反応制御機構などによって、水などの反応ガスの量を調節することによって、切り替えることができる。
 本発明のメタネーション反応装置およびその運用方法ならびにメタネーション反応方法によると、メタネーション反応を継続させているときに、その反応によって発生する熱を蓄熱材組成物に蓄え、その蓄えられた熱をメタネーション反応の開始のために使用するので、余剰電力によって発生させた熱または化石燃料の燃焼によって発生させた熱を運転開始時にメタネーション反応装置に供給する必要が無くなり、エネルギー貯蔵に係るエネルギー効率を大幅に向上させることができる。蓄熱材組成物が化学蓄熱材を含むものである場合、蓄熱および放熱が水蒸気などの反応ガスによって容易に制御でき、且つ単位質量当たりの蓄熱量が高いので、メタネーション反応装置をコンパクトにすることができる。

Claims (9)

  1.  水素と二酸化炭素とからメタンを合成する反応を行うための反応器と、
     水素および二酸化炭素を反応器に供給するための原料供給路と、
     合成されたメタンを反応器から抜出すための生成物抜出路と、
     伝熱媒体を循環させるための伝熱媒体循環路と、
     蓄熱材組成物を備える蓄熱器と、
    を有し、
     伝熱媒体循環路が、蓄熱器と組み合わされて伝熱媒体と蓄熱材組成物との間で熱交換ができる構成および反応器と組み合わされて伝熱媒体と反応器内に在る物質との間で熱交換ができる構成を含んでいる、
    メタネーション反応装置。
  2.  蓄熱材組成物が、化学蓄熱材を含むものである、請求項1に記載のメタネーション反応装置。
  3.  化学蓄熱材が、マグネシウムの水酸化物または酸化物、ストロンチウムの水酸化物または酸化物、バリウムの水酸化物または酸化物、カルシウムの水酸化物または酸化物、および硫酸カルシウムからなる群から選ばれる少なくとも一つを含むものである、請求項2に記載のメタネーション反応装置。
  4.  原料供給路の途中に水素若しくは二酸化炭素を所定温度にするための予熱器をさらに有し、
     伝熱媒体循環路が、予熱器と組み合わされて伝熱媒体と原料供給路内に在る水素若しくは二酸化炭素との間で熱交換ができる構成をさらに含む、請求項1~3のいずれかひとつに記載のメタネーション反応装置。
  5.  水素と二酸化炭素とからメタンを合成する反応を行うための反応器と、
     水素および二酸化炭素を反応器に供給するための原料供給路と、
     合成されたメタンを反応器から抜出すための生成物抜出路と、
     伝熱媒体を循環させるための伝熱媒体循環路と、
     蓄熱材組成物を備える蓄熱器と、
    を有し、
     伝熱媒体循環路が、蓄熱器と組み合わされて伝熱媒体と蓄熱材組成物との間で熱交換ができる構成および反応器と組み合わされて伝熱媒体と反応器内に在る物質との間で熱交換ができる構成を含んでいる、
    メタネーション反応装置を運用する方法であって、
    (1) 蓄熱器において蓄熱材組成物から熱を伝熱媒体に受け渡し、反応器において伝熱媒体から熱を反応器内に在る物質に受け渡して反応器内に在る物質を所定温度に温め、且つ原料供給路を通して水素および二酸化炭素を反応器に供給することによって、水素と二酸化炭素とからメタンを合成する反応を開始すること、
    (2) 原料供給路を通して水素および二酸化炭素を反応器に供給することによって、水素と二酸化炭素とからメタンを合成する反応を継続し、且つ反応器において反応器内に在る物質から熱を伝熱媒体に受け渡して反応器内に在る物質を所定温度に維持すること、
    (3) 原料供給路を通して水素および二酸化炭素を反応器に供給することによって、水素と二酸化炭素とからメタンを合成する反応を継続し、反応器において反応器内に在る物質から熱を伝熱媒体に受け渡して反応器内に在る物質を所定温度に維持し、且つ蓄熱器において伝熱媒体から熱を蓄熱材組成物に受け渡して蓄えること、および
    (4) 水素または二酸化炭素の反応器への供給を停止することによって、水素と二酸化炭素とからメタンを合成する反応を停止する、
    ことを含む、方法。
  6.  蓄熱材組成物が化学蓄熱材を含むものであり、
     蓄熱材組成物から熱を伝熱媒体に受け渡すことが蓄熱材組成物に水を吸わせて蓄熱材組成物が発熱することを含み、伝熱媒体から熱を蓄熱材組成物に受け渡すことが蓄熱材組成物から水を除去して蓄熱材組成物が吸熱することを含む、請求項5に記載の方法。
  7.  化学蓄熱材が、マグネシウムの水酸化物または酸化物、ストロンチウムの水酸化物または酸化物、バリウムの水酸化物または酸化物、カルシウムの水酸化物または酸化物、および硫酸カルシウムからなる群から選ばれる少なくとも一つを含むものである、請求項6に記載の方法。
  8.  メタネーション反応装置が、原料供給路の途中に原料供給路内に在る水素若しくは二酸化炭素を所定温度にするための予熱器をさらに有し、伝熱媒体循環路が、予熱器と組み合わされて伝熱媒体と原料供給路内の水素若しくは二酸化炭素との間で熱交換ができる構成をさらに含み、
     予熱器において伝熱媒体から熱を原料供給路内に在る水素若しくは二酸化炭素に受け渡すことをさらに含む、請求項5~7のいずれかひとつに記載の方法。
  9.  蓄熱材組成物から熱を放出して反応器内を温めること、
     該反応器において水素と二酸化炭素とを反応させてメタンを合成すること、および
     該反応時に発生する熱を蓄熱材組成物に吸収させて蓄えること、
    を含む、メタネーション反応方法。
PCT/JP2020/043017 2019-11-19 2020-11-18 メタネーション反応装置 WO2021100767A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-208526 2019-11-19
JP2019208526A JP2021080202A (ja) 2019-11-19 2019-11-19 メタネーション反応装置

Publications (1)

Publication Number Publication Date
WO2021100767A1 true WO2021100767A1 (ja) 2021-05-27

Family

ID=75966123

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/043017 WO2021100767A1 (ja) 2019-11-19 2020-11-18 メタネーション反応装置

Country Status (2)

Country Link
JP (1) JP2021080202A (ja)
WO (1) WO2021100767A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022075336A1 (ja) * 2020-10-09 2022-04-14 由城 紫垣 反応熱の除熱に吸熱反応を用いるメタン化反応装置および吸熱材の再生処理プロセス

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7041443B1 (ja) 2020-10-09 2022-03-24 由城 紫垣 反応熱の除熱に吸熱反応を用いるメタン化反応装置および吸熱材の再生処理プロセス
JP2023035720A (ja) * 2021-09-01 2023-03-13 株式会社日立製作所 Co2を燃料に変換するシステム、及び、その方法
JP2023166900A (ja) * 2022-05-10 2023-11-22 日立造船株式会社 発電システム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5099968A (ja) * 1973-12-20 1975-08-08
JP2014206363A (ja) * 2013-03-21 2014-10-30 株式会社デンソー 化学蓄熱装置
JP2018168205A (ja) * 2017-03-29 2018-11-01 株式会社日立製作所 メタン製造方法および設備
WO2019082538A1 (ja) * 2017-10-26 2019-05-02 日立造船株式会社 ガス生成装置及びガス生成方法
WO2019123914A1 (ja) * 2017-12-21 2019-06-27 Dic株式会社 化学蓄熱複合体、化学蓄熱複合体形成用組成物及び化学蓄熱複合体の形成方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5099968A (ja) * 1973-12-20 1975-08-08
JP2014206363A (ja) * 2013-03-21 2014-10-30 株式会社デンソー 化学蓄熱装置
JP2018168205A (ja) * 2017-03-29 2018-11-01 株式会社日立製作所 メタン製造方法および設備
WO2019082538A1 (ja) * 2017-10-26 2019-05-02 日立造船株式会社 ガス生成装置及びガス生成方法
WO2019123914A1 (ja) * 2017-12-21 2019-06-27 Dic株式会社 化学蓄熱複合体、化学蓄熱複合体形成用組成物及び化学蓄熱複合体の形成方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022075336A1 (ja) * 2020-10-09 2022-04-14 由城 紫垣 反応熱の除熱に吸熱反応を用いるメタン化反応装置および吸熱材の再生処理プロセス

Also Published As

Publication number Publication date
JP2021080202A (ja) 2021-05-27

Similar Documents

Publication Publication Date Title
WO2021100767A1 (ja) メタネーション反応装置
JP6956665B2 (ja) 燃焼排ガス中の二酸化炭素のメタン化方法及びメタン製造設備
KR100952343B1 (ko) 탄화수소 연료 처리 방법 및 장치, 연료 전지 조작 방법
Kyaw et al. Applicability of carbonation/decarbonation reactions to high-temperature thermal energy storage and temperature upgrading
CN101468790A (zh) 借助于分压摆动循环化学反应分离二氧化碳
TW200540107A (en) Reactor with carbon dioxide fixing mateiral
KR102053978B1 (ko) 고순도 수소 생산 장치 및 고순도 수소 생산 방법
WO2004109200A1 (ja) 蓄熱式ヒートポンプシステム
WO2019073867A1 (ja) メタン製造システム
JP7114108B2 (ja) 熱利用システムおよび発熱装置
CN113811379A (zh) 用于特别是从废气分离二氧化碳的固体反应器、系统和方法
JP2002212575A (ja) 精製コークス炉ガスの高度処理装置および利用方法
JP4744971B2 (ja) 低質廃熱回収システム
WO2001004046A1 (fr) Procede de production d'energie electrique a l'aide d'une pile a combustible et systeme de production d'energie electrique utilisant une pile a combustible
Nguyen et al. Recent progress in thermochemical heat storage: materials and applications
Tregambi et al. Modeling of an Autothermal Process for Integrated Carbon Dioxide Capture and Methanation by Magnesium Looping (MgO/MgCO3) and Renewable Hydrogen
KR100899306B1 (ko) 칼슘계 고온 이산화탄소 흡수제
US20240001296A1 (en) Method and system to capture co2 in flue gases emitted intermittently
JP2001058801A (ja) 二酸化炭素を分離する発電システム
JP5458989B2 (ja) エネルギー変換装置
KR20230132302A (ko) 수소 가스의 제조 방법
WO2017183388A1 (ja) 内燃機関
KR20230088681A (ko) 수소 공정
CN210092233U (zh) 一种熔融碳酸盐燃料电池与钙循环集成系统
Lu et al. A hybrid method for hydrogen storage and generation from water

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20889786

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20889786

Country of ref document: EP

Kind code of ref document: A1