WO2021100250A1 - 加水分解システム、脱硝設備及び加水分解システムの制御方法 - Google Patents

加水分解システム、脱硝設備及び加水分解システムの制御方法 Download PDF

Info

Publication number
WO2021100250A1
WO2021100250A1 PCT/JP2020/028999 JP2020028999W WO2021100250A1 WO 2021100250 A1 WO2021100250 A1 WO 2021100250A1 JP 2020028999 W JP2020028999 W JP 2020028999W WO 2021100250 A1 WO2021100250 A1 WO 2021100250A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrolysis
fan
gas
urea water
supply amount
Prior art date
Application number
PCT/JP2020/028999
Other languages
English (en)
French (fr)
Inventor
匠磨 森
博仲 田中
恵美 庄野
Original Assignee
日立造船株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立造船株式会社 filed Critical 日立造船株式会社
Priority to KR1020227019360A priority Critical patent/KR20220099996A/ko
Priority to EP20891287.3A priority patent/EP4063623A4/en
Priority to CN202080080368.7A priority patent/CN114761675B/zh
Publication of WO2021100250A1 publication Critical patent/WO2021100250A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/90Injecting reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9431Processes characterised by a specific device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9495Controlling the catalytic process
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2006Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
    • F01N3/2033Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating using a fuel burner or introducing fuel into exhaust duct
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • F01N3/2073Selective catalytic reduction [SCR] with means for generating a reducing substance from the exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • F01N3/208Control of selective catalytic reduction [SCR], e.g. dosing of reducing agent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/36Arrangements for supply of additional fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/206Ammonium compounds
    • B01D2251/2067Urea
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/01Engine exhaust gases
    • B01D2258/012Diesel engines and lean burn gasoline engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/45Gas separation or purification devices adapted for specific applications
    • B01D2259/4566Gas separation or purification devices adapted for specific applications for use in transportation means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/04Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being an electric, e.g. electrostatic, device other than a heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/14Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a fuel burner
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/40Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a hydrolysis catalyst
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2590/00Exhaust or silencing apparatus adapted to particular use, e.g. for military applications, airplanes, submarines
    • F01N2590/02Exhaust or silencing apparatus adapted to particular use, e.g. for military applications, airplanes, submarines for marine vessels or naval applications
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/08Adding substances to exhaust gases with prior mixing of the substances with a gas, e.g. air
    • F01N2610/085Controlling the air supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/14Arrangements for the supply of substances, e.g. conduits
    • F01N2610/1453Sprayers or atomisers; Arrangement thereof in the exhaust apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a hydrolysis system, a denitration facility, and a method for controlling the hydrolysis system.
  • denitration equipment for reducing nitrogen oxides (NO X) in engine exhaust gas
  • ammonia is introduced into a denitration catalyst such as SCR (Selective Catalytic Reduction) together with the exhaust gas to cause a reduction reaction of nitrogen oxides to purify the exhaust gas.
  • SCR Selective Catalytic Reduction
  • ammonia is supplied by hydrolyzing urea water, which is easy to handle, in a hydrolyzed container (vaporizer) in a high-temperature gas stream.
  • One aspect of the present invention is to realize a hydrolysis system capable of supplying the required ammonia to the denitration catalyst.
  • the hydrolysis system supplies a hydrolysis container that sprays urea water onto a gas stream to generate ammonia, and supplies the gas stream to the hydrolysis container.
  • the first fan is provided with a control device, and the control device changes the supply amount of the gas stream based on the supply amount of the urea water to the hydrolysis vessel. It has a configuration to control.
  • the method for controlling the hydrolysis system is a hydrolysis container for spraying urea water into a gas stream to generate ammonia, and the gas for the hydrolysis container.
  • a method for controlling a hydrolysis system including a first fan for supplying a stream, wherein the supply of the gas stream is changed based on the supply of urea water to the hydrolysis vessel. It has a configuration for controlling the first fan.
  • FIG. 1 is a schematic configuration diagram showing a denitration facility 1 provided with the hydrolysis system 10 according to the first embodiment.
  • the denitration equipment 1 denitrates the exhaust gas from an engine such as a diesel engine with the denitration catalyst 30 and discharges the exhaust gas.
  • An exhaust gas line 21 for introducing exhaust gas from the engine is connected to the denitration catalyst 30.
  • a discharge line 24 for discharging the denitrated gas is connected to the denitration catalyst 30.
  • the hydrolysis system 10 is an apparatus for supplying a processing gas containing ammonia to a denitration catalyst.
  • the hydrolysis system 10 includes a first fan 100, a burner unit 200, a second fan 300, a hydrolysis container 400, a pump 500, and a control device 600.
  • the first fan 100 takes in the bleed air from the discharge line 24 that discharges the gas deniturized by the denitration catalyst 30 into the hydrolysis system 10 through the bleed air line 22. As shown in FIG. 1, in the first embodiment, the bleeding line 22 branches from the discharge line 24.
  • the burner unit 200 is a device for heating the extracted air taken in by the first fan 100.
  • the burner unit 200 is provided with a combustion chamber 201 and a burner 202.
  • a fuel line 11 is connected to the burner 202.
  • the fuel supplied to the burner 202 through the fuel line 11 may be a gas fuel composed of A heavy oil, B heavy oil, C heavy oil, light oil, hydrocarbon gas, or other fuel.
  • the air taken in by the second fan 300 flows into the combustion chamber 201 through the outside air line 12, and the fuel is burned by the burner 202.
  • the shape of the combustion chamber 201 is a cylindrical shape that is long in the axial direction, more preferably a cylindrical shape, and the burner 202 is arranged at the end thereof.
  • the combustion is appropriately controlled.
  • the ratio of bleed air is usually controlled to be higher than that of the outside air.
  • the bleed air heated by the combustion chamber 201 is introduced into the hydrolysis vessel 400.
  • the hydrolysis container 400 is a device that hydrolyzes urea water to generate ammonia.
  • the hydrolysis container 400 is provided with a nozzle 401.
  • the flow rate of urea water is controlled and urea water is supplied to the nozzle 401 by the pump 500 through the supply line 13.
  • Nozzle 401 sprays urea water against the high temperature gas stream introduced into the hydrolysis vessel 400. Then, the sprayed urea water is hydrolyzed at a high temperature to generate ammonia, which is mixed with the exhaust gas through the processing gas line 23.
  • the shape of the hydrolysis container 400 is a tubular shape that is long in the axial direction and a square tubular shape that has a substantially square cross section in the radial direction.
  • the shape is not limited to a square cylinder, and may be a cylinder.
  • a hydrolysis catalyst may be installed in the hydrolysis container 400 to further promote the hydrolysis reaction.
  • the hydrolysis vessel 400 supplies a high-temperature processing gas mixed with ammonia to the denitration catalyst 30 through the processing gas line 23.
  • the processing gas line 23 joins the exhaust gas line 21 before the denitration catalyst 30. Therefore, the processing gas from the hydrolysis container 400 is mixed with the exhaust gas before being introduced into the denitration catalyst 30.
  • the exhaust gas is denitrated by mixing the processing gas containing ammonia with the exhaust gas and passing through the denitration catalyst 30. The exhaust gas thus purified is discharged from the denitration catalyst 30 through the discharge line 24.
  • the control device 600 is a central device for executing the characteristic operation of the hydrolysis system 10 according to the first embodiment.
  • FIG. 2 is a block configuration diagram showing a control device 600 included in the hydrolysis system 10 according to the first embodiment.
  • the control device 600 includes a urea water supply amount detection unit 610, a gas flow rate calculation unit 620, and a fan control unit 630. The operations performed by each of these functional blocks will be described later.
  • the amount of nitrogen oxides in the exhaust gas flowing from the engine into the denitration catalyst 30 through the exhaust gas line 21 is represented by the product of the flow rate of the exhaust gas and the nitrogen oxide concentration in the exhaust gas, both of which vary depending on the operating state of the engine. ..
  • the amount of ammonia to be supplied from the hydrolysis vessel 400 varies based on the amount of nitrogen oxides to be treated in the denitration catalyst 30. Therefore, the flow rate of the urea water supplied to the hydrolysis vessel 400 by the pump 500 is controlled.
  • the flow rate of the urea water supplied to the hydrolysis container 400 varies depending on the operating state of the engine.
  • Control of the urea water supply amount based on the amount of nitrogen oxides in the exhaust gas due to the operating state of such an engine can be performed by a known technique.
  • an engine control module that controls the operation of the engine estimates the amount of nitrogen oxides and controls the amount of urea water supplied.
  • a nitrogen oxide concentration sensor (NO x sensor) is provided on the discharge line 24, and feedback control of the urea water supply amount is executed based on the nitrogen oxide concentration indicated by the nitrogen oxide concentration sensor (NO x sensor).
  • the urea water flow rate signal which is a signal corresponding to the urea water supply amount, is input to the urea water supply amount detection unit 610 of the control device 600.
  • the urea water flow rate signal may be a signal for controlling the pump 500, or may be a signal output by the pump 500 itself.
  • the urea water supply amount detection unit 610 calculates the urea water supply amount based on the urea water flow rate signal.
  • the gas flow rate calculation unit 620 calculates the flow rate of the gas flow supplied to the hydrolysis container 400 by the first fan 100 based on the urea water supply amount calculated by the urea water supply amount detection unit 610.
  • the gas flow rate calculation unit 620 calculates so that the flow rate of the gas flow to be supplied increases as the urea water supply amount increases. Typically, the gas flow rate calculation unit 620 calculates so that the flow rate of the supplied gas flow is proportional to the amount of urea water supplied.
  • the fan control unit 630 controls the operation of the first fan 100 based on the flow rate of the supplied gas flow calculated by the gas flow rate calculation unit 620, and changes the supply amount of the gas flow supplied by the first fan 100. .. Under the control of the fan control unit 630, the first fan 100 sends the gas flow of the calculated flow rate to the hydrolysis container 400 via the burner unit 200.
  • the amount of bleed air supplied to the hydrolysis container 400 is controlled based on the amount of urea water supplied to the hydrolysis container 400. Therefore, in the hydrolysis vessel 400, it is suppressed that the supply (spraying) of urea water becomes excessive with respect to the supply of gas, the temperature of the gas flow decreases, and the supply of ammonia becomes insufficient.
  • urea may precipitate and stick to the wall surface inside the hydrolysis container 400 or the surface of the hydrolysis catalyst. is there. Then, it causes a trouble that the hydrolysis container 400 is clogged. However, according to the hydrolysis system 10, the occurrence of such troubles is suppressed.
  • FIG. 3 is a block configuration diagram showing a control device 600 in a modified example.
  • the control device 600 includes an outside air flow rate detection unit 640 in addition to the urea water supply amount detection unit 610, the gas flow rate calculation unit 620, and the fan control unit 630.
  • the outside air flow rate detection unit 640 monitors the outside air flow rate signal from the second fan 300 and calculates the outside air flow rate supplied by the second fan 300 to the burner unit 200.
  • the gas flow rate calculation unit 620 calculates the flow rate of the gas flow supplied by the first fan 100 to the hydrolysis container 400 based on the urea water supply amount calculated by the urea water supply amount detection unit 610. ..
  • the gas flow rate calculation unit 620 totals the flow rate of the gas flow supplied by the first fan 100 to the hydrolysis container 400 and the flow rate of the air taken in by the second fan 300 as the urea water supply amount increases. Is calculated so that becomes larger. Typically, the gas flow rate calculation unit 620 calculates the flow rate of the gas flow supplied to the hydrolysis vessel 400 by the first fan 100 so that the total flow rate is proportional to the urea water supply amount.
  • the fan control unit 630 controls the operation of the first fan 100 based on the flow rate of the supplied gas flow calculated by the gas flow rate calculation unit 620, and changes the supply amount of the gas flow supplied by the first fan 100. .. Under the control of the fan control unit 630, the first fan 100 sends the gas flow of the calculated flow rate to the hydrolysis container 400 via the burner unit 200.
  • the flow rate of air taken in by the burner unit 200 for combustion is usually smaller than the amount of air drawn by the first fan 100. Therefore, as in the first embodiment, it is sufficient if the amount of the extracted air taken in by the first fan 100 is controlled so as to be proportional to the amount of urea water supplied.
  • the amount of air taken in by the second fan 300 which is a part of the amount of gas supplied to the hydrolysis container 400, should be taken into consideration and controlled more precisely. Is preferable.
  • the hydrolysis system 10 according to the second embodiment is the same as that of the first embodiment or a modification thereof.
  • the position of the bleed air taken in by the first fan 100 of the hydrolysis system 10 is different from that of the first embodiment shown in FIG.
  • the configuration and operation of the control device 600 are the same as those of the control device shown in FIG. 2 or FIG.
  • FIG. 4 is a schematic configuration diagram showing the denitration equipment 2 of the second embodiment.
  • the bleeding line 22 branches from the exhaust gas line 21.
  • the branching position of the bleeding line 22 is on the upstream side of the merging position of the processing gas line 23 from the hydrolysis container 400. Therefore, in the second embodiment, the exhaust gas before the denitration catalyst 30 performs the denitration treatment is extracted. Also in the second embodiment, the same actions and effects as those of the first embodiment or its modified examples can be obtained.
  • Each control block of the control device 600 (particularly, urea water supply amount detection unit 610, gas flow rate calculation unit 620, fan control unit 630, outside air flow rate detection unit 640) is a logic circuit formed in an integrated circuit (IC chip) or the like. It may be realized by (hardware) or by software.
  • control device 600 includes a computer that executes the instructions of a program that is software that realizes each function.
  • the computer includes, for example, one or more processors and a computer-readable recording medium that stores the program.
  • the processor reads the program from the recording medium and executes it, thereby achieving the object of the present invention.
  • a CPU Central Processing Unit
  • the recording medium in addition to a “non-temporary tangible medium” such as a ROM (Read Only Memory), a tape, a disk, a card, a semiconductor memory, a programmable logic circuit, or the like can be used.
  • a RAM Random Access Memory
  • the program may be supplied to the computer via an arbitrary transmission medium (communication network, broadcast wave, etc.) capable of transmitting the program.
  • a transmission medium communication network, broadcast wave, etc.
  • one aspect of the present invention can also be realized in the form of a data signal embedded in a carrier wave, in which the above program is embodied by electronic transmission.
  • the hydrolysis system includes a hydrolysis container that sprays urea water on a gas stream to generate ammonia, a first fan that supplies the gas stream to the hydrolysis container, and a control device.
  • the control device includes, and controls the first fan so as to change the supply amount of the gas flow based on the supply amount of the urea water to the hydrolysis vessel.
  • the hydrolysis system according to the second aspect of the present invention may further include a burner unit for heating the gas stream between the first fan and the hydrolysis container in the first aspect.
  • the hydrolysis system according to the third aspect of the present invention may further include a second fan for taking in air for burning fuel in the burner unit in the second aspect.
  • the hydrolysis system according to the fourth aspect of the present invention has a configuration in which the control device changes the supply amount of the gas stream in proportion to the supply amount of the urea water in any one of the first to third aspects. You may have it.
  • control device has such that the total of the supply amount of the gas flow and the intake amount of the air is proportional to the supply amount of the urea water. It may have a structure which changes the supply amount of the gas flow.
  • the denitration equipment according to the sixth aspect of the present invention is the denitration equipment including the hydrolysis system according to any one of the above aspects 1 to 5 and a denitration catalyst for denitrifying the exhaust gas from the engine.
  • the fan has a configuration in which the gas discharged from the denitration equipment is extracted, and the processing gas from the hydrolysis vessel is mixed with the exhaust gas and introduced into the denitration catalyst.
  • the denitration equipment according to the seventh aspect of the present invention is the denitration equipment including the hydrolysis system according to any one of the above aspects 1 to 5 and a denitration catalyst for denitrifying the exhaust gas from the engine.
  • the fan has a configuration in which the exhaust gas from the engine is extracted, and the processing gas from the hydrolysis container is mixed with the exhaust gas and introduced into the denitration catalyst.
  • the method for controlling the hydrolysis system according to the eighth aspect of the present invention includes a hydrolysis container that sprays urea water on a gas stream to generate ammonia, a first fan that supplies the gas stream to the hydrolysis container, and a first fan.
  • the first fan is controlled so as to change the supply amount of the gas flow based on the supply amount of the urea water to the hydrolysis container. ..
  • the first fan 100 extracts the denitrated exhaust gas from the discharge line 24 or the exhaust gas of the engine from the exhaust gas line 21.
  • the gas taken in by the first fan 100 is not limited to these examples, and air (outside air) may be taken in.
  • the urea water flow rate signal acquired by the urea water supply amount detection unit 610 may be a signal from the flow rate sensor provided in the supply line 13.
  • the outside air flow rate signal acquired by the outside air flow rate detection unit 640 may be a signal from a flow rate sensor provided on the outside air line 12.
  • the fan control unit 630 controls the first fan 100 in order to change the gas flow rate supplied by the first fan 100 to the hydrolysis container 400
  • the first fan 100 is based on the unique characteristics of the first fan 100.
  • the operation of the fan 100 may be controlled (feedforward control).
  • a flow rate sensor may be provided on the bleeding line 22 and feedback control may be performed based on the signal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Toxicology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Biomedical Technology (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

脱硝触媒に対して所要のアンモニアを供給する。 加水分解システム(10)は、ガス流に尿素水を噴霧しアンモニアを生成させる加水分解容器(400)への尿素水の供給量に基づいて、ガス流の供給量を変化させるように、加水分解容器に対してガス流を供給する第1ファン(100)を制御する制御装置(600)を備える。

Description

加水分解システム、脱硝設備及び加水分解システムの制御方法
 本発明は、加水分解システム、脱硝設備及び加水分解システムの制御方法に関する。
 船舶等において、エンジンの排ガス中の窒素酸化物(NO)を低減するための、脱硝設備が知られている。このような脱硝設備では、アンモニアを排ガスとともにSCR(Selective Catalytic Reduction)といった脱硝触媒に導入することで、窒素酸化物の還元反応を生じさせて、排ガスの浄化を行っている。通常アンモニアは、取扱いの容易な尿素水を、加水分解容器(気化器)において高温のガス流中で加水分解して生成して、供給される。
日本国公開特許公報「特開2017-217982号公報」
 加水分解容器において、高温のガス流の流量に対して尿素水の供給量が過剰になると、加水分解容器内部の温度が低下する。すると、噴霧される尿素水の加水分解が不十分となって、所要のアンモニアが脱硝触媒に対して供給できなくなる。こうなると、脱硝触媒による排ガスの浄化が適正に行われなくなってしまう。
 本発明の一態様は、脱硝触媒に対して所要のアンモニアを供給できる加水分解システムを実現することを目的とする。
 上記の課題を解決するために、本発明の一態様に係る加水分解システムは、ガス流に尿素水を噴霧しアンモニアを生成させる加水分解容器と、前記加水分解容器に対して前記ガス流を供給する第1ファンと、制御装置と、を備え、前記制御装置は、前記加水分解容器への前記尿素水の供給量に基づいて前記ガス流の供給量を変化させるように、前記第1ファンを制御する構成を備える。
 上記の課題を解決するために、本発明の一態様に係る加水分解システムの制御方法は、ガス流に尿素水を噴霧しアンモニアを生成させる加水分解容器と、前記加水分解容器に対して前記ガス流を供給する第1ファンと、を備えた加水分解システムの制御方法であって、前記加水分解容器への前記尿素水の供給量に基づいて前記ガス流の供給量を変化させるように、前記第1ファンを制御する構成を備える。
 本発明の上記いずれかの態様によれば、脱硝触媒に対して所要のアンモニアを供給できる加水分解システムを実現できる。
本発明の実施形態1に係る加水分解システムを備える、脱硝設備を示す概略構成図である。 本発明の実施形態1に係る加水分解システムの制御装置を示す、ブロック構成図である。 本発明の変形例に係る加水分解システムの制御装置を示す、ブロック構成図である。 本発明の実施形態2に係る加水分解システムを備える、脱硝設備を示す概略構成図である。
 〔実施形態1〕
 以下、本発明の一実施形態について、図面を参照しつつ以下に説明する。本願における各図面に記載した構成の形状および寸法(長さ、幅、高さ等)は、実際の形状および寸法が必ずしも反映されたものではなく、図面の明瞭化および簡略化のために適宜変更されている。
 <脱硝設備の概要>
 図1は、実施形態1に係る加水分解システム10を備えた、脱硝設備1を示す概略構成図である。脱硝設備1は、ディーゼルエンジン等のエンジンからの排ガスを脱硝触媒30で脱硝処理して排出する。脱硝触媒30には、エンジンからの排ガスを導入する排ガスライン21が接続されている。また、脱硝触媒30には、脱硝処理したガスを排出するための排出ライン24が接続されている。
 <加水分解システムの構成>
 実施形態1に係る加水分解システム10は、アンモニアを含んだ処理ガスを脱硝触媒に対して供給するための装置である。加水分解システム10は、第1ファン100、バーナユニット200、第2ファン300、加水分解容器400、ポンプ500と、制御装置600と、を備えている。
 第1ファン100は、脱硝触媒30が脱硝処理したガスを排出する排出ライン24からの抽気を、抽気ライン22を通じて加水分解システム10に取り込む。図1に示されるように、実施形態1において、抽気ライン22は排出ライン24から分岐する。
 バーナユニット200は、第1ファン100の取り込んだ抽気を加熱するための装置である。バーナユニット200には、燃焼室201、バーナ202が設けられている。バーナ202には、燃料ライン11が接続されている。燃料ライン11を通じてバーナ202に供給される燃料は、A重油、B重油、C重油、軽油、炭化水素ガスからなるガス燃料や、その他の燃料であり得る。
 また燃焼室201には、第2ファン300が取り込んだ空気が外気ライン12を通じて流入しバーナ202により燃料が燃焼される。燃焼室201の形状は、具体的な例示として、軸方向に長い筒状、より好ましくは円筒状であり、その端部にバーナ202が配置される。
 バーナユニット200は、加水分解容器400において尿素水の加水分解反応を生じさせるのに必要な高温に、ガス流を加熱するために、加水分解容器400に対して供給するガスの流量と温度を参照して、適宜に燃焼を制御する。燃焼室201の動作時に、通常、外気よりも抽気の割合が多いように制御される。燃焼室201により加熱された抽気は、加水分解容器400へと導入される。
 加水分解容器400は、尿素水を加水分解して、アンモニアを生成する装置である。加水分解容器400にはノズル401が設けられている。ノズル401には、供給ライン13を通じて、流量が制御されて尿素水がポンプ500により供給される。ノズル401は、加水分解容器400に導入された高温のガス流に対して尿素水を噴霧する。すると噴霧された尿素水が、高温で加水分解されてアンモニアが生成され、処理ガスライン23を通じて排ガスに混合される。
 加水分解容器400の形状は、具体的な例示として、軸方向に長い筒状、径方向断面略正方形の角筒状である。しかし、角筒状に限られず、円筒状であってもよい。加水分解容器400中には、更に加水分解反応を促進するための、加水分解触媒が設置されていてもよい。加水分解容器400は、アンモニアが混合された高温の処理ガスを処理ガスライン23を通じて脱硝触媒30に供給する。
 処理ガスライン23は、脱硝触媒30の手前で、排ガスライン21に合流する。よって、加水分解容器400からの処理ガスは、脱硝触媒30に導入される前に排ガスに混合される。アンモニアを含んだ処理ガスが排ガスに混合されて脱硝触媒30を通過することにより、排ガスの脱硝処理が行われる。こうして清浄化された排ガスが、脱硝触媒30から排出ライン24を通じて排出される。
 制御装置600は、実施形態1に係る加水分解システム10の特徴的な動作の実行のための中枢となる装置である。図2は、実施形態1に係る加水分解システム10が備える制御装置600を示すブロック構成図である。制御装置600は、尿素水供給量検出部610、ガス流量演算部620と、ファン制御部630とを備える。これら各機能ブロックが行う動作については後述する。
 <加水分解システムの動作>
 次に、図1及び図2を参照しつつ、加水分解システム10の動作について説明する。
 エンジンから排ガスライン21を通じて脱硝触媒30に流入する排ガス中の窒素酸化物の量は、排ガスの流量および排ガス中の窒素酸化物濃度の積で表され、これらの両方ともエンジンの運転状態によって変動する。脱硝触媒30において処理されるべき窒素酸化物の量に基づいて、加水分解容器400から供給されるべきアンモニアの量は変動する。そのため、ポンプ500により加水分解容器400に供給される尿素水の流量が、制御される。
 従って、加水分解容器400に供給される尿素水の流量は、エンジンの運転状態によって変動する。このようなエンジンの運転状態に起因する排ガス中の窒素酸化物の量に基づいた尿素水供給量の制御は、公知技術により実行され得る。例えば、エンジンの運転の制御を行うエンジンコントロールモジュールにより、窒素酸化物の量が推定されて、尿素水供給量の制御が実行される。あるいは排出ライン24に窒素酸化物濃度センサ(NOセンサ)が設けられて、それが示す窒素酸化物濃度に基づいて、尿素水供給量のフィードバック制御が実行される。
 このような尿素水供給量に応じた信号である尿素水流量信号が、制御装置600の尿素水供給量検出部610に入力される。尿素水流量信号は、ポンプ500を制御するための信号であってもよく、あるいはポンプ500自身が出力する信号であってもよい。尿素水供給量検出部610は、尿素水流量信号に基づき、尿素水供給量を算出する。
 次に、ガス流量演算部620が、尿素水供給量検出部610の算出した尿素水供給量に基づいて、第1ファン100が加水分解容器400に対して供給するガス流の流量を算出する。
 加水分解容器400において、尿素水供給量に対して、供給される高温のガス流の流量が低下すると、ガス流の温度が低下する。すると、加水分解容器400における尿素水の分解が十分に行われなくなる。そのため、ガス流量演算部620は、尿素水供給量が多くなるほど、供給すべきガス流の流量が大きくなるように算出する。典型的には、ガス流量演算部620は、供給するガス流の流量が尿素水供給量に比例するように算出する。
 更にファン制御部630が、ガス流量演算部620の算出した供給するガス流の流量に基づいて、第1ファン100の動作を制御し、第1ファン100が供給するガス流の供給量を変化させる。ファン制御部630の制御によって、第1ファン100が、算出された流量のガス流をバーナユニット200を介して、加水分解容器400に送り込む。
 <作用、効果>
 実施形態1に係る加水分解システム10は、加水分解容器400への尿素水の供給量に基づいて、加水分解容器400に供給される抽気の量が制御される。従って、加水分解容器400において、ガスの供給に対して尿素水の供給(噴霧)が過剰となってガス流の温度が低下し、アンモニアの供給が不十分となることが抑制される。
 脱硝設備1の脱硝触媒30へのアンモニアの供給が不十分となると、排ガスの脱硝処理が不十分となり、脱硝触媒30を通じて排出される排出ガス中の窒素酸化物濃度が上昇し、規定以下の濃度を維持できなくなる。しかし、加水分解システム10によれば、そのような事態の発生が抑制される。
 また、加水分解容器400において、ガスの供給に対して尿素水の供給(噴霧)が大きく過剰であると、加水分解容器400内部の壁面や加水分解触媒表面に尿素が析出して固着することがある。すると、加水分解容器400が詰まるトラブルの発生の原因となる。しかし、加水分解システム10によれば、このようなトラブルの発生が抑制される。
 〔変形例〕
 本発明の他の実施形態について、以下に説明する。なお、説明の便宜上、上記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を繰り返さない。
 本変形例は実施形態1の変形例であり、制御装置600の構成が、実施形態1とやや異なるが、加水分解システム10のその他の構成は同様である。図3は、変形例における制御装置600を示すブロック構成図である。変形例において、制御装置600は、尿素水供給量検出部610、ガス流量演算部620、ファン制御部630に加えて、外気流量検出部640を備える。
 外気流量検出部640は、第2ファン300からの外気流量信号を監視して、第2ファン300がバーナユニット200に対して供給する外気流量を算出する。変形例において、ガス流量演算部620は、尿素水供給量検出部610の算出した尿素水供給量に基づいて、第1ファン100が加水分解容器400に対して供給するガス流の流量を算出する。
 その際、ガス流量演算部620は、尿素水供給量が多くなるほど、第1ファン100が加水分解容器400に対して供給するガス流の流量と、第2ファン300が取り込んだ空気の流量の合計が大きくなるように算出する。典型的には、ガス流量演算部620は、当該合計の流量が尿素水供給量に比例するように、第1ファン100が加水分解容器400に対して供給するガス流の流量を算出する。
 更にファン制御部630が、ガス流量演算部620の算出した供給するガス流の流量に基づいて、第1ファン100の動作を制御し、第1ファン100が供給するガス流の供給量を変化させる。ファン制御部630の制御によって、第1ファン100が、算出された流量のガス流をバーナユニット200を介して、加水分解容器400に送り込む。
 上述のように、加水分解システム10において通常、バーナユニット200が燃焼のために取り込む空気の流量は、第1ファン100が取り込む抽気の量と比べて小さい。そのため、実施形態1のように、第1ファン100が取り込む抽気の量が、尿素水供給量に比例するように制御されれば十分である。しかし、変形例のように、加水分解容器400に供給される気体の量の一部である、第2ファン300が取り込んだ空気の量をも考慮して、より精密に制御するようにすることが好ましい。
 〔実施形態2〕
 実施形態2に係る加水分解システム10は、実施形態1またはその変形例と同様である。実施形態2においては、加水分解システム10の第1ファン100が取り込む抽気の位置が、図1に示す実施形態1とは異なる。実施形態2において、制御装置600の構成及び動作は、図2または図3に示された制御装置と同様である。
 図4は、実施形態2の脱硝設備2を示す概略構成図である。図示されるように、実施形態2では、抽気ライン22は排ガスライン21から分岐する。排ガスライン21において、抽気ライン22の分岐位置は、加水分解容器400からの処理ガスライン23の合流位置よりも上流側である。よって、実施形態2においては、脱硝触媒30が脱硝処理を行う前の排ガスが、抽気される。実施形態2においても、実施形態1またはその変形例と同様の作用、効果が得られる。
 〔ソフトウェアによる実現例〕
 制御装置600の各制御ブロック(特に、尿素水供給量検出部610、ガス流量演算部620、ファン制御部630、外気流量検出部640)は、集積回路(ICチップ)等に形成された論理回路(ハードウェア)によって実現してもよいし、ソフトウェアによって実現してもよい。
 後者の場合、制御装置600は、各機能を実現するソフトウェアであるプログラムの命令を実行するコンピュータを備えている。このコンピュータは、例えば1つ以上のプロセッサを備えていると共に、上記プログラムを記憶したコンピュータ読み取り可能な記録媒体を備えている。
 そして、上記コンピュータにおいて、上記プロセッサが上記プログラムを上記記録媒体から読み取って実行することにより、本発明の目的が達成される。上記プロセッサとしては、例えばCPU(Central Processing Unit)を用いることができる。上記記録媒体としては、「一時的でない有形の媒体」、例えば、ROM(Read Only Memory)等の他、テープ、ディスク、カード、半導体メモリ、プログラマブルな論理回路などを用いることができる。
 また、上記プログラムを展開するRAM(Random Access Memory)などをさらに備えていてもよい。また、上記プログラムは、該プログラムを伝送可能な任意の伝送媒体(通信ネットワークや放送波等)を介して上記コンピュータに供給されてもよい。なお、本発明の一態様は、上記プログラムが電子的な伝送によって具現化された、搬送波に埋め込まれたデータ信号の形態でも実現され得る。
 〔まとめ〕
 本発明の態様1に係る加水分解システムは、ガス流に尿素水を噴霧しアンモニアを生成させる加水分解容器と、前記加水分解容器に対して前記ガス流を供給する第1ファンと、制御装置と、を備え、前記制御装置は、前記加水分解容器への前記尿素水の供給量に基づいて前記ガス流の供給量を変化させるように、前記第1ファンを制御する構成を備える。
 本発明の態様2に係る加水分解システムは、上記態様1において、前記第1ファンと前記加水分解容器との間に、前記ガス流を加熱するバーナユニットを更に備えていてもよい。
 本発明の態様3に係る加水分解システムは、上記態様2において、前記バーナユニットにおいて燃料を燃焼させるための、空気を取り入れる第2ファンを更に備えていてもよい。
 本発明の態様4に係る加水分解システムは、上記態様1から3のいずれかにおいて、前記制御装置は、前記尿素水の供給量に比例するように、前記ガス流の供給量を変化させる構成を備えていてもよい。
 本発明の態様5に係る加水分解システムは、上記態様3において、前記制御装置は、前記ガス流の供給量と前記空気の取り入れ量の合計が、前記尿素水の供給量に比例するように、前記ガス流の供給量を変化させる構成を備えていてもよい。
 本発明の態様6に係る脱硝設備は、上記態様1から5のいずれかの加水分解システムと、エンジンからの排ガスの脱硝処理を行う脱硝触媒と、を備えた脱硝設備であって、前記第1ファンは、前記脱硝設備が排出したガスを抽気し、前記加水分解容器からの処理ガスは、前記排ガスに混合されて前記脱硝触媒に導入される構成を備える。
 本発明の態様7に係る脱硝設備は、上記態様1から5のいずれかの加水分解システムと、エンジンからの排ガスの脱硝処理を行う脱硝触媒と、を備えた脱硝設備であって、前記第1ファンは、前記エンジンからの前記排ガスを抽気し、前記加水分解容器からの処理ガスは、前記排ガスに混合されて前記脱硝触媒に導入される構成を備える。
 本発明の態様8に係る加水分解システムの制御方法は、ガス流に尿素水を噴霧しアンモニアを生成させる加水分解容器と、前記加水分解容器に対して前記ガス流を供給する第1ファンと、を備えた加水分解システムの制御方法であって、前記加水分解容器への前記尿素水の供給量に基づいて前記ガス流の供給量を変化させるように、前記第1ファンを制御する構成を備える。
 〔付記事項〕
 本発明は上述した実施形態、変形例に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。例えば、図2または図3に示される制御装置600のいずれもが、実施形態2の加水分解システム10に適用され得る。
 上記各実施形態において、第1ファン100は、排出ライン24から脱硝処理された排出ガスを、あるいは、排ガスライン21からエンジンの排ガスを抽気する例が示された。しかし、第1ファン100が取り入れる気体は、これらの例に限られず、空気(外気)を取り入れてもよい。
 尿素水供給量検出部610が取得する尿素水流量信号は、供給ライン13に設けられる流量センサからの信号であってもよい。外気流量検出部640が取得する外気流量信号は、外気ライン12に設けられる流量センサからの信号であってもよい。
 第1ファン100が加水分解容器400に対して供給するガス流量を変化させるために、ファン制御部630が第1ファン100を制御するに当たり、第1ファン100の固有の特性に基づいて、第1ファン100の動作を制御してもよい(フィードフォワード制御)。しかし、抽気ライン22に流量センサが設けられて、その信号に基づいてフィードバック制御を行うものであってもよい。
 1、2 脱硝設備
 10 加水分解システム
 100 第1ファン
 200 バーナユニット
 201 燃焼室
 202 バーナ
 300 第2ファン
 400 加水分解容器
 401 ノズル
 500 ポンプ
 600 制御装置
 610 尿素水供給量検出部
 620 ガス流量演算部
 630 ファン制御部
 640 外気流量検出部
 30 脱硝触媒
 11 燃料ライン
 12 外気ライン
 13 供給ライン
 21 排ガスライン
 22 抽気ライン
 23 処理ガスライン
 24 排出ライン

Claims (8)

  1.  ガス流に尿素水を噴霧しアンモニアを生成させる加水分解容器と、
     前記加水分解容器に対して前記ガス流を供給する第1ファンと、
     制御装置と、を備え、
     前記制御装置は、前記加水分解容器への前記尿素水の供給量に基づいて前記ガス流の供給量を変化させるように、前記第1ファンを制御することを特徴とする、加水分解システム。
  2.  前記第1ファンと前記加水分解容器との間に、前記ガス流を加熱するバーナユニットを更に備える、請求項1に記載の加水分解システム。
  3.  前記バーナユニットにおいて燃料を燃焼させるための、空気を取り入れる第2ファンを更に備えることを特徴とする、請求項2に記載の加水分解システム。
  4.  前記制御装置は、前記尿素水の供給量に比例するように、前記ガス流の供給量を変化させることを特徴とする、請求項1から3のいずれか1項に記載の加水分解システム。
  5.  前記制御装置は、前記ガス流の供給量と前記空気の取り入れ量の合計が、前記尿素水の供給量に比例するように、前記ガス流の供給量を変化させることを特徴とする、請求項3に記載の加水分解システム。
  6.  請求項1から5のいずれか1項に記載の加水分解システムと、
     エンジンからの排ガスの脱硝処理を行う脱硝触媒と、を備えた脱硝設備であって、
     前記第1ファンは、前記脱硝設備が排出したガスを抽気し、
     前記加水分解容器からの処理ガスは、前記排ガスに混合されて前記脱硝触媒に導入されることを特徴とする、脱硝設備。
  7.  請求項1から5のいずれか1項に記載の加水分解システムと、
     エンジンからの排ガスの脱硝処理を行う脱硝触媒と、を備えた脱硝設備であって、
     前記第1ファンは、前記エンジンからの前記排ガスを抽気し、
     前記加水分解容器からの処理ガスは、前記排ガスに混合されて前記脱硝触媒に導入されることを特徴とする、脱硝設備。
  8.  ガス流に尿素水を噴霧しアンモニアを生成させる加水分解容器と、
     前記加水分解容器に対して前記ガス流を供給する第1ファンと、を備えた加水分解システムの制御方法であって、
     前記加水分解容器への前記尿素水の供給量に基づいて前記ガス流の供給量を変化させるように、前記第1ファンを制御することを特徴とする、加水分解システムの制御方法。
PCT/JP2020/028999 2019-11-19 2020-07-29 加水分解システム、脱硝設備及び加水分解システムの制御方法 WO2021100250A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020227019360A KR20220099996A (ko) 2019-11-19 2020-07-29 가수분해 시스템, 탈질설비 및 가수분해 시스템의 제어방법
EP20891287.3A EP4063623A4 (en) 2019-11-19 2020-07-29 HYDROLYSIS SYSTEM, DENITRATION DEVICE AND CONTROL METHOD FOR HYDROLYSIS SYSTEM
CN202080080368.7A CN114761675B (zh) 2019-11-19 2020-07-29 水解系统、脱硝设备以及水解系统的控制方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-208834 2019-11-19
JP2019208834A JP7254010B2 (ja) 2019-11-19 2019-11-19 加水分解システム、脱硝設備及び加水分解システムの制御方法

Publications (1)

Publication Number Publication Date
WO2021100250A1 true WO2021100250A1 (ja) 2021-05-27

Family

ID=75964716

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/028999 WO2021100250A1 (ja) 2019-11-19 2020-07-29 加水分解システム、脱硝設備及び加水分解システムの制御方法

Country Status (5)

Country Link
EP (1) EP4063623A4 (ja)
JP (1) JP7254010B2 (ja)
KR (1) KR20220099996A (ja)
CN (1) CN114761675B (ja)
WO (1) WO2021100250A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2024508131A (ja) 2021-10-01 2024-02-22 エルジー エナジー ソリューション リミテッド 二次電池

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009250218A (ja) * 2008-04-11 2009-10-29 Hitachi High-Technologies Corp 尿素注入装置
KR20140000556A (ko) * 2012-06-25 2014-01-03 두산엔진주식회사 선택적 촉매 환원 시스템을 포함한 선박용 동력 장치
JP2017217982A (ja) 2016-06-06 2017-12-14 三井造船株式会社 船体構造
JP2018184842A (ja) * 2017-04-24 2018-11-22 ボルカノ株式会社 内燃機関の脱硝装置用の加熱ガス発生装置及びその運転方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2002228791A1 (en) * 2000-12-01 2002-06-11 Fuel Tech. Inc. Selective catalytic reduction of no, enabled by side stream urea decomposition
JP3732493B2 (ja) * 2003-10-02 2006-01-05 日産ディーゼル工業株式会社 エンジンの排気浄化装置
US20110252771A1 (en) * 2008-12-08 2011-10-20 Mitsubishi Heavy Industries, Ltd. Flue gas purifying device
JP5297215B2 (ja) * 2009-01-30 2013-09-25 三菱重工業株式会社 排ガス浄化装置
JP5316266B2 (ja) * 2009-07-03 2013-10-16 いすゞ自動車株式会社 尿素scr触媒の還元剤供給装置
JP2011144766A (ja) * 2010-01-15 2011-07-28 Mitsubishi Heavy Ind Ltd 排ガス脱硝システムおよびこれを備えた船舶ならびに排ガス脱硝システムの制御方法
JP5840829B2 (ja) * 2010-05-25 2016-01-06 いすゞ自動車株式会社 Scrシステム
JP2011247135A (ja) * 2010-05-25 2011-12-08 Isuzu Motors Ltd Scrシステム
JP5496026B2 (ja) * 2010-09-08 2014-05-21 バブコック日立株式会社 脱硝装置
JP5753485B2 (ja) * 2011-12-13 2015-07-22 日立造船株式会社 尿素水噴霧構造
JP2014005745A (ja) * 2012-06-21 2014-01-16 Yanmar Co Ltd 尿素水噴射装置
JP5539461B2 (ja) * 2012-08-03 2014-07-02 日立造船株式会社 レシプロエンジン用排ガス脱硝設備
JP5983937B2 (ja) * 2012-11-28 2016-09-06 三菱自動車工業株式会社 内燃機関の排気浄化装置
KR101445038B1 (ko) * 2013-06-28 2014-09-26 두산엔진주식회사 선택적 촉매 환원 및 촉매 재생 시스템
JP6133183B2 (ja) * 2013-09-25 2017-05-24 キャタピラー エス エー アール エル エンジンの排気浄化装置
KR101708099B1 (ko) * 2014-12-31 2017-02-17 두산엔진주식회사 선택적 촉매 환원 시스템 및 이를 포함한 동력 장치
KR101784615B1 (ko) * 2015-06-18 2017-10-11 현대중공업 주식회사 저압 scr 시스템 및 그 제어 방법
US9856768B2 (en) * 2015-06-29 2018-01-02 General Electric Company Power generation system exhaust cooling
JP2017025830A (ja) * 2015-07-24 2017-02-02 株式会社豊田自動織機 エンジンの排気浄化装置
JP6439749B2 (ja) * 2016-05-18 2018-12-19 トヨタ自動車株式会社 内燃機関の排気浄化装置
DE102018201511A1 (de) * 2018-02-01 2019-08-01 Robert Bosch Gmbh Abgasnachbehandlungssystem, Verfahren zum Betreiben eines Abgasnachbehandlungssystems

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009250218A (ja) * 2008-04-11 2009-10-29 Hitachi High-Technologies Corp 尿素注入装置
KR20140000556A (ko) * 2012-06-25 2014-01-03 두산엔진주식회사 선택적 촉매 환원 시스템을 포함한 선박용 동력 장치
JP2017217982A (ja) 2016-06-06 2017-12-14 三井造船株式会社 船体構造
JP2018184842A (ja) * 2017-04-24 2018-11-22 ボルカノ株式会社 内燃機関の脱硝装置用の加熱ガス発生装置及びその運転方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4063623A4

Also Published As

Publication number Publication date
JP2021080882A (ja) 2021-05-27
JP7254010B2 (ja) 2023-04-07
KR20220099996A (ko) 2022-07-14
CN114761675B (zh) 2023-09-15
CN114761675A (zh) 2022-07-15
EP4063623A1 (en) 2022-09-28
EP4063623A4 (en) 2023-11-22

Similar Documents

Publication Publication Date Title
CN106471228B (zh) 具有双闭环还原剂给料器的废气后处理
RU2667852C2 (ru) Устройство и способ для воздействия на количество оксидов азота в выхлопных газах из двигателя внутреннего сгорания
US20110030343A1 (en) Scr reductant deposit removal
KR101722834B1 (ko) Scr 시스템 및 그 제어 방법
JP4646934B2 (ja) エンジンの排気処理装置及びこれを用いたエンジンの排気処理方法
KR960011040B1 (ko) 질소 산화물 제거방법과 그 실시에 사용하기 위한 장치
US11047281B2 (en) Temperature-based control of reagent distribution
KR101619098B1 (ko) 배기가스 정화장치
JP2005344597A (ja) エンジン用排気ガス処理装置
WO2021100250A1 (ja) 加水分解システム、脱硝設備及び加水分解システムの制御方法
CN105899771A (zh) 响应于氨逃逸条件来控制scr后处理系统的技术
JP2008180202A (ja) 排気浄化装置
US9664383B2 (en) Denitrification apparatus
JP2006170013A (ja) エンジン用排気処理装置および処理方法
CN204511592U (zh) 一种用于发动机的scr尾气处理系统
JP2009127473A (ja) 排気浄化装置
JP2018076801A (ja) 内燃機関の排気ガス浄化システム
CN110709589B (zh) 喷射装置
JP2005214172A (ja) エンジンの排気浄化装置
JPH05269351A (ja) 窒素酸化物除去方法
US11591949B2 (en) Aftertreatment system with gas sensor downstream of a heater
JP2019190425A (ja) 排気浄化装置および車両
US20230287841A1 (en) Systems and methods for controlling regeneration of aftertreatment systems including multiple legs
JP4959231B2 (ja) 脱硝装置および脱硝方法
US11215098B2 (en) Method and apparatus for a selective catalytic reduction system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20891287

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227019360

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020891287

Country of ref document: EP

Effective date: 20220620