JP5983937B2 - 内燃機関の排気浄化装置 - Google Patents

内燃機関の排気浄化装置 Download PDF

Info

Publication number
JP5983937B2
JP5983937B2 JP2012259811A JP2012259811A JP5983937B2 JP 5983937 B2 JP5983937 B2 JP 5983937B2 JP 2012259811 A JP2012259811 A JP 2012259811A JP 2012259811 A JP2012259811 A JP 2012259811A JP 5983937 B2 JP5983937 B2 JP 5983937B2
Authority
JP
Japan
Prior art keywords
ammonia
urea water
exhaust gas
catalyst
ammonia adsorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012259811A
Other languages
English (en)
Other versions
JP2014105645A (ja
Inventor
希代香 恒川
希代香 恒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2012259811A priority Critical patent/JP5983937B2/ja
Publication of JP2014105645A publication Critical patent/JP2014105645A/ja
Application granted granted Critical
Publication of JP5983937B2 publication Critical patent/JP5983937B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

本発明は、内燃機関の排気浄化装置に係り、詳しくは、アンモニアの吸着制御に関する。
ディーゼルエンジンや希薄燃焼ガソリンエンジンは、燃料と空気との混合気中に酸素が多く含まれることから排ガス中への窒素酸化物(NOx)の排出量が多くなる。
そこで、従来より、ディーゼルエンジンや希薄燃焼ガソリンエンジンでは、選択還元型触媒や、NOxトラップ触媒等を排気流路に設けている。特にディーゼルエンジンでは、高回転速度・高負荷運転時にNOxの排出量が多くなることから、尿素水を排気流路中の排ガスに添加して、尿素水が加水分解して発生したアンモニア(NH3)にてNOxを還元浄化する選択還元型触媒装置(SCRシステム)が用いられている。
このような、選択還元型触媒装置では、特許文献1のように、ディーゼルパティキュレートフィルタの強制再生を行う際に、内燃機関より排出されるNOxを還元浄化できる量のアンモニアを尿素水インジェクタより尿素水をケーシング(排気通路)内に供給し、アンモニア選択還元型NOx触媒(選択還元型触媒装置)にてNOxを還元浄化している。そして、ディーゼルパティキュレートフィルタの強制再生を行っていない時には、選択還元型触媒装置におけるアンモニアの吸着量が当該選択還元型触媒装置に吸着可能なアンモニアの上限吸着量以下となるように、尿素水インジェクタより排気通路内に供給する尿素水量を調整している。
特表2009−270449号公報
上記特許文献1の排気浄化装置では、ディーゼルパティキュレートフィルタの強制再生を行っていない場合に、尿素水インジェクタより尿素水を排気通路内に供給し、選択還元型触媒装置にアンモニアを吸着するようにしている。
しかしながら、選択還元型触媒装置に吸着されるアンモニア量は、尿素水が加水分解され選択還元型触媒装置に供給されるアンモニア量や、内燃機関より排出されるNOxの排出量によって変化する。
したがって、例えば、内燃機関の高回転・高負荷運転時等の内燃機関から排出されるNOxの排出量が多い時に、選択還元型触媒の上流に配設されたアンモニア吸着触媒よりアンモニアを脱離してNOxを還元浄化する排気浄化装置に、特許文献1の技術を適用すると、アンモニア吸着触媒に供給されるアンモニア量が変化することから、内燃機関の高回転・高負荷運転時に必要なアンモニアの吸着量となるまでに時間を要する。
よって、内燃機関が高回転・高負荷運転となってNOxの排出量が増加してもアンモニア吸着触媒におけるアンモニアの吸着量が少ないために、選択還元型触媒にて十分にNOxの還元浄化が行われず、還元浄化されないNOxが大気に放出される虞があり好ましいことではない。
本発明は、この様な問題を解決するためになされたもので、その目的とするところは、NOxを確実に還元浄化することのできる内燃機関の排気浄化装置を提供することにある。
上記の目的を達成するために、請求項1の内燃機関の排気浄化装置では、内燃機関から排出される排ガスに含まれる窒素酸化物をアンモニアにて還元浄化する選択還元型触媒と、前記選択還元型触媒の上流に配設され、前記アンモニアを吸着し、前記選択還元型触媒のアンモニア脱離温度よりも高い温度で前記アンモニアを脱離するアンモニア吸着触媒と、前記アンモニア吸着触媒の上流に尿素水を供給する尿素水供給手段と、前記尿素水供給手段の作動を制御するアンモニア吸着制御手段と、前記尿素水供給手段の上流に配設され、前記排ガス中の微粒子状物質を除去するディーゼルパティキュレートフィルタと、を備え、前記アンモニア吸着制御手段は、少なくとも前記内燃機関から排出される窒素酸化物の排出量または前記排ガスの温度の状況によって前記尿素水の供給に対して前記アンモニア吸着触媒が前記アンモニアを吸着しやすい環境である前記ディーゼルパティキュレートフィルタの再生制御をしている状態の時に、前記内燃機関から排出される排ガスに含まれる窒素酸化物の還元浄化に必要な量以上のアンモニアが発生するよう前記尿素水を前記尿素水供給手段より供給することを特徴とする。
また、請求項2の内燃機関の排気浄化装置では、請求項1において、前記アンモニア吸着触媒に前記アンモニアを吸着しやすい環境は前記ディーゼルパティキュレートフィルタの再生制御をしている状態の時で、前記アンモニア吸着触媒に吸着されているアンモニア量が所定量より少ない状態であることを特徴とする。
また、請求項3の内燃機関の排気浄化装置では、請求項1或いは2において、前記尿素水供給手段の上流に、前記排ガス中の前記窒素酸化物の濃度を検出する第1濃度検出手段と、前記選択還元型触媒の下流に前記排ガス中の前記窒素酸化物の濃度を検出する第2濃度検出手段をそれぞれ備え、前記アンモニア吸着制御手段は、前記第2濃度検出手段の検出値が、前記第1濃度検出手段の検出値以上であると、前記尿素水供給手段からの前記尿素水の供給を終了することを特徴とする。
請求項1の発明によれば、少なくとも内燃機関から排出される窒素酸化物の排出量または排ガスの温度の状況によって尿素水の供給に対してアンモニア吸着触媒がアンモニアを吸着しやすい環境であるディーゼルパティキュレートフィルタの再生制御をしている状態の時に、内燃機関から排出される排ガスに含まれる窒素酸化物の還元浄化に必要な量以上のアンモニアが発生するよう尿素水を尿素水供給手段より供給しているので、アンモニア吸着触媒に確実にアンモニアを吸着させることが可能となる。
したがって、アンモニア吸着触媒にアンモニアを吸着させることができるので、例えば内燃機関から排出される窒素酸化物の排出量が多い内燃機関の高回転速度・高負荷時に、アンモニア吸着触媒に吸着したアンモニアを脱離して、アンモニアを選択還元型触媒に供給することができ、窒素酸化物を確実に還元浄化することができる
特に、ディーゼルパティキュレートフィルタの再生制御中に尿素水供給手段より尿素水を供給することで、ディーゼルパティキュレートフィルタの再生制御中は、内燃機関より排出される窒素酸化物の排出量が増加し、選択還元型触媒にて窒素酸化物を還元浄化する必要があるが、ディーゼルパティキュレートフィルタ内に堆積する微粒子状物質を燃焼させるために排ガスの温度が高温となっている。
したがって、尿素水供給手段より供給される尿素水が加水分解してアンモニアとなりやすい状態であるので、尿素水をアンモニアガスとして、アンモニア吸着触媒に確実に供給することが可能となる。
よって、アンモニア吸着触媒にアンモニアを吸着させることができるので、例えば内燃機関から排出される窒素酸化物の排出量が多い内燃機関の高回転速度・高負荷時に、アンモニア吸着触媒に吸着したアンモニアを脱離して、アンモニアを選択還元型触媒に供給することができ、窒素酸化物を確実に還元浄化することができる。
た、請求項2の発明によれば、アンモニア吸着触媒にアンモニアを吸着しやすい環境を、ディーゼルパティキュレートフィルタの再生制御をしている状態の時で、アンモニア吸着触媒に吸着されているアンモニア量が所定量より少ない状態としている。
したがって、例えば、所定量をアンモニア吸着触媒にアンモニアを吸着できなくなるアンモニア吸着触媒に吸着可能な限界のアンモニア量とすることで、アンモニア吸着触媒に吸着されているアンモニア量が所定量となると、尿素水供給手段より尿素水の供給を行わないので、アンモニアがアンモニア吸着触媒に吸着されずに、アンモニア吸着触媒の下流に流出することを防止することができ、延いてはアンモニア吸着触媒で吸着されなかったアンモニアが車外に排出されることを防止することができる。
また、請求項3の発明によれば、選択還元型触媒の下流の排ガス中の窒素酸化物の濃度が、尿素水供給手段の上流の排ガス中の窒素酸化物の濃度以上であると、アンモニア吸着制御を終了するようにしている。
第1及び第2濃度検出手段は、一般的にアンモニアの影響を受ける特性を有している。そして、選択還元型触媒の下流の排ガス中の窒素酸化物の濃度が、尿素水供給手段の上流の排ガス中の窒素酸化物の濃度以上となる場合とは、尿素水供給手段より供給される尿素水が加水分解されてアンモニアとなり、当該アンモニアがアンモニア吸着触媒で吸着されず、且つ選択還元型触媒にて窒素酸化物の還元浄化に用いられず排出され、第2濃度検出手段が当該アンモニアの影響を受ける場合である。即ち、選択還元型触媒の下流の排ガス中の窒素酸化物の濃度が、尿素水供給手段の上流の排ガス中の窒素酸化物の濃度以上となる場合とは、尿素水供給手段より尿素水が過剰に供給されている場合をさす。
したがって、選択還元型触媒の下流の排ガス中の窒素酸化物の濃度が、尿素水供給手段の上流の排ガス中の窒素酸化物の濃度以上であると、尿素水供給手段より過剰に尿素水が供給され、アンモニアがアンモニア吸着触媒で吸着されず選択還元型触媒にて窒素酸化物の還元浄化にも用いられず排出されていると判別して、アンモニア吸着制御を終了することで、アンモニア吸着触媒で吸着されず、且つ選択還元型触媒にて窒素酸化物の還元浄化に用いられずアンモニアが車外に排出されることを防止することができる。
本発明に係る内燃機関の排気浄化装置が適用されたエンジンの概略構成図である。 本発明の参考となる第1参考例における内燃機関の排気浄化装置のエンジンコントロールユニットが実行するアンモニア吸着制御の制御フローチャートである。 本発明の参考となる第2参考例における内燃機関の排気浄化装置のエンジンコントロールユニットが実行するアンモニア吸着制御の制御フローチャートである。 本発明の一実施例に係る内燃機関の排気浄化装置のエンジンコントロールユニットが実行するアンモニア吸着制御の制御フローチャートである。
以下、本発明の実施の形態を図面に基づき説明する。
図1は、内燃機関の排気浄化装置が適用されたエンジン1の概略構成図である。
図1に示すように、エンジン(内燃機関)1は、多気筒の筒内直接噴射式内燃機関(例えばコモンレール式ディーゼルエンジン)であり、詳しくは、コモンレールに蓄圧された高圧燃料を各気筒の燃料噴射ノズル2に供給し、任意の噴射時期及び噴射量で当該燃料噴射ノズル2から各気筒の燃焼室3内に噴射可能な構成を成している。
エンジン1の各気筒には、上下摺動可能なピストン4が設けられている。そして、当該ピストン4は、コンロッド5を介してクランクシャフト6に連結されている。また、クランクシャフト6の一端部にはフライホイールが設けられている。
燃焼室3には、インテークポート7とエキゾーストポート8とが連通されている。
インテークポート7には、燃焼室3と当該インテークポート7との連通と遮断を行うインテークバルブ9が設けられている。また、エキゾーストポート8には、燃焼室3と当該エキゾーストポート8との連通と遮断とを行うエキゾーストバルブ10が設けられている。
インテークポート7の上流には、吸入した空気を各気筒に分配するインテークマニフォールド11が連通するように設けられている。そして、エキゾーストポート8の下流には、各気筒から排出される排ガスをまとめるエキゾーストマニフォールド12が連通するように設けられている。
インテークマニフォールド11の各気筒に吸入空気を分配するための分岐の上流のインテークマニフォールド11には、酸素濃度を検出する酸素濃度センサ13がセンサ部をインテークマニフォールド11内に突出するように設けられている。また、空燃比センサ13の下流には、燃焼室3に吸入される吸入空気の温度を検出する吸気温度センサ14がインテークマニフォールド11内に突出するように設けられている。
インテークマニフォールド11とエキゾーストマニフォールド12には、それぞれが連通するように高温・高圧の排ガスの一部を吸気へ戻す、即ち高温・高圧のEGRガスを吸気に導入する高圧EGR通路(排気再循環手段)15が設けられている。また、高圧EGR通路15は、酸素濃度センサ13の上流のインテークマニフォールド11に、高温・高圧の排ガスが吸気に戻る量、即ちEGRガスの流量を調整するEGRバルブ(排気再循環手段)16を介して接続されている。また、高圧EGR通路15には、インテークマニフォールド11に導入する排ガスを冷却するEGRクーラ(排気再循環手段)17が設けられている。
インテークマニフォールド11の上流には、最上流から吸入された新気中のゴミを取り除くエアークリーナ18と、圧縮され高温となった新気を冷却するインタークーラ20と、新気の流量を調整しつつ、後述する低圧EGR通路41より導入される低圧のEGRガスの流量を調整するための電子制御スロットルバルブ39と、排気のエネルギを利用し吸入された新気を圧縮するターボチャージャ19の図示しないコンプレッサハウジングとが吸気管21を介してインテークマニフォールド11に接続されている。また、高圧EGR通路15より導入されるEGRガスの流量を調整するための電子制御スロットルバルブ22は、インテークマニフォールド11と吸気管21との間に配設されている。電子制御スロットルバルブ22,39には、スロットルバルブの開き度合を検出するスロットルポジションセンサ23,40が備えられている。
吸気管21のエアークリーナ18とターボチャージャ19のコンプレッサハウジングとの間の吸気管21には、吸入される空気の温度を検出する吸気温度センサ38が吸気管21内に突出するように設けられている。
エキゾーストマニフォールド12の下流には、ターボチャージャ19に排ガスを導入する図示しないタービンハウジングと、排気管24とが連通するように設けられている。
排気管24には、上流から順番に排ガス中の被酸化成分を酸化する酸化触媒25と、排ガス中の黒鉛を主成分とする微粒子状物資を捕集し燃焼させるディーゼルパティキュレートフィルタ26と、アンモニアを一時的に吸着し、排ガス温度が所定温度(400℃)以上となると吸着したアンモニアを離脱するアンモニア吸着触媒27と、排ガス中の窒素酸化物(以下、NOx)をアンモニアを用いて還元浄化する選択還元型触媒28とが連通するように設けられている。なお、酸化触媒25とディーゼルパティキュレートフィルタ26は、ケーシング29内に配設されている。また、アンモニア吸着触媒27と選択還元型触媒28は、ケーシング30内に配設されている。
アンモニア吸着触媒27は、金属イオン(例えば、CuやFe)を含まないゼオライト、即ち、ブレンステッド酸点を有するゼオライトで構成されている。そして、アンモニア吸着触媒27の触媒容量は、選択還元型触媒28の触媒容量以下に設定されている。アンモニア吸着触媒27は、触媒の温度が所定温度(400℃)未満では、後述する尿素水インジェクタ36より噴射された尿素水が加水分解を起こして発生したアンモニアを吸着し、触媒の温度が所定温度以上となると吸着したアンモニアを脱離する特性を有する。即ち、排ガス温度が所定温度以上となりアンモニア吸着触媒27の温度が所定温度以上となると、アンモニア吸着触媒27はアンモニアを脱離して、下流の選択還元型触媒28にアンモニアを供給する。
選択還元型触媒28は、金属イオン(例えば、CuやFe)を含むゼオライト、即ち、ルイス酸点を有するゼオライトで構成されている。また、選択還元型触媒28は、NOxを還元浄化する機能に加え、選択還元型触媒28に供給されるアンモニアを吸着及び脱離する機能を有する。そして、選択還元型触媒28は、アンモニア吸着触媒27より脱離したアンモニア、尿素水インジェクタ36より噴射された尿素水が加水分解を起こして発生したアンモニア、或いは選択還元型触媒28に吸着したアンモニアによって排ガス中のNOxを還元浄化するものである。なお、選択還元型触媒28は、触媒の温度が約200℃から300℃でアンモニアの脱離を開始する。
排気管24のターボチャージャ19とケーシング29との間には、排ガス中の酸素濃度を検出する酸素濃度センサ31が排気管24内に突出するように設けられている。
ケーシング29の酸化触媒25の上流には、酸化触媒25に流入する排ガスの温度を検出する排気温度センサ32がケーシング29内に突出するように設けられている。また、ケーシング29の酸化触媒25とディーゼルパティキュレートフィルタ26との間には、酸化触媒25から流出する排ガスの温度を検出する排気温度センサ33がケーシング29内に突出するように設けられている。そして、ケーシング29のディーゼルパティキュレートフィルタ26の下流には、ディーゼルパティキュレートフィルタ26から流出する排ガスの温度を検出する排気温度センサ34がケーシング29内に突出するように設けられている。
排気管24のディーゼルパティキュレートフィルタ26とアンモニア吸着触媒27との間、即ち排気管24のケーシング29とケーシング30との間には、排ガス内のNOxの濃度を検出するNOxセンサ(第1濃度検出手段)35が排気管24内に突出するように設けられている。そして、排気管24のNOxセンサ35とケーシング30との間には、尿素水インジェクタ(尿素水供給手段)36が排気管24内に突出するように設けられている。なお、NOxセンサ35の検出値は、センサの特性上、アンモニアに影響されるものである。即ち、NOxセンサ35の検出値は、排ガス中のNOxの濃度が一定であっても、アンモニアの濃度が濃くなると、高い検出値(NOx濃度)を出力する。
尿素水インジェクタ36は、アンモニア吸着触媒27及び選択還元型触媒28にアンモニアを供給するための尿素水を排気管24内に噴射するものである。なお、尿素水は、外部に設けられた図示しない尿素水タンクより供給される。そして、尿素水インジェクタ36からアンモニア吸着触媒27までの距離は、尿素水インジェクタ36から噴射された尿素水が加水分解されアンモニアを発生するまでに必要な距離以上に設定されている。したがって、尿素水インジェクタ36より噴射された尿素水は、アンモニア吸着触媒27に到達するまでに加水分解を起こしアンモニアを発生する。
排気管24の選択還元型触媒28の下流、即ちケーシング30の下流には、選択還元型触媒28から流出する排ガス内のNOxの濃度を検出するNOxセンサ(第2濃度検出手段)37が排気管24内に突出するように設けられている。なお、NOxセンサ37は、NOxセンサ37と同様に、センサの特性上、アンモニアに影響されるものである。即ち、NOxセンサ35の検出値は、排ガス中にNOxの濃度が一定であっても、アンモニアの濃度が濃くなると、高い検出値(NOx濃度)を出力する。
電子制御スロットルバルブ39とターボチャージャ19との間の吸気管21と、ディーゼルパティキュレートフィルタ29の下流の排気管24には、それぞれが連通するように低温・低圧の排ガスの一部を吸気へ戻す、即ち低温・低圧のEGRガスを吸気に導入する低圧EGR通路(排気再循環手段)41が設けられている。また、低圧EGR通路41には、排気が吸気に戻る量、即ちEGRガスの流量を調整するEGRバルブ(排気再循環手段)42と、吸気へ戻す排気を冷やすEGRクーラ(排気再循環手段)43と、吸気に戻す排ガスから異物を取り除くEGRフィルタ(排気再循環手段)44とが設けられている。
そして、燃料噴射ノズル2、酸素濃度センサ13,31、吸気温度センサ14,38、EGRバルブ16,42、電子制御スロットルバルブ22,39、スロットルポジションセンサ23,40、排気温度センサ32,33,34、NOxセンサ35,37、尿素水インジェクタ36、及びエンジン1の運転状態を検出する各種センサやエンジン1が搭載される車両の運転者が操作するアクセルペダルの操作度合いを検出するアクセルポジションセンサ等の各種装置は、エンジン1の総合的な制御を行うための制御装置であって入出力装置、記憶装置(ROM、RAM、不揮発性RAM等)、タイマ及び中央演算処理装置(CPU)等を含んで構成されるエンジンコントロールユニット(アンモニア吸着制御手段)50と電気的に接続されている。当該エンジンコントロールユニット50は、各種センサ類からの各情報に基づき各種装置の作動を制御して、エンジン1の運転を制御するものである。
エンジンコントロールユニット50の入力側には、酸素濃度センサ13,31、吸気温度センサ14,38、スロットルポジションセンサ23,40、排気温度センサ32,33,34、NOxセンサ35,37、及びアクセルポジションセンサ等のセンサ類が電気的に接続されており、これら各種装置及び各種センサ類からの検出情報が入力される。
一方、エンジンコントロールユニット50の出力側には、燃料噴射ノズル2、EGRバルブ16,42、電子制御スロットルバルブ22,39、及び尿素水インジェクタ36が電気的に接続されている。
これより、エンジンコントロールユニット50は、各センサの検出値に基づき、燃料噴射ノズル2からのプレ噴射、メイン噴射及びアフタ噴射の燃料噴射量、噴射時期と、EGRバルブ16,42や電子制御スロットルバルブ22,39の開度と尿素水インジェクタ36からの尿素水の噴射量等を最適に制御し、エンジン1を高精度に制御する。
また、エンジンコントロールユニット50は、図示しない圧力センサにて検出されるディーゼルパティキュレートフィルタ26の上流と下流の排ガスの圧力より、圧力差を算出し所定圧力差となった場合や、運転者の操作によって図示しない強制再生ボタン等が操作された場合に、燃焼噴射ノズル2からの燃料の噴射量や噴射時期を制御して、ディーゼルパティキュレートフィルタ26内に堆積した微粒子状物質を燃焼させるディーゼルパティキュレートフィルタ再生処理を実施する。
更にエンジンコントロールユニット50は、エンジン1の運転状態やNOxセンサ35にて検出されるNOx濃度よりNOxの排出量が多いと判定すると、アンモニア吸着触媒27や選択還元型触媒28に供給するアンモニアの供給量が増加するように、尿素水インジェクタ36より噴射される尿素水の噴射量を増加させる。また、エンジンコントロールユニット50は、エンジン1の運転状態や、尿素水インジェクタ36とアンモニア吸着触媒27との間の排ガス温度や、アンモニア吸着触媒27内に吸着されているアンモニア量等に基づいて、アンモニア吸着触媒27にアンモニアが吸着しやすい環境であると判定すると、尿素水インジェクタ36より尿素水を噴射して、尿素水が加水分解されて発生したアンモニアをアンモニア吸着触媒27に吸着させるアンモニア吸着制御を実施する。
第1参考例]
2に示す第1参考例のアンモニア吸着制御の制御フローチャートを説明すると、ステップS10では、EGRを導入中(排気再循環手段を作動させ、内燃機関の吸気通路に排ガスを再循環させている状態に相当)であるか、否かを判別する。詳しくは、EGRバルブ16,42のいずれか或いは双方を作動させて、排ガスを吸気に導入しているか、否かを判別する。判別結果が真(Yes)でEGRバルブ16,42のいずれか或いは双方を作動させて、排ガスを吸気に導入していれば、ステップS12に進む。また、判別結果が否(No)でEGRバルブ16,42のいずれも作動しておらず、排ガスを吸気に導入していなければ、ステップS18に進む。
ステップS12では、排ガス温度が所定温度範囲内にあるか、否かを判別する。詳しくは、排気温度センサ34にて検出されるディーゼルパティキュレートフィルタ26から排出される排ガスの温度に基づいて、尿素水インジェクタ36とアンモニア吸着触媒27との間の排ガス温度(本発明の排ガスの温度に相当)を推定し、推定された当該排ガス温度が所定温度範囲内にあるか、否かを判別する。判別結果が真(Yes)で推定された当該排ガス温度が所定温度範囲内にあれば、ステップS14に進む。また、判別結果が否(No)で推定された当該排ガス温度が所定温度範囲内になければ、ステップS18に進む。なお、所定温度範囲の下限値は、尿素水が加水分解されてアンモニアとなる温度(例えば、200℃)に設定される。また、所定温度範囲の上限値は、アンモニア吸着触媒27よりアンモニアが脱離を開始する温度(例えば400℃)に設定される。
ステップS14では、アンモニア吸着触媒中に吸着されているアンモニア量、即ちアンモニア吸着量Wnが所定量未満であるか、否かを判別する。判別結果が真(Yes)でアンモニア吸着量Wnが所定量未満であれば、ステップS16に進む。また、判別結果が否(No)でアンモニア吸着量Wnが所定量未満でなければ、ステップS18に進む。なお、所定量は、アンモニア吸着触媒27に吸着可能な限界のアンモニア量に設定される。
ステップS16では、尿素水インジェクタ36から尿素水の噴射を開始する。即ち、尿素水インジェクタ36から尿素水を噴射して、尿素水が加水分解されて発生するアンモニアをアンモニア吸着触媒27に吸着させる。そして、ステップS10へ戻る。
そして、ステップS18では、尿素水インジェクタ36からの尿素水の噴射を終了する。そして、本ルーチンをリターンする。
第1参考例では、EGRバルブ16,42のいずれか或いは双方を作動させて、排ガスを吸気に導入しており、尿素水インジェクタ36とアンモニア吸着触媒27との間の排ガス温度が所定温度範囲内であって、アンモニア吸着触媒中に吸着されているアンモニア吸着量Wnが所定量未満であると、尿素水インジェクタ36から尿素水の噴射を開始して、尿素水が加水分解されて発生するアンモニアをアンモニア吸着触媒27に吸着させる。
アンモニア吸着触媒27は、ブレンステッド酸点を有するゼオライトで構成されているので、例えば、車両が急加速してエンジン1が高負荷運転となり、排ガスの温度が上昇し、アンモニア吸着触媒27の温度が所定温度(400℃)以上となると吸着したアンモニアを脱離する。そして、選択還元型触媒28では、アンモニア吸着触媒27を脱離したアンモニアと、尿素水インジェクタ36より噴射される尿素水から発生したアンモニアとによって、エンジン1の高負荷運転等により排出量が増加したエンジン1から排出されるNOxを還元浄化する。
GRの導入中、即ち排ガスを吸気に導入している時に尿素水インジェクタ36より尿素水を供給することで、EGRの導入中では、エンジン1から排出されるNOxの排出量が減少するので、選択還元型触媒28にてNOxを積極的に還元浄化する必要がなくなる
また、尿素水インジェクタ36とアンモニア吸着触媒27との間の排ガス温度が、下限値を尿素水が加水分解されてアンモニアとなる温度(例えば、200℃)で設定され、上限値をアンモニア吸着触媒27よりアンモニアが脱離を開始する温度(例えば400℃)に設定された所定温度範囲内である時に尿素水インジェクタ36より尿素水を供給することで、尿素水を加水分解してアンモニアとし、アンモニア吸着触媒27に吸着させることができ、更にアンモニア吸着触媒27に吸着したアンモニアが脱離することを防止できるので、アンモニア吸着触媒27にアンモニアを確実に吸着させることができる。
た、アンモニア吸着触媒27に吸着されているアンモニア量、即ちアンモニア吸着量Wnがアンモニア吸着触媒27に吸着可能な限界のアンモニア量に設定された所定量未満であると尿素水インジェクタ36から尿素水の供給を行わないので、アンモニアがアンモニア吸着触媒27に吸着されずに、アンモニア吸着触媒27の下流に流出することを防止することができ、延いてはアンモニア吸着触媒27で吸着されなかったアンモニアが車外に排出されることを防止することができる。
第2参考例]
図3に示す第2参考例のアンモニア吸着制御の制御フローチャートを説明すると、第2参考例のアンモニア吸着制御は、尿素水インジェクタ36での尿素水の噴射後に、ディーゼルパティキュレートフィルタ26とアンモニア吸着触媒27との間に配設されるNOxセンサ35の検出値と、選択還元型触媒28の下流に配設されるNOxセンサ37の検出値とを比較し判別している。
図3に示すように、ステップS10からステップS16までは、EGRの導入中であるか否か、排ガス温度が所定温度範囲内にあるか否か、アンモニア吸着触媒中に吸着されているアンモニア吸着量Wnが所定量未満であるか否かを判別し、判別結果が全て真(Yes)であると、尿素水インジェクタ36から尿素水の噴射を開始する。そして、ステップS17に進む。
ステップS17では、選択還元型触媒28の下流に配設されるNOxセンサ37の検出値(NOx濃度)Doが、ディーゼルパティキュレートフィルタ26とアンモニア吸着触媒27との間に配設されるNOxセンサ35の検出値(NOx濃度)Diより大きいか、否かを判別する。判別結果が真(Yes)でNOx濃度DoがNOx濃度Diより大きければ、ステップS18に進み、尿素水インジェクタ36からの尿素水の噴射を終了して、本ルーチンをリターンする。また、判別結果が否(No)でNOx濃度DoがNOx濃度Diよりも大きくなければ、ステップS10へ戻る。
GRバルブ16,42のいずれか或いは双方を作動させて、排ガスを吸気に導入しており、尿素水インジェクタ36とアンモニア吸着触媒27との間の排ガス温度が所定温度範囲内であって、アンモニア吸着触媒中に吸着されているアンモニア吸着量Wnが所定量未満であると、尿素水インジェクタ36から尿素水の噴射を開始して、尿素水が加水分解されて発生するアンモニアをアンモニア吸着触媒27に吸着させる。そして、NOx濃度DoがNOx濃度Diより大きければ、尿素水インジェクタ36から尿素水の噴射を終了する。また、NOx濃度DoがNOx濃度Diより大きくなければ、EGRの導入の有無等の判別を再度行う。
Oxセンサ35及びNOxセンサ37は、一般的にアンモニアの影響を受ける特性を有している。そして、選択還元型触媒28の下流の排ガス中のNOx濃度Doが、尿素水インジェクタ36の上流の排ガス中のNOx濃度Diより大きくなる場合とは、尿素水インジェクタ36より噴射される尿素水が加水分解されてアンモニアとなり、当該アンモニアがアンモニア吸着触媒27で吸着されず、且つ選択還元型触媒28にてNOxの還元浄化に用いられず排出され、NOxセンサ37が当該アンモニアの影響を受ける場合である。即ち、選択還元型触媒28の下流の排ガス中のNOx濃度Doが、尿素水インジェクタ36の上流の排ガス中のNOx濃度Diより大きくなる場合とは、尿素水インジェクタ36より尿素水が過剰に供給されている場合をさす。
選択還元型触媒28の下流の排ガス中のNOx濃度Doが、尿素水インジェクタ36の上流の排ガス中のNOx濃度Diより大きくなると、尿素水インジェクタ36より過剰に尿素水が噴射され、アンモニアがアンモニア吸着触媒27で吸着されず選択還元型触媒28にてNOxの還元浄化にも用いられず排出されていると判別して、尿素水インジェクタ36から尿素水の噴射を終了することで、アンモニア吸着触媒27で吸着されず、且つ選択還元型触媒28にてNOxの還元浄化に用いられずアンモニアが車外に排出されることを防止することができる。
一実施例
次に本発明の一実施例に係る内燃機関の排気浄化装置のエンジンコントロールユニット50でのアンモニア吸着制御について説明する。
図4は、本発明の一実施例に係る内燃機関の排気浄化装置のエンジンコントロールユニット50でのアンモニア吸着制御の制御フローチャートである。
一実施例のアンモニア吸着制御は、第2参考例に対して、ステップS10でのEGR導入であるか否かの判別をディーゼルパティキュレートフィルタ再生中であるか否かの判別としている点が異なる
図3に示すように、ステップS10’では、ディーゼルパティキュレートフィルタ26の再生制御中(本発明のディーゼルパティキュレートフィルタの再生制御している状態に相当)であるか、否かを判別する。判別結果が真(Yes)でディーゼルパティキュレートフィルタ26の再生制御中であれば、ステップS12に進む。また、判別結果が否(No)でディーゼルパティキュレートフィルタ26の再生制御中でいなければ、ステップS18に進む。
そして、ステップS12からステップS18までは、排ガス温度が所定温度範囲内にあるか否か、アンモニア吸着触媒中に吸着されているアンモニア吸着量Wnが所定量未満であるか否かを判別し、判別結果が全て真(Yes)であると、尿素水インジェクタ36から尿素水の噴射を開始する。そして、NOx濃度DoがNOx濃度Diより大きくなければ、吸気への排気の導入等の判別を再度行う。また、NOx濃度DoがNOx濃度Diより大きければ、尿素水インジェクタ36から尿素水の噴射を終了する。
このように一実施例に係る内燃機関の排気浄化装置では、ディーゼルパティキュレートフィルタ26の再生制御中であり、尿素水インジェクタ36とアンモニア吸着触媒27との間の排ガス温度が所定温度範囲内であって、アンモニア吸着触媒中に吸着されているアンモニア吸着量Wnが所定量未満であると、尿素水インジェクタ36から尿素水の噴射を開始して、尿素水が加水分解されて発生するアンモニアをアンモニア吸着触媒27に吸着させる。そして、NOx濃度DoがNOx濃度Diより大きくなければ、吸気への排気の導入等の判別を再度行う。また、NOx濃度DoがNOx濃度Diより大きければ、尿素水インジェクタ36から尿素水の噴射を終了する。
ディーゼルパティキュレートフィルタ26の再生制御中に尿素水インジェクタ36より尿素水を噴射することで、ディーゼルパティキュレートフィルタ26の再生制御中では、エンジン1より排出されるNOxの排出量が増加し、選択還元型触媒28にてNOxを還元浄化する必要があるが、ディーゼルパティキュレートフィルタ26内に堆積する微粒子状物質を燃焼させるために排ガスの温度が高温となっている。
したがって、排ガスの温度が高温となっており、尿素水インジェクタ36より噴射される尿素水が加水分解してアンモニアとなりやすい状態であるので、尿素水をアンモニアガスとして、アンモニア吸着触媒27に確実に供給することが可能となる。
よって、アンモニア吸着触媒27にアンモニアを吸着させることができるので、例えばエンジン1から排出されるNOxの排出量が多いエンジン1の高回転速度・高負荷時に、アンモニア吸着触媒27に吸着したアンモニアを脱離して、アンモニアを選択還元型触媒28に供給することができ、NOxを確実に還元浄化することができる。
以上で発明の実施形態の説明を終えるが、本発明の形態は上記実施形態に限定されるものではない。
上記実施形態では、エンジン1をコモンレール式ディーゼルエンジンとしているが、これに限定されるものではなく、NOxの排出量が比較的多く選択還元型触媒を装着する排気系を有する希薄燃焼ガソリンエンジンにも適用可能であることはいうまでもない。
1 エンジン(内燃機関)
26 ディーゼルパティキュレートフィルタ
27 アンモニア吸着触媒
28 選択還元型触媒
35 NOxセンサ(第1濃度検出手段)
36 尿素水インジェクタ(尿素水供給手段)
37 NOxセンサ(第2濃度検出手段)
50 ECU(アンモニア吸着制御手段)

Claims (3)

  1. 内燃機関から排出される排ガスに含まれる窒素酸化物をアンモニアにて還元浄化する選択還元型触媒と、
    前記選択還元型触媒の上流に配設され、前記アンモニアを吸着し、前記選択還元型触媒のアンモニア脱離温度よりも高い温度で前記アンモニアを脱離するアンモニア吸着触媒と、
    前記アンモニア吸着触媒の上流に尿素水を供給する尿素水供給手段と、
    前記尿素水供給手段の作動を制御するアンモニア吸着制御手段と、
    前記尿素水供給手段の上流に配設され、前記排ガス中の微粒子状物質を除去するディーゼルパティキュレートフィルタと、を備え、
    前記アンモニア吸着制御手段は、少なくとも前記内燃機関から排出される窒素酸化物の排出量または前記排ガスの温度の状況によって前記尿素水の供給に対して前記アンモニア吸着触媒が前記アンモニアを吸着しやすい環境である前記ディーゼルパティキュレートフィルタの再生制御をしている状態の時に、前記内燃機関から排出される排ガスに含まれる窒素酸化物の還元浄化に必要な量以上のアンモニアが発生するよう前記尿素水を前記尿素水供給手段より供給することを特徴とする内燃機関の排気浄化装置。
  2. 記アンモニア吸着触媒に前記アンモニアを吸着しやすい環境は前記ディーゼルパティキュレートフィルタの再生制御をしている状態の時で、前記アンモニア吸着触媒に吸着されているアンモニア量が所定量より少ない状態であることを特徴とする、請求項1に記載の内燃機関の排気浄化装置。
  3. 前記尿素水供給手段の上流に、前記排ガス中の前記窒素酸化物の濃度を検出する第1濃度検出手段と、
    前記選択還元型触媒の下流に前記排ガス中の前記窒素酸化物の濃度を検出する第2濃度検出手段をそれぞれ備え、
    前記アンモニア吸着制御手段は、前記第2濃度検出手段の検出値が、前記第1濃度検出手段の検出値以上であると、前記尿素水供給手段からの前記尿素水の供給を終了することを特徴とする、請求項1または請求項2に記載の内燃機関の排気浄化装置。
JP2012259811A 2012-11-28 2012-11-28 内燃機関の排気浄化装置 Active JP5983937B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012259811A JP5983937B2 (ja) 2012-11-28 2012-11-28 内燃機関の排気浄化装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012259811A JP5983937B2 (ja) 2012-11-28 2012-11-28 内燃機関の排気浄化装置

Publications (2)

Publication Number Publication Date
JP2014105645A JP2014105645A (ja) 2014-06-09
JP5983937B2 true JP5983937B2 (ja) 2016-09-06

Family

ID=51027364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012259811A Active JP5983937B2 (ja) 2012-11-28 2012-11-28 内燃機関の排気浄化装置

Country Status (1)

Country Link
JP (1) JP5983937B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101923212B1 (ko) * 2016-09-29 2018-11-29 주식회사 에코프로 암모니아 제거 장치 및 제거 방법
JP7288738B2 (ja) * 2017-09-04 2023-06-08 いすゞ自動車株式会社 排気処理システムの制御装置及び排気処理システム
JP7254010B2 (ja) * 2019-11-19 2023-04-07 日立造船株式会社 加水分解システム、脱硝設備及び加水分解システムの制御方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0614445D0 (en) * 2006-07-20 2006-08-30 Ricardo Uk Ltd Control of selective catalytic reduction
JP5155838B2 (ja) * 2008-12-05 2013-03-06 ボッシュ株式会社 還元剤噴射制御装置及び還元剤噴射装置の制御方法並びに内燃機関の排気浄化装置
JP5429286B2 (ja) * 2009-06-03 2014-02-26 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP2011032999A (ja) * 2009-08-05 2011-02-17 Toyota Industries Corp 排気ガス浄化装置

Also Published As

Publication number Publication date
JP2014105645A (ja) 2014-06-09

Similar Documents

Publication Publication Date Title
US7530220B2 (en) Control strategy for reducing fuel consumption penalty due to NOx adsorber regeneration
US8621854B2 (en) System and method for determining an age of and controlling a selective catalytic reduction catalyst
EP3051089B1 (en) Exhaust purifying apparatus for internal combustion engine
CN102042066B (zh) 用于控制氧化氮吸附剂的再生的系统和方法
US9212585B2 (en) Exhaust gas purifying apparatus for internal combustion engine
JP5846300B2 (ja) 内燃機関の制御装置
US10443525B2 (en) Exhaust emission control system of engine
JP2008128162A (ja) 内燃機関の排気浄化装置
JP5983937B2 (ja) 内燃機関の排気浄化装置
WO2013108387A1 (ja) 内燃機関の排気浄化装置
JP5716687B2 (ja) 内燃機関の排気浄化装置
JP2007071142A (ja) 内燃機関の排気浄化システム
EP2677150A2 (en) Exhaust gas control apparatus of internal combustion engine
JP5354214B2 (ja) 触媒劣化判定装置
JP2008121555A (ja) 内燃機関の排気浄化装置
JP5834978B2 (ja) 内燃機関の排気浄化装置
JP2017115632A (ja) 内燃機関の燃料噴射制御装置
JP4893493B2 (ja) 内燃機関の排気浄化装置
JP2014118945A (ja) 内燃機関の排気浄化装置
JP2007255308A (ja) 内燃機関の排気浄化装置
WO2015049581A1 (en) Exhaust gas control apparatus for internal combustion engine
JP5751345B2 (ja) 内燃機関の添加剤供給装置
JP2013185511A (ja) 内燃機関の排気浄化装置
JP2014105644A (ja) 内燃機関の排気浄化装置
JP6264554B2 (ja) 排気浄化システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150918

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160706

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160719

R151 Written notification of patent or utility model registration

Ref document number: 5983937

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350