WO2021100135A1 - 二酸化炭素の固定方法、固定化二酸化炭素の製造方法、および固定化二酸化炭素の製造装置 - Google Patents

二酸化炭素の固定方法、固定化二酸化炭素の製造方法、および固定化二酸化炭素の製造装置 Download PDF

Info

Publication number
WO2021100135A1
WO2021100135A1 PCT/JP2019/045390 JP2019045390W WO2021100135A1 WO 2021100135 A1 WO2021100135 A1 WO 2021100135A1 JP 2019045390 W JP2019045390 W JP 2019045390W WO 2021100135 A1 WO2021100135 A1 WO 2021100135A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon dioxide
contact
concentration
gas
sodium hydroxide
Prior art date
Application number
PCT/JP2019/045390
Other languages
English (en)
French (fr)
Inventor
健司 反町
Original Assignee
健司 反町
株式会社親広産業
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 健司 反町, 株式会社親広産業 filed Critical 健司 反町
Priority to CN201980033280.7A priority Critical patent/CN113165896A/zh
Priority to PCT/JP2019/045390 priority patent/WO2021100135A1/ja
Priority to JP2019568417A priority patent/JP6788169B1/ja
Priority to EP19923727.2A priority patent/EP3851414A4/en
Priority to US17/051,676 priority patent/US20220008865A1/en
Priority to US17/777,899 priority patent/US20220410065A1/en
Priority to JP2020539111A priority patent/JP6830564B1/ja
Priority to EP20890296.5A priority patent/EP4063011A1/en
Priority to CN202080080411.XA priority patent/CN114728257A/zh
Priority to PCT/JP2020/026989 priority patent/WO2021100239A1/ja
Publication of WO2021100135A1 publication Critical patent/WO2021100135A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1475Removing carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1493Selection of liquid materials for use as absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/18Absorbing units; Liquid distributors therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • B01D53/78Liquid phase processes with gas-liquid contact
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/50Carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/60Preparation of carbonates or bicarbonates in general
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/18Carbonates
    • C01F11/181Preparation of calcium carbonate by carbonation of aqueous solutions and characterised by control of the carbonation conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/30Alkali metal compounds
    • B01D2251/304Alkali metal compounds of sodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/40Alkaline earth metal or magnesium compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/40Alkaline earth metal or magnesium compounds
    • B01D2251/402Alkaline earth metal or magnesium compounds of magnesium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/40Alkaline earth metal or magnesium compounds
    • B01D2251/404Alkaline earth metal or magnesium compounds of calcium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/40Alkaline earth metal or magnesium compounds
    • B01D2251/406Alkaline earth metal or magnesium compounds of strontium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/40Alkaline earth metal or magnesium compounds
    • B01D2251/408Alkaline earth metal or magnesium compounds of barium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/50Inorganic acids
    • B01D2251/502Hydrochloric acid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/60Inorganic bases or salts
    • B01D2251/604Hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0283Flue gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/06Polluted air
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Definitions

  • the present invention relates to a method for fixing carbon dioxide, a method for producing immobilized carbon dioxide, and an apparatus for producing immobilized carbon dioxide.
  • Patent Document 1 describes a method for producing sodium carbonate by reacting a combustion exhaust gas containing carbon dioxide with an aqueous solution of sodium hydroxide.
  • a new method for fixing carbon dioxide is required.
  • an object of the present invention is to provide a new method for fixing carbon dioxide, a method for producing immobilized carbon dioxide, and an apparatus for producing immobilized carbon dioxide.
  • the method for fixing carbon dioxide of the present invention is: It comprises a contacting step of contacting a gas containing carbon dioxide with a mixture containing sodium hydroxide and further containing at least one of a chloride of a Group 2 element and a chloride of a divalent metal element.
  • the gas is brought into contact with the mixture by feeding the gas into the mixture.
  • the method for producing immobilized carbon dioxide of the present invention includes an immobilization step of immobilizing carbon dioxide.
  • the immobilization step is carried out by the method for immobilizing carbon dioxide of the present invention.
  • the device for producing immobilized carbon dioxide of the present invention is A contacting means for contacting a gas containing carbon dioxide with a mixture containing sodium hydroxide and further containing at least one of a chloride of a Group 2 element and a chloride of a divalent metal element.
  • the contacting means includes a container and a gas feeding means.
  • the container can contain the mixed solution and can contain the mixture.
  • the gas feeding means can feed the gas into the mixed liquid.
  • FIG. 1 is a photograph of a mixture containing sodium hydroxide and calcium chloride before and after contact with carbon dioxide in Example 1.
  • FIG. 2 is a graph showing the weight of the precipitate formed in the mixed solution due to the contact with carbon dioxide in Example 1.
  • FIG. 3 is a graph showing the weight of the precipitate formed in the mixed solution due to the contact with carbon dioxide in Example 1.
  • FIG. 4 is a graph showing the carbon dioxide concentration in the container after contact in Reference Example 1.
  • FIG. 5 is a diagram showing the shape of the octagonal pillar plastic bottle in Reference Example 1.
  • FIG. 6 is a graph showing the carbon dioxide concentration in the container after contact in Reference Example 1.
  • FIG. 7 is a graph showing the carbon dioxide concentration in the container after contact in Reference Example 1.
  • FIG. 1 is a photograph of a mixture containing sodium hydroxide and calcium chloride before and after contact with carbon dioxide in Example 1.
  • FIG. 2 is a graph showing the weight of the precipitate formed in the mixed solution due to the contact with carbon dioxide in Example 1.
  • FIG. 8 is a diagram showing a state in which contact is performed by spraying in Reference Example 2.
  • FIG. 9 is a graph showing the carbon dioxide concentration in the container after contact in Reference Example 2.
  • FIG. 10 is a diagram showing contact means in Reference Example 2.
  • FIG. 11 is a graph showing the carbon dioxide concentration in the container after contact in Reference Example 2.
  • FIG. 12 is a schematic view showing an example of the contact means.
  • FIG. 13 is a diagram showing an example of a container.
  • FIG. 14 is a schematic view showing an example of the gas feeding means.
  • FIG. 15 is a graph showing the weight of the precipitate formed in the mixed solution due to the contact with carbon dioxide in Example 2.
  • FIG. 16 is a graph showing the weight of the precipitate formed in the mixed solution due to the contact with carbon dioxide in Example 2.
  • FIG. 15 is a graph showing the weight of the precipitate formed in the mixed solution due to the contact with carbon dioxide in Example 2.
  • FIG. 16 is a graph showing the weight of the precipitate formed in the mixed solution due
  • FIG. 17 is a graph showing the weight of the precipitate formed in the mixed solution due to the contact with carbon dioxide in Example 3.
  • FIG. 18 is a graph showing the weight of the precipitate formed in the mixed solution due to the contact with carbon dioxide in Example 4.
  • FIG. 19 is a diagram showing a state in which contact by shaking is performed in Reference Example 1.
  • FIG. 20 is a graph showing the carbon dioxide concentration in the container after contact in Reference Example 1.
  • FIG. 21 is a diagram showing a state in which contact by bubbling is performed in Example 5.
  • FIG. 22 is a graph showing the weight of the precipitate formed in the mixed solution due to the contact with carbon dioxide in Example 5.
  • FIG. 23 is a schematic view illustrating the form of the pipe in the fifth embodiment.
  • FIG. 24 is a graph showing the carbon dioxide concentration in the container after contact in Example 5.
  • FIG. 25 is a graph showing the carbon dioxide concentration in the container after contact in Example 5.
  • FIG. 26 is a graph showing the carbon dioxide concentration in the container after contact in Example 5.
  • FIG. 27 is a graph showing the carbon dioxide concentration in the container after contact in Example 5.
  • FIG. 28 is a graph showing the carbon dioxide concentration in the container after contact in Reference Example 3.
  • FIG. 29 is a diagram showing a state in which contact by bubbling is performed in Reference Example 3.
  • FIG. 30 is a graph showing the carbon dioxide concentration in the container after contact in Reference Example 3.
  • FIG. 31 is a graph showing the carbon dioxide concentration in the container after contact in Reference Example 3.
  • FIG. 32 is a graph showing the weight of the precipitate formed in the mixed solution due to the contact with carbon dioxide in Example 6.
  • FIG. 33 is a graph showing the carbon dioxide concentration in the container after contact in Example 6.
  • FIG. 34 is a graph showing the weight of the precipitate formed in the mixed solution due to the contact with carbon dioxide in Example 7.
  • FIG. 35 is a schematic view showing an
  • At least one of the chloride of the Group 2 element and the chloride of the divalent metal element is calcium chloride.
  • the gas is bubbled and sent into the mixture.
  • the concentration of the sodium hydroxide in the mixed solution is less than 0.2 N.
  • the concentration of the sodium hydroxide in the mixed solution is 0.05 N or more.
  • the concentration of calcium chloride in the mixed solution is 0.05 mol / L or more.
  • the temperature of the mixed solution is 70 ° C. or higher.
  • the method for fixing carbon dioxide of the present invention further includes, for example, a cooling step, in which the cooling step cools the mixed liquid after the second contact step.
  • At least one of the chloride of the Group 2 element and the chloride of the divalent metal element is calcium chloride.
  • the device for producing immobilized carbon dioxide of the present invention further includes, for example, cooling means, and the cooling means cools the mixed liquid after the reaction with the gas.
  • the method for fixing carbon dioxide of the present invention is a mixture containing sodium hydroxide (NaOH) and further containing at least one of a chloride of a Group 2 element (alkaline earth metal) and a chloride of a divalent metal element. It includes a contact step of bringing the liquid into contact with a gas containing carbon dioxide (CO 2 ), and in the contact step, the gas is fed into the mixed solution to bring the mixed solution into contact with the gas. ..
  • other configurations and conditions are not particularly limited.
  • fixation of carbon dioxide means, for example, reducing the concentration of carbon dioxide in the gas by removing carbon dioxide from the gas containing carbon dioxide.
  • Examples of the Group 2 element include beryllium, magnesium, calcium, strontium, barium, and radium, and examples thereof include calcium, magnesium, strontium, and barium.
  • Examples of the chloride of the Group 2 element include calcium chloride, magnesium chloride, strontium chloride, and barium chloride.
  • the divalent metal element is not particularly limited, and examples thereof include zinc.
  • Examples of the chloride of the divalent metal element include zinc chloride.
  • a mixed solution containing sodium hydroxide (NaOH) and further containing calcium chloride (CaCl 2 ) is brought into contact with a gas containing carbon dioxide (CO 2).
  • the gas is brought into contact with the mixed solution by feeding the gas into the mixed solution.
  • carbon dioxide can be fixed by reacting sodium hydroxide and calcium chloride with carbon dioxide to generate calcium carbonate (CaCO 3).
  • CaCO 3 calcium carbonate
  • carbon dioxide can be fixed in a solid state.
  • carbon dioxide can be fixed in a more stable state. Also, for example, it becomes easy to handle.
  • the gas containing carbon dioxide is not particularly limited, and examples thereof include combustion exhaust gas, indoor air, and air.
  • the concentration of carbon dioxide in the gas containing carbon dioxide is not particularly limited, and is, for example, 0 to 100%. As will be described later, according to the present invention, even low-concentration carbon dioxide can be fixed. Further, since a white precipitate is formed in the mixed solution by bubbling 100% carbon dioxide, the present invention can obtain an effect even in fixing carbon dioxide at a high concentration.
  • the temperature of the gas containing carbon dioxide is not particularly limited, and may be, for example, a low temperature of 0 ° C. or lower, a general temperature of atmospheric temperature or room temperature, a temperature of less than 100 ° C., and a high temperature of 120 to 200 ° C.
  • the temperature of the gas may be low from the viewpoint of preventing evaporation of water.
  • the present invention can be applied, for example, even if the gas containing carbon dioxide has a high heat.
  • the gas containing carbon dioxide may contain, for example, a substance other than carbon dioxide.
  • Substances other than the carbon dioxide is not particularly limited, for example, SOx, NOx, O 2, dust, and the like.
  • the mixed solution is basically alkaline, it is considered that a neutralization reaction occurs between the mixed solution and the acidic substance or the like.
  • the present invention is not limited to this.
  • the mixed solution contains sodium hydroxide and calcium chloride as described above.
  • the method for producing the mixed solution is not particularly limited, and examples thereof include low-concentration mixing.
  • the low concentration is, for example, less than 5N as the concentration of sodium hydroxide before mixing. According to the low concentration mixing, for example, the formation of a calcium hydroxide precipitate can be prevented.
  • the method for preparing the mixed solution can be prepared by, for example, putting a 0.1 N sodium hydroxide solution and a 0.1 mol / L calcium chloride solution in a container and then mixing them. it can.
  • the concentration of the sodium hydroxide is not particularly limited, and is, for example, 0.01 N or more and 0.05 N or more, and 0.2 N or less, less than 0.2 N, and 0.1 N or less.
  • the unit "N" of the concentration indicates the normality, and in the case of sodium hydroxide, 0.01N is 0.01 mol / L.
  • concentration of the sodium hydroxide is 0.01 N or more and 0.05 N or more, for example, more carbon dioxide can be fixed.
  • the concentration of the sodium hydroxide is less than 0.2 N and 0.1 N or less, for example, more carbon dioxide can be fixed.
  • the method for fixing carbon dioxide of the present invention even when the mixed solution contains a high concentration of sodium hydroxide, calcium chloride and the high concentration of sodium hydroxide are contained. It means that it is possible to reduce the concentration of sodium hydroxide in the mixture by causing the precipitation of calcium hydroxide by the reaction. Therefore, according to the method for fixing carbon dioxide of the present invention, for example, even when a high concentration (for example, 0.2 N or more) of sodium hydroxide is generated due to high heat, the concentration can be lowered and a harmful gas can be generated. Can be suppressed.
  • a high concentration for example, 0.2 N or more
  • the concentration of calcium chloride is not particularly limited, and is, for example, 0.005 mol / L or more and 0.05 mol / L or more, and 0.5 mol / L or less, less than 0.5 mol / L, and 0.1 mol / L. It is L or less.
  • concentration of calcium chloride is within the above range, for example, more carbon dioxide can be fixed.
  • the temperature of the mixed solution is not particularly limited, and is, for example, 30 to 100 ° C., 70 ° C. or higher, 70 ° C. to 80 ° C., and 70 ° C. According to the present invention, as described above, even when a high concentration (for example, 0.2 N or more) of sodium hydroxide is generated due to high heat, the concentration can be reduced. Therefore, the present invention can be applied, for example, even when the mixed solution has a high heat.
  • a high concentration for example, 0.2 N or more
  • the pH of the mixed solution is not particularly limited, and for example, the pH of the mixed solution containing 0.05 N sodium hydroxide and 0.05 mol / L calcium chloride is about 12.
  • the gas is brought into contact with the mixed liquid to bring the mixed liquid into contact with the gas containing carbon dioxide.
  • the gas can also be, for example, "bubbling".
  • the bubbling conditions are not particularly limited, and for example, 3 mL of 0.1 N sodium hydroxide solution and 3 mL of the calcium chloride solution of 0.1 mol / L are put into a 10 mL test tube and mixed, and the mixture is described.
  • the solution can be bubbling for 10 seconds (about 20 cm 3 ) using carbon dioxide (manufactured by Koike Kogyo Co., Ltd.).
  • the bubbling can, for example, eject carbon dioxide from the tip of a Pasteur pipette.
  • a bubbling device for aquarium organisms (product name: Bukubuku, manufactured by Kotobuki Kotobuki Co., Ltd.) can be used.
  • a bubbling device (product name: Micro bubbler (F-1056-002), manufactured by Front Industry Co., Ltd.) can be used.
  • the time for bubbling can be appropriately set, for example, as long as the formed precipitate does not disappear by a further reaction. For example, 5 seconds to 60 seconds, 5 seconds to 40 seconds, 5 seconds to 30 seconds, etc. And can be 1-2 minutes, and 1.5 hours, 9 hours, 12 hours, and the like.
  • the gas By feeding the gas into the mixture in the contacting step, the gas can be bubbled and fed into the mixture.
  • the size (diameter) of the bubble is determined, for example, according to the size of the inlet for feeding the gas.
  • the size of the bubble is determined according to the size of the pores of the porous structure.
  • the size of the bubbles can be set as appropriate and are not particularly limited.
  • the size of the bubble can be on the order of centimeters, millimeters, micrometers and nanometers, for example.
  • the bubble includes, for example, a fine bubble.
  • the fine bubble is a bubble having a sphere-equivalent diameter of 100 ⁇ m or less.
  • the fine bubbles include microbubbles having a diameter of 1 to 100 ⁇ m and ultrafine bubbles (also referred to as nanobubbles) having a diameter of 1 ⁇ m or less.
  • the size of the bubble can be measured by, for example, a general method. Specifically, for example, the size of the bubble can be measured by taking a picture including the bubble and a predetermined scale and comparing the size of the bubble with the scale in the picture.
  • particle size distribution measurement methods such as laser diffraction / scattering method, dynamic light scattering method, particle trajectory analysis method, resonance mass measurement method, electrical detection band method, dynamic image analysis method, and shading method are used. can do.
  • the method of contacting the mixed liquid with the gas containing carbon dioxide is, for example, further contacting the mixed liquid with the gas while the mixed liquid is allowed to stand or a flow is generated in the mixed liquid. It may also include contacting the mixed liquid with the gas in a state where the mixed liquid is atomized. Further, the mixture may be brought into contact with the gas in a state where the gas is refluxed, and the like may be included.
  • the conditions for contacting the mixed liquid are not particularly limited, and for example, a PET having a volume of 2 L and having a general shape is not particularly limited.
  • a PET having a volume of 2 L and having a general shape is not particularly limited.
  • 10 mL of the mixed solution can be put into the PET bottle, and the PET bottle can be allowed to stand upright with the bottom surface facing down.
  • the contact time can be, for example, 15 minutes, 30 minutes, and 60 minutes after the contact, and overnight contact.
  • contacting the mixed liquid with the gas while generating a flow in the mixed liquid means, for example, that the mixed liquid and the gas are brought into contact with each other while the mixed liquid is shaken.
  • the mixed liquid may be brought into contact with the gas, or the mixed liquid may be brought into contact with the gas by flowing the mixed liquid in the container, or the upper part (ceiling, etc.) of the container may be placed in the space inside the container.
  • the mixed liquid may be brought into contact with the gas by adding the mixed liquid (for example, adding in the form of a shower or a mist).
  • the shaking conditions are not particularly limited, and for example, 10 mL of the mixed solution is added.
  • An octagonal plastic bottle (commercially available) can be shaken using a shaker (BR-21UM, manufactured by TAITEK) at 120 rpm.
  • the shaking conditions are as follows: For example, a container having a volume of 2 L containing 50 mL of the mixed solution is vigorously shaken by an adult male hand 1 to 4 times with one shaking for 30 seconds. be able to. The shaking of 1 to 4 times can be performed, for example, immediately after the contact, 30 seconds, 2 minutes, 5 minutes, and 4 hours, respectively.
  • the conditions for contacting the mixed liquid are not particularly limited, and for example, a container having a volume of 2 L containing the gas.
  • a container having a volume of 2 L containing the gas about 4 mL of the mixed solution can be sprayed 10 times at 5-second intervals using a sprayer (commercially available).
  • the mist-like mixed solution may be added in a shower-like or mist-like form from the upper part of the container to the space inside the container, for example.
  • the contact means for bringing the mixed liquid into contact with the gas containing carbon dioxide is not particularly limited, and the description of the device for producing immobilized carbon dioxide, which will be described later, can be incorporated.
  • the method for fixing carbon dioxide of the present invention further includes, for example, a cooling step, and the cooling step may cool the mixed liquid after the contact step.
  • the cooling step for example, the mixed liquid having a temperature of 70 ° C. or higher can be cooled.
  • the method for producing immobilized carbon dioxide of the present invention includes an immobilization step of immobilizing carbon dioxide, and the immobilization step is carried out by the method of immobilizing carbon dioxide of the present invention.
  • the method for producing immobilized carbon dioxide of the present invention is characterized by including the immobilization step, and other steps and conditions are not particularly limited.
  • the method for fixing carbon dioxide of the present invention is as described above.
  • the conditions of the immobilization step are not particularly limited, and are, for example, the same as those described in the method for immobilizing carbon dioxide of the present invention.
  • the device for producing immobilized carbon dioxide of the present invention further comprises a contacting means for contacting a mixture containing sodium hydroxide and calcium chloride with a gas containing carbon dioxide, as described above.
  • the contact means includes a container and a gas feeding means, the container can contain the mixed liquid, and the gas feeding means can feed the gas into the mixed liquid.
  • the mixture and the gas containing carbon dioxide are, for example, the same as those described in the method for fixing carbon dioxide of the present invention.
  • the contact means can bring a mixture containing sodium hydroxide and calcium chloride into contact with a gas containing carbon dioxide, and may include the container and the gas feeding means, and is not particularly limited.
  • FIG. 12 shows a schematic view showing an example of the contact means.
  • the immobilized carbon dioxide production apparatus 1 includes the contact means 10.
  • the contact means 10 brings the mixed liquid into contact with the gas by feeding the gas into the mixed liquid.
  • the contact means 10 includes, for example, the mixed liquid charging means 11 for charging the mixed liquid, the gas feeding means 12 for feeding the gas containing carbon dioxide, and the mixed liquid and the gas containing carbon dioxide.
  • the gas feeding means 12 can feed the gas into the mixed liquid.
  • the container 13 can contain the mixed liquid.
  • the mixed liquid charging means 11 may be the solution charging means 11 for charging the mixed liquid or the sodium hydroxide solution.
  • the immobilized carbon dioxide production apparatus 1 further includes an adding means 20, and the adding means 20 further adds calcium chloride to, for example, the sodium hydroxide solution. You may.
  • the contact means 10 is not particularly limited as long as the mixed liquid and the gas may be brought into contact with each other by feeding the gas into the mixed liquid.
  • the contact means 10 is, for example, a means for bringing the mixed liquid into contact with the gas in a state where the mixed liquid is allowed to stand or a flow is generated in the mixed liquid, and a state in which the mixed liquid is atomized.
  • the means for bringing the mixed liquid into contact with the gas, and the means for bringing the mixed liquid into contact with the gas in a state where the gas is refluxed may be included.
  • the contact means 10 may be, for example, a closed system or an open system in which the gas or the like can move to the outside world.
  • the mixed liquid charging means 11 is not particularly limited as long as the mixed liquid can be charged.
  • the gas feeding means 12 is not particularly limited as long as it can feed the gas containing carbon dioxide, and examples thereof include an air stone, a hose (tube), and a Pasteur pipette.
  • the air stone has, for example, a porous structure, and the gas can be fed through the pores thereof.
  • the size, shape, material, and the like thereof are not particularly limited.
  • the material of the air stone may be ceramic or the like, and the material of the hose (tube) may be silicon or the like.
  • the surface area of the air stone is, for example, 21 cm 2 per piece in the case of a spherical shape.
  • Specific examples of the gas feeding means 12 include the above-mentioned bubbling device and the like.
  • the gas feeding means 12 has, for example, a structure composed of a plurality of air stones.
  • the tube into which the gas is inserted and the plurality of the air stones may be arranged in a tuft of grapes.
  • the "grape tuft" may be a structure in which one of the tubes is branched and the air stone is connected to the tip of each of the branched tubes, or a plurality of the tubes.
  • the tube may be bundled and the air stone may be connected to the tip of each tube.
  • a plurality of the air stones (for example, spherical and tubular) may be filled in the container.
  • the container 13 is not particularly limited as long as it can contact the mixed liquid with a gas containing carbon dioxide.
  • the size of the container 13 can be appropriately set according to, for example, the amount of the gas containing carbon dioxide.
  • Examples of the material of the container 13 include plastic, glass, and ceramics.
  • the shape of the container 13 can be appropriately set, and examples thereof include a cylindrical shape such as a cylindrical shape.
  • the container 13 is installed so that the long axis direction of the tubular shape is the direction of gravity, and the gas is fed from the lower part of the container 13 to push the gas toward the upper part of the container 13. Since it can be moved, the contact time in the contact step becomes longer, which is preferable.
  • the container 13 for example, the pipe shown in FIG. 23 can be mentioned.
  • the shape of the container 13 is that the cross section of the bottom surface is polygonal. Is preferable.
  • the polygonal shape is, for example, a non-regular polygonal shape.
  • the polygonal shape is, for example, an octagonal shape.
  • Specific examples of the shape of the container 13 include the shape of a polygonal pillar and the shape of an octagonal pillar as shown in FIG. Since the cross section of the bottom surface of the container 13 has a polygonal shape, more carbon dioxide can be fixed as described later. It is considered that this is because, for example, in the shaking, the surface area of the mixture is increased so that it can come into contact with a gas containing more carbon dioxide.
  • the present invention is not limited to this.
  • the container 13 is further used.
  • the mixed liquid may be able to come into contact with the gas by sequentially flowing through the plurality of secondary containers.
  • the secondary container can have, for example, a basin-like structure having a shallow water depth, as shown in FIG. 13 (A).
  • the plurality of secondary containers may have a structure in which they are stacked at intervals in the vertical direction, for example. Thereby, for example, the mixed liquid can sequentially flow from the upper secondary container to the lower secondary container.
  • the container 13 has, for example, a mesh shape. It may include a structure. Then, for example, the mixed liquid may be able to come into contact with the gas by flowing through the network structure.
  • the mesh-like structure include a mesh-like structure and a branched structure such as a cedar leaf-like structure as shown in FIG. 13 (B).
  • the size, fineness, etc. of the network structure can be appropriately set.
  • the network structure can be formed, for example, as an aggregate of a plurality of plate-like, granular or rod-like structures.
  • the material for forming the network structure is not particularly limited, and examples thereof include plastic.
  • the immobilized carbon dioxide production apparatus 1 further includes, for example, cooling means, and the cooling means may cool the mixed liquid after the reaction with the gas.
  • Example 1 In the container, contacting by bubbling sodium hydroxide (NaOH), and a mixture containing calcium chloride (CaCl 2), and a gas containing carbon dioxide (CO 2), and the gas in the liquid mixture By doing so, it was confirmed that carbon dioxide could be fixed.
  • NaOH sodium hydroxide
  • CaCl 2 calcium chloride
  • CO 2 carbon dioxide
  • a 1N sodium hydroxide solution (manufactured by Wako Pure Chemical Industries, Ltd.) was diluted with distilled water so as to be 0.01, 0.02, 0.1, 0.2, and 0.4N, respectively, to prepare a sodium hydroxide solution having each of the above concentrations. .. Further, a 1 mol / L calcium chloride solution (manufactured by Wako Pure Chemical Industries, Ltd.) was diluted with distilled water so as to be 0.01, 0.02, 0.1, 0.2, and 1 (undiluted) mol / L, respectively, and each of the above was prepared. A concentrated calcium chloride solution was prepared.
  • the weight of the test tube was measured before and after the contact, and the difference in the weight before and after the contact was calculated as the amount of precipitation.
  • the contact was carried out after removing the precipitate.
  • FIG. 1 is a photograph of a mixed solution containing 0.05 N sodium hydroxide and 0.05 mol / L calcium chloride before and after contact with carbon dioxide.
  • the left side is a photograph of the mixture before and after contact with carbon dioxide.
  • the right side shows the state of the test tube after the contact.
  • contact with carbon dioxide produced a white precipitate of calcium carbonate (CaCO 3) in the mixed solution.
  • CaCO 3 calcium carbonate
  • FIG. 2 is a graph showing the weight of the precipitate formed in the mixed solution due to the contact with the carbon dioxide.
  • the vertical axis represents the weight (g) of the precipitate per test tube
  • the horizontal axis represents the sodium hydroxide concentration (N) in the mixture.
  • the value of the weight of the precipitate was taken as the average value of the measured values of a total of 5 samples for the samples of each of the mixed solutions.
  • the concentration was 0.05 N
  • the concentration was greatly increased
  • the concentration was 0.1 N the amount of the precipitate was the maximum.
  • the concentration was 0.2 N
  • the amount of the precipitate decreased as compared with the value at 0.1 N. It was confirmed that more carbon dioxide could be fixed at the concentrations of 0.05 to 0.2 N and 0.05 to 0.1 N.
  • FIG. 3 is a graph showing the weight of the precipitate formed in the mixed solution due to the contact with the carbon dioxide.
  • the vertical axis represents the weight (g) of the precipitate per test tube, and the horizontal axis represents the calcium chloride concentration (mol / L) in the mixed solution.
  • the value of the weight of the precipitate was taken as the average value of the measured values of a total of 5 samples for the samples of each of the mixed solutions.
  • the precipitate was formed as a result of contacting carbon dioxide at all calcium chloride concentrations.
  • carbon dioxide is generated by bringing a mixed solution containing sodium hydroxide and calcium chloride and a gas containing carbon dioxide into contact with each other in the container by bubbling the gas into the mixed solution. It was confirmed that it could be fixed.
  • Example 2 After the first contact step of contacting the solution containing sodium hydroxide (NaOH) with the gas containing carbon dioxide (CO 2 ) and the first contact step, calcium chloride (CaCl 2 ) is added to the solution. It was confirmed that carbon dioxide could be fixed by the second contact step of adding.
  • NaOH sodium hydroxide
  • CO 2 carbon dioxide
  • a 1N sodium hydroxide solution (manufactured by Wako Pure Chemical Industries, Ltd.) was used as the solution containing sodium hydroxide. Further, a 1 mol / L calcium chloride solution (manufactured by Wako Pure Chemical Industries, Ltd.) was diluted with distilled water to prepare a 0.1 mol / L calcium chloride solution.
  • the solution after the first contact was diluted with distilled water to a predetermined concentration (0.1N and 0.05N).
  • 3 mL of the diluted solution was placed in a 10 mL test tube, and 3 ml of the 0.1 mol / L calcium chloride solution was added to the solution (second contact step).
  • the mixed solution was centrifuged at 3,000 rpm for 10 minutes. Then, the weight of the test tube was measured before and after the contact, and the difference in the weight before and after the contact was calculated as the amount of precipitation.
  • FIG. 15 is a graph showing the weight of the precipitate formed in the mixed solution due to the contact with the carbon dioxide.
  • the vertical axis shows the weight (g) of the precipitate per test tube
  • the horizontal axis shows each experimental condition
  • the graph on the left shows the 1N sodium hydroxide solution in the first step.
  • the result (“High Concentration”) was shown
  • the graph on the right shows the result (“Low Concentration”) of the first step using the diluted sodium hydroxide solution.
  • the value of the weight of the precipitate was taken as the average value of the measured values of the four samples.
  • the precipitation occurred regardless of the concentration of the first contact step.
  • the amount of the precipitate was larger.
  • a 0.5 mol / L calcium chloride solution was prepared in the same manner as described above. 1 ml of 1 N sodium hydrogen carbonate solution (manufactured by Wako Pure Chemical Industries, Ltd.), 1 ml of distilled water, and 2 ml of the calcium chloride solution of 0.5 mol / L were placed in a 10 mL test tube and mixed using a vortex mixer. Then, for the generated precipitate, the amount of precipitate was calculated in the same manner as described above.
  • FIG. 16 is a graph showing the weight of the precipitate formed in the mixed solution due to the contact with the carbon dioxide.
  • the vertical axis represents the weight (g) of the precipitate per test tube, and the horizontal axis represents each experimental condition.
  • the weight value of the precipitate was the average value of the measured values of a total of 4 samples for each of the samples.
  • the sodium hydrogen carbonate solution and the sodium carbonate solution each produced a precipitate by reaction with the calcium chloride solution.
  • a 1N sodium hydroxide solution was used in the same manner as in Example 2. Further, a 5N sodium hydroxide solution (manufactured by Wako Pure Chemical Industries, Ltd.) was used as the solution containing the sodium hydroxide. Further, in the same manner as in Example 2, 0.1 mol / L and 0.5 mol / L calcium chloride solutions were prepared.
  • Example 2 Using the sodium hydroxide solution of 1N and 5N and the calcium chloride solution of 0.1 mol / L and 0.5 mol / L in the same manner as in Example 2, the first contact step and the second contact step. A contact process was performed. However, only when the 5N sodium hydroxide solution was used, the bubbling time in the first contact step was set to 50 seconds instead of 20 seconds. Then, the amount of precipitation was calculated in the same manner as in Example 2.
  • FIG. 17 is a graph showing the weight of the precipitate formed in the mixed solution due to the contact with the carbon dioxide.
  • the vertical axis shows the weight (g) of the precipitate per test tube
  • the horizontal axis shows each experimental condition
  • the graph on the left shows the first step in 1N of the sodium hydroxide solution.
  • the graph on the right shows the result of performing the first step using the sodium hydroxide solution of 5N, and in each of them, the left shows the calcium chloride solution of 0.1 mol / L.
  • the right shows the result of using the calcium chloride solution of 0.5 mol / L.
  • the weight value of the precipitate was the average value of the measured values of a total of 5 samples for each of the samples.
  • the concentration of the sodium hydroxide solution As a result of setting the concentration of the sodium hydroxide solution to 1N and 5N, almost the same value was obtained between the two.
  • the concentration of the calcium chloride solution As a result of adjusting the concentrations of the calcium chloride solution to 0.1 mol / L and 0.5 mol / L, at 0.5 mol / L, the concentration of the sodium hydroxide solution was higher than that at the case of 0.1 mol / L. , The amount of precipitation was about half the value. It was confirmed that more carbon dioxide could be fixed by using the 0.1 mol / L calcium chloride solution.
  • Example 4 It was confirmed that carbon dioxide can be fixed even if the contact time with the gas containing carbon dioxide in the first contact step is changed. Further, the mixed solution containing sodium hydroxide and calcium chloride was brought into contact with the gas containing carbon dioxide without performing the first contact step and the second contact step, and the results were compared.
  • a 1N sodium hydroxide solution was used in the same manner as in Example 2. Moreover, the said calcium chloride solution of 0.1 mol / L was prepared.
  • the first contact step was performed in the same manner as in Example 2 except that the bubbling conditions were set to 5, 10, 20, 30, and 60 seconds.
  • the 1N sodium hydroxide solution was diluted with distilled water to 0.1N.
  • 3 ml of 0.1 N sodium hydroxide solution and 3 ml of 0.1 N calcium chloride solution are placed in a 10 mL test tube and mixed, and carbon dioxide is bubbled into the mixed solution in the same manner as described above. By doing so, they were brought into contact with each other. After the addition, the amount of precipitation was calculated in the same manner.
  • FIG. 18 is a graph showing the weight of the precipitate formed in the mixed solution due to the contact with the carbon dioxide.
  • the vertical axis represents the weight (g) of the precipitate per test tube
  • the horizontal axis represents the bubbling time
  • the graph on the left shows the first contact step and the second contact step, respectively.
  • the result of the contact step is shown, and the graph on the right shows the result of the comparative example.
  • the value of the weight of the precipitate was taken as the average value of the measured values three times in total.
  • the precipitation occurred at any bubbling time. Bubbling for 5 to 30 seconds gave about the same amount of precipitation.
  • Example 5 It was confirmed that carbon dioxide can be fixed by contacting a mixture containing sodium hydroxide and calcium chloride with a gas containing carbon dioxide by bubbling the gas into the mixture.
  • a mixed solution containing 0.05 N of the sodium hydroxide and 0.05 mol / L of the calcium chloride was prepared in the same manner as in Reference Example 1 described later.
  • 500 ml of the mixed solution is placed in a plastic bottle (commercially available, width 7.5 cm, depth 7.5 cm, height 12 cm), and as shown in FIG. 21, the mixed solution is mixed with a bubbling device (product name) for aquarium organisms.
  • a bubbling device product name
  • Bukubuku assembled air pump, hose, and air stone included in the set
  • FIG. 21 the inside of the plastic bottle is shown perspectively.
  • the bubbling was performed for 9 hours and 12 hours under the condition of 20 cm 3 / sec.
  • the size of the bubble in the bubbling was visually measured by comparing it with a scale and found to be on the order of micrometers to millimeters.
  • 5 mL of the mixed solution was obtained, centrifuged at 3,000 rpm for 10 minutes, and then the precipitate was weighed.
  • mixed air having a carbon dioxide concentration of 15% by mixing the carbon dioxide with the air was used, and the experiment was carried out in the same manner except that the bubbling was performed for 1.5 hours.
  • FIG. 22 is a graph showing the weight of the precipitate formed in the mixed solution due to the contact with the carbon dioxide.
  • the vertical axis represents the weight (g) of the precipitate
  • the horizontal axis represents each experimental condition.
  • the value of the weight of the precipitate was taken as the average value of the measured values of a total of 4 samples for the samples of each of the mixed solutions.
  • the bubbling of the air and the mixed air caused precipitation. In the bubbling of the air, the amount of precipitation increased with the passage of time.
  • FIG. 23 is a schematic view illustrating the form of the pipe. In addition, in FIG. 23, the inside of the pipe is shown perspectively. Further, in the same manner as in Example 1, a 0.1 N sodium hydroxide solution and a 0.1 mol / L calcium chloride solution were prepared.
  • FIG. 24 is a graph showing the carbon dioxide concentration in the pipe after the contact.
  • the vertical axis represents the carbon dioxide concentration (PPM)
  • the horizontal axis represents the air (Air) and the gas (Inner Pipe) in the upper space of the pipe from the left.
  • the carbon dioxide concentration value was taken as the average value of the measured values of a total of 9 samples.
  • the contact greatly reduced the carbon dioxide concentration in the pipe.
  • FIG. 25 is a graph showing the carbon dioxide concentration in the pipe after the contact.
  • the vertical axis shows the carbon dioxide concentration (%), and the horizontal axis shows each experimental condition from the left.
  • the carbon dioxide concentration value was taken as the average value of the measured values of a total of 3 samples.
  • the contact reduced the carbon dioxide concentration in the pipe.
  • a mixed solution containing 0.05 N of the sodium hydroxide and 0.05 mol / L of the calcium chloride was prepared in the same manner as in Reference Example 1 described later. 100, 200, 300, 400, and 500 ml of the mixed solution were placed in the pipe, and the mixed solution was contacted with the mixed solution by bubbling air for 1 to 2 minutes in the same manner as described above. Under each of the above conditions, the heights of the liquid level of the mixed liquid from the bottom surface of the pipe were 7, 14, 22, 29, and 36 cm, respectively. After the contact, the carbon dioxide concentration of the gas in the upper space of the pipe (position about 10 cm from the upper end of the pipe) was measured in the same manner as in Reference Example 1 described later. Moreover, the carbon dioxide concentration of the air was measured in the same manner.
  • FIG. 26 is a graph showing the carbon dioxide concentration in the pipe after the contact.
  • the vertical axis indicates the carbon dioxide concentration (PPM), and the horizontal axis indicates the height of the air (Control) and the liquid level from the left.
  • the carbon dioxide concentration value was taken as the average value of the measured values of a total of 3 samples.
  • the contact greatly reduced the carbon dioxide concentration in the pipe even when the liquid level was 7 cm. Further, as the height of the liquid level (the amount of the mixed liquid) increased, the carbon dioxide concentration further decreased.
  • the size of the bubble in the bubbling was visually measured by comparing it with a scale and found to be on the order of millimeters to centimeters. After the contact, the carbon dioxide concentration was measured in the same manner as described above. Moreover, the carbon dioxide concentration of the air was measured in the same manner.
  • FIG. 27 is a graph showing the carbon dioxide concentration in the pipe after the contact.
  • the vertical axis represents the carbon dioxide concentration (PPM)
  • the horizontal axis represents the air (Control), bubbling from the air stone (Ball), and bubbling from the hose (Tube) from the left. ) Is shown.
  • the carbon dioxide concentration value was taken as the average value of the measured values of a total of 4 samples.
  • bubbling from the air stone significantly reduced the carbon dioxide concentration in the pipe (down to 4.27%).
  • the carbon dioxide concentration decreased (decreased to 69.49%), but the amount of decrease was smaller than that when bubbling from the air stone. From this, it was found that the small bubble size in the bubbling is important for the absorption of carbon dioxide.
  • carbon dioxide can be fixed by contacting a mixture containing sodium hydroxide and calcium chloride with a gas containing carbon dioxide by bubbling the gas into the mixture. did it.
  • magnesium chloride (MgCl 2 , manufactured by Wako Pure Chemical Industries, Ltd.), zinc chloride (ZnCl 2 , manufactured by Wako Pure Chemical Industries, Ltd.), strontium chloride (manufactured by Wako Pure Chemical Industries, Ltd.) SrCl 2 , manufactured by Wako Pure Chemical Industries, Ltd.) and barium chloride (BaCl 2 , manufactured by Wako Pure Chemical Industries, Ltd.) were used.
  • MgCl 2 manufactured by Wako Pure Chemical Industries, Ltd.
  • zinc chloride ZnCl 2 , manufactured by Wako Pure Chemical Industries, Ltd.
  • strontium chloride manufactured by Wako Pure Chemical Industries, Ltd.
  • SrCl 2 manufactured by Wako Pure Chemical Industries, Ltd.
  • barium chloride BaCl 2 , manufactured by Wako Pure Chemical Industries, Ltd.
  • FIG. 32 is a graph showing the weight of the precipitate formed in the mixed solution due to the contact with the carbon dioxide.
  • the vertical axis shows the weight (g) of the precipitate per test tube
  • the horizontal axis shows each metal chloride contained in the mixed solution
  • the graph on the left shows after the mixing.
  • the graph on the right shows after contact with the carbon dioxide.
  • the value of the weight of the precipitate was taken as the average value of the measured values of a total of 4 samples for the samples of each of the mixed solutions.
  • the magnesium chloride solution and the zinc chloride solution were used, the amount of precipitation increased significantly after the mixing, and the amount of precipitation decreased after contact with the carbon dioxide.
  • the strontium chloride solution and the barium chloride solution were used, the amount of precipitation increased after the mixing, and the amount of precipitation further increased after contact with the carbon dioxide.
  • Example 5 As the container, the pipe described in Example 5 was used. 50 ml of 0.1 N sodium hydroxide solution and 50 ml of each metal chloride solution of 0.1 mol / L are placed in the pipe, and air is bubbled into the mixed solution in the same manner as in Example 5. Was brought into contact with. After the contact, the carbon dioxide concentration of the gas in the upper space (height of about 14 cm) of the pipe was measured in the same manner as in Reference Example 1 described later. In the measurement, it was confirmed that the value of the carbon dioxide concentration became almost constant 2 to 3 minutes after the contact, and this value was used as the measured value. Moreover, as a control, the carbon dioxide concentration of the air was measured in the same manner.
  • FIG. 33 is a graph showing the carbon dioxide concentration in the pipe after the contact.
  • the vertical axis represents carbon dioxide concentration (PPM), and the horizontal axis represents each metal chloride.
  • the carbon dioxide concentration value was taken as the average value of the measured values of a total of 3 samples.
  • the contact reduced the carbon dioxide concentration in the pipe as compared with the control value, regardless of which metal chloride was used. In particular, when the strontium chloride solution and the barium chloride solution were used, the carbon dioxide concentration was greatly reduced.
  • carbon dioxide is produced by contacting a mixed solution containing sodium hydroxide, a chloride of a Group 2 element, and a chloride of a divalent metal element with a gas containing carbon dioxide. I was able to confirm that it can be fixed.
  • Example 7 It was confirmed that carbon dioxide can be fixed by contacting a mixture containing sodium hydroxide and calcium chloride with a gas containing carbon dioxide under predetermined temperature conditions.
  • a mixed solution containing 0.05 N of the sodium hydroxide and 0.05 mol / L of the calcium chloride was prepared in the same manner as in Reference Example 1 described later.
  • 3 mL of the sodium hydroxide solution of each concentration and 3 mL of the calcium chloride solution of 0.1 mol / L were put into a 10 mL test tube and mixed, and carbon dioxide was added to the mixed solution in the same manner as in Example 1.
  • the carbons were brought into contact by bubbling. The bubbling was performed for 10 seconds under the condition of 2 cm 3 / sec.
  • the temperature of the mixture was adjusted to 5 ° C, 20 ° C, 30 ° C, 40 ° C, 50 ° C and 60 using Unithermo Shaker NTS-120, EYLEA, (Tokyo Rikakikai Co., Ltd.), respectively.
  • the temperature was maintained at ° C., 70 ° C. and 80 ° C.
  • the amount of precipitation was calculated in the same manner as in Example 1.
  • FIG. 34 is a graph showing the weight of the precipitate formed in the mixed solution due to the contact with the carbon dioxide.
  • the vertical axis represents the weight (g) of the precipitate per test tube
  • the horizontal axis represents the temperature.
  • the experiment was carried out 3 to 5 times for each of the temperatures, and the measured values of 4 to 8 samples were obtained in each experiment and used as the average value of these measured values.
  • a precipitate was formed after contact with the carbon dioxide under any temperature condition.
  • the amount of precipitation was a substantially constant value when the temperature of the mixed solution was between 5 ° C. and 60 ° C., and increased significantly at 70 ° C. Even when the temperature of the mixed solution was 80 ° C., a value larger than the constant value between 5 ° C. and 60 ° C. was obtained.
  • carbon dioxide can be fixed by bringing the mixture containing sodium hydroxide and calcium chloride into contact with the gas containing carbon dioxide under predetermined temperature conditions.
  • the fixation of carbon dioxide is suitable for treatment at high temperature.
  • a mixed solution An equal amount of 0.1 N sodium hydroxide solution and 0.1 mol / L calcium chloride solution were mixed to prepare a mixed solution.
  • 10 mL of the mixed solution was placed in the PET bottle.
  • the PET bottle was allowed to stand upright with the bottom surface facing down, and the mixture was brought into contact with carbon dioxide.
  • the PET bottle is used at 0 minutes (immediately after the contact), 15 minutes, 30 minutes, and 60 minutes after the contact, and after the contact overnight, using a carbon dioxide monitor (RI-85, manufactured by RIKEN KEIKI). The carbon dioxide concentration inside was measured.
  • FIG. 4 is a graph showing the carbon dioxide concentration in the PET bottle after the contact.
  • the vertical axis represents the carbon dioxide concentration (PPM)
  • the horizontal axis represents the elapsed time (minutes) after the contact.
  • the carbon dioxide concentration value was taken as the average value of the measured values of a total of 4 samples for 0 minutes (immediately after the contact), 15 minutes, 30 minutes, and 60 minutes after the contact. After the overnight contact, the measured values of a total of 6 samples were 0 PPM.
  • the contact reduced the carbon dioxide concentration in the PET bottle according to the elapsed time after the contact. Further, since the value of the carbon dioxide concentration became 0 PPM after the contact in the overnight, it was found that even a low concentration of carbon dioxide can be fixed according to the present invention.
  • FIG. 5A is a side view of the octagonal pillar plastic bottle
  • FIG. 5B is a view of the octagonal pillar plastic bottle seen from the bottom surface.
  • the shaker was shaken using a shaker (BR-21UM, manufactured by TAITEK) under the condition of 120 rpm.
  • FIG. 6 is a graph showing the carbon dioxide concentration in the octagonal pillar plastic bottle after the contact.
  • the vertical axis shows the carbon dioxide concentration (PPM)
  • the horizontal axis shows from the left immediately after the contact (0 minutes), after the contact by the stationary state, and after the contact by the shaking.
  • the carbon dioxide concentration value was taken as the average value of the measured values of a total of 4 samples.
  • the contact by the shaking reduced the carbon dioxide concentration in the octagonal pillar plastic bottle as compared with immediately after the contact.
  • the contact by the shaking greatly reduces the carbon dioxide concentration in the octagonal pillar plastic bottle to about 1/6 as compared with immediately after the contact, and more carbon dioxide can be fixed. It was.
  • the contact by shaking reduced the carbon dioxide concentration more significantly than the case where the contact by standing was performed. It is considered that the reason for this is that the surface area of the mixture has increased due to the shaking, and it has become possible to come into contact with the gas containing more carbon dioxide. Further, it is considered that the surface area of the mixed liquid is further increased because the bottom of the octagonal pillar plastic bottle is flatter and shorter than that of the PET bottle having a general shape.
  • the contact was performed by changing the shaking conditions.
  • a PET bottle having a volume of 2 L and having the general shape was used. Twelve hours before the contact, the lid of the PET bottle was opened, the tip of the Pasteur pipette was inserted into the mouth of the PET bottle, and carbon dioxide was injected from the tip. Then, after putting 50 mL of the mixed solution into the PET bottle, the mixture was shaken violently by an adult man 1 to 6 times with one shaking for 30 seconds. The first contact by the shaking is performed immediately after the contact, and the second to sixth contacts by the shaking are performed 2 minutes, 5 minutes, and 15 minutes, respectively, immediately after the contact. It was performed after the lapse, 30 minutes, and 60 minutes. Then, after the 1 to 6 times of the contact, the carbon dioxide concentration was measured using a carbon dioxide detector (XP-3140, manufactured by COSMO), respectively.
  • XP-3140 carbon dioxide detector
  • FIG. 7 is a graph showing the carbon dioxide concentration in the PET bottle after the contact.
  • the vertical axis indicates the carbon dioxide concentration (%)
  • the horizontal axis indicates the carbon dioxide concentration (%) from the left, immediately after the contact (0 minutes), after the first contact by the shaking (30 seconds), and the second contact.
  • the following shows after the sixth shaking (60 minutes), after adding the mixed solution, allowing to stand for 24 hours, and after re-adding the mixed solution.
  • the carbon dioxide concentration value was taken as the average value of the measured values of a total of 5 samples. As shown in FIG.
  • the contact was performed by changing the shaking conditions.
  • a plastic box (commercially available) having a volume of 1.85 L shown in FIG. 19 was used.
  • the inside of the plastic box is shown perspectively.
  • a hand mixer (HM-20, 60 W, manufactured by TOSHIBA) was used. The contact was made by making a full rotation (number 3, "fluttering-bubbling egg whites finely” mode). Then, the carbon dioxide concentration in the plastic box was measured using the carbon dioxide monitor.
  • FIG. 20 is a graph showing the carbon dioxide concentration in the plastic box after the contact.
  • the vertical axis indicates the carbon dioxide concentration (PPM), and the horizontal axis indicates the control and the end of the contact from the left.
  • the carbon dioxide concentration value was taken as the average value of the measured values of a total of 3 samples. As shown in FIG. 20, after the contact, the concentration of carbon dioxide was significantly reduced as compared with the control.
  • carbon dioxide is produced by bringing the mixture containing sodium hydroxide and calcium chloride and the gas containing carbon dioxide into contact with each other in the container in a state where the mixture is allowed to stand or shaken. It was confirmed that it can be fixed.
  • a mixed solution containing the sodium hydroxide and the calcium chloride was prepared in the same manner as in Reference Example 1.
  • a PET bottle having a general shape having a volume of 2 L the inside of the PET bottle was equilibrated with the atmosphere in the same manner as in Reference Example 1.
  • about 4 mL of the mixed solution was sprayed onto the PET bottle 10 times at 5-second intervals using a sprayer (commercially available) to bring the mixed solution into contact with carbon dioxide.
  • the PET bottle was used sideways with the side surface facing down, and the spray was performed in the horizontal direction.
  • the carbon dioxide concentration in the PET bottle was measured in the same manner as in Reference Example 1.
  • FIG. 9 is a graph showing the carbon dioxide concentration in the PET bottle after the contact.
  • the vertical axis shows the carbon dioxide concentration (PPM), and the horizontal axis shows from the left immediately after the contact (0 minutes) and after the contact by the spray.
  • the carbon dioxide concentration value was taken as the average value of the measured values of a total of 4 samples.
  • the contact by the spray greatly reduced the carbon dioxide concentration in the PET bottle to about 1/6 as compared with immediately after the contact.
  • the carbon dioxide concentration was greatly reduced in a short time by the contact by the spray. It is considered that the reason for this is that by contacting the mixed liquid in a mist state, the surface area of the mixed liquid is greatly increased, and it becomes possible to come into contact with a gas containing more carbon dioxide.
  • the contact means for making the contact was produced as follows. As shown in FIG. 10, two boxes (commercially available) which are milk cartons are connected in an L shape, and holes are made in two places on the side surface of the box at the bottom by partially cutting the holes. An air injection part and a carbon dioxide injection part were provided by inserting a silicon tube from the inside. Further, a hole was similarly formed in the upper surface of the lower box so that the mixed solution could be sprayed into the inside of the box from the sprayer. The connecting parts of the upper and lower boxes were made to allow carbon dioxide to rise from the lower box to the upper box by opening large cuts, respectively. A gauze layer was provided on the connecting portion with a quadruple gauze (commercially available). The upper surface of the upper box was opened. Further, a hole was similarly formed on the side surface of the upper box, and a nozzle of a carbon dioxide concentration detector (XP-3140, manufactured by COSMO) was installed.
  • XP-3140 nozzle of a carbon dioxide concentration detector
  • the flow rate of air from the air injection section is about 100 cm 3 / sec, and the flow rate of carbon dioxide from the carbon dioxide injection section is 10 cm 3 / sec, and injection is performed until the measured value of carbon dioxide concentration becomes constant. went. Then, the mixed solution was sprayed from the sprayer 10 times in a row. The amount of the mixed solution sprayed was about 4 mL in total after 10 times. Approximately 20 seconds after the spraying, the measured value of carbon dioxide concentration became the lowest value.
  • FIG. 11 is a graph showing the carbon dioxide concentration in the box when the measured value of carbon dioxide reaches the minimum value about 20 seconds after the contact.
  • the vertical axis shows the carbon dioxide concentration (%), and the horizontal axis shows from the left, before the contact and after the contact by the spray.
  • the carbon dioxide concentration value was taken as the average value of the measured values of a total of 10 samples.
  • the contact by the spray reduced the carbon dioxide concentration in the box as compared with immediately after the contact.
  • carbon dioxide can be fixed by bringing a mixture containing sodium hydroxide and calcium chloride and a gas containing carbon dioxide into contact with each other in a state in which the mixture is atomized. Was confirmed.
  • the sodium hydroxide solution of 0.05 N was prepared in the same manner as in Example 1. Using a PET bottle having a general shape having a volume of 2 L, the inside of the PET bottle was equilibrated with the atmosphere in the same manner as in Reference Example 1. Then, 10 mL of the sodium hydroxide solution was placed in the PET bottle and allowed to stand so that the solution and carbon dioxide in the atmosphere were brought into contact with each other. 0 minutes (immediately after the contact), 15 minutes, 30 minutes, and 60 minutes after the contact, the carbon dioxide concentration in the PET bottle was measured in the same manner as in Reference Example 1.
  • FIG. 28 is a graph showing the carbon dioxide concentration in the PET bottle after the contact.
  • the vertical axis represents the carbon dioxide concentration (PPM)
  • the horizontal axis represents the elapsed time (minutes) after the contact.
  • the carbon dioxide concentration value was taken as the average value of the measured values of a total of 3 samples.
  • the contact reduced the carbon dioxide concentration in the PET bottle after 15 minutes, 30 minutes, and 60 minutes as compared with immediately after the contact.
  • the contact was performed by changing the form of the contact.
  • a plastic box (commercially available) having a volume of 2 L shown in FIG. 29 was used.
  • the inside of the plastic box is shown perspectively.
  • the upper surface of the plastic box was covered with a plastic plate as shown in FIG. 29.
  • the solution was brought into contact with the solution by bubbling air using a bubbling device (product name: Micro bubbler (F-1056-002), manufactured by Front Industry Co., Ltd.). The bubbling was performed under the condition of 20 cm 3 / sec.
  • the size of the bubble in the bubbling was visually measured by comparing it with a scale and found to be on the order of micrometers to millimeters. Then, immediately after the start of the contact (0 minutes), 5 minutes, 10 minutes, and 15 minutes, the carbon dioxide concentration in the upper space in the plastic box was measured using the carbon dioxide monitor.
  • FIG. 30 is a graph showing the carbon dioxide concentration in the plastic box after the contact.
  • the vertical axis shows the carbon dioxide concentration (PPM)
  • the horizontal axis shows the carbon dioxide concentration (PPM) from the left, immediately after the start of the contact (0 time), 5 minutes later (5 min), 10 minutes later (10 min), and It shows after 15 minutes (15 min).
  • the carbon dioxide concentration in the plastic box decreased significantly 5 minutes after the start of the contact. After that, the carbon dioxide concentration gradually decreased according to the elapsed time after the contact.
  • the experiment was conducted by changing the shape of the container.
  • the pipe described in Example 5 was used instead of the plastic bottle.
  • 200 ml of the sodium hydroxide solution of 0.1 N was placed in the pipe, and the mixed air having a carbon dioxide concentration of 10% was contacted with the solution by bubbling in the same manner as described above.
  • the carbon dioxide concentration in the upper space in the pipe was measured using the carbon dioxide monitor continuously until 5 minutes after the start of the contact. Further, the carbon dioxide concentration was measured up to 2 minutes in the same manner except that the 1N sodium hydroxide solution was used.
  • FIG. 31 is a graph showing the carbon dioxide concentration in the pipe 2 minutes after the start of contact.
  • the vertical axis represents the carbon dioxide concentration (PPM)
  • the horizontal axis represents the concentration of the sodium hydroxide solution.
  • PPM carbon dioxide concentration
  • the carbon dioxide concentration in the pipe decreased rapidly immediately after the start of the contact, and after 2 minutes, the value immediately after the start of the contact. Compared with, it decreased to 7.5%. After that, the concentration was a substantially constant value from the start of the contact to 5 minutes later. Further, when the 1N sodium hydroxide solution was used, the carbon dioxide concentration in the pipe also decreased rapidly immediately after the start of the contact and became "0" after 2 minutes.
  • the present invention it is possible to provide a new method for fixing carbon dioxide. Therefore, it can be said that the present invention is extremely useful in the treatment of combustion exhaust gas containing carbon dioxide.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Treating Waste Gases (AREA)
  • Gas Separation By Absorption (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

新たな、二酸化炭素の固定方法を提供する。 本発明の二酸化炭素の固定方法は、水酸化ナトリウムを含み、さらに、第2族元素の塩化物、および2価の金属元素の塩化物の少なくとも一方を含む混合液と、二酸化炭素を含む気体とを接触させる接触工程を含み、前記接触工程において、前記気体を前記混合液中に送入することにより、前記混合液と前記気体とを接触させる。

Description

二酸化炭素の固定方法、固定化二酸化炭素の製造方法、および固定化二酸化炭素の製造装置
 本発明は、二酸化炭素の固定方法、固定化二酸化炭素の製造方法、および固定化二酸化炭素の製造装置に関する。
 二酸化炭素の固定方法として、例えば、特許文献1には、水酸化ナトリウム水溶液に二酸化炭素を含む燃焼排ガスを反応させることにより、炭酸ナトリウムを生成させる方法が記載されている。しかし、新たな、二酸化炭素の固定方法が求められている。
特開平6-263433号公報
 そこで、本発明は、新たな、二酸化炭素の固定方法、固定化二酸化炭素の製造方法、および固定化二酸化炭素の製造装置の提供を目的とする。
 前記目的を達成するために、本発明の二酸化炭素の固定方法は、
水酸化ナトリウムを含み、さらに、第2族元素の塩化物、および2価の金属元素の塩化物の少なくとも一方を含む混合液と、二酸化炭素を含む気体とを接触させる接触工程を含み、
前記接触工程において、前記気体を前記混合液中に送入することにより、前記混合液と前記気体とを接触させる。
 本発明の固定化二酸化炭素の製造方法は、二酸化炭素を固定化する固定化工程を含み、
前記固定化工程が、本発明の二酸化炭素の固定方法により実施される。
 本発明の固定化二酸化炭素の製造装置は、
水酸化ナトリウムを含み、さらに、第2族元素の塩化物、および2価の金属元素の塩化物の少なくとも一方を含む混合液と、二酸化炭素を含む気体とを接触させるための接触手段を含み、
前記接触手段は、容器および気体送入手段を含み、
前記容器は、前記混合液を収容可能であり、
前記気体送入手段は、前記混合液中に前記気体を送入可能である。
 本発明によれば、新たな、二酸化炭素の固定方法を提供することができる。
図1は、実施例1における、二酸化炭素との接触前および接触後における、水酸化ナトリウムと塩化カルシウムとを含む混合液の写真である。 図2は、実施例1における、二酸化炭素との接触により、混合液において生じた沈殿の重さを示すグラフである。 図3は、実施例1における、二酸化炭素との接触により、混合液において生じた沈殿の重さを示すグラフである。 図4は、参考例1における、接触後の容器内の二酸化炭素濃度を示すグラフである。 図5は、参考例1における、八角柱プラスチックボトルの形状を示す図である。 図6は、参考例1における、接触後の容器内の二酸化炭素濃度を示すグラフである。 図7は、参考例1における、接触後の容器内の二酸化炭素濃度を示すグラフである。 図8は、参考例2における、噴霧による接触を行っている様子を示す図である。 図9は、参考例2における、接触後の容器内の二酸化炭素濃度を示すグラフである。 図10は、参考例2における、接触手段を示す図である。 図11は、参考例2における、接触後の容器内の二酸化炭素濃度を示すグラフである。 図12は、接触手段の一例を示す概略図である。 図13は、容器の一例を示す図である。 図14は、気体送入手段の一例を示す概略図である。 図15は、実施例2における、二酸化炭素との接触により、混合液において生じた沈殿の重さを示すグラフである。 図16は、実施例2における、二酸化炭素との接触により、混合液において生じた沈殿の重さを示すグラフである。 図17は、実施例3における、二酸化炭素との接触により、混合液において生じた沈殿の重さを示すグラフである。 図18は、実施例4における、二酸化炭素との接触により、混合液において生じた沈殿の重さを示すグラフである。 図19は、参考例1における、振とうによる接触を行っている様子を示す図である。 図20は、参考例1における、接触後の容器内の二酸化炭素濃度を示すグラフである。 図21は、実施例5における、バブリングによる接触を行っている様子を示す図である。 図22は、実施例5における、二酸化炭素との接触により、混合液において生じた沈殿の重さを示すグラフである。 図23は、実施例5における、パイプの形態を説明する概略図である。 図24は、実施例5における、接触後の容器内の二酸化炭素濃度を示すグラフである。 図25は、実施例5における、接触後の容器内の二酸化炭素濃度を示すグラフである。 図26は、実施例5における、接触後の容器内の二酸化炭素濃度を示すグラフである。 図27は、実施例5における、接触後の容器内の二酸化炭素濃度を示すグラフである。 図28は、参考例3における、接触後の容器内の二酸化炭素濃度を示すグラフである。 図29は、参考例3における、バブリングによる接触を行っている様子を示す図である。 図30は、参考例3における、接触後の容器内の二酸化炭素濃度を示すグラフである。 図31は、参考例3における、接触後の容器内の二酸化炭素濃度を示すグラフである。 図32は、実施例6における、二酸化炭素との接触により、混合液において生じた沈殿の重さを示すグラフである。 図33は、実施例6における、接触後の容器内の二酸化炭素濃度を示すグラフである。 図34は、実施例7における、二酸化炭素との接触により、混合液において生じた沈殿の重さを示すグラフである。 図35は、接触手段の一例を示す概略図である。
 本発明の二酸化炭素の固定方法は、例えば、前記第2族元素の塩化物、および2価の金属元素の塩化物の少なくとも一方が、塩化カルシウムである。
 本発明の二酸化炭素の固定方法は、例えば、前記接触工程において、前記気体を、バブルにして前記混合液中に送入する。
 本発明の二酸化炭素の固定方法は、例えば、前記混合液における前記水酸化ナトリウムの濃度が、0.2N未満である。
 本発明の二酸化炭素の固定方法は、例えば、前記混合液における前記水酸化ナトリウムの濃度が、0.05N以上である。
 本発明の二酸化炭素の固定方法は、例えば、前記混合液における前記塩化カルシウムの濃度が、0.05mol/L以上である。
 本発明の二酸化炭素の固定方法は、例えば、前記混合液の温度が、70℃以上である。
 本発明の二酸化炭素の固定方法は、例えば、さらに、冷却工程を含み、前記冷却工程は、前記第2の接触工程後、前記混合液を冷却する。
 本発明の固定化二酸化炭素の製造装置は、例えば、前記第2族元素の塩化物、および2価の金属元素の塩化物の少なくとも一方が、塩化カルシウムである。
 本発明の固定化二酸化炭素の製造装置は、例えば、さらに、冷却手段を含み、前記冷却手段は、前記気体との反応後の前記混合液を冷却する。
 本明細書で使用する用語は、特に言及しない限り、当該技術分野で通常用いられる意味で用いることができる。
 以下に、本発明の実施形態について、図面を参照して説明する。
(二酸化炭素の固定方法)
 本発明の二酸化炭素の固定方法は、水酸化ナトリウム(NaOH)を含み、さらに、第2族元素(アルカリ土類金属)の塩化物、および2価の金属元素の塩化物の少なくとも一方を含む混合液と、二酸化炭素(CO)を含む気体とを接触させる接触工程を含み、前記接触工程において、前記気体を前記混合液中に送入することにより、前記混合液と前記気体とを接触させる。本発明の二酸化炭素の固定方法において、その他の構成及び条件は、特に制限されない。
 本発明において、「二酸化炭素の固定(固定化ともいう。)」は、例えば、二酸化炭素を含む気体から、二酸化炭素を除去することにより、前記気体中の二酸化炭素濃度を低減させることをいう。
 前記第2族元素は、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム、ラジウムがあげられ、中でも、例えば、カルシウム、マグネシウム、ストロンチウム、バリウムがあげられる。前記第2族元素の塩化物は、例えば、塩化カルシウム、塩化マグネシウム、塩化ストロンチウム、塩化バリウムがあげられる。
 前記2価の金属元素は、特に制限されず、例えば、亜鉛があげられる。前記2価の金属元素の塩化物は、例えば、塩化亜鉛があげられる。
 以下の説明において、前記接触工程において、前記第2族元素(アルカリ土類金属)の塩化物として、塩化カルシウムを添加する場合を例にあげて、説明を行う。ただし、本発明は、これには制限されない。
 本発明の二酸化炭素の固定方法は、前述のように、水酸化ナトリウム(NaOH)を含み、さらに、塩化カルシウム(CaCl)を含む混合液と、二酸化炭素(CO)を含む気体とを接触させる接触工程を含み、前記接触工程において、前記気体を前記混合液中に送入することにより、前記混合液と前記気体とを接触させる。
 本発明の二酸化炭素の固定方法によれば、水酸化ナトリウムおよび塩化カルシウムと、二酸化炭素とを反応させ、炭酸カルシウム(CaCO)を生じさせることで、二酸化炭素を固定することができる。本発明によれば、例えば、固体の状態で、二酸化炭素を固定することができる。これにより、例えば、より安定性の高い状態で、二酸化炭素を固定することができる。また、例えば、取扱いが容易になる。
 前記二酸化炭素を含む気体は、特に制限されず、例えば、燃焼排ガス、室内空気、および大気等があげられる。
 前記二酸化炭素を含む気体における二酸化炭素の濃度は、特に制限されず、例えば、0~100%である。なお、後述するように、本発明によれば、低濃度の二酸化炭素であっても、固定することができる。また、100%の二酸化炭素のバブリングにより、前記混合液において、白色沈殿が形成されることから、本発明は、高濃度の二酸化炭素固定においても、効果を得ることができる。
 前記二酸化炭素を含む気体の温度は、特に制限されず、例えば、0℃以下の低温、大気中の気温や室温の一般的な温度、100℃未満、および120~200℃の高温でもよい。なお、前記気体の温度は、水の蒸発を防ぐ観点から、低温であってもよい。ただし、本発明は、例えば、前記二酸化炭素を含む気体が高熱であっても、適用することができる。
 前記二酸化炭素を含む気体は、例えば、二酸化炭素以外の物質を含んでいてもよい。前記二酸化炭素以外の物質は、特に制限されず、例えば、SOx、NOx、O、ダスト等があげられる。なお、本発明において、前記混合液は、例えば、基本的に、アルカリ性であることから、前記混合液と酸性の前記物質等とにおいて、中和反応が起こると考えられる。ただし、本発明はこれには制限されない。
 前記混合液は、前述のように、水酸化ナトリウム、および塩化カルシウムを含む。前記混合液の作製方法は、特に制限されず、例えば、低濃度混合があげられる。前記低濃度は、例えば、前記混合前の水酸化ナトリウムの濃度として、5N未満があげられる。前記低濃度混合によれば、例えば、水酸化カルシウムの沈殿の形成を防ぐことができる。前記混合液の作製方法は、具体的には、例えば、0.1Nの水酸化ナトリウム溶液、および0.1mol/Lの塩化カルシウム溶液を、容器内にそれぞれ入れた後、混合することにより作製することができる。
 前記混合液において、前記水酸化ナトリウムの濃度は、特に制限されず、例えば、0.01N以上、および0.05N以上、ならびに、0.2N以下、0.2N未満、および0.1N以下である。なお、前記濃度の単位「N」は、規定度を示し、水酸化ナトリウムの場合、0.01Nは、0.01mol/Lである。前記水酸化ナトリウムの濃度が、0.01N以上、および0.05N以上であることにより、例えば、より多くの二酸化炭素を固定できる。また、前記水酸化ナトリウムの濃度が、0.2N未満、および0.1N以下であることにより、例えば、より多くの二酸化炭素を固定できる。
 なお、後述する実施例において示すように、前記水酸化ナトリウムの濃度が、0.2N以上では、前記接触において、塩化カルシウムと高濃度の水酸化ナトリウムとの反応により、水酸化カルシウム(Ca(OH))の沈殿が生じることで、前記接触による炭酸カルシウムの合成量が減少すると考えられる。
 一方、このことは、言い換えると、本発明の二酸化炭素の固定方法によれば、前記混合液において、高濃度の水酸化ナトリウムが含まれる場合でも、塩化カルシウムと前記高濃度の水酸化ナトリウムとの反応により、水酸化カルシウムの沈殿が生じることで、前記混合液における水酸化ナトリウムの濃度を低下させることが可能であることを意味する。したがって、本発明の二酸化炭素の固定方法によれば、例えば、高熱による、高濃度(例えば、0.2N以上)の水酸化ナトリウムが発生した場合でも、その濃度を低下させることができ、有害な気体の発生を抑制することができる。
 前記混合液において、前記塩化カルシウムの濃度は、特に制限されず、例えば、0.005mol/L以上、および0.05mol/L以上、ならびに、0.5mol/L以下、0.5mol/L未満、および0.1mol/L以下である。前記塩化カルシウムの濃度が、前記範囲内であることにより、例えば、より多くの二酸化炭素を固定できる。
 前記混合液の温度は、特に制限されず、例えば、30~100℃、70℃以上、70℃~80℃、70℃である。なお、本発明によれば、前述のように、例えば、高熱による、高濃度(例えば、0.2N以上)の水酸化ナトリウムが発生した場合でも、その濃度を低下させることができる。このため、本発明は、例えば、前記混合液が高熱であっても、適用することができる。
 前記混合液のpHは、特に制限されず、例えば、0.05Nの水酸化ナトリウムと0.05mol/Lの塩化カルシウムとを含む前記混合液のpHは、約12である。
 前記接触工程において、前記混合液中に前記気体を送入することにより、前記混合液と前記二酸化炭素を含む気体とを接触させる。前記気体を「送入」するとは、例えば、「バブリング」するということもできる。前記バブリングの条件は、特に制限されず、例えば、10mLの試験管に、3mLの0.1Nの水酸化ナトリウム溶液と、3mLの0.1mol/Lの前記塩化カルシウム溶液とを入れて混合し、前記混合液に、二酸化炭素(小池工業社製)を用いて、10秒間(約20cm)、バブリングをすることができる。なお、前記バブリングは、例えば、パスツールピペットの先端から、二酸化炭素を噴出させることができる。また、例えば、水槽生物用のバブリング装置(製品名:ブクブク、コトブキ工芸株式会社製)を用いることができる。また、例えば、バブリング装置(製品名:Micro bubbler(F-1056-002)、フロント工業株式会社製)を用いることができる。前記バブリングを行う時間は、例えば、形成された沈殿が、さらなる反応により消失しない範囲で、適宜設定することができ、例えば、5秒~60秒間、5秒~40秒間、5秒~30秒間、および1~2分間、ならびに、1.5時間、9時間、および12時間等とすることができる。
 前記接触工程において、前記混合液中に前記気体を送入することにより、前記気体を、バブルにして前記混合液中に送入することができる。前記バブルのサイズ(直径)は、例えば、前記気体を送入する送入口の大きさに応じて決まる。例えば、前記気体を、多孔質構造体から送入する場合、前記バブルのサイズは、前記多孔質構造体の細孔の大きさに応じて決まる。
 前記バブル(泡、気泡)のサイズ、および個数濃度等は、適宜設定でき、特に制限されない。前記バブルのサイズは、例えば、センチメートル、ミリメートル、マイクロメートル、ナノメートルのオーダーにすることができる。前記バブルは、例えば、ファインバブルを含む。前記ファインバブルは、球相当直径が100μm以下のバブルである。前記ファインバブルは、その内訳として、直径が1~100μmのバブルであるマイクロバブル、および、直径が1μm以下のバブルであるウルトラファインバブル(ナノバブルともいう。)を含む。前記バブルを、ファインバブル等の小さいサイズに設定することにより、例えば、バブルの表面積をより大きくすることができ、前記接触工程における反応を促進することができる。前記バブルを、ファインバブルより大きいサイズに設定することにより、例えば、前記気体の送入に必要なガス圧を低減することができる。
 前記バブルのサイズは、例えば、一般的な方法により測定できる。具体的には、例えば、前記バブルおよび所定のスケールを含む写真を撮影し、前記写真における前記バブルのサイズと前記スケールとを比較することにより、前記バブルのサイズを測定することができる。また、レーザ回折・散乱法、動的光散乱法、粒子軌跡解析法、共振式質量測定法、電気的検知帯法、動的画像解析法、および遮光法等の、粒子径分布測定手法を利用することができる。
 前記混合液と、前記二酸化炭素を含む気体とを接触させる方法は、例えば、さらに、前記混合液を静置または前記混合液に流れを発生させた状態で、前記混合液と前記気体とを接触させる、前記混合液を霧状にした状態で、前記混合液と前記気体とを接触させる等を含んでもよい。また、前記気体を還流させた状態で、前記混合液と前記気体とを接触させる等を含んでもよい。
 前記接触工程において、前記混合液を静置させた状態で、前記混合液と前記気体とを接触させる場合、前記接触させる条件は、特に制限されず、例えば、容積2Lの一般的な形状のペットボトル(市販のもの)内を大気と平衡にした後、前記ペットボトルに、10mLの前記混合液を入れ、前記ペットボトルを、底面が下になるようにして立てて静置することができる。前記接触時間は、例えば、前記接触後、15分、30分、および60分、ならびにオーバーナイトでの接触とすることができる。
 前記接触工程において、「前記混合液に流れを発生させた状態で、前記混合液と前記気体とを接触させる」とは、例えば、前記混合液を振とうさせた状態で、前記混合液と前記気体とを接触させてもよいし、容器内において、前記混合液を流すことにより、前記混合液と前記気体とを接触させてもよいし、容器内の空間に、前記容器の上部(天井等)等から、前記混合液を添加する(例えば、シャワー状または霧状に添加する)ことにより、前記混合液と前記気体とを接触させてもよい。
 前記接触工程において、前記混合液を振とうさせた状態で、前記混合液と前記気体とを接触させる場合、前記振とうの条件は、特に制限されず、例えば、10mLの前記混合液を入れた八角柱プラスチックボトル(市販のもの)を、シェイカー(BR-21UM、TAITEK製)を用いて、120rpmの条件で、振とうすることができる。また、前記振とうの条件は、例えば、50mLの前記混合液を入れた容積2Lの容器を、30秒間の振とうを1回として、1~4回、成人男性の手で、激しく振とうすることができる。前記1~4回の振とうは、例えば、それぞれ、前記接触直後、30秒後、2分後、5分後、4時間後に行うことができる。
 前記接触工程において、前記混合液を霧状にした状態で、前記混合液と前記気体とを接触させる場合、前記接触させる条件は、特に制限されず、例えば、前記気体を入れた容積2Lの容器に、約4mLの前記混合液を、噴霧器(市販のもの)を用いて、5秒間隔で10回噴霧することができる。前記霧状の前記混合液は、例えば、容器の上部から、前記容器内の空間に、シャワー状または霧状に添加してもよい。
 前記接触工程において、前記混合液と、二酸化炭素を含む気体とを接触させるための接触手段は、特に制限されず、後述する、固定化二酸化炭素の製造装置の記載を援用することができる。
 本発明の二酸化炭素の固定方法は、例えば、さらに、冷却工程を含み、前記冷却工程は、前記接触工程後、前記混合液を冷却してもよい。前記冷却工程において、例えば、70℃以上の前記混合液を、冷却することができる。
(固定化二酸化炭素の製造方法)
 本発明の固定化二酸化炭素の製造方法は、前述のように、二酸化炭素を固定化する固定化工程を含み、前記固定化工程が、本発明の二酸化炭素の固定方法により実施される。本発明の固定化二酸化炭素の製造方法は、前記固定化工程を含むことが特徴であって、その他の工程および条件は、特に制限されない。本発明の二酸化炭素の固定方法は、前述の通りである。前記固定化工程の条件等は、特に制限されず、例えば、本発明の二酸化炭素の固定方法における記載と同様である。
(固定化二酸化炭素の製造装置)
 本発明の固定化二酸化炭素の製造装置は、前述のように、水酸化ナトリウムを含み、さらに、塩化カルシウムを含む混合液と、二酸化炭素を含む気体とを接触させるための接触手段を含み、前記接触手段は、容器および気体送入手段を含み、前記容器は、前記混合液を収容可能であり、前記気体送入手段は、前記混合液中に前記気体を送入可能である。前記混合液、および前記二酸化炭素を含む気体は、例えば、本発明の二酸化炭素の固定方法における記載と同様である。
 前記接触手段は、水酸化ナトリウム、および塩化カルシウムを含む混合液と、二酸化炭素を含む気体とを接触させることができ、前記容器および前記気体送入手段を含めばよく、特に制限されない。
 図12に、前記接触手段の一例を示す概略図を示す。図12に示すように、固定化二酸化炭素の製造装置1は、接触手段10を含む。接触手段10は、前記混合液中に前記気体を送入することにより、前記混合液と前記気体とを接触させる。接触手段10は、例えば、前記混合液を投入するための混合液投入手段11、前記二酸化炭素を含む気体を送入するための気体送入手段12、および前記混合液と二酸化炭素を含む気体との接触を行うための容器13を含む。気体送入手段12は、前記混合液中に前記気体を送入可能である。容器13は、前記混合液を収容可能である。
 混合液投入手段11は、前記混合液を投入してもよいし、前記水酸化ナトリウム溶液を投入する、溶液投入手段11であってもよい。後者の場合、固定化二酸化炭素の製造装置1は、図35に示すように、さらに、添加手段20を含み、添加手段20は、例えば、前記水酸化ナトリウム溶液に、さらに、塩化カルシウムを添加してもよい。
 接触手段10は、前記混合液中に前記気体を送入することにより、前記混合液と前記気体とを接触させればよく、特に制限されない。接触手段10は、例えば、さらに、前記混合液を静置または前記混合液に流れを発生させた状態で、前記混合液と前記気体とを接触させる手段、前記混合液を霧状にした状態で、前記混合液と前記気体とを接触させる手段、および前記気体を還流させた状態で、前記混合液と前記気体とを接触させる手段を含んでもよい。
 接触手段10は、例えば、閉鎖系でもよいし、前記気体等が外界へ移動可能な、開放系でもよい。
 混合液投入手段11は、前記混合液を投入することができればよく、特に制限されない。
 気体送入手段12は、前記二酸化炭素を含む気体を送入することができればよく、特に制限されず、例えば、エアストーン、ホース(チューブ)、およびパスツールピペット等があげられる。前記エアストーンは、例えば、多孔質構造を有し、その細孔から、前記気体を送入することができる。これらの大きさ、形状および材質等は、特に制限されず、例えば、前記エアストーンの材質は、セラミック等があげられ、前記ホース(チューブ)の材質は、シリコン等があげられる。前記エアストーンの表面積は、例えば、球状の場合、1個あたり21cmである。気体送入手段12は、具体的には、前述の、前記バブリング装置等があげられる。
 気体送入手段12は、例えば、複数のエアストーンからなる構造があげられる。具体的には、例えば、図14に示すように、前記気体を挿入するチューブ、および複数の前記エアストーンを、ブドウの房状に配置してもよい。前記「ブドウの房状」とは、図14に示すように、1本の前記チューブが分岐しており、分岐したそれぞれの前記チューブの先端に前記エアストーンが接続された構造でもよいし、複数の前記チューブを束ねておき、それぞれの前記チューブの先端に前記エアストーンが接続された構造でもよい。また、例えば、複数の前記エアストーン(例えば、球状、および筒状等)を容器内に充填してもよい。これらにより、例えば、前述のように、前記混合液中に前記気体を送入することにより、前記混合液と前記気体とを接触させる場合、前記混合液に接する前記気体の表面積が大きくなり、好ましい。
 容器13は、前記混合液と二酸化炭素を含む気体との接触を行うことができればよく、特に制限されない。容器13の大きさは、例えば、前記二酸化炭素を含む気体の量に応じて、適宜設定することができる。容器13の素材は、例えば、プラスチック、ガラス、セラミックス等があげられる。
 容器13の形状は、適宜設定することができ、例えば、円筒形等の筒形の形状があげられる。これにより、例えば、容器13を、前記筒型の長軸方向が重力方向となるように設置し、容器13の下部から前記気体を送入することにより、容器13の上部に向かって前記気体を移動させることができるため、前記接触工程における接触時間がより長くなり、好ましい。容器13は、例えば、図23に示すパイプがあげられる。
 また、例えば、前述のように、さらに、前記混合液を振とうさせた状態で、前記混合液と前記気体とを接触させる場合、容器13の形状は、底面の断面が、多角形状であることが好ましい。前記多角形状は、例えば、非正多角形状である。前記多角形状は、例えば、八角形状である。容器13の形状は、具体的には、例えば、多角柱の形状、および、図5に示すような八角柱の形状があげられる。容器13の底面の断面が、多角形状であることにより、後述するように、より多くの二酸化炭素を固定できる。これは、例えば、前記振とうにおいて、前記混合液の表面積が増加し、より多くの前記二酸化炭素を含む気体と接触できるようになるためと考えられる。ただし、本発明は、これには制限されない。
 また、例えば、前述のように、さらに、容器13内において、前記混合液を静置または前記混合液に流れを発生させた状態で、前記混合液と前記気体とを接触させる場合、容器13は、複数の二次容器を含んでもよい。そして、例えば、前記混合液が、前記複数の二次容器内を、順次、流れることで、前記混合液と前記気体との接触が可能であってもよい。前記二次容器は、例えば、図13(A)に示すように、水深の浅い、水盤状の構造とすることができる。前記複数の二次容器は、例えば、上下方向に間隔をあけて、それぞれを重ねた構造とすることができる。これにより、例えば、上側の前記二次容器から下側の前記二次容器に、前記混合液が、順次、流れることができる。
 また、例えば、前述のように、さらに、前記混合液を静置または前記混合液に流れを発生させた状態で、前記混合液と前記気体とを接触させる場合、容器13は、例えば、網目状構造体を含んでもよい。そして、例えば、前記混合液が、前記網目状構造体を、流れることで、前記混合液と前記気体との接触が可能であってもよい。前記網目状構造体は、例えば、メッシュ状構造、および、図13(B)に示すような、杉の葉状等の分岐構造等があげられる。前記網目状構造の大きさ、細かさ等は、適宜設定できる。前記網目状構造は、例えば、複数の、板状、粒状または棒状構造の集合体として形成することができる。前記網目状構造の形成材料は、特に制限されず、例えば、プラスチックがあげられる。
 固定化二酸化炭素の製造装置1は、例えば、さらに、冷却手段を含み、前記冷却手段は、前記気体との反応後の前記混合液を冷却してもよい。
 つぎに、本発明の実施例および参考例について説明する。ただし、本発明は、下記実施例および参考例により制限されない。市販の試薬は、特に示さない限り、それらのプロトコルに基づいて使用した。
[実施例1]
 容器内において、水酸化ナトリウム(NaOH)、および塩化カルシウム(CaCl)を含む混合液と、二酸化炭素(CO)を含む気体とを、前記気体を前記混合液中にバブリングすることにより接触させることにより、二酸化炭素を固定できることを確認した。
 1Nの水酸化ナトリウム溶液(和光純薬工業社製)を、それぞれ、0.01、0.02、0.1、0.2、および0.4Nとなるように蒸留水で希釈し、前記各濃度の水酸化ナトリウム溶液を作製した。また、1mol/Lの塩化カルシウム溶液(和光純薬工業社製)を、それぞれ、0.01、0.02、0.1、0.2、および1(無希釈)mol/Lとなるように蒸留水で希釈し、前記各濃度の塩化カルシウム溶液を作製した。
 10mLの試験管に、3mLの前記各濃度の水酸化ナトリウム溶液と、3mLの0.1mol/Lの前記塩化カルシウム溶液とを入れて混合し、前記混合液に、二酸化炭素(CO100%、小池工業社製)をバブリングすることにより、接触させた。前記バブリングは、パスツールピペットの先端から、二酸化炭素を噴出させた。前記バブリングの条件は、10秒間(約20cm)とした。前記接触後、前記混合液を3,000rpm、10分間の条件で遠心した。前記バブリングにおけるバブルのサイズを、スケールと比較することにより目視で測定した結果、ミリメートル~センチメートルのオーダーであった。そして、前記接触前および後に、前記試験管の重量を測定し、前記接触前および後における前記重量の差を、沈殿量として算出した。なお、後述するように、前記二酸化炭素との接触を行うよりも前に沈殿が生じた場合は、前記沈殿を除去した後、前記接触を行った。
 この結果を、図1および図2に示す。図1は、前記二酸化炭素との接触前および接触後における、0.05Nの水酸化ナトリウムと0.05mol/Lの塩化カルシウムとを含む混合液の写真であり、図中、左が、前記接触前、右が、前記接触後の試験管の様子を示す。図1に示すように、二酸化炭素を接触させることにより、前記混合液において、炭酸カルシウム(CaCO)の白色沈殿が生じた。なお、前記混合液において、10秒間の前記バブリングが終了するよりも前に、白濁が生じていた。
 図2は、前記二酸化炭素との接触により、前記混合液において生じた沈殿の重さを示すグラフである。図2において、縦軸は、試験管あたりの前記沈殿の重さ(g)を示し、横軸は、前記混合液における水酸化ナトリウム濃度(N)を示す。なお、前記沈殿の重さの値は、前記各混合液のサンプルについて、合計5サンプルの測定値の平均値とした。図2に示すように、水酸化ナトリウム濃度が0.01N以上において、二酸化炭素を接触させた結果、前記沈殿が生じた。そして、前記濃度が0.05Nにおいて、前記沈殿の量が大きく増加し、0.1Nにおいて、前記沈殿の量が最大であった。一方、前記濃度が0.2Nにおいて、前記0.1Nにおける値と比較して、前記沈殿の量が減少した。前記濃度が0.05~0.2N、および0.05~0.1Nにおいて、より多くの二酸化炭素を固定できることが確認できた。
 なお、水酸化ナトリウム濃度が0.2Nの場合、二酸化炭素との前記接触前において、前記混合液中に白色沈殿の形成がみられた。この白色沈殿は、塩化カルシウムと高濃度の水酸化ナトリウムとの反応により生じた、水酸化カルシウム(Ca(OH))であると考えられる。このため、前記濃度が0.2Nにおいて、前記沈殿の量が減少した理由としては、塩化カルシウムと高濃度の水酸化ナトリウムとの反応により水酸化カルシウムが生じたことで、前記接触による炭酸カルシウムの合成量が減少したためと考えられる。
 つぎに、3mLの0.1Nの前記水酸化ナトリウム溶液と、3mLの前記各濃度の前記塩化カルシウム溶液とを入れて混合し、前記混合液を作製した以外は同様にして、前記接触を行った。
 この結果を、図3に示す。図3は、前記二酸化炭素との接触により、前記混合液において生じた沈殿の重さを示すグラフである。図3において、縦軸は、試験管あたりの前記沈殿の重さ(g)を示し、横軸は、前記混合液における塩化カルシウム濃度(mol/L)を示す。なお、前記沈殿の重さの値は、前記各混合液のサンプルについて、合計5サンプルの測定値の平均値とした。図3に示すように、全ての塩化カルシウム濃度において、二酸化炭素を接触させた結果、前記沈殿が生じた。そして、前記濃度が0.05mol/Lにおいて、前記沈殿の量が大きく増加し、0.1mol/Lにおいて、前記沈殿の量が最大であった。前記塩化カルシウム濃度が0.05~0.5mol/Lにおいて、より多くの二酸化炭素を固定できることが確認できた。
 なお、前記塩化カルシウム濃度が0.2~0.5mol/Lの場合、二酸化炭素との前記接触前において、前記混合液中に白色沈殿の形成がみられた。そして、この白色沈殿は、前記接触において、二酸化炭素を添加することにより、消失した。一方、前記塩化カルシウム濃度が、0.1mol/Lおよび0.05mol/Lの場合、前記混合液中に沈殿の形成がみられ、且つ、前記接触を行っても、前記沈殿は消失しなかった。
 以上のように、容器内において、水酸化ナトリウム、および塩化カルシウムを含む混合液と、二酸化炭素を含む気体とを、前記気体を前記混合液中にバブリングすることにより接触させることにより、二酸化炭素を固定できることが確認できた。
[実施例2]
 水酸化ナトリウム(NaOH)を含む溶液と、二酸化炭素(CO)を含む気体とを接触させる第1の接触工程、および前記第1の接触工程後、前記溶液に、塩化カルシウム(CaCl)を添加する第2の接触工程により、二酸化炭素を固定できることを確認した。
 水酸化ナトリウムを含む溶液として、1Nの水酸化ナトリウム溶液(和光純薬工業社製)を用いた。また、1mol/Lの塩化カルシウム溶液(和光純薬工業社製)を、蒸留水で希釈し、0.1mol/Lの塩化カルシウム溶液を作製した。
 10mLの試験管に、5mlの1Nの前記水酸化ナトリウム溶液(和光純薬工業社製)を入れ、前記溶液に、二酸化炭素(CO100%、小池工業社製)をバブリングすることにより、接触させた(第1の接触工程)。前記バブリングは、パスツールピペットの先端から、二酸化炭素を噴出させた。前記バブリングの条件は、2cm/秒、40秒間とした。
 つぎに、前記第1の接触後の前記溶液を、所定の濃度(0.1Nおよび0.05N)となるように蒸留水で希釈した。10mLの試験管に、3mLの前記希釈後の前記溶液を入れ、前記溶液に、3mlの0.1mol/Lの前記塩化カルシウム溶液を添加した(第2の接触工程)。前記接触後、前記混合液を3,000rpm、10分間の条件で遠心した。そして、前記接触前および後に、前記試験管の重量を測定し、前記接触前および後における前記重量の差を、沈殿量として算出した。
 また、二酸化炭素の吸収に対する水酸化ナトリウムの濃度効果をみるため、以下の実験を行った。1Nの前記水酸化ナトリウム溶液を、前記所定の濃度(0.1Nおよび0.05N)となるように、蒸留水で希釈した。10mLの試験管に、3mlの前記所定の濃度の水酸化ナトリウム溶液を入れ、前記溶液に、二酸化炭素をバブリングすることにより、接触させた(第1の接触工程)。前記バブリングの条件は、2cm/秒、20秒間とした。そして、前記溶液に、3mlの0.1mol/Lの前記塩化カルシウム溶液を添加した(第2の接触工程)。前記添加後、同様にして、沈殿量を算出した。
 これらの結果を、図15に示す。図15は、前記二酸化炭素との接触により、前記混合液において生じた沈殿の重さを示すグラフである。図15において、縦軸は、試験管あたりの前記沈殿の重さ(g)を示し、横軸は、各実験条件を示し、左のグラフは、前記第1工程を1Nの前記水酸化ナトリウム溶液を用いて行った結果(「High Concentration」)を示し、右のグラフは、前記第1工程を前記希釈後の前記水酸化ナトリウム溶液を用いて行った結果(「Low Concentration」)を示す。なお、前記沈殿の重さの値は、4サンプルの測定値の平均値とした。図15に示すように、前記第1の接触工程および前記第2の接触工程を行った結果、前記第1の接触工程をいずれの濃度で行った場合も、前記沈殿が生じた。また、前記第1の接触工程を高濃度で行った場合、前記沈殿の量がより多かった。
 さらに、前記第1工程で生成した炭酸水素ナトリウム(NaHCO)および炭酸ナトリウム(NaCO)が、前記第2工程において塩化カルシウムと反応し、沈殿を生じることを確認した。
 前述と同様にして、0.5mol/Lの塩化カルシウム溶液を作製した。10mLの試験管に、1mlの1Nの炭酸水素ナトリウム溶液(和光純薬工業社製)、1mlの蒸留水、2mlの0.5mol/Lの前記塩化カルシウム溶液を入れ、ボルテックスミキサーを用いて混合した。その後、生成した沈殿について、前述と同様にして、沈殿量を算出した。
 また、同様にして、2mlの0.5mol/Lの炭酸ナトリウム溶液(和光純薬工業製)、2mlの0.5mol/Lの前記塩化カルシウム溶液を混合し、生成した沈殿について、沈殿量を算出した。
 この結果を、図16に示す。図16は、前記二酸化炭素との接触により、前記混合液において生じた沈殿の重さを示すグラフである。図16において、縦軸は、試験管あたりの前記沈殿の重さ(g)を示し、横軸は、各実験条件を示す。なお、前記沈殿の重さの値は、前記各サンプルについて、合計4サンプルの測定値の平均値とした。図16に示すように、前記炭酸水素ナトリウム溶液および前記炭酸ナトリウム溶液は、それぞれ、前記塩化カルシウム溶液との反応により、沈殿を生じた。
 以上から、水酸化ナトリウムを含む溶液と、二酸化炭素を含む気体とを接触させる第1の接触工程、および前記第1の接触工程後、前記溶液に、塩化カルシウムを添加し、さらに、前記添加後の混合液と、前記二酸化炭素を含む気体とを接触させる第2の接触工程により、二酸化炭素を固定できることが確認できた。また、前記第1工程で生成した炭酸水素ナトリウムおよび炭酸ナトリウムが、前記第2工程において塩化カルシウムと反応し、沈殿を生じることが確認できた。
[実施例3]
 前記水酸化ナトリウム溶液および前記塩化カルシウム溶液の濃度を変えても、二酸化炭素を固定できることを確認した。
 実施例2と同様にして、1Nの水酸化ナトリウム溶液を用いた。さらに、前記水酸化ナトリウムを含む溶液として、5Nの水酸化ナトリウム溶液(和光純薬工業社製)を用いた。また、実施例2と同様にして、0.1mol/Lおよび0.5mol/Lの前記塩化カルシウム溶液を作製した。
 1Nおよび5Nの前記水酸化ナトリウム溶液、ならびに、0.1mol/Lおよび0.5mol/Lの前記塩化カルシウム溶液を用いて、実施例2と同様にして、前記第1の接触工程、および前記第2の接触工程を行った。ただし、5Nの前記水酸化ナトリウム溶液を用いた場合のみ、前記第1の接触工程における前記バブリング時間を、20秒間に代えて、50秒間とした。そして、実施例2と同様にして、沈殿量を算出した。
 この結果を、図17に示す。図17は、前記二酸化炭素との接触により、前記混合液において生じた沈殿の重さを示すグラフである。図17において、縦軸は、試験管あたりの前記沈殿の重さ(g)を示し、横軸は、各実験条件を示し、左のグラフは、前記第1工程を1Nの前記水酸化ナトリウム溶液を用いて行った結果を示し、右のグラフは、前記第1工程を5Nの前記水酸化ナトリウム溶液を用いて行った結果を示し、それぞれにおいて、左は、0.1mol/L前記塩化カルシウム溶液を用いて行った結果、右は、0.5mol/Lの前記塩化カルシウム溶液を用いて行った結果を示す。なお、前記沈殿の重さの値は、前記各サンプルについて、合計5サンプルの測定値の平均値とした。図17に示すように、前記水酸化ナトリウム溶液および前記塩化カルシウム溶液をいずれの濃度にした場合も、前記沈殿が生じた。前記水酸化ナトリウム溶液の濃度を、1Nおよび5Nにした結果、両者間でほぼ同じ値が得られた。前記塩化カルシウム溶液の濃度を、0.1mol/Lおよび0.5mol/Lにした結果、0.5mol/Lでは、0.1mol/Lにした場合と比較して、いずれの前記水酸化ナトリウム溶液の濃度においても、前記沈殿量が約半分の値であった。0.1mol/Lの前記塩化カルシウム溶液を用いることにより、より多くの二酸化炭素を固定できることが確認できた。
 以上から、前記水酸化ナトリウム溶液および前記塩化カルシウム溶液の濃度を変えても、二酸化炭素を固定できることが確認できた。
[実施例4]
 前記第1の接触工程における二酸化炭素を含む気体との接触時間を変えても、二酸化炭素を固定できることを確認した。また、前記第1の接触工程および前記第2の接触工程を行わずに、水酸化ナトリウムおよび塩化カルシウムを含む混合液と、二酸化炭素を含む気体とを接触させ、結果を比較した。
 実施例2と同様にして、1Nの水酸化ナトリウム溶液を用いた。また、0.1mol/Lの前記塩化カルシウム溶液を作製した。
 前記バブリングの条件を、5、10、20、30、60秒間とした以外は実施例2と同様にして、前記第1の接触工程を行った。
 つぎに、前記第1の接触後の前記溶液に、濃度が約0.1N(初濃度を基準にした概算値)となるように、9mLの蒸留水を加えて希釈した。10mLの試験管に、3mLの前記希釈後の前記溶液を入れ、前記溶液に、3mlの0.1mol/Lの前記塩化カルシウム溶液を添加した(第2の接触工程)。前記接触後、実施例2と同様にして、前記混合液を遠心した。そして、実施例2と同様にして、沈殿量を算出した。
 また、比較例として、以下の実験を行った。1Nの前記水酸化ナトリウム溶液を、0.1Nとなるように、蒸留水で希釈した。10mLの試験管に、3mlの0.1Nの前記水酸化ナトリウム溶液と、3mlの0.1Nの前記塩化カルシウム溶液とを入れて混合し、前記混合液に、前述と同様にして、二酸化炭素をバブリングすることにより、接触させた。前記添加後、同様にして、沈殿量を算出した。
 これらの結果を、図18に示す。図18は、前記二酸化炭素との接触により、前記混合液において生じた沈殿の重さを示すグラフである。図18において、縦軸は、試験管あたりの前記沈殿の重さ(g)を示し、横軸は、バブリング時間を示し、それぞれ、左のグラフは、前記第1の接触工程および前記第2の接触工程を行った結果を示し、右のグラフは、比較例の結果を示す。なお、前記沈殿の重さの値は、合計3回の測定値の平均値とした。図18に示すように、前記第1の接触工程および前記第2の接触工程を行った結果、いずれのバブリング時間においても、前記沈殿が生じた。5秒~30秒間のバブリングにおいて、ほぼ同程度の沈殿量が得られた。60秒間のバブリングを行っても、やや減少したものの、十分な量の沈殿量が得られた。前記比較例の場合、5秒~10秒間のバブリングにおいて、前記沈殿が生じたが、前記第1の接触工程および前記第2の接触工程を行った結果と比較して、沈殿量は半分以下であった。さらに、20秒以上のバブリングを行うと、沈殿量は大きく減少した。
 以上から、前記第1の接触工程における二酸化炭素を含む気体との接触時間を変えても、二酸化炭素を固定できることを確認できた。また、前記第1の接触工程および前記第2の接触工程を行った場合、前記第1の接触工程および前記第2の接触工程を行わずに、水酸化ナトリウムおよび塩化カルシウムを含む混合液と、二酸化炭素を含む気体とを接触させた場合と比較して、より効率よく二酸化炭素を固定できることが分かった。
[実施例5]
 水酸化ナトリウム、および塩化カルシウムを含む混合液と、二酸化炭素を含む気体とを、前記気体を前記混合液中にバブリングすることにより接触させることにより、二酸化炭素を固定できることを確認した。
 後述の参考例1と同様にして、0.05Nの前記水酸化ナトリウムと0.05mol/Lの前記塩化カルシウムとを含む混合液を作製した。500mlの前記混合液を、プラスチックボトル(市販のもの、幅7.5cm、奥行7.5cm、高さ12cm)に入れ、図21に示すように、前記混合液に、水槽生物用のバブリング装置(製品名:ブクブク(セットに含まれるエアポンプ、ホース、およびエアストーンを組立てたもの)、コトブキ工芸株式会社製)を用いて、空気をバブリングすることにより接触させた。なお、図21において、前記プラスチックボトルの内部を透視的に図示している。前記バブリングは、20cm/秒の条件で、9時間、および12時間行った。前記バブリングにおけるバブルのサイズを、スケールと比較することにより目視で測定した結果、マイクロメートル~ミリメートルのオーダーであった。前記接触後、5mLの前記混合液を取得し、3,000rpm、10分間の条件で遠心した後、沈殿物を秤量した。また、前記空気に代えて、前記空気に前記二酸化炭素を混合することにより二酸化炭素濃度を15%にした混合空気を用い、前記バブリングを1.5時間行った以外は同様にして、実験を行った。
 この結果を、図22に示す。図22は、前記二酸化炭素との接触により、前記混合液において生じた沈殿の重さを示すグラフである。図22において、縦軸は、前記沈殿の重さ(g)を示し、横軸は、各実験条件を示す。なお、前記沈殿の重さの値は、前記各混合液のサンプルについて、合計4サンプルの測定値の平均値とした。図22に示すように、前記空気、および前記混合空気のバブリングにより、沈殿が生じた。前記空気のバブリングにおいて、時間経過に応じて、沈殿量が増加していた。
 つぎに、容器の形態を変えて、実験を行った。前記容器として、前記プラスチックボトルに代えて、直径40mm、高さ50cmの塩化ビニル製のパイプ(市販のもの)を用いた。前記パイプは、底部となる一端にパイプキャップ(市販のもの)を取付けた。図23は、前記パイプの形態を説明する概略図である。なお、図23において、前記パイプの内部を透視的に図示している。また、実施例1と同様にして、0.1Nの前記水酸化ナトリウム溶液および0.1mol/Lの前記塩化カルシウム溶液を作製した。250mlの前記水酸化ナトリウム溶液および250mlの前記塩化カルシウム溶液を、前記パイプに入れ、前記混合液に、前述と同様にして、約1分間、空気をバブリングすることにより接触させた。前記接触後、前記パイプの上部空間(高さ約14cm)における気体について、後述の参考例1と同様にして、二酸化炭素濃度を測定した。また、前記空気の二酸化炭素濃度を、同様にして測定した。
 この結果を、図24に示す。図24は、前記接触後の前記パイプ内の二酸化炭素濃度を示すグラフである。図24において、縦軸は、二酸化炭素濃度(PPM)を示し、横軸は、左から、前記空気(Air)、および前記パイプの上部空間における気体(Inner Pipe)を示す。なお、前記二酸化炭素濃度の値は、合計9サンプルの測定値の平均値とした。図24に示すように、前記接触により、前記パイプ内の二酸化炭素濃度が大きく減少した。
 つぎに、前記空気に代えて、前記空気に前記二酸化炭素を混合することにより二酸化炭素濃度を10%にした混合空気を用いた以外は同様にして、実験を行った。
 この結果を、図25に示す。図25は、前記接触後の前記パイプ内の二酸化炭素濃度を示すグラフである。図25において、縦軸は、二酸化炭素濃度(%)を示し、横軸は、左から、各実験条件を示す。なお、前記二酸化炭素濃度の値は、合計3サンプルの測定値の平均値とした。図25に示すように、前記接触により、前記パイプ内の二酸化炭素濃度が減少した。
 つぎに、前記混合液の量を変えて、実験を行った。後述の参考例1と同様にして、0.05Nの前記水酸化ナトリウムと0.05mol/Lの前記塩化カルシウムとを含む混合液を作製した。前記パイプに、100、200、300、400、および500mlの前記混合液を入れ、前記混合液に、前述と同様にして、1~2分間、空気をバブリングすることにより接触させた。なお、前記各条件において、前記パイプの底面からの前記混合液の液面の高さは、それぞれ、7、14、22、29、36cmであった。前記接触後、前記パイプの上部空間(前記パイプの上端から約10cmの位置)における気体について、後述の参考例1と同様にして、二酸化炭素濃度を測定した。また、前記空気の二酸化炭素濃度を、同様にして測定した。
 この結果を、図26に示す。図26は、前記接触後の前記パイプ内の二酸化炭素濃度を示すグラフである。図26において、縦軸は、二酸化炭素濃度(PPM)を示し、横軸は、左から、前記空気(Control)、および前記液面の高さを示す。なお、前記二酸化炭素濃度の値は、合計3サンプルの測定値の平均値とした。図26に示すように、前記接触により、前記液面の高さが、7cmであっても、前記パイプ内の二酸化炭素濃度が大きく減少した。また、前記液面の高さ(前記混合液の量)が大きくなるに従って、二酸化炭素濃度はより減少した。
 つぎに、前記接触の形態を変えて、実験を行った。後述の参考例1と同様にして、0.05Nの前記水酸化ナトリウムと0.05mol/Lの前記塩化カルシウムとを含む混合液を作製した。前記パイプに、500mlの前記混合液を入れ、前述と同様にして、1~2分間、空気をバブリングすることにより接触させた。一方、前記接触において、前記バブリング装置の前記ホースの先端に接続した前記エアストーンを取り外して、前記ホース(直径約5mm、シリコン製)から直接空気をバブリングすることにより接触させた以外は同様にして、実験を行った。前記バブリングにおけるバブルのサイズを、スケールと比較することにより目視で測定した結果、ミリメートル~センチメートルのオーダーであった。前記接触後、前述と同様にして、二酸化炭素濃度を測定した。また、前記空気の二酸化炭素濃度を、同様にして測定した。
 この結果を、図27に示す。図27は、前記接触後の前記パイプ内の二酸化炭素濃度を示すグラフである。図27において、縦軸は、二酸化炭素濃度(PPM)を示し、横軸は、左から、前記空気(Control)、前記エアストーンからバブリングした場合(Ball)、および前記ホースからバブリングした場合(Tube)を示す。なお、前記二酸化炭素濃度の値は、合計4サンプルの測定値の平均値とした。図27に示すように、前記エアストーンからバブリングすることにより、前記パイプ内の二酸化炭素濃度が大きく減少した(4.27%まで減少)。一方、前記ホースからバブリングした場合、二酸化炭素濃度は減少した(69.49%まで減少)が、前記エアストーンからバブリングした場合と比較して、減少量は少なかった。このことから、前記バブリングにおけるバブルのサイズが小さいことが、二酸化炭素の吸収において重要であることがわかった。
 以上のように、水酸化ナトリウム、および塩化カルシウムを含む混合液と、二酸化炭素を含む気体とを、前記気体を前記混合液中にバブリングすることにより接触させることにより、二酸化炭素を固定できることを確認できた。
[実施例6]
 水酸化ナトリウムを含み、さらに、第2族元素の塩化物、および2価の金属元素の塩化物を含む混合液と、二酸化炭素を含む気体とを接触させることにより、二酸化炭素を固定できることを確認した。
 第2族元素の塩化物、および2価の金属元素の塩化物として、塩化マグネシウム(MgCl、和光純薬工業社製)、塩化亜鉛(ZnCl、和光純薬工業社製)、塩化ストロンチウム(SrCl、和光純薬工業社製)、塩化バリウム(BaCl、和光純薬工業社製)を用いた。前記塩化物を、それぞれ、蒸留水で希釈し、0.1mol/Lの各金属塩化物溶液を作製した。また、実施例1と同様にして、0.1Nの前記水酸化ナトリウム溶液を作製した。
 2mLの前記各金属塩化物溶液と、1mLの前記水酸化ナトリウム溶液を混合した。前記混合液に、実施例1と同様にして、二酸化炭素をバブリングすることにより、接触させた。前記混合後、および前記二酸化炭素との接触後、実施例1と同様にして、沈殿量を算出した。
 この結果を、図32に示す。図32は、前記二酸化炭素との接触により、前記混合液において生じた沈殿の重さを示すグラフである。図32において、縦軸は、試験管あたりの前記沈殿の重さ(g)を示し、横軸は、前記混合液に含まれる各金属塩化物を示し、それぞれ、左のグラフが前記混合後、右のグラフが前記二酸化炭素との接触後を示す。なお、前記沈殿の重さの値は、前記各混合液のサンプルについて、合計4サンプルの測定値の平均値とした。図32に示すように、前記塩化マグネシウム溶液および前記塩化亜鉛溶液を用いた場合、前記混合後、沈殿量が大きく増加し、前記二酸化炭素との接触後、沈殿量が減少した。また、前記塩化ストロンチウム溶液および前記塩化バリウム溶液を用いた場合、前記混合後、沈殿量が増加し、前記二酸化炭素との接触後、沈殿量がさらに増加した。
 つぎに、前記第2族元素の塩化物、および前記2価の金属元素の塩化物を用いて、前記接触後の二酸化炭素濃度を測定した。
 前記容器として、実施例5に記載の前記パイプを使用した。50mlの0.1Nの前記水酸化ナトリウム溶液および50mlの0.1mol/Lの各金属塩化物溶液を、前記パイプに入れ、前記混合液に、前記実施例5と同様にして、空気をバブリングすることにより接触させた。前記接触後、前記パイプの上部空間(高さ約14cm)における気体について、後述の参考例1と同様にして、二酸化炭素濃度を測定した。前記測定において、前記接触から2~3分後に、二酸化炭素濃度の値がほぼ一定になったことを確認し、この値を測定値とした。また、コントロールとして、前記空気の二酸化炭素濃度を、同様にして測定した。
 この結果を、図33に示す。図33は、前記接触後の前記パイプ内の二酸化炭素濃度を示すグラフである。図33において、縦軸は、二酸化炭素濃度(PPM)を示し、横軸は、各金属塩化物を示す。なお、前記二酸化炭素濃度の値は、合計3サンプルの測定値の平均値とした。図33に示すように、前記接触により、いずれの金属塩化物を用いた場合においても、コントロールの値と比較して、前記パイプ内の二酸化炭素濃度が減少した。特に、前記塩化ストロンチウム溶液および前記塩化バリウム溶液を用いた場合、前記二酸化炭素濃度が大きく減少した。
 以上のように、水酸化ナトリウムを含み、さらに、第2族元素の塩化物、および2価の金属元素の塩化物を含む混合液と、二酸化炭素を含む気体とを接触させることにより、二酸化炭素を固定できることを確認できた。
[実施例7]
 水酸化ナトリウム、および塩化カルシウムを含む混合液と、二酸化炭素を含む気体とを、所定の温度条件下で接触させることにより、二酸化炭素を固定できることを確認した。
 後述の参考例1と同様にして、0.05Nの前記水酸化ナトリウムと0.05mol/Lの前記塩化カルシウムとを含む混合液を作製した。10mLの試験管に、3mLの前記各濃度の水酸化ナトリウム溶液と、3mLの0.1mol/Lの前記塩化カルシウム溶液とを入れて混合し、前記混合液に、実施例1と同様にして、二酸化炭素をバブリングすることにより接触させた。前記バブリングは、2cm/秒の条件で、10秒間行った。前記接触において、前記混合液の温度を、Unithermo Shaker NTS-120, EYLEA, (Tokyo Rikakikai Co., Ltd.)を用いて、それぞれ、5℃、20℃、30℃、40℃、50℃、60℃、70℃、80℃に保持した。前記接触後、実施例1と同様にして、沈殿量を算出した。
 この結果を、図34に示す。図34は、前記二酸化炭素との接触により、前記混合液において生じた沈殿の重さを示すグラフである。図34において、縦軸は、試験管あたりの前記沈殿の重さ(g)を示し、横軸は、温度を示す。なお、前記沈殿の重さの値は、前記温度ごとに、実験を3~5回行い、各実験において4~8サンプルの測定値を取得し、これらの測定値の平均値とした。図34に示すように、いずれの温度条件下においても、前記二酸化炭素との接触後、沈殿が生成した。前記沈殿量は、前記混合液の温度が5℃から60℃の間では、ほぼ一定の値であり、70℃において大きく増加した。前記混合液の温度が80℃においても、5℃から60℃の間における前記一定の値よりも大きい値が得られた。
 以上のように、水酸化ナトリウム、および塩化カルシウムを含む混合液と、二酸化炭素を含む気体とを、所定の温度条件下で接触させることにより、二酸化炭素を固定できることを確認できた。特に、前記二酸化炭素の固定が、高温での処理に適していることを確認できた。
[参考例1]
 容器内において、水酸化ナトリウム、および塩化カルシウムを含む混合液と、二酸化炭素を含む気体とを、前記混合液を静置または振とうさせた状態で接触させることにより、二酸化炭素を固定できることを確認した。
 等量の0.1Nの前記水酸化ナトリウム溶液と、0.1mol/Lの前記塩化カルシウム溶液とを混合し、混合液を作製した。容積2Lの一般的な形状のペットボトル(市販のもの)内を大気と平衡にした後、前記ペットボトルに、10mLの前記混合液を入れた。前記ペットボトルを、底面が下になるようにして立てて静置し、前記混合液と二酸化炭素とを接触させた。前記接触後、0分(前記接触直後)、15分、30分、および60分後、ならびにオーバーナイトでの接触後に、二酸化炭素モニター(RI-85、RIKEN KEIKI製)を用いて、前記ペットボトル内の二酸化炭素濃度を測定した。
 この結果を、図4に示す。図4は、前記接触後の前記ペットボトル内の二酸化炭素濃度を示すグラフである。図4において、縦軸は、二酸化炭素濃度(PPM)を示し、横軸は、前記接触後の経過時間(分)を示す。なお、前記二酸化炭素濃度の値は、前記接触後、0分(前記接触直後)、15分、30分、および60分後については、合計4サンプルの測定値の平均値とした。なお、前記オーバーナイトでの接触後においては、合計6サンプルの測定値が、いずれも0PPMであった。図4に示すように、前記接触により、前記接触後の経過時間に応じて、前記ペットボトル内の二酸化炭素濃度が減少した。また、前記オーバーナイトでの接触後、前記二酸化炭素濃度の値が、0PPMとなったことから、本発明によれば、低濃度の二酸化炭素であっても、固定できることがわかった。
 つぎに、前記ペットボトルに代えて、図5に示す形状の八角柱プラスチックボトルを用いた点、および、前記八角柱プラスチックボトルを、側面が下になるようにして横倒しにして静置した、または、前記八角柱プラスチックボトルを前記横倒しにした状態で振とうした点以外は同様にして、5分間、前記接触を行った。図5(A)は、前記八角柱プラスチックボトルを側面から見た図であり、(B)は、前記八角柱プラスチックボトルを底面から見た図である。前記振とうは、シェイカー(BR-21UM、TAITEK製)を用いて、120rpmの条件で振とうした。
 この結果を、図6に示す。図6は、前記接触後の前記八角柱プラスチックボトル内の二酸化炭素濃度を示すグラフである。図6において、縦軸は、二酸化炭素濃度(PPM)を示し、横軸は、左から、前記接触直後(0分)、前記静置による接触後、前記振とうによる接触後を示す。なお、前記二酸化炭素濃度の値は、合計4サンプルの測定値の平均値とした。図6に示すように、前記振とうによる接触により、前記接触直後と比較して、前記八角柱プラスチックボトル内の二酸化炭素濃度が減少した。特に、前記振とうによる接触により、前記接触直後と比較して、前記八角柱プラスチックボトル内の二酸化炭素濃度が1/6程度まで大きく減少しており、より多くの二酸化炭素を固定できることが確認できた。
 なお、前述のように、前記振とうによる接触により、前記静置による接触を行った場合と比較して、前記二酸化炭素濃度がより大きく減少した。この理由としては、前記振とうにより、前記混合液の表面積が増加し、より多くの前記二酸化炭素を含む気体と接触できるようになったためと考えられる。また、前記八角柱プラスチックボトルは、一般的な形状のペットボトルとの比較において、底部がより平面的であり、且つ短寸であるため、より前記混合液の表面積が増加したと考えられる。
 つぎに、前記振とうの条件を変えて、前記接触を行った。前記八角柱プラスチックボトルに代えて、容積2Lの前記一般的な形状のペットボトルを用いた。前記接触の12時間前に、前記ペットボトルのふたを開け、前記ぺットボトルの口部にパスツールピぺットの先端を挿入し、前記先端から二酸化炭素を注入した。そして、前記ペットボトルに、50mLの前記混合液を入れた後、30秒間の振とうを1回として、1~6回、成人男性の手で、激しく振とうした。なお、前記1回目の前記振とうによる接触は、前記接触直後に行い、前記2~6回目の前記振とうによる接触は、それぞれ、前記接触直後から2分経過後、5分経過後、15分経過後、30分経過後、および60分経過後に行った。そして、前記1~6回の前記接触後に、それぞれ、二酸化炭素検出器(XP-3140、COSMO製)を用いて、二酸化炭素濃度を測定した。
 また、前記6回目の接触後、さらに、50mLの前記混合液を加え、30秒間激しく振とうした後、二酸化炭素の濃度を測定した。その後、さらに、24時間静置した後、二酸化炭素の濃度を測定した。また、前記24時間静置後、さらに、50mLの前記混合液を加え、30秒間激しく振とうした後、二酸化炭素の濃度を測定した。
 この結果を、図7に示す。図7は、前記接触後の前記ペットボトル内の二酸化炭素濃度を示すグラフである。図7において、縦軸は、二酸化炭素濃度(%)を示し、横軸は、左から、前記接触直後(0分)、1回目の前記振とうによる接触後(30秒)、2回目の前記振とうによる接触後(2分)、3回目の前記振とうによる接触後(5分)、4回目の前記振とうによる接触後(15分)、5回目の前記振とう後(30分)、6回目の前記振とう後(60分)、混合液追加後、24時間静置後、混合液再追加後を示す。なお、前記二酸化炭素濃度の値は、合計5サンプルの測定値の平均値とした。図7に示すように、1回目の前記接触後(30秒)において、前記接触直後(0分)と比較して、二酸化炭素の濃度は大きく減少した。その後、2~6回目の前記接触後において、二酸化炭素の濃度は緩やかに減少した。一方、前記混合液の追加により、急激な更なる二酸化炭素濃度の減少を引き起こした。前記混合液の再追加においても、二酸化炭素濃度の顕著な減少が見られた。このように、高濃度の二酸化炭素濃度の状態であっても、前記混合液を再度添加することにより、二酸化炭素濃度の減少を引き起こすことが確認された。
 さらに、前記振とうの条件を変えて、前記接触を行った。前記ペットボトルに代えて、図19に示す、容積1.85Lのプラスチックボックス(市販のもの)を用いた。なお、図19において、前記プラスチックボックスの内部を透視的に図示している。前記プラスチックボックスに、500mLの0.1Nの前記水酸化ナトリウム溶液と、500mLの0.1mol/Lの前記塩化カルシウム溶液とを入れた後、ハンドミキサー(HM-20,60W、TOSHIBA製)を用いて、フル回転(数字3、「あわだてる-卵白をきめこまかくあわだてる」モード)させることにより、前記接触を行った。そして、前記プラスチックボックス内の二酸化炭素濃度を、前記二酸化炭素モニターを用いて測定した。前記接触開始から約2分後に、二酸化炭素濃度がほぼ一定になったことを確認し、前記接触を終了した。前記接触終了時の二酸化炭素濃度の測定値を取得した。また、コントロールとして、前記プラスチックボックス外の空気の二酸化炭素濃度を測定した。
 この結果を、図20に示す。図20は、前記接触後の前記プラスチックボックス内の二酸化炭素濃度を示すグラフである。図20において、縦軸は、二酸化炭素濃度(PPM)を示し、横軸は、左から、コントロール、および前記接触終了時を示す。なお、前記二酸化炭素濃度の値は、合計3サンプルの測定値の平均値とした。図20に示すように、前記接触後において、コントロールと比較して、二酸化炭素の濃度は大きく減少した。
 以上のように、容器内において、水酸化ナトリウム、および塩化カルシウムを含む混合液と、二酸化炭素を含む気体とを、前記混合液を静置または振とうさせた状態で接触させることにより、二酸化炭素を固定できることが確認できた。
[参考例2]
 容器内において、水酸化ナトリウム、および塩化カルシウムを含む混合液と、二酸化炭素を含む気体とを、前記混合液を霧状にした状態で接触させることにより、二酸化炭素を固定できることを確認した。
 参考例1と同様にして、前記水酸化ナトリウムと前記塩化カルシウムとを含む混合液を作製した。前記容積2Lの一般的な形状のペットボトルを用い、参考例1と同様にして、前記ペットボトル内を大気と平衡にした。その後、前記ペットボトルに、約4mLの前記混合液を、噴霧器(市販のもの)を用いて、5秒間隔で10回噴霧することにより、前記混合液と二酸化炭素とを接触させた。前記接触は、図8に示すように、前記ペットボトルを、側面が下になるようにして横向きにして使用し、水平方向に前記噴霧を行った。前記接触後直ちに、参考例1と同様にして、前記ペットボトル内の二酸化炭素濃度を測定した。
 この結果を、図9に示す。図9は、前記接触後の前記ペットボトル内の二酸化炭素濃度を示すグラフである。図9において、縦軸は、二酸化炭素濃度(PPM)を示し、横軸は、左から、前記接触直後(0分)、前記噴霧による接触後を示す。なお、前記二酸化炭素濃度の値は、合計4サンプルの測定値の平均値とした。図9に示すように、前記噴霧による接触により、前記接触直後と比較して、前記ペットボトル内の二酸化炭素濃度が1/6程度まで大きく減少した。
 このように、前記噴霧による接触により、短時間で、前記二酸化炭素濃度が大きく減少した。この理由としては、前記混合液を霧状にした状態で接触させることにより、前記混合液の表面積が大きく増加し、より多くの前記二酸化炭素を含む気体と接触できるようになったためと考えられる。
 つぎに、前記噴霧の条件を変えて、前記接触を行った。前記接触を行うための接触手段は、以下のようにして作製した。図10に示すように、牛乳パックである箱(市販のもの)2個をL字型に連結し、下部の前記箱の側面の2箇所に、部分的に切取ることにより孔を開け、前記孔からシリコンチューブを挿入することにより、空気注入部、および二酸化炭素注入部をそれぞれ設けた。また、下部の前記箱の上面に、同様にして孔を開け、前記噴霧器から、前記箱の内部に前記混合液を噴霧できるようにした。上部および下部の前記箱の連結部は、それぞれ、大きな切り口を開けることで、下部の箱から上部の箱に二酸化炭素が上昇できるようにした。前記連結部には、4重のガーゼ(市販のもの)により、ガーゼ層を設けた。上部の前記箱の上面は、開放させた。また、上部の前記箱の側面に、同様にして孔を開け、二酸化炭素濃度検出器(XP-3140、COSMO製)のノズルを設置した。
 前記空気注入部からの空気の流量を、約100cm/秒、前記二酸化炭素注入部からの二酸化炭素の流量を、10cm/秒として、二酸化炭素濃度の測定値が一定になるまで、注入を行った。その後、前記噴霧器から、前記混合液を、10回連続で噴霧した。前記混合液の噴霧量は、10回で合計約4mLであった。前記噴霧後、約20秒後に、二酸化炭素濃度の測定値が最低値となった。
 この結果を、図11に示す。図11は、前記接触後約20秒後に、前記二酸化炭素の測定値が最低値となった時の、前記箱内の二酸化炭素濃度を示すグラフである。図11において、縦軸は、二酸化炭素濃度(%)を示し、横軸は、左から、前記接触前、前記噴霧による接触後を示す。なお、前記二酸化炭素濃度の値は、合計10サンプルの測定値の平均値とした。図11に示すように、前記噴霧による接触により、前記接触直後と比較して、前記箱内の二酸化炭素濃度が減少した。
 このように、前記接触手段が開放系である場合においても、前記混合液により、二酸化炭素を吸収できることが確認できた。さらに、噴霧した前記混合液の量が、約4mLという少量であったことから、前記混合液の量が少量であっても、高濃度の二酸化炭素濃度を十分に下げることができることがわかった。このことから、本発明の反応系は、反応効率が極めて優れているといえる。
 以上のように、容器内において、水酸化ナトリウム、および塩化カルシウムを含む混合液と、二酸化炭素を含む気体とを、前記混合液を霧状にした状態で接触させることにより、二酸化炭素を固定できることが確認できた。
[参考例3]
 水酸化ナトリウムを含む溶液と二酸化炭素を含む気体とを接触させることにより、二酸化炭素を吸収できることを確認した。
 実施例1と同様にして、0.05Nの前記水酸化ナトリウム溶液を作製した。前記容積2Lの一般的な形状のペットボトルを用い、参考例1と同様にして、前記ペットボトル内を大気と平衡にした。その後、前記ペットボトルに、10mLの前記水酸化ナトリウム溶液を入れ、静置することにより、前記溶液と大気中の二酸化炭素とを接触させた。前記接触後、0分(接触直後)、15分、30分、60分後に、参考例1と同様にして、前記ペットボトル内の二酸化炭素濃度を測定した。
 この結果を、図28に示す。図28は、前記接触後の前記ペットボトル内の二酸化炭素濃度を示すグラフである。図28において、縦軸は、二酸化炭素濃度(PPM)を示し、横軸は、前記接触後の経過時間(分)を示す。なお、前記二酸化炭素濃度の値は、合計3サンプルの測定値の平均値とした。図28に示すように、前記接触により、前記接触直後と比較して、15分、30分、60分後に、前記ペットボトル内の二酸化炭素濃度が減少した。
 つぎに、前記接触の形態を変えて、前記接触を行った。前記ペットボトルに代えて、図29に示す、容積2Lのプラスチックボックス(市販のもの)を用いた。なお、図29において、前記プラスチックボックスの内部を透視的に図示している。前記プラスチックボックスに、500mLの0.1Nの前記水酸化ナトリウム溶液を入れた後、図29に示すように、前記プラスチックボックスの上面をプラスチック製のプレートで覆った。前記溶液に、バブリング装置(製品名:Micro bubbler(F-1056-002)、フロント工業株式会社製)を用いて、空気をバブリングすることにより接触させた。前記バブリングは、20cm/秒の条件で行った。前記バブリングにおけるバブルのサイズを、スケールと比較することにより目視で測定した結果、マイクロメートル~ミリメートルのオーダーであった。そして、前記接触開始直後(0分)、5分後、10分後、および15分後に、前記プラスチックボックス内の上部空間の二酸化炭素濃度を、前記二酸化炭素モニターを用いて測定した。
 この結果を、図30に示す。図30は、前記接触後の前記プラスチックボックス内の二酸化炭素濃度を示すグラフである。図30において、縦軸は、二酸化炭素濃度(PPM)を示し、横軸は、左から、前記接触開始直後(0 time)、5分後(5 min)、10分後(10 min)、および15分後(15 min)を示す。図30に示すように、前記接触開始から5分後には、前記プラスチックボックス内の二酸化炭素濃度が大きく減少した。その後、前記接触後の経過時間に応じて、二酸化炭素濃度は徐々に減少した。
 つぎに、容器の形態を変えて、実験を行った。前記容器として、前記プラスチックボトルに代えて、実施例5に記載の前記パイプを用いた。前記パイプに、200mlの0.1Nの前記水酸化ナトリウム溶液を入れ、前記溶液に、前述と同様にして、二酸化炭素濃度を10%にした前記混合空気をバブリングすることにより接触させた。そして、前記接触開始から5分後まで継続して、前記パイプ内の上部空間の二酸化炭素濃度を、前記二酸化炭素モニターを用いて測定した。また、1Nの前記水酸化ナトリウム溶液を用いた以外は同様にして、2分後まで二酸化炭素濃度を測定した。
 この結果を、図31に示す。図31は、前記接触開始から2分後の前記パイプ内の二酸化炭素濃度を示すグラフである。図31において、縦軸は、二酸化炭素濃度(PPM)を示し、横軸は、前記水酸化ナトリウム溶液の濃度を示す。図31に示すように、0.1Nの前記水酸化ナトリウム溶液を用いた場合、前記パイプ内の二酸化炭素濃度が、前記接触開始直後から急速に減少し、2分後において、前記接触開始直後の値と比較して、7.5%まで減少した。その後、前記接触開始から5分後まで、前記濃度はほぼ一定の値であった。また、1Nの前記水酸化ナトリウム溶液を用いた場合、同様に、前記パイプ内の二酸化炭素濃度が、前記接触開始直後から急速に減少し、2分後において、「0」になった。
 以上のように、水酸化ナトリウムを含む溶液と二酸化炭素を含む気体とを接触させることにより、二酸化炭素を吸収できることを確認できた。
 以上、実施形態および実施例を参照して本発明を説明したが、本発明は、上記実施形態および実施例に限定されるものではない。本発明の構成や詳細には、本発明のスコープ内で当業者が理解しうる様々な変更をすることができる。
 以上のように、本発明によれば、新たな、二酸化炭素の固定方法を提供することができる。このため、本発明は、二酸化炭素を含む燃焼排ガスの処理等において、極めて有用といえる。

Claims (12)

  1. 水酸化ナトリウムを含み、さらに、第2族元素の塩化物、および2価の金属元素の塩化物の少なくとも一方を含む混合液と、二酸化炭素を含む気体とを接触させる接触工程を含み、
    前記接触工程において、前記気体を前記混合液中に送入することにより、前記混合液と前記気体とを接触させる、二酸化炭素の固定方法。
  2. 前記第2族元素の塩化物、および2価の金属元素の塩化物の少なくとも一方が、塩化カルシウムである、請求項1記載の固定方法。
  3. 前記接触工程において、前記気体を、バブルにして前記混合液中に送入する、請求項1または2記載の固定方法。
  4. 前記混合液における前記水酸化ナトリウムの濃度が、0.2N未満である、請求項1から3のいずれか一項に記載の固定方法。
  5. 前記混合液における前記水酸化ナトリウムの濃度が、0.05N以上である、請求項1から4のいずれか一項に記載の固定方法。
  6. 前記混合液における前記塩化カルシウムの濃度が、0.05mol/L以上である、請求項1から5のいずれか一項に記載の固定方法。
  7. 前記混合液の温度が、70℃以上である、請求項1から6のいずれか一項に記載の固定方法。
  8. さらに、冷却工程を含み、
    前記冷却工程は、前記接触工程後、前記混合液を冷却する、請求項1から7のいずれか一項に記載の固定方法。
  9. 二酸化炭素を固定化する固定化工程を含み、
    前記固定化工程が、請求項1から8のいずれか一項に記載の二酸化炭素の固定方法により実施される、固定化二酸化炭素の製造方法。
  10. 水酸化ナトリウムを含み、さらに、第2族元素の塩化物、および2価の金属元素の塩化物の少なくとも一方を含む混合液と、二酸化炭素を含む気体とを接触させるための接触手段を含み、
    前記接触手段は、容器および気体送入手段を含み、
    前記容器は、前記混合液を収容可能であり、
    前記気体送入手段は、前記混合液中に前記気体を送入可能である、固定化二酸化炭素の製造装置。
  11. 前記第2族元素の塩化物、および2価の金属元素の塩化物の少なくとも一方が、塩化カルシウムである、請求項10記載の固定化二酸化炭素の製造装置。
  12. さらに、冷却手段を含み、
    前記冷却手段は、前記気体との反応後の前記混合液を冷却する、請求項10または11記載の製造装置。
PCT/JP2019/045390 2019-11-20 2019-11-20 二酸化炭素の固定方法、固定化二酸化炭素の製造方法、および固定化二酸化炭素の製造装置 WO2021100135A1 (ja)

Priority Applications (10)

Application Number Priority Date Filing Date Title
CN201980033280.7A CN113165896A (zh) 2019-11-20 2019-11-20 二氧化碳的固定方法、固定化二氧化碳的制造方法以及固定化二氧化碳的制造装置
PCT/JP2019/045390 WO2021100135A1 (ja) 2019-11-20 2019-11-20 二酸化炭素の固定方法、固定化二酸化炭素の製造方法、および固定化二酸化炭素の製造装置
JP2019568417A JP6788169B1 (ja) 2019-11-20 2019-11-20 二酸化炭素の固定方法、固定化二酸化炭素の製造方法、および固定化二酸化炭素の製造装置
EP19923727.2A EP3851414A4 (en) 2019-11-20 2019-11-20 CARBON DIOXIDE FIXATION PROCESS, FIXED CARBON DIOXIDE PRODUCTION PROCESS AND FIXED CARBON DIOXIDE PRODUCTION DEVICE
US17/051,676 US20220008865A1 (en) 2019-11-20 2019-11-20 Method for fixing carbon dioxide, method for producing fixed carbon dioxide, and fixed carbon dioxide production apparatus
US17/777,899 US20220410065A1 (en) 2019-11-20 2020-07-10 Method for fixing carbon dioxide, method for producing fixed carbon dioxide, and carbon dioxide fixation apparatus
JP2020539111A JP6830564B1 (ja) 2019-11-20 2020-07-10 二酸化炭素の固定方法、固定化二酸化炭素の製造方法、および二酸化炭素の固定装置
EP20890296.5A EP4063011A1 (en) 2019-11-20 2020-07-10 Method for fixing carbon dioxide, method for producing fixed carbon dioxide, and device for fixing carbon dioxide
CN202080080411.XA CN114728257A (zh) 2019-11-20 2020-07-10 二氧化碳的固定方法、固定化二氧化碳的制造方法以及二氧化碳的固定装置
PCT/JP2020/026989 WO2021100239A1 (ja) 2019-11-20 2020-07-10 二酸化炭素の固定方法、固定化二酸化炭素の製造方法、および二酸化炭素の固定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/045390 WO2021100135A1 (ja) 2019-11-20 2019-11-20 二酸化炭素の固定方法、固定化二酸化炭素の製造方法、および固定化二酸化炭素の製造装置

Publications (1)

Publication Number Publication Date
WO2021100135A1 true WO2021100135A1 (ja) 2021-05-27

Family

ID=73452869

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2019/045390 WO2021100135A1 (ja) 2019-11-20 2019-11-20 二酸化炭素の固定方法、固定化二酸化炭素の製造方法、および固定化二酸化炭素の製造装置
PCT/JP2020/026989 WO2021100239A1 (ja) 2019-11-20 2020-07-10 二酸化炭素の固定方法、固定化二酸化炭素の製造方法、および二酸化炭素の固定装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/026989 WO2021100239A1 (ja) 2019-11-20 2020-07-10 二酸化炭素の固定方法、固定化二酸化炭素の製造方法、および二酸化炭素の固定装置

Country Status (5)

Country Link
US (1) US20220008865A1 (ja)
EP (1) EP3851414A4 (ja)
JP (1) JP6788169B1 (ja)
CN (1) CN113165896A (ja)
WO (2) WO2021100135A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06263433A (ja) 1993-03-13 1994-09-20 Toda Kogyo Corp 炭酸ナトリウム水溶液の製造法
JP2004059372A (ja) * 2002-07-29 2004-02-26 Baraito Kogyo Kk 微粒炭酸バリウムの製造方法及びチタン酸バリウムの製造方法
JP2009173487A (ja) * 2008-01-24 2009-08-06 Tosoh Corp 炭酸ストロンチウム粒子及びその製造方法
CN101591033A (zh) * 2009-06-30 2009-12-02 广东风华高新科技股份有限公司 一种碳酸钙粉体的制备方法
JP2010125354A (ja) * 2008-11-25 2010-06-10 Jian-Feng Lin 二酸化炭素の捕捉方法
US20120269714A1 (en) * 2011-04-20 2012-10-25 Korea Institute Of Geoscience And Mineral Resources Method of Producing Calcite Capable of Controlling a Grain Size Thereof
CN107792875A (zh) * 2017-12-13 2018-03-13 曲阜师范大学 一种四氢咔唑酮生产废液处理方法
JP2019527178A (ja) * 2016-07-12 2019-09-26 ザ ユニバーシティー コート オブ ザ ユニバーシティー オブ アバーディーンThe University Court Of The University Of Aberdeen 二酸化炭素を捕捉及び変換する方法及びシステム

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101553430A (zh) * 2006-08-29 2009-10-07 耶德研究和发展有限公司 用于降低流体的co2浓度的方法和设备
CN201279437Y (zh) * 2008-08-14 2009-07-29 中国科学院物理研究所嘉兴工程中心 太阳能环保树
KR101036553B1 (ko) * 2010-11-10 2011-05-24 한국지질자원연구원 이산화탄소 마이크로 버블을 이용한 탄산염의 제조방법 및 그로부터 제조된 탄산염
US20120219484A1 (en) * 2011-02-25 2012-08-30 Clark Tyler A Method and apparatus for sequestering carbon from atmospheric air using hydroxide compound

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06263433A (ja) 1993-03-13 1994-09-20 Toda Kogyo Corp 炭酸ナトリウム水溶液の製造法
JP2004059372A (ja) * 2002-07-29 2004-02-26 Baraito Kogyo Kk 微粒炭酸バリウムの製造方法及びチタン酸バリウムの製造方法
JP2009173487A (ja) * 2008-01-24 2009-08-06 Tosoh Corp 炭酸ストロンチウム粒子及びその製造方法
JP2010125354A (ja) * 2008-11-25 2010-06-10 Jian-Feng Lin 二酸化炭素の捕捉方法
CN101591033A (zh) * 2009-06-30 2009-12-02 广东风华高新科技股份有限公司 一种碳酸钙粉体的制备方法
US20120269714A1 (en) * 2011-04-20 2012-10-25 Korea Institute Of Geoscience And Mineral Resources Method of Producing Calcite Capable of Controlling a Grain Size Thereof
JP2019527178A (ja) * 2016-07-12 2019-09-26 ザ ユニバーシティー コート オブ ザ ユニバーシティー オブ アバーディーンThe University Court Of The University Of Aberdeen 二酸化炭素を捕捉及び変換する方法及びシステム
CN107792875A (zh) * 2017-12-13 2018-03-13 曲阜师范大学 一种四氢咔唑酮生产废液处理方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3851414A4

Also Published As

Publication number Publication date
JPWO2021100135A1 (ja) 2021-11-25
US20220008865A1 (en) 2022-01-13
CN113165896A (zh) 2021-07-23
EP3851414A1 (en) 2021-07-21
WO2021100239A1 (ja) 2021-05-27
JP6788169B1 (ja) 2020-11-25
EP3851414A4 (en) 2021-07-21

Similar Documents

Publication Publication Date Title
WO2021149281A1 (ja) 二酸化炭素の固定方法、固定化二酸化炭素の製造方法、および二酸化炭素の固定装置
JP6783436B1 (ja) 二酸化炭素の固定方法、固定化二酸化炭素の製造方法、および固定化二酸化炭素の製造装置
US8906996B2 (en) Spherical, amorphous calcium carbonate particles
JP6788162B1 (ja) 二酸化炭素の固定装置
JP6788169B1 (ja) 二酸化炭素の固定方法、固定化二酸化炭素の製造方法、および固定化二酸化炭素の製造装置
JP6878666B2 (ja) 二酸化炭素の固定方法、固定化二酸化炭素の製造方法、および固定化二酸化炭素の製造装置
JP6788170B1 (ja) 二酸化炭素の固定方法、固定化二酸化炭素の製造方法、および固定化二酸化炭素の製造装置
CN109075056A (zh) 用于痕量金属分析的半导体晶片的气相腐蚀方法
JP6830564B1 (ja) 二酸化炭素の固定方法、固定化二酸化炭素の製造方法、および二酸化炭素の固定装置
TW201213226A (en) Process for the production of chlorine dioxide
JP2021030229A (ja) 二酸化炭素の固定方法、固定化二酸化炭素の製造方法、および固定化二酸化炭素の製造装置
JP4793407B2 (ja) クロロポリシランを含む廃ガスの処理方法及びその処理装置
JP6864143B1 (ja) 二酸化炭素の固定方法、固定化二酸化炭素の製造方法、および二酸化炭素の固定装置
JP6441755B2 (ja) 球状炭酸二価金属塩の製造方法
JP6386949B2 (ja) 微小炭酸カルシウム中空粒子
KR101141169B1 (ko) 초음파진동자를 이용한 가스하이드레이트 제조장치 및 방법
KR101727052B1 (ko) 알루미늄 이온이 도핑된 마그네슘 산화물 입자 및 이의 연속 제조 방법
KR101765448B1 (ko) 알루미늄 이온 및 아연 이온이 도핑된 주석 산화물 입자 및 이의 연속 제조 방법
JP2021100892A (ja) 中空粒子の製造方法
KR101740409B1 (ko) 주석 이온이 도핑된 아연 산화물 입자 및 이의 연속 제조 방법
JP2009234843A (ja) ドーソナイト微粒子とその製造方法。

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019568417

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019923727

Country of ref document: EP

Effective date: 20201016

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19923727

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE