WO2021093498A1 - 全向运动底盘 - Google Patents

全向运动底盘 Download PDF

Info

Publication number
WO2021093498A1
WO2021093498A1 PCT/CN2020/120645 CN2020120645W WO2021093498A1 WO 2021093498 A1 WO2021093498 A1 WO 2021093498A1 CN 2020120645 W CN2020120645 W CN 2020120645W WO 2021093498 A1 WO2021093498 A1 WO 2021093498A1
Authority
WO
WIPO (PCT)
Prior art keywords
connecting plate
chassis
mounting seat
assembly
omnidirectional
Prior art date
Application number
PCT/CN2020/120645
Other languages
English (en)
French (fr)
Inventor
许辉芳
许安鹏
Original Assignee
广东博智林机器人有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东博智林机器人有限公司 filed Critical 广东博智林机器人有限公司
Publication of WO2021093498A1 publication Critical patent/WO2021093498A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/0091Shock absorbers

Definitions

  • This application belongs to the technical field of construction robots, specifically an omnidirectional motion chassis.
  • the present application proposes an omnidirectional motion chassis, which has stable motion and good cushioning and shock absorption effects, and solves the problems that construction robots are prone to bumps and poor stability on construction roads.
  • the omnidirectional motion chassis is used to support and connect a carrier
  • the omnidirectional motion chassis includes: a chassis bracket, which is suitable for connecting the carrier; a suspension assembly ,
  • the suspension assembly is connected to the chassis support, the suspension assembly includes at least one connecting frame assembly, at least one set of shock-absorbing spring assemblies, and at least one connecting frame assembly is connected to at least one set of the shock-absorbing springs Assembly, one end of the damping spring assembly is a free end, and the free end is adapted to be disposed toward the carrying body to be supported on the carrying body when the carrying body is pressed down; the mecanum wheel, so
  • the mecanum wheel includes at least one mecanum wheel connected to the connecting frame assembly; at least one mecanum wheel is connected to the connecting frame assembly with the shock-absorbing spring assembly.
  • the chassis bracket, the suspension assembly, and the mecanum wheel can be installed under the carrier body to achieve omnidirectional motion, while the structure is firm, the motion is stable, and it is not easy to deviate from the established route.
  • the omnidirectional motion chassis can drive the carrier to drive forward and backward in a straight line, left and right transverse travel, and diagonal travel under the drive of the mecanum wheel.
  • a single mecanum wheel and a connecting frame assembly can constitute an independent module, which is convenient for production and maintenance.
  • the shock absorption spring assembly is installed on the connecting frame assembly, the shock absorption performance can be tested separately to ensure the production quality of the product.
  • the damping spring assembly includes: a guide shaft, one end of the guide shaft is connected to the connecting frame assembly; a spring member, the spring member is sleeved on the guide shaft;
  • the blocking piece is connected to one end of the guide shaft and constitutes the free end, and the blocking piece restricts the spring member on the guiding shaft.
  • the connecting frame assembly includes a first connecting plate and a mounting seat, a lower part of the first connecting plate is connected to the mounting seat, an upper part of the first connecting plate is connected to the chassis bracket, and the mounting seat It is arranged vertically relative to the chassis bracket.
  • the omnidirectional motion chassis further includes a driving mechanism
  • the mounting seat is provided with a shaft mounting hole
  • the driving mechanism is installed in the shaft mounting hole
  • the driving mechanism is connected to the mecanum wheel.
  • the connecting frame assembly further includes a second connecting plate, a third connecting plate, and a fourth connecting plate.
  • the second connecting plate is arranged opposite to the mounting seat, and both ends of the third connecting plate are respectively
  • the second connecting plate is connected to the lower part of the mounting seat
  • the fourth connecting plate is located below the first connecting plate
  • both ends of the fourth connecting plate are respectively connected to the second connecting plate and the mounting seat.
  • the first connecting plate, the third connecting plate, and the fourth connecting plate are vertically spaced apart.
  • the upper part of the second connecting plate is higher than the mounting seat, the second connecting plate is connected to one end of the first connecting plate, and the other end of the first connecting plate is connected to the mounting seat.
  • the upper part of the mounting seat is provided with a first installation groove
  • the upper part of the second connecting plate is provided with a second installation groove
  • the first installation groove and the second installation groove are opposite and arranged in parallel
  • the fourth connecting plate includes a first connecting shaft, a second connecting shaft, and a swing rod, the first connecting shaft is connected to the first mounting groove, and the second connecting shaft is connected to the second mounting groove
  • both ends of the pendulum rod are respectively connected to the first connecting shaft and the second connecting shaft.
  • the omnidirectional motion chassis further includes a reinforcing member, and two side surfaces of the reinforcing member are respectively connected to the mounting seat and the first connecting plate; or two side surfaces of the reinforcing member are respectively connected to the second connecting plate And the first connecting plate.
  • two guide shaft seats are provided on the side of the mounting seat facing the second connecting plate, and the two guide shaft seats are arranged symmetrically with respect to the driving mechanism, and each guide shaft seat A set of the damping spring assembly is installed on the upper part, and the reinforcing member is provided on the side of the second connecting plate facing the mounting seat.
  • the first connecting plate is provided with a limiting through hole, and the free end passes through the limiting through hole to extend toward the carrier.
  • the damping spring assembly includes a spring member, the lower end of the spring member is connected to the guide shaft seat, and the upper end of the spring member is fitted on the first connecting plate.
  • FIG. 1 is a schematic diagram of a three-dimensional structure of an omnidirectional sports chassis according to an embodiment of the application.
  • Fig. 2 is a schematic diagram of the connection structure of the connecting bracket assembly, the driving mechanism and the mecanum wheel according to an embodiment of the application.
  • Fig. 3 is a front view of Fig. 2.
  • Fig. 4 is an exploded schematic diagram of Fig. 2.
  • Fig. 5 is a schematic diagram of the connection structure of the connecting bracket assembly, the driving mechanism, the shock-absorbing spring assembly and the mecanum wheel according to an embodiment of the application.
  • Fig. 6 is a front view of Fig. 5.
  • Fig. 7 is an exploded schematic diagram of Fig. 5.
  • FIG. 8 is a schematic diagram of part of the structure of FIG. 5.
  • Fig. 9 is an exploded schematic diagram of a part of the structure of Fig. 8.
  • the omnidirectional motion chassis 100 is used to support and connect a bearing body, where the bearing body can be the bearing base of the car body, the bottom wall of the car body, or the bottom plate Etc., it is better to use a surface structure or a body structure that can carry and accommodate the upper structure or the internal structure.
  • the omnidirectional sports chassis 100 includes: a chassis support 1, a suspension assembly 2 and at least one mecanum wheel 3.
  • the chassis bracket 1 is suitable for connecting a carrier.
  • the chassis bracket 1 here may be a frame structure composed of multiple brackets, and the upper part of the chassis bracket 1 is suitable for forming an upper connecting surface connected with the carrier, and the lower part of the chassis bracket 1 is suitable for forming a lower connecting surface connected with the carrier.
  • the suspension assembly 2 is connected to the chassis support 1.
  • the suspension assembly 2 includes at least one connecting frame assembly 21 and at least one set of shock-absorbing spring assemblies 22, and at least one connecting frame assembly 21 is connected to at least one set of shock-absorbing springs. Component 22.
  • the suspension assembly 2 may include a connecting frame assembly 21 and one or more sets of shock-absorbing spring assemblies 22.
  • the suspension assembly 2 may also include a plurality of connecting frame assemblies 21, and at least one connecting frame assembly 21 is provided with one or more sets of shock-absorbing spring assemblies 22, and other connecting frame assemblies 21 may not be provided with shock-absorbing spring assemblies 22.
  • the suspension assembly 2 may further include a plurality of connecting frame assemblies 21, and each connecting frame assembly 21 is provided with a shock-absorbing spring assembly 22. Regardless of the type of suspension assembly used, it is advisable to ensure that the load-bearing body remains level as much as possible.
  • one end of the shock-absorbing spring assembly 22 is a free end 223, and the free end 223 is adapted to be set toward the bearing body so that when the bearing body is pressed down Supported on the carrier.
  • the mecanum wheel 3 includes at least one mecanum wheel 3 connected to the connecting frame assembly 21, and the connecting frame assembly 21 to which the at least one mecanum wheel 3 is connected is provided with a shock-absorbing spring assembly 22 .
  • the connecting frame assembly 21 must be provided with a shock-absorbing spring assembly 22; when there are multiple mecanum wheels 3, some of them are the same as the mecanum wheel 3
  • the connecting frame assembly 21 connected to the wheel 3 is provided with a shock-absorbing spring assembly 22 (as shown in Figures 5, 6, and 7), and other connecting frame assemblies 21 connected to the mecanum wheel 3 may not be provided with shock-absorbing spring assemblies.
  • the spring assembly 22 (as shown in Figure 2, Figure 3, Figure 4).
  • the omnidirectional motion chassis 100 of the embodiment of the present application can realize omnidirectional motion by installing the chassis bracket 1, the suspension assembly 2, and the mecanum wheel 3 under the carrier. At the same time, the omnidirectional motion chassis 100 can be moved as a whole
  • the structure is reliable, the movement is stable, and it is not easy to deviate from the established route.
  • the omnidirectional motion chassis 100 can drive the carrier body to drive forward and backward in a straight line, left and right laterally, and diagonally under the drive of the mecanum wheel 3. Drive to form an omnidirectional motion, and can flexibly change direction and run with multiple degrees of freedom, without being restricted by the walking space.
  • the bearing body will move up and down to a certain extent relative to the ground.
  • the free end 223 of the shock-absorbing spring assembly 22 will abut
  • the carrying body reasonably limits the maximum downward movement position of the carrying body, so that the up and down movement of the carrying body is limited to a certain range, reducing the amplitude of the up and down bumps of the carrying body, and improving the motion stability.
  • a single mecanum wheel 3 and a connecting frame assembly 21 can constitute an independent module, which is convenient for production and maintenance; when the shock-absorbing spring assembly 22 is provided on the connecting frame assembly 21, the damping of a single independent module can be tested separately. Vibration performance to ensure the production quality of the product, improve the stability of the product after leaving the factory and the convenience of maintenance.
  • "plurality" means two or more.
  • the omnidirectional sports chassis of the present application has better cushioning and shock absorption performance, can adapt to uneven construction ground, and is flexible and easy to control. .
  • the aforementioned mecanum wheel 3 is used as the driving wheel for driving, and other types of driven wheels can also be used to support the chassis bracket 1 and used in conjunction with the mecanum wheel 3.
  • the shock-absorbing spring assembly 22 includes a guide shaft 221, a spring member 222, and a blocking piece 223a.
  • one end of the guide shaft 221 is connected to the connecting frame assembly 21.
  • the spring member 222 is sleeved on the guide shaft 221, a stop piece 223 a is connected to one end of the guide shaft 221 to form a free end 223, and the stop piece 223 a restricts the spring member 222 on the guide shaft 221.
  • the direction of the telescopic movement of the spring member 222 is consistent with the length direction of the guide shaft 221, and the setting of the baffle 223a not only keeps the spring member 222 from telescoping on the guide shaft 221 without coming out, but also It can also effectively support the downwardly pressed carrier, that is, the baffle 223a not only determines the maximum height range of the spring member 222 moving upwards, but also determines the lowest position of the carrier moving downwards.
  • the baffle 223a is formed as a buffer support member with a certain structural strength and buffer performance, such as a rubber member, a silicone material member, or a high molecular polymer plastic member.
  • a buffer support member with a certain structural strength and buffer performance, such as a rubber member, a silicone material member, or a high molecular polymer plastic member.
  • the spring member 222 is formed as a coil spring member.
  • the first connecting plate 211 is provided with a limiting through hole 211a, and the free end 223 passes through the limiting through hole 211a to extend toward the carrier.
  • the limit through hole 211a can limit the upper end of the guide shaft 221 to the limit through hole 211a, to prevent the guide shaft 221 and the free end 223 of the end from swinging too much to cause support failure, and to ensure that the free end 223 is in contact with the carrier It is the contact of the whole surface, and the buffer support effect is good.
  • the connecting frame assembly 21 includes a first connecting plate 211, a mounting seat 215, the lower part of the first connecting plate 211 is connected to the mounting seat 215, and the first connecting plate 211 Connect the upper part of the chassis bracket 1.
  • the mounting base 215 and the first connecting plate 211 may be directly connected, and as shown in FIG. 5, the mounting base 215 and the first connecting plate 211 may also be indirectly connected through other connecting members.
  • the mounting seat 215 is vertically arranged relative to the chassis bracket 1.
  • the mounting base 215 is in a vertical position.
  • the first connecting plate 211 is horizontally arranged relative to the chassis bracket 1. When the chassis bracket 1 is in a horizontal position, the first connecting plate 211 is in a substantially horizontal position.
  • the connecting bracket assembly 21 further includes a reinforcing member 216, and two sides of the reinforcing member 216 are respectively connected to the mounting seat 215 and the first connecting plate 211.
  • the reinforcing member 216 forms a surface contact with the first connecting plate 211 and the mounting seat 215, respectively, and makes the connection between the two more tight.
  • the semi-open frame structure composed of the mounting seat 215 and the first connecting plate 211 is stable, and the local strength is sufficiently high, so that it is not easy to fall apart or be damaged during the bumping process of the omnidirectional sports chassis 100 or the process of encountering ground obstacles. ,
  • the horizontality of the chassis bracket 1 is ensured, and the horizontal stability of the carrying body is also ensured.
  • the omnidirectional motion chassis 100 further includes a driving mechanism 4.
  • the mounting seat 215 is provided with In the shaft mounting hole 215a, the driving mechanism 4 is installed in the shaft mounting hole 215a, and the driving mechanism 4 is connected to the mecanum wheel 3.
  • the drive mechanism 4 includes a reducer 41 and a servo motor 42, the output shaft of the servo motor 42 is connected to the reducer 41, the reducer 41 is installed in the shaft mounting hole 215a, and the reducer The output terminal of 41 is connected to the input terminal of Mecanum wheel 3.
  • the use of the servo motor 42 can precisely control the start and stop of the mecanum wheel 3, so that the travel control and the steering control of the omnidirectional motion chassis 100 are more precise.
  • the speed reducer 41 is provided with a support shaft that is matched with the shaft mounting hole 215a, and the support shaft is fixedly matched with the shaft mounting hole 215a (such as bolt fitting or flange and bolt combination fixing, etc., which are not specifically limited here).
  • the connecting frame assembly 21 further includes a second connecting plate 212, a third connecting plate 213, and a fourth connecting plate 214, wherein the second connecting plate 212 is connected to
  • the mounting bases 215 are arranged oppositely (the relative arrangement here means that there are two surfaces between the second connecting plate 212 and the mounting base 215 arranged in parallel, for example, when the mounting base 215 is arranged vertically, the second connecting plate 212 is also arranged vertically ,
  • the mounting base 215 and the second connecting plate 212 both have a vertical surface, and the two vertical surfaces are arranged parallel to each other), the two ends of the third connecting plate 213 are respectively connected to the second connecting plate 212 and the lower part of the mounting base 215,
  • the fourth connecting plate 214 is located below the first connecting plate 211, and two ends of the fourth connecting plate 214 are respectively connected to the second connecting plate 212 and the upper part of the mounting seat 215.
  • the mounting base 215, the second connecting plate 212, the third connecting plate 213, and the fourth connecting plate 214 will form a frame-shaped skeleton.
  • the overall structure of the box-shaped skeleton is firmer and forms an installation assembly, which facilitates the installation of the mecanum wheel 3 and the driving mechanism 4, resulting in a compact structure and high stability.
  • the first connecting plate 211, the third connecting plate 213, and the fourth connecting plate 214 are vertically spaced apart.
  • a plurality of connected box-shaped frameworks will be formed, which further increases the overall stability of the connecting frame assembly 21, and also makes an indirect connection between the mounting seat 215 and the first connecting plate 211, and a certain space is formed.
  • a buffer member 5 is added (see below for a description of the buffer member 5).
  • the first connecting plate 211 is connected to the chassis bracket 1, and the fourth connecting plate 214 is spaced apart from the first connecting plate 211 by a certain distance.
  • the force transmitted by the mecanum wheel 3 is first buffered and dispersed on the box-shaped skeleton, and then is transmitted upwards to the first connecting plate 211, the chassis support 1 and the carrier, reducing The direct force and impact of the bearing body are improved.
  • a semi-closed muffler cavity is formed in a plurality of adjacent box-shaped frameworks, so that the omnidirectional motion chassis 100 has low noise during the movement.
  • the upper part of the second connecting plate 212 is higher than the mounting seat 215, the second connecting plate 212 is connected to one end of the first connecting plate 211, and the other end of the first connecting plate 211 is connected to the mounting seat 215.
  • a buffer 5 is provided between 215.
  • a space is formed between the bottom surface of the first connecting member 211 and the top surface of the mounting seat 215, and the buffering member 5 is provided in the space, so that the mounting seat 215, the second connecting plate 212, and the third connecting plate 213.
  • the buffer member 5 can also limit the mounting seat 215 while lowering the chassis bracket 1 to ensure that the carrier body is in a horizontal position and the shock absorption and cushioning performance of the chassis bracket 1 and the Mecanum wheel 3.
  • the upper part of the mounting base 215 is provided with a first installation groove 215b
  • the upper part of the second connecting plate 212 is provided with a second installation groove 212b.
  • the first installation groove 215b and the second installation The grooves 212b are arranged oppositely and in parallel, which indicates that the first installation groove 215b and the second installation groove 212b are located on the same surface, which facilitates the connection of the fourth connecting plate 214 and forms a frame-shaped structure.
  • the fourth connecting plate 214 includes a first connecting shaft 214a, a second connecting shaft 214b, and a swing rod 214c.
  • the first connecting shaft 214a is connected in the first mounting groove 215b
  • the second connecting shaft 214a is connected in the first mounting groove 215b.
  • the connecting shaft 214b is connected in the second mounting groove 212b, and the two ends of the pendulum rod 214c are respectively connected to the first connecting shaft 214a and the second connecting shaft 214b.
  • a stable frame-shaped upper structure will be formed to facilitate installation and adjustment of the assembly position of the fourth connecting plate 214.
  • the first connecting shaft 214a penetrates the two walls of the first mounting groove 215b and is fixed by the plug screw 217 and the plug nut 218, and the second connecting shaft 214b penetrates the second mounting groove 212b.
  • the two walls are fixed by a screw 217 and a screw nut 218.
  • the two sides of the reinforcing member 216 are respectively connected to the second connecting plate 212 and the first connecting plate 211.
  • the first frame-shaped frame formed by the mounting seat 215, the second connecting plate 212, the third connecting plate 213, and the fourth connecting plate 214 will be combined with the buffer member 5, the first connecting plate 211, and the second connecting plate. 212.
  • the second frame-shaped frame formed by the fourth connecting plate 214 has been reinforced to improve local strength and impact resistance, making the connection between the first connecting plate 211 and the second connecting plate 212 more stable and preventing The buffer 5 between the first connecting plate 211 and the mounting seat 215 is excessively compressed.
  • a guide shaft seat 215c is formed on the mounting seat 215, the guide shaft seat 215c is perpendicular to the mounting seat 215, and the lower end of the aforementioned spring member 222 is connected to the guide On the shaft seat 215c, the upper end of the spring member 222 is fitted on the first connecting plate 211.
  • the spring member 222 alternately stores and releases energy when the first connecting plate 211 is slightly vibrated up and down relative to the mounting seat 215, so that the first connecting plate 211 is always maintained at a relatively horizontal position, and the chassis support is strengthened.
  • the spring member 222 can buffer the force transmitted from the lower mecanum wheel 3 and the force transmitted from the upper bearing body respectively, and then cooperate with the buffer member 5 to ensure the excellent cushioning of the omnidirectional motion chassis 100 Shock absorption performance and stability of the carrying body.
  • the spring 222 can increase the ground grip of the mecanum wheel 3, so that the mecanum wheel 3 always fits the ground.
  • the side of the mounting seat 215 facing the second connecting plate 212 is provided with two guide shaft seats 215c, the two guide shaft seats 215c are arranged symmetrically with respect to the driving mechanism 4, and each guide shaft A set of shock-absorbing spring assemblies 22 are installed on the seat 215c.
  • the shock-absorbing and buffering effect of the same connecting frame assembly 21 is more remarkable, and the first connecting plate 211 is not easy to tilt to one side. It is beneficial for the omnidirectional motion chassis 100 to maintain a horizontal and stable operation.
  • a reinforcing member 216 is provided on the side of the second connecting plate 212 facing the mounting seat 215.
  • the reinforcing member 216 is arranged opposite to the guide shaft seat 215c and the damping spring assembly 22, and has a compact structure, which is convenient for processing and layout.
  • a space is formed between the pendulum rod 214c of the fourth connecting plate 214 and the reinforcing member 216 on the same side, and the shock-absorbing spring assembly 22 is arranged in the space and extends in the space.
  • the shock-absorbing spring assembly 22 is arranged in the space and extends in the space.
  • third connecting plates 213, and the two third connecting plates 213 are arranged opposite to each other in parallel between the second connecting plate 212 and the mounting seat 215, and jointly form the frame of the frame-shaped skeleton.
  • the lower part of the second connecting plate 212 is provided with an avoiding through hole 212a communicating with the bottom, one end of the driving mechanism 4 extends from the avoiding through hole 212a, and the other end of the driving mechanism 4 extends from the avoiding through hole 212a into the first
  • the frame-shaped skeleton is connected to the shaft mounting hole 215a.
  • An omnidirectional motion chassis 100 as shown in Fig. 1, includes: a chassis bracket 1, a suspension assembly 2, a mecanum wheel 3, a driving mechanism 4 and a buffer member 5 (refer to Fig. 7 for the structure of the buffer member 5) .
  • the chassis bracket 1 is formed as a plurality of crisscross bracket assembly structures, and the upper part of the chassis bracket 1 is suitable for connecting a carrier body, and the lower part of the chassis bracket 1 is suitable for connecting a suspension assembly 2.
  • each traveling module is independently provided on the chassis bracket 1, and the four traveling modules each include a suspension assembly 2, a mecanum wheel 3 and a driving mechanism 4.
  • the suspension assembly 2 of each travel module includes a connecting frame assembly 21, the servo motor 42 in the driving mechanism 4 is connected to the reducer 41, and the reducer 41 is connected to the connecting frame assembly 21, and the output end of the reducer 41 is connected Mecanum round 3.
  • the suspension assembly 2 of the two travel modules is not provided with a shock-absorbing spring assembly 22, as shown in Figures 2, 3 and 4.
  • the connecting frame assembly 21 used by these two travel modules includes a first connecting plate arranged vertically 211 and the mounting base 215, and the triangular reinforcement 216 connected between the first connecting plate 211 and the mounting base 215.
  • the first connecting plate 211 and the mounting base 215 are fixed by bolts.
  • the two sides of the reinforcement 216 are respectively It is in contact with the first connecting plate 211 and the mounting seat 215 and is fixed by bolts. Therefore, the first connecting plate 211, the mounting seat 215, and the reinforcing member 216 together form a three-dimensional semi-open frame.
  • Two driving modules are installed symmetrically on the front side of the chassis bracket 1.
  • the other two travel modules are installed symmetrically on the rear side of the chassis bracket 1.
  • the suspension assemblies 2 of the two travel modules are provided with a shock-absorbing spring assembly 22 and a buffer member 5, as shown in Figures 5, 6 and 7,
  • the connecting frame assembly 21 used by the two travel modules includes a first connection The plate 211, the second connecting plate 212, the third connecting plate 213, the fourth connecting plate 214, the mounting seat 215 and the reinforcing member 216.
  • the second connecting plate 212 and the mounting base 215 are arranged vertically, the upper part of the second connecting plate 212 is higher than the mounting base 215, the second connecting plate 212 is connected to one end of the first connecting plate 211, and the other of the first connecting plate 211 A buffer member 5 is provided between one end and the mounting seat 215.
  • the upper part of the mounting seat 215 is provided with a first installation groove 215b
  • the upper part of the second connecting plate 212 is provided with a second installation groove 212b.
  • the first installation groove 215b is opposite to the second installation groove 212b.
  • the fourth connecting plate 214 includes a first connecting shaft 214a, a second connecting shaft 214b, and a swing rod 214c.
  • the first connecting shaft 214a is connected in the first mounting groove 215b
  • the second connecting shaft 214b Connected in the second mounting groove 212b, the two ends of the pendulum rod 214c are respectively connected to the first connecting shaft 214a and the second connecting shaft 214b.
  • the first connecting shaft 214a penetrates the two walls of the first installation groove 215b and is fixed by the plug screw 217 and the plug nut 218.
  • the second connecting shaft 214b penetrates the two walls of the second installation groove 212b and is fixed by the plug screw 217 and The plug nut 218 is fixed. As shown in FIG.
  • the two sides of the reinforcing member 216 are respectively connected to the second connecting plate 212 and the first connecting plate 211.
  • the first connecting plate 211, the third connecting plate 213, and the fourth connecting plate 214 are vertically spaced apart. Therefore, a first frame-shaped frame is formed by the mounting seat 215, the second connecting plate 212, the third connecting plate 213, and the fourth connecting plate 214, and the buffer member 5, the first connecting plate 211, the second connecting plate 212,
  • the fourth connecting plate 214 forms an adjacent second frame-shaped frame.
  • the side of the mounting seat 215 facing the second connecting plate 212 is provided with two guide shaft seats 215c, the two guide shaft seats 215c are arranged symmetrically with respect to the driving mechanism 4, and each guide shaft seat 215c is A set of shock-absorbing spring assemblies 22 are installed.
  • the damping spring assembly 22 includes a guide shaft 221, a spring member 222, and a blocking piece 223a. Wherein, as shown in FIG. 5, one end of the guide shaft 221 is connected to the connecting frame assembly 21. As shown in FIG.
  • the spring member 222 is sleeved on the guide shaft 221, a stop piece 223 a is connected to one end of the guide shaft 221 to form a free end 223, and the stop piece 223 a restricts the spring member 222 on the guide shaft 221.
  • the first connecting plate 211 is provided with a limiting through hole 211a, and the free end 223 passes through the limiting through hole 211a to extend toward the carrier.
  • the lower end of the spring member 222 is connected to the guide shaft seat 215 c, and the upper end of the spring member 222 is fitted to the first connecting plate 211.
  • the present application can form a multiple shock-absorbing and shock-absorbing system, so that the chassis bracket 1 with mecanum wheels 3 can not only move flexibly in all directions, but also run stably, and the up and down turbulence of the carrying body can be controlled. Mecanum wheel 3 grip effect is good.
  • connection should be understood in a broad sense, unless otherwise clearly specified and limited.
  • it can be a fixed connection or a detachable connection.
  • Connected or integrally connected it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • connection should be understood in a broad sense, unless otherwise clearly specified and limited.
  • it can be a fixed connection or a detachable connection.
  • Connected or integrally connected it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • the specific meanings of the above-mentioned terms in this application can be understood under specific circumstances.
  • Figure 1 shows four mecanum wheels 3 for illustrative purposes, but after reading the above technical solutions, ordinary technicians can obviously understand the technical solutions of applying this solution to other numbers of mecanum wheels 3 This also falls within the scope of protection of this application.
  • omnidirectional motion chassis 100 Other components of the omnidirectional motion chassis 100 according to the embodiment of the present application, such as the walking principle and operation of the mecanum wheel 3, are known to those of ordinary skill in the art, and will not be described in detail here.
  • the description with reference to the terms “embodiment”, “example”, etc. means that the specific feature, structure, material or characteristic described in conjunction with the embodiment or example is included in at least one embodiment or example of the present application .
  • the schematic representation of the above-mentioned terms does not necessarily refer to the same embodiment or example.
  • the described specific features, structures, materials or characteristics may be combined in any one or more embodiments or examples in a suitable manner.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Motorcycle And Bicycle Frame (AREA)
  • Vehicle Body Suspensions (AREA)

Abstract

一种全向运动底盘(100),包括:底盘支架(1)、悬架组件(2)和至少一个麦克纳姆轮(3)。底盘支架(1)适于连接承载体。悬架组件(2)连接在底盘支架(1)上,悬架组件(2)中的至少一个连接架组件(21)连接至少一组减震弹簧组件(22),减震弹簧组件(22)的一端为自由端(223),自由端(223)朝着承载体设置以在承载体下压时支撑在承载体上。麦克纳姆轮(3)连接在连接架组件(21)上,至少一个麦克纳姆轮(3)所连接的连接架组件(21)上设有减震弹簧组件(22)。

Description

全向运动底盘
相关申请的交叉引用
本申请基于申请号为201911095905.0、申请日为2019年11月11日的中国专利申请“全向运动底盘”提出,并要求上述中国专利申请的优先权,上述中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请属于建筑机器人技术领域,具体是一种全向运动底盘。
背景技术
在建筑工地已开始大量使用多种机器人代替人工劳动。已有机器人设有两轮差速底盘、双舵轮底盘、四舵轮底盘、麦克纳姆轮底盘等作为运动底盘。野外巡逻机器人使用履带、前后桥、四驱动作为运动底盘。为了提高工作效率,建筑机器人的底盘需要实现全向运动。已有的建筑机器人采用双舵轮运动底盘、多舵轮运动底盘和麦克纳姆轮运动底盘,但使用舵轮做为运动组件,控制难度大,难以保证建筑机器人走直线;已有的使用麦克纳姆轮运动底盘的建筑机器人,在建筑工地上行走时整机颠簸、稳定性差。
发明内容
为此,本申请提出一种全向运动底盘,所述全向运动底盘运动稳定、缓冲减震效果好,解决了建筑机器人在施工路面上易于颠簸、稳定性差的问题。
根据本申请实施例的全向运动底盘,所述全向运动底盘用于支撑连接承载体,所述全向运动底盘包括:底盘支架,所述底盘支架适于连接所述承载体;悬架组件,所述悬架组件连接在所述底盘支架上,所述悬架组件包括至少一个连接架组件、至少一组减震弹簧组件,至少一个所述连接架组件连接至少一组所述减震弹簧组件,所述减震弹簧组件的一端为自由端,所述自由端适于朝着所述承载体设置以在所述承载体下压时支撑在所述承载体上;麦克纳姆轮,所述麦克纳姆轮包括至少一个,所述麦克纳姆轮连接在所述连接架组件上;至少一个所述麦克纳姆轮所连接的所述连接架组件上设有所述减震弹簧组件。
根据本申请实施例的全向运动底盘,通过在承载体下方安装底盘支架、悬架组件、麦克纳姆轮可实现全向运动的同时,结构牢靠、运动稳定、不易偏离既定路线。当在连接架组件上同时连接麦克纳姆轮和减震弹簧组件后,全向运动底盘可在麦克纳姆轮的驱 动下带动承载体前后直线行驶、左右横向行驶、斜向行驶,在凹凸不平的地面行驶时,承载体下压的过程中,减震弹簧组件的自由端将抵接承载体,对承载体的最大下移位置进行合理限位,使得承载体的上下跃动限定在一定的范围内,减少承载体的上下颠簸,提升了运动稳定性。单个麦克纳姆轮、一个连接架组件可以构成独立模块,方便生产和维护,当连接架组件上设置减震弹簧组件时可以单独测试减震性能,保证产品的生产品质。
可选地,所述减震弹簧组件包括:导向轴,所述导向轴的一端连接在所述连接架组件上;弹簧件,所述弹簧件套设在所述导向轴上;挡片,所述挡片连接在所述导向轴的一端并构成所述自由端,所述挡片将所述弹簧件限位在所述导向轴上。
可选地,所述连接架组件包括第一连接板、安装座,所述第一连接板的下部连接所述安装座,所述第一连接板的上部连接所述底盘支架,所述安装座相对于所述底盘支架竖向设置。
可选地,全向运动底盘还包括驱动机构,所述安装座上设有轴安装孔,所述驱动机构安装在所述轴安装孔中,所述驱动机构连接所述麦克纳姆轮。
可选地,所述连接架组件还包括第二连接板、第三连接板、第四连接板,所述第二连接板与所述安装座相对设置,所述第三连接板的两端分别连接所述第二连接板和所述安装座的下部,所述第四连接板位于所述第一连接板的下方,所述第四连接板的两端分别连接所述第二连接板和所述安装座的上部,所述第一连接板、所述第三连接板、所述第四连接板在竖向上相间隔设置。
可选地,所述第二连接板的上部高于所述安装座,所述第二连接板连接所述第一连接板的一端,所述第一连接板的另一端与所述安装座之间设有缓冲件。
可选地,所述安装座的上部设有第一安装槽,所述第二连接板的上部设有第二安装槽,所述第一安装槽与所述第二安装槽相对且平行设置;所述第四连接板包括第一连接轴、第二连接轴和摆杆,所述第一连接轴连接在所述第一安装槽中,所述第二连接轴连接在所述第二安装槽中,所述摆杆的两端分别连接在所述第一连接轴和所述第二连接轴上。
可选地,全向运动底盘还包括加强件,所述加强件的两侧面分别连接所述安装座和所述第一连接板;或所述加强件的两侧面分别连接所述第二连接板和所述第一连接板。
可选地,所述安装座的朝向所述第二连接板的一侧设有两个导轴座,两个所述导轴座相对于所述驱动机构对称布置,每个所述导轴座上安装有一组所述减震弹簧组件,所述第二连接板朝向所述安装座的一侧设有所述加强件。
可选地,所述第一连接板上设有限位通孔,所述自由端穿过所述限位通孔以伸向所 述承载体。
可选地,所述减震弹簧组件包括弹簧件,所述弹簧件的下端连接在所述导轴座上,所述弹簧件的上端配合在所述第一连接板上。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1为本申请一个实施例的全向运动底盘的立体结构示意图。
图2为本申请一个实施例的连接支架组件、驱动机构和麦克纳姆轮的连接结构示意图。
图3为图2的主视图。
图4为图2的爆炸示意图。
图5为本申请一个实施例的连接支架组件、驱动机构、减震弹簧组件和麦克纳姆轮的连接结构示意图。
图6为图5的主视图。
图7为图5的爆炸示意图。
图8为图5的部分结构示意图。
图9为图8的部分结构爆炸示意图。
具体实施方式
下面详细描述本申请的实施例,实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“轴向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
下面参考说明书附图描述本申请实施例的全向运动底盘100。
根据本申请实施例的一种全向运动底盘100,全向运动底盘100用于支撑连接承载体,这里的承载体可以为车体的承载底座,也可以为车厢的底壁,还可以为底板等,以可承载、容纳上部结构件或内部结构件的面结构或体结构为宜。
如图1所示,全向运动底盘100包括:底盘支架1、悬架组件2和至少一个麦克纳姆轮3。
其中,底盘支架1适于连接承载体。这里的底盘支架1可以由多条支架构成的框架结构,且底盘支架1的上部适于形成与承载体连接的上连接面,底盘支架1的下部适于形成与承载体连接的下连接面。
继续参照图1,悬架组件2连接在底盘支架1上,悬架组件2包括至少一个连接架组件21、至少一组减震弹簧组件22,至少一个连接架组件21连接至少一组减震弹簧组件22。也就是说,悬架组件2可以包括一个连接架组件21和一组或多组减震弹簧组件22。悬架组件2还可以包括多个连接架组件21,且至少一个连接架组件21上设有一组或多组减震弹簧组件22,其他的连接架组件21上也可以不设置减震弹簧组件22。悬架组件2还可以包括多个连接架组件21,且每个连接架组件21上均设有减震弹簧组件22。不论采用何种形式的悬架组件,需要尽可能保证承载体保持水平为宜。
如图5所示,在连接架组件21上设有减震弹簧组件22时,减震弹簧组件22的一端为自由端223,自由端223适于朝着承载体设置以在承载体下压时支撑在承载体上。
如图1所示,麦克纳姆轮3包括至少一个,麦克纳姆轮3连接在连接架组件21上,至少一个麦克纳姆轮3所连接的连接架组件21上设有减震弹簧组件22。这里需要说明的是,当麦克纳姆轮3为一个时,与其相连的连接架组件21上必定设有减震弹簧组件22;当麦克纳姆轮3为多个时,其中一些与麦克纳姆轮3相连的连接架组件21上设有减震弹簧组件22(如图5、图6、图7中所示),另一些与麦克纳姆轮3相连的连接架组件21上可不设减震弹簧组件22(如图2、图3、图4中所示)。
由上述结构可知,本申请实施例的全向运动底盘100,通过在承载体下方安装底盘支架1、悬架组件2、麦克纳姆轮3可实现全向运动,同时,全向运动底盘100整体结构牢靠、运动稳定、不易偏离既定路线。
当在连接架组件21上同时连接麦克纳姆轮3和减震弹簧组件22后,全向运动底盘100可在麦克纳姆轮3的驱动下带动承载体前后直线行驶、左右横向行驶、斜向行驶,以形成全向运动,并可以灵活换向、多自由度运行,不受行走空间限制。
与此同时,当全向运动底盘100在凹凸不平的地面行驶过程中,承载体会相对于地面发生一定程度的上下移动,当承载体下压时,减震弹簧组件22的自由端223将抵接承载体,对承载体的最大下移位置进行合理限位,使得承载体的上下跃动限定在一定的范围内,减少承载体的上下颠簸幅度,提升运动稳定性。
在具体的应用过程中,单个麦克纳姆轮3、一个连接架组件21可以构成独立模块,方便生产和维护;当连接架组件21上设置减震弹簧组件22时可单独测试单个独立模块 的减震性能,保证产品的生产品质,提升产品出厂后的稳定性和检修的方便性。在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。
可以理解的是,与现有的带有麦克纳姆轮的运动底盘相比,本申请的全向运动底盘具有较好的缓冲减震性能,可适应凹凸不平的建筑地面,行进转向灵活易控。
本申请采用上述麦克纳姆轮3作为主动轮进行驱动,也可以搭配其他种类的从动轮来支撑底盘支架1,与麦克纳姆轮3配合使用。
在本申请的一些实施例中,如图5和图9所示,减震弹簧组件22包括:导向轴221、弹簧件222和挡片223a。其中,如图5所示,导向轴221的一端连接在连接架组件21上。如图9所示,弹簧件222套设在导向轴221上,挡片223a连接在导向轴221的一端并构成自由端223,挡片223a将弹簧件222限位在导向轴221上。可以理解的是,通过设置导向轴221,弹簧件222的伸缩运动方向与导向轴221的长度方向一致,而通过设置挡片223a不仅可以保持弹簧件222在导向轴221上伸缩运动而不脱出,还可以对下压的承载体进行有效支撑,也就是说,挡片223a不仅确定了弹簧件222向上运行的最大高度范围,也确定了承载体向下运动的最低位置。
可选的,挡片223a形成为具有一定结构强度和缓冲性能的缓冲支撑件,如橡胶件、硅胶材料件、高分子聚合物塑料件。以使挡片223a与承载体接触时对承载体有一定的缓冲作用,提高挡片223a的使用寿命。
可选的,弹簧件222形成为螺旋弹簧件。
可选的,如图5和图7所示,第一连接板211上设有限位通孔211a,自由端223穿过限位通孔211a以伸向承载体。此限位通孔211a可将导向轴221的上端限制在限位通孔211a,防止导向轴221和端部的自由端223摆动幅度过大而造成支撑失效,保证了自由端223与承载体接触时为整面的接触,缓冲支撑效果好。
在本申请的一些实施例中,如图2和图5所示,连接架组件21包括第一连接板211、安装座215,第一连接板211的下部连接安装座215,第一连接板211的上部连接底盘支架1。这里需要说明的是,如图2所示,安装座215与第一连接板211可以为直接相连,如图5所示,安装座215与第一连接板211也可以通过其他连接件间接相连。
其中,安装座215相对于底盘支架1竖向设置。当底盘支架1处于水平位置时,安装座215处于竖直位置。
其中,第一连接板211相对于底盘支架1水平设置。当底盘支架1处于水平位置时,第一连接板211处于大致水平位置。
由此,安装座215和第一连接板211相连后,将形成一个立体半开放式骨架。
可选的,如图2、图3和图4所示,连接支架组件21还包括加强件216,加强件216 的两侧面分别连接安装座215和第一连接板211。加强件216与第一连接板211、安装座215分别形成面接触并使两者之间的连接更加紧固。使得由安装座215和第一连接板211组成的半开放式骨架结构稳定、局部强度足够高,不易在全向运动底盘100颠簸行进的过程中或遇到地面障碍物的过程中散架或受损,保证了底盘支架1的水平性,也保证了承载体的水平稳定性。
在本申请的一些实施例中,如图2、图3、图5和图6所示,全向运动底盘100还包括驱动机构4,如图4和图9所示,安装座215上设有轴安装孔215a,驱动机构4安装在轴安装孔215a中,驱动机构4连接麦克纳姆轮3。
可选的,如图4和图7中所示,驱动机构4包括减速机41和伺服电机42,伺服电机42的输出轴连接减速机41,减速机41安装在轴安装孔215a中,减速机41的输出端连接麦克纳姆轮3的输入端。使用伺服电机42可精确地控制麦克纳姆轮3的启停,使全向运动底盘100的行进控制和转向控制更加精确。
可选的,减速机41上设有与轴安装孔215a相配合的支撑轴,支撑轴与轴安装孔215a固定配合(如螺栓配合或法兰与螺栓结合固定等,这里不做具体限制)。
在本申请的一些实施例中,如图5和图6所示,连接架组件21还包括第二连接板212、第三连接板213、第四连接板214,其中,第二连接板212与安装座215相对设置(这里的相对设置,指第二连接板212与安装座215之间有两个面相平行设置,例如,当安装座215竖向设置时,第二连接板212也竖向设置,安装座215和第二连接板212均具有一个竖直面,且两个竖直面平行相向设置),第三连接板213的两端分别连接第二连接板212和安装座215的下部,第四连接板214位于第一连接板211的下方,第四连接板214的两端分别连接第二连接板212和安装座215的上部。至此,安装座215、第二连接板212、第三连接板213、第四连接板214之间将构成方框形骨架。方框形骨架的整体结构更加牢固,并形成一个安装集合体,便于安装麦克纳姆轮3和驱动机构4,使结构紧凑、稳定性高。
其中,如图6或图7所示,第一连接板211、第三连接板213、第四连接板214在竖向上相间隔设置。由此,将形成多个相接的方框形骨架,进一步增加了连接架组件21的整体稳定性,也使得安装座215与第一连接板211之间形成间接连接,并形成一定的空间可加设缓冲件5(缓冲件5的描述见下文),此外,第一连接板211连接在底盘支架1上,而第四连接板214与第一连接板211间隔开一定距离,当全向运动底盘100行驶过程中,由麦克纳姆轮3传递而来的力首先在方框形骨架上得以缓冲和分散,之后才会向上传递到第一连接板211、底盘支架1以及承载体上,减少了承载体的直接受力和冲击。当麦克纳姆轮3产生噪音时,多个相接的方框形骨架内形成了半封闭式消 音腔,使得全向运动底盘100在运动的过程中噪音较低。
在本申请的描述中,限定有“第一”、“第二”、“第三”、“第四”的特征可以明示或者隐含地包括一个或者更多个该特征,用于区别描述特征,无顺序之分,无轻重之分。
有利的,如图6和图7所示,第二连接板212的上部高于安装座215,第二连接板212连接第一连接板211的一端,第一连接板211的另一端与安装座215之间设有缓冲件5。也就是说,第一连接件211的底面与安装座215的顶面之间形成有间隔空间,间隔空间内设有缓冲件5,从而由安装座215、第二连接板212、第三连接板213、第四连接板214形成的第一方框形骨架与由缓冲件5、第一连接板211、第二连接板212、第四连接板214形成的相邻的第二方框形骨架之间形成了一个缓冲量,这里的缓冲量由缓冲件5进行保证。可以理解的是,通过形成该缓冲量,不仅使多个相接的方框形骨架的受力冲击性能更好,能缓冲由麦克纳姆轮3由下向上传递的力,也可以缓冲由承载体下压而产生的变形力,骨架结构不易变形、使用寿命持久。此处的缓冲件5还可以对安装座215进行上限位的同时对底盘支架1进行下限位,保证了承载体处于水平位置和对底盘支架1、麦克纳姆轮3的减震缓冲性能。
可选的,如图8和图9所示,安装座215的上部设有第一安装槽215b,第二连接板212的上部设有第二安装槽212b,第一安装槽215b与第二安装槽212b相对且平行设置,这里表明第一安装槽215b与第二安装槽212b位于同一面上,方便连接第四连接板214并形成框形结构。
其中,可选的,如图7所示,第四连接板214包括第一连接轴214a、第二连接轴214b和摆杆214c,第一连接轴214a连接在第一安装槽215b中,第二连接轴214b连接在第二安装槽212b中,摆杆214c的两端分别连接在第一连接轴214a和第二连接轴214b上。此处,将形成稳定的框形上部结构,方便安装和调节第四连接板214的装配位置。
有利的,如图7所示,第一连接轴214a穿透第一安装槽215b的两壁并通过塞打螺丝217和塞打螺母218固定,第二连接轴214b穿透第二安装槽212b的两壁并通过塞打螺丝217和塞打螺母218固定。通过采用塞打螺丝217和塞打螺母218固定,占用空间少,结构紧凑,便于装拆。
有利的,如图6所示,加强件216的两侧面分别连接第二连接板212和第一连接板211。这里,将使由安装座215、第二连接板212、第三连接板213、第四连接板214形成的第一方框形骨架与由缓冲件5、第一连接板211、第二连接板212、第四连接板214形成的第二方框形骨架之间进行了加强,提升了局部强度和抗冲击性能,使第一连接板211和第二连接板212之间的连接更加稳固,防止第一连接板211和安装座215之间的 缓冲件5被过度压缩。
可选的,如图5、图7和图9所示,安装座215上形成有导轴座215c,导轴座215c与安装座215相垂直,前文所述的弹簧件222的下端连接在导轴座215c上,弹簧件222的上端配合在第一连接板211上。这里,弹簧件222在第一连接板211相对于安装座215发生上下微振动时进行蓄能和释能的交替变化,使第一连接板211始终保持在一个较为水平的位置,增强了底盘支架1的行驶稳定性。同时,弹簧件222可将由下部麦克纳姆轮3传来的作用力和由上部承载体传来的作用力分别进行缓冲,进而与缓冲件5协同作用,保证了全向运动底盘100优秀的缓冲减震性能和承载体的平稳性。此外,弹簧件222可增加麦克纳姆轮3的向地抓力,使麦克纳姆轮3始终贴合地面。
具体的,如图9中所示,安装座215的朝向第二连接板212的一侧设有两个导轴座215c,两个导轴座215c相对于驱动机构4对称布置,每个导轴座215c上安装有一组减震弹簧组件22。这里,通过在驱动机构4的两侧设置对称的导轴座215c和减震弹簧组件22,使同一个连接架组件21的减震缓冲效果更加显著,第一连接板211不易向一侧倾斜,有利于全向运动底盘100保持水平稳定运行。
进一步可选的,如图7所示,第二连接板212朝向安装座215的一侧设有加强件216。加强件216与导轴座215c和减震弹簧组件22相对设置,结构紧凑,便于加工和布设。
可选的,如图7所示,第四连接板214的摆杆214c与同侧的加强件216之间形成间隔空间,减震弹簧组件22设置在间隔空间中,并在间隔空间中延伸。这里,加强件216设有两个,每个加强件216对应一组减震弹簧组件22设置。
对应的,第三连接板213也设有两个,两个第三连接板213在第二连接板212和安装座215之间平行相对布置,共同构成框形骨架的边框。
可选的,第二连接板212的下部设有连通底部的避让通孔212a,驱动机构4的一端从避让通孔212a中伸出,驱动机构4的另一端从避让通孔212a伸入第一框形骨架中并连接在轴安装孔215a内。
下面结合说明书附图描述本申请的具体实施例中全向运动底盘100的具体结构。
实施例
一种全向运动底盘100,如图1所示,包括:底盘支架1、悬架组件2、麦克纳姆轮3、驱动机构4和缓冲件5(缓冲件5的结构参考图7所示)。
其中,如图1所示,底盘支架1形成为多个纵横交错的支架组合体结构,且底盘支架1的上部适于连接承载体,底盘支架1的下部适于连接悬架组件2。
继续参照图1所示,底盘支架1上分别独立地设有四个行驶模块,四个行驶模块各包括悬架组件2、麦克纳姆轮3和驱动机构4。每个行驶模块的悬架组件2均包括一个 连接架组件21,驱动机构4中的伺服电机42与减速机41相连,且减速机41连接在连接架组件21上,减速机41的输出端连接麦克纳姆轮3。
其中两个行驶模块的悬架组件2上不设置减震弹簧组件22,如图2、图3和图4所示,这两个行驶模块采用的连接架组件21包括垂直设置的第一连接板211和安装座215,以及连接在第一连接板211和安装座215之间的三角形的加强件216,第一连接板211和安装座215之间采用螺栓固定,加强件216的两个侧面分别与第一连接板211、安装座215接触并通过螺栓固定。因此,第一连接板211、安装座215和加强件216共同构成了立体半开放式骨架。两个行驶模块对称安装在底盘支架1的前侧。
其中另外两个行驶模块对称安装在底盘支架1的后侧。两个行驶模块的悬架组件2上均设置有减震弹簧组件22和缓冲件5,如图5、图6和图7所示,这两个行驶模块采用的连接架组件21包括第一连接板211、第二连接板212、第三连接板213、第四连接板214、安装座215和加强件216。其中,第二连接板212与安装座215相对竖向设置,第二连接板212的上部高于安装座215,第二连接板212连接第一连接板211的一端,第一连接板211的另一端与安装座215之间设有缓冲件5。如图8和图9所示,安装座215的上部设有第一安装槽215b,第二连接板212的上部设有第二安装槽212b,第一安装槽215b与第二安装槽212b相对且平行设置,如图7所示,第四连接板214包括第一连接轴214a、第二连接轴214b和摆杆214c,第一连接轴214a连接在第一安装槽215b中,第二连接轴214b连接在第二安装槽212b中,摆杆214c的两端分别连接在第一连接轴214a和第二连接轴214b上。第一连接轴214a穿透第一安装槽215b的两壁并通过塞打螺丝217和塞打螺母218固定,第二连接轴214b穿透第二安装槽212b的两壁并通过塞打螺丝217和塞打螺母218固定。如图6所示,加强件216的两侧面分别连接第二连接板212和第一连接板211。第三连接板213设有两个,两个第三连接板213在第二连接板212和安装座215之间平行相对布置,且两个连接板213布置在下方。如图6或图7所示,第一连接板211、第三连接板213、第四连接板214在竖向上相间隔设置。因此,由安装座215、第二连接板212、第三连接板213、第四连接板214形成了第一方框形骨架,由缓冲件5、第一连接板211、第二连接板212、第四连接板214形成了相邻的第二方框形骨架。
如图9中所示,安装座215的朝向第二连接板212的一侧设有两个导轴座215c,两个导轴座215c相对于驱动机构4对称布置,每个导轴座215c上安装有一组减震弹簧组件22。如图5和图9所示,减震弹簧组件22包括:导向轴221、弹簧件222和挡片223a。其中,如图5所示,导向轴221的一端连接在连接架组件21上。如图9所示,弹簧件222套设在导向轴221上,挡片223a连接在导向轴221的一端并构成自由端223,挡片 223a将弹簧件222限位在导向轴221上。如图5和图7所示,第一连接板211上设有限位通孔211a,自由端223穿过限位通孔211a以伸向承载体。弹簧件222的下端连接在导轴座215c上,弹簧件222的上端配合在第一连接板211上。
因此,本申请通过设置上述的结构,可形成多重缓冲减震体系,使得带有麦克纳姆轮3的底盘支架1不仅可全向灵活运动,还可以稳定行驶,承载体上下颠簸幅度可控,麦克纳姆轮3抓地效果佳。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
图1中显示了四个麦克纳姆轮3用于示例说明的目的,但是普通技术人员在阅读了上面的技术方案之后、显然可以理解将该方案应用其他数量的麦克纳姆轮3的技术方案中,这也落入本申请的保护范围之内。
根据本申请实施例的全向运动底盘100的其他构成例如麦克纳姆轮3的行走原理、操控等对于本领域普通技术人员而言都是已知的,这里不再详细描述。
在本说明书的描述中,参考术语“实施例”、“示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管已经示出和描述了本申请的实施例,本领域的普通技术人员可以理解:在不脱离本申请的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本申请的范围由权利要求及其等同物限定。

Claims (11)

  1. 一种全向运动底盘,其特征在于,所述全向运动底盘用于支撑连接承载体,所述全向运动底盘包括:
    底盘支架,所述底盘支架适于连接所述承载体;
    悬架组件,所述悬架组件连接在所述底盘支架上,所述悬架组件包括至少一个连接架组件、至少一组减震弹簧组件,至少一个所述连接架组件连接至少一组所述减震弹簧组件,所述减震弹簧组件的一端为自由端,所述自由端适于朝着所述承载体设置以在所述承载体下压时支撑在所述承载体上;
    麦克纳姆轮,所述麦克纳姆轮包括至少一个,所述麦克纳姆轮连接在所述连接架组件上;至少一个所述麦克纳姆轮所连接的所述连接架组件上设有所述减震弹簧组件。
  2. 根据权利要求1所述的全向运动底盘,其特征在于,所述减震弹簧组件包括:
    导向轴,所述导向轴的一端连接在所述连接架组件上;
    弹簧件,所述弹簧件套设在所述导向轴上;
    挡片,所述挡片连接在所述导向轴的一端并构成所述自由端,所述挡片将所述弹簧件限位在所述导向轴上。
  3. 根据权利要求1或2所述的全向运动底盘,其特征在于,所述连接架组件包括第一连接板、安装座,所述第一连接板的下部连接所述安装座,所述第一连接板的上部连接所述底盘支架,所述安装座相对于所述底盘支架竖向设置。
  4. 根据权利要求3所述的全向运动底盘,其特征在于,还包括驱动机构,所述安装座上设有轴安装孔,所述驱动机构安装在所述轴安装孔中,所述驱动机构连接所述麦克纳姆轮。
  5. 根据权利要求4所述的全向运动底盘,其特征在于,所述连接架组件还包括第二连接板、第三连接板、第四连接板,所述第二连接板与所述安装座相对设置,所述第三连接板的两端分别连接所述第二连接板和所述安装座的下部,所述第四连接板位于所述第一连接板的下方,所述第四连接板的两端分别连接所述第二连接板和所述安装座的上部,所述第一连接板、所述第三连接板、所述第四连接板在竖向上相间隔设置。
  6. 根据权利要求5所述的全向运动底盘,其特征在于,所述第二连接板的上部高于所述安装座,所述第二连接板连接所述第一连接板的一端,所述第一连接板的另一端与所述安装座之间设有缓冲件。
  7. 根据权利要求5或6所述的全向运动底盘,其特征在于,所述安装座的上部设有第一安装槽,所述第二连接板的上部设有第二安装槽,所述第一安装槽与所述第二安装槽相 对且平行设置;
    所述第四连接板包括第一连接轴、第二连接轴和摆杆,所述第一连接轴连接在所述第一安装槽中,所述第二连接轴连接在所述第二安装槽中,所述摆杆的两端分别连接在所述第一连接轴和所述第二连接轴上。
  8. 根据权利要求5-7中任一项所述的全向运动底盘,其特征在于,还包括加强件,所述加强件的两侧面分别连接所述安装座和所述第一连接板;或所述加强件的两侧面分别连接所述第二连接板和所述第一连接板。
  9. 根据权利要求8所述的全向运动底盘,其特征在于,所述安装座的朝向所述第二连接板的一侧设有两个导轴座,两个所述导轴座相对于所述驱动机构对称布置,每个所述导轴座上安装有一组所述减震弹簧组件,所述第二连接板朝向所述安装座的一侧设有所述加强件。
  10. 根据权利要求3-9中任一项所述的全向运动底盘,其特征在于,所述第一连接板上设有限位通孔,所述自由端穿过所述限位通孔以伸向所述承载体。
  11. 根据权利要求9所述的全向运动底盘,其特征在于,所述减震弹簧组件包括弹簧件,所述弹簧件的下端连接在所述导轴座上,所述弹簧件的上端配合在所述第一连接板上。
PCT/CN2020/120645 2019-11-11 2020-10-13 全向运动底盘 WO2021093498A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911095905.0 2019-11-11
CN201911095905.0A CN110815289A (zh) 2019-11-11 2019-11-11 全向运动底盘

Publications (1)

Publication Number Publication Date
WO2021093498A1 true WO2021093498A1 (zh) 2021-05-20

Family

ID=69553953

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/120645 WO2021093498A1 (zh) 2019-11-11 2020-10-13 全向运动底盘

Country Status (2)

Country Link
CN (1) CN110815289A (zh)
WO (1) WO2021093498A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110815289A (zh) * 2019-11-11 2020-02-21 广东博智林机器人有限公司 全向运动底盘
CN111267145A (zh) * 2020-03-18 2020-06-12 广东博智林机器人有限公司 悬架机构、底盘以及机器人
CN111409056A (zh) * 2020-04-29 2020-07-14 天津航天机电设备研究所 一种全向移动机器人
CN111609083B (zh) * 2020-05-20 2021-11-02 杭州程天科技发展有限公司 一种减震装置
CN114212521A (zh) * 2021-12-13 2022-03-22 中铁七局集团第五工程有限公司 适于小空间使用的建筑材料运送装置
CN115320301B (zh) * 2022-07-21 2024-05-24 武汉数字化设计与制造创新中心有限公司 一种自适应曲面的爬壁机器人悬挂机构及爬壁机器人

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130140801A1 (en) * 2011-12-02 2013-06-06 Helical Robotics, Llc Mobile robot
CN104494382A (zh) * 2015-01-13 2015-04-08 辽宁欣海弘业航空科技有限公司 一种麦克纳姆轮智能移动平台的独立悬挂机构
CN204526693U (zh) * 2015-01-13 2015-08-05 上海智远弘业机器人有限公司 麦克纳姆轮智能移动平台的独立悬挂机构
CN107031322A (zh) * 2017-03-20 2017-08-11 东莞松山湖国际机器人研究院有限公司 主动驱动装置
CN206579423U (zh) * 2017-03-20 2017-10-24 东莞松山湖国际机器人研究院有限公司 主动驱动装置
CN208005661U (zh) * 2018-02-24 2018-10-26 珠海格力智能装备有限公司 底盘组件及机器人
CN110469758A (zh) * 2019-08-15 2019-11-19 燕山大学 超大承载全向运载调姿平台及地面自适应全向移动单元
CN110815289A (zh) * 2019-11-11 2020-02-21 广东博智林机器人有限公司 全向运动底盘
CN210591264U (zh) * 2019-08-19 2020-05-22 华晓精密工业(苏州)有限公司 麦克纳姆轮悬挂机构以及具有其的agv小车

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007016662C5 (de) * 2007-04-04 2022-09-15 Kuka Deutschland Gmbh Omnidirektionales Fahrzeug und mobiler Industrieroboter
CN106183681A (zh) * 2016-08-01 2016-12-07 山东建筑大学 带有减震装置的全方位移动平台
CN108015748A (zh) * 2017-12-14 2018-05-11 华南理工大学 一种带缓冲装置的全向运动底盘

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130140801A1 (en) * 2011-12-02 2013-06-06 Helical Robotics, Llc Mobile robot
CN104494382A (zh) * 2015-01-13 2015-04-08 辽宁欣海弘业航空科技有限公司 一种麦克纳姆轮智能移动平台的独立悬挂机构
CN204526693U (zh) * 2015-01-13 2015-08-05 上海智远弘业机器人有限公司 麦克纳姆轮智能移动平台的独立悬挂机构
CN107031322A (zh) * 2017-03-20 2017-08-11 东莞松山湖国际机器人研究院有限公司 主动驱动装置
CN206579423U (zh) * 2017-03-20 2017-10-24 东莞松山湖国际机器人研究院有限公司 主动驱动装置
CN208005661U (zh) * 2018-02-24 2018-10-26 珠海格力智能装备有限公司 底盘组件及机器人
CN110469758A (zh) * 2019-08-15 2019-11-19 燕山大学 超大承载全向运载调姿平台及地面自适应全向移动单元
CN210591264U (zh) * 2019-08-19 2020-05-22 华晓精密工业(苏州)有限公司 麦克纳姆轮悬挂机构以及具有其的agv小车
CN110815289A (zh) * 2019-11-11 2020-02-21 广东博智林机器人有限公司 全向运动底盘

Also Published As

Publication number Publication date
CN110815289A (zh) 2020-02-21

Similar Documents

Publication Publication Date Title
WO2021093498A1 (zh) 全向运动底盘
WO2016115933A1 (zh) 导出式多承点独立悬架
TWI584981B (zh) Railway vehicles with trolleys
CN104085266A (zh) 一种用于四轮移动机器人底盘的悬架
CN111055872B (zh) 一种单轴胶轮转向架
WO2023001206A1 (zh) 底盘和机器人
CN108099537B (zh) 扭力梁减震底盘
JP2018118673A (ja) 車両のバッテリ支持構造
CN216580774U (zh) 一种用于agv小车底盘的车轮避震机构
US20180201086A1 (en) Connecting structure which reduces vibration effect of power system on vehicle body
CN112248735A (zh) 用于重载全向移动平台的麦克纳姆轮多刚度弹簧悬挂
CN112248733A (zh) 底盘悬挂机构、底盘及机器人
CN111016562A (zh) 一种非载人小车独立悬架装置
CN112061164A (zh) 一种转向架
CN218661215U (zh) 一种用于使用麦克纳姆轮的agv的悬挂装置
CN212289852U (zh) 转向架及具有其的跨坐式单轨车辆
CN210852406U (zh) 一种全自动泊车机器人用车轮平衡装置
CN203996502U (zh) 多功能驾驶室悬置系统
CN203651377U (zh) 一种新型轻量化悬架结构
CN216332400U (zh) 一种自主定位导航悬挂结构及悬挂底盘
KR102511090B1 (ko) 안정성이 향상된 전기차 플랫폼
JP2940849B2 (ja) 建設機械のフロアフレーム支持構造
CN215153914U (zh) 一种紧凑型电动驱动轮
CN214728041U (zh) 一种用于汽车的前悬架支架
CN217099589U (zh) 一种机器人车体悬挂系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20888662

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20888662

Country of ref document: EP

Kind code of ref document: A1