WO2021093306A1 - 一种利用co 2为乳液模板制备偕胺肟功能化中空多孔聚合物微球的方法 - Google Patents

一种利用co 2为乳液模板制备偕胺肟功能化中空多孔聚合物微球的方法 Download PDF

Info

Publication number
WO2021093306A1
WO2021093306A1 PCT/CN2020/092492 CN2020092492W WO2021093306A1 WO 2021093306 A1 WO2021093306 A1 WO 2021093306A1 CN 2020092492 W CN2020092492 W CN 2020092492W WO 2021093306 A1 WO2021093306 A1 WO 2021093306A1
Authority
WO
WIPO (PCT)
Prior art keywords
ethanol
reaction
hollow porous
solution
water
Prior art date
Application number
PCT/CN2020/092492
Other languages
English (en)
French (fr)
Inventor
白雪
潘建明
刘金鑫
Original Assignee
江苏大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏大学 filed Critical 江苏大学
Priority to CH01488/20A priority Critical patent/CH717047B1/de
Priority to GB2018087.3A priority patent/GB2590792B/en
Priority to JP2020565747A priority patent/JP7207765B2/ja
Publication of WO2021093306A1 publication Critical patent/WO2021093306A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/285Treatment of water, waste water, or sewage by sorption using synthetic organic sorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/265Synthetic macromolecular compounds modified or post-treated polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/262Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon to carbon unsaturated bonds, e.g. obtained by polycondensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28016Particle form
    • B01J20/28021Hollow particles, e.g. hollow spheres, microspheres or cenospheres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/006Radioactive compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the invention belongs to the technical field of preparation of adsorption and separation functional materials, and specifically relates to a method for preparing an amidoxime functionalized hollow porous adsorbent using CO 2 as an emulsion template.
  • uranium resources Due to its special use in the nuclear industry, naturally occurring uranium resources have become a strategic resource for the nuclear industry.
  • the proven uranium resources mainly exist in the seawater in the form of hexavalent uranium (U(VI)), which is about 4.5 billion tons, which means that seawater is a potential source of uranium resources.
  • U(VI) hexavalent uranium
  • seawater is a potential source of uranium resources.
  • the relative difficulty of extracting large amounts of uranium from seawater severely limits its wide application.
  • the uranium present in seawater is not only harmful to humans and the environment, but also dangerous. Therefore, extracting uranium from seawater not only has economic value, but also has environmental protection and scientific development significance.
  • the hollow porous adsorbent HPS
  • HPS hollow porous adsorbent
  • the Pickering emulsion template method is one of the most commonly used methods for preparing hollow porous adsorbents. Due to its unique spatial configuration, the amidoxime group can coordinate with U(VI) to achieve selective adsorption. Using this principle, the amidoxime group can be modified on the surface of the material to give it the ability to selectively adsorb U(VI).
  • the traditional Pickering emulsion template method usually suffers from the complex internal phase elution process and the use of organic solvents will cause serious environmental problems, restricted size control, and large size.
  • the functional monomer directly participates in the polymerization, which will result in a large number of functional sites located inside the polymer, not only the mass transfer rate is slow, but also some functional sites cannot participate in the reaction and cause unnecessary losses.
  • the purpose of the present invention is to overcome the problems of difficult elution of the internal phase and difficult control of the structure during the preparation of the existing Pickering emulsion template method, and to provide an amidoxime functionalized air-in-water emulsion template method for preparing hollow
  • the porous adsorbent method uses amidoxime groups as selective ligands and melamine resin as a substrate to prepare a hollow porous adsorbent (MF-AO-HPS) grafted with amidoxime functional groups on the surface.
  • TEOS tetraethylorthosilicate
  • step (1) Disperse the silica nanoparticles obtained in step (1) in deionized water to obtain an aqueous silica dispersion; then, under certain temperature conditions, add melamine to the mixed solution of the formaldehyde solution and the glutaraldehyde solution, Adjust the pH of the mixed solution, stir, and continue to react for a while after the solution turns from milky white to clear; after the reaction, add silica aqueous dispersion to react under stirring conditions; cool to a certain temperature after the reaction, and adjust the pH again After the reaction, the polymerization reaction is carried out under water bath conditions.
  • the product is collected by centrifugation, washed with deionized water and ethanol, and dried to obtain a powder sample; the powder sample is added to the hydrofluoric acid solution for etching, after centrifugation The collected product was washed with deionized water and ethanol, and the product was collected by centrifugation again. After drying, a hollow porous melamine resin was obtained, which was denoted as MF-HP;
  • step (3) Disperse the MF-HP and polyethylene polyamine (PEA) prepared in step (2) in ethanol to obtain a mixed solution A, and then ultrasonically treat the mixed solution A under magnetic stirring and place the mixed solution A in a water bath for reaction; After the reaction was centrifuged, the product obtained was washed with ethanol, and the product was collected by centrifugation again to obtain hollow porous melamine resin polymer microspheres grafted with amino groups on the surface, denoted as MF-NH 2 -HP; and then MF-NH 2- HP and glutaraldehyde were added to ethanol to obtain mixed solution B, and then the mixed solution B was placed in a water bath under magnetic stirring to react; after the reaction, the product was washed with deionized water and ethanol, and centrifuged to collect the surface. Dendritic hollow porous melamine resin polymer microspheres, denoted as MF-CHO-HP;
  • step (3) Suspend the MF-CHO-HP and diaminomaleonitrile (DAMN) prepared in step (3) in 40-60 mL ethanol E to obtain mixed solution C, and then ultrasonically treat the mixed solution C under magnetic stirring.
  • the reaction was carried out in a water bath; after the reaction, it was centrifuged to obtain a hollow porous melamine resin grafted with nitrile groups on the surface, denoted as MF-CN-HP; finally, ethanol F was added to deionized water to obtain a mixture of ethanol and water.
  • DAMN diaminomaleonitrile
  • MF-CN-HP and hydroxylamine hydrochloride to the mixed solution, adjust the pH and place it in a water bath to react; after the reaction, the product is collected by centrifugation, washed with deionized water and ethanol, and dried to obtain amidoxime functionalized hollow porous melamine Resin microspheres are denoted as MF-AO-HPS.
  • MF-CHO-HP is replaced with MF-HP to obtain another adsorbent that does not graft PEA, denoted as MF-nPEA-AO-HPS.
  • the dosage ratio of tetraethyl orthosilicate, ethanol, NH 3 ⁇ H 2 O and water in step (1) is 8.0-10g: 170-190mL: 9.0-11mL: 9.0-10g, and the reaction temperature is 30-40°C, the reaction time is 2.0-4.0h.
  • the certain temperature condition in step (2) is 80-90°C.
  • the dosage ratio of the melamine, formaldehyde and glutaraldehyde mixed solution and the silica dispersion in step (2) is 1.0-2.0g:2.0-4.0mL:5.0-15mL; the volume fraction of the formaldehyde solution It is 37%, the volume fraction of the glutaraldehyde solution is 25%; the concentration of the silica aqueous dispersion is 10% by weight.
  • the pH adjustment in step (2) is to use a Na 2 CO 3 solution to adjust the pH to 9.0-10.0; the concentration of the Na 2 CO 3 solution is 2.0M.
  • the stirring condition in step (2) is 1200-1600 rpm; the continued reaction for a period of time is 3.0-5.0 min; the time for adding the aqueous silica dispersion for reaction is 10-30 min.
  • the cooling to a certain temperature in step (2) is 30-50°C; the operation of adjusting the pH again is: dropping a concentration of 2.0M HCl to adjust the pH to 5.0-6.0; after adjusting the pH again
  • the reaction time is 10-30min.
  • the temperature of the water bath in step (2) is 30-50°C; the polymerization reaction time is 3.0-5.0h; the volume concentration of the hydrofluoric acid solution is 2%; the drying temperature is equal It is 60-80°C.
  • the dosage ratio of MF-HP, polyethylene polyamine and ethanol in step (3) is 0.3-0.5mg:3.0-5.0g:40-60mL.
  • the ultrasonic treatment time in step (3) is 5.0-10 min; the temperature of the mixed solution A water bath is 30-40° C., and the reaction time is 8.0-16 h.
  • the dosage ratio of MF-NH 2 -HP, glutaraldehyde and ethanol in step (3) is 0.2-0.4mg:8.0-12mL:30-50mL; the volume fraction of glutaraldehyde is 25% .
  • the temperature of the water bath of the mixed solution B in step (3) is 20-30°C, and the reaction time is 8.0-16h.
  • the dosage ratio of MF-CHO-HP, diaminomaleonitrile and ethanol E in step (4) is 0.2-0.6mg:0.4-1.2mg:40-60mL.
  • the ultrasonic treatment time of the mixed solution C in step (4) is 5.0-10 min
  • the temperature of the water bath is 20-30° C.
  • the reaction time is 2.0-4.0 h.
  • the volume ratio of ethanol F and water in step (4) is 9:1; the dosage ratio of the mixture of MF-CN-HP, hydroxylamine hydrochloride, ethanol F and water is 0.2-0.6mg:2.0-6.0g : 40-60mL.
  • the pH adjustment in step (4) is to use 1.0M NaOH to adjust the pH to 8.0-9.0; the temperature of the water bath is 70-90°C, and the reaction time of the water bath is 4.0-8.0h.
  • the drying temperature in step (4) is 60-80°C.
  • ethanol E and ethanol F are both ethanol, and the letters E and F are only for distinguishing expressions.
  • the present invention selects the selective ligand with the amidoxime group as U(VI), uses the hollow porous melamine resin as the substrate, and uses the air-in-water emulsion template method to prepare the surface amidoxime functionalized hollow porous
  • the adsorbent (MF-AO-HP) realizes the specific adsorption of U(VI).
  • the present invention prepares hollow porous melamine resin polymer microspheres rich in aldehyde groups on the surface by the air-in-water emulsion template method, which shortens the U(VI) diffusion path and improves the mass transfer kinetics. It avoids the instability of binding caused by subsequent modification and simplifies the preparation process; grafting through PEA provides the possibility of modification of high-density action sites; high-density amidoxime sites grafted on the surface of MF-AO-HP The point can interact with a large amount of U(VI) to increase the adsorption capacity of the adsorbent.
  • a and b are SEM images of the MF-HP prepared in Example 1; c and d are TEM images of the MF-HP prepared in Example 1.
  • Figure 2 is the infrared spectra of MF-HP, MF-NH 2 -HP, MF-CHO-HP, MF-CN-HP and MF-AO-HPS prepared in Example 1.
  • Fig. 3 shows the zeta potential spectra of MF-HP, MF-NH 2 -HP, MF-AO-HPS and MF-nPEA-AO-HPS prepared in Example 1.
  • Example 5 is the organic element analysis spectrum of MF-HP, MF-NH 2 -HP, MF-CHO-HP, MF-CN-HP and MF-AO-HPS prepared in Example 1.
  • Fig. 6 is a solid-state NMR carbon spectrum of the MF-AO-HPS prepared in Example 1.
  • Figure 7 is a thermogravimetric analysis spectrum of the MF-AO-HPS prepared in Example 1.
  • Figure 8 shows the effect of pH on the adsorption capacity of MF-AO-HPS, MF-nPEA-AO-HPS and MF-HP prepared in Example 1.
  • Example 9 is the adsorption kinetics of MF-AO-HPS prepared in Example 1 and its model fitting curve.
  • Figure 10 shows the effect of temperature on the adsorption equilibrium of MF-AO-HPS prepared in Example 1 on the adsorption equilibrium of uranyl ions and its model fitting curve.
  • Figure 11 shows the selective adsorption capacity of the MF-AO-HPS prepared in Example 1.
  • Figure 12 shows the adsorption regeneration performance of the MF-AO-HPS prepared in Example 1.
  • the recognition performance evaluation is carried out according to the following method: the static adsorption experiment is used to complete.
  • the model and the Freundlich model were fitted to the adsorption data, and the adsorption capacity was calculated based on the results.
  • several other substances with the same structure as the uranyl ion were selected as competitive adsorbents to participate in the study of MF-AO-HPS
  • silica nanoparticles In a flask, add 8.735g TEOS to 180mL of ethanol, heat the water bath to 35°C, add dropwise a mixed solution of 10mL of NH 3 ⁇ H 2 O and 9.48g of water; The resulting mixed solution was reacted for 3.0 hours under magnetic stirring; after the reaction was completed, the product was collected by centrifugation, and washed with deionized water and ethanol three times; after drying, silica nanoparticles with a diameter of 180-200 nm can be obtained;
  • MF-AO-HPS can be obtained by the following method: first, 0.4 g of MF-HP powder and 4.0 g of PEA are dispersed in 50 mL of ethanol in a flask, and then sonicated for 5.0 min.
  • the resulting mixture was reacted under magnetic stirring at 35°C in a water bath for 12 hours; after that, the product was collected by centrifugation and washed with ethanol three times to obtain hollow porous melamine resin polymer microspheres grafted with amino groups on the surface, denoted as MF- NH 2 -HP; secondly, add 0.4g MF-NH 2 -HP, 10mL 25% GA and 40mL ethanol mixture to the flask, and then react under the condition of 35°C water bath under magnetic stirring for 12h; after the reaction, the product Wash 3 times with water to remove excess GA, then wash 2 times with ethanol, and collect the hollow porous melamine resin polymer microspheres grafted with aldehyde groups on the surface by centrifugation, denoted as MF-CHO-HP;
  • MF-CHO-HP is replaced with MF-HP to obtain another adsorbent that does not graft PEA, denoted as MF-nPEA-AO-HPS.
  • Figure 1 shows the SEM and TEM images of MF-HP; from the SEM image, we can find that the microspheres are monodisperse, their diameter is about 2.0 ⁇ m, and the surface is porous, as can be seen from the TEM image The microspheres are hollow.
  • MF-AO-HPS The grafting and chemical modification of MF-AO-HPS were studied by FT-IR, XPS and OEA, Zeta potential of each compound and CP-MAS 13 C NMR spectroscopy.
  • the FT-IR spectra of MF-HP, MF-NH 2 -HP, MF-CHO-HP, MF-CN-HP and MF-AO-HPS are shown in Figure 2; in the MF-CN-HP spectrum at 2210cm -1 is the characteristic adsorption peak of C ⁇ N, indicating the successful modification of DAMN.
  • the disappearance of the absorption peak in the MF-AO-HPS spectrum is the result of the reaction with NH 2 OH ⁇ HCl.
  • Figure 5 shows the changes in the content of carbon and nitrogen atoms in each product.
  • the content of carbon atoms in MF-HP is less than nitrogen atoms, and the content of carbon atoms in PEA is greater than nitrogen atoms. Therefore, compared with MF- HP, the carbon content in MF-NH 2 -HP is relatively increased while the nitrogen content cut back. For the same reason, MF-CHO-HP and MF-CN-HP contain more carbon than nitrogen, and MF-AO-HPS contains more nitrogen than carbon.
  • TGA thermogravimetric analysis
  • silica nanoparticles In a flask, add 8.0g TEOS to 170mL ethanol, heat the water bath to 30°C, and then add dropwise a mixed solution of 9.0mL NH 3 ⁇ H 2 O and 9.0g H 2 O ; Then the resulting mixed solution was reacted under magnetic stirring for 2.0h; after the reaction was completed, the product was collected by centrifugation, and washed with deionized water and ethanol three times; after drying, silica nanoparticles with a diameter of about 200nm can be obtained.
  • the product was collected by centrifugation and washed three times with deionized water and ethanol.
  • the product was collected by centrifugation again and dried at 60°C to obtain a hollow porous melamine resin, which was denoted as MF-HP ;
  • MF-AO-HPS can be obtained by the following method: firstly, 0.3g of MF-HP powder and 3.0g of PEA are dispersed in 40mL of ethanol in a flask, and then sonicated for 8.0min; then, the resulting mixture is subjected to magnetic force The reaction was carried out at 30°C in a water bath for 8.0 hours under stirring; after that, the product was collected by centrifugation and washed with ethanol three times to obtain hollow porous melamine resin polymer microspheres with amino groups grafted on the surface, denoted as MF-NH 2 -HP; secondly, 0.2g MF-NH 2 -HP, 8.0mL 25% GA and 30mL ethanol mixture were added to the flask, and then reacted for 8.0h under the condition of 30°C water bath under magnetic stirring; after the reaction, the product was washed 3 times with water to remove Excess GA, then washed twice with ethanol, and centrifuged to collect the hollow porous
  • MF-nPEA-AO-HPS Another adsorbent without grafting of PEA is obtained, which is called MF-nPEA-AO-HPS.
  • silica nanoparticles In a flask, 10g TEOS was added to 190mL ethanol, heated in a water bath to 40°C, and 11mL NH 3 ⁇ H 2 O and 10g H 2 O mixed solution was added dropwise. Then the resulting mixed solution was reacted for 4.0h under magnetic stirring. After the reaction was completed, the product was collected by centrifugation, and washed with deionized water and ethanol three times respectively. After drying, silica nanoparticles with a diameter of about 200 nm can be obtained.
  • MF-nPEA-AO-HPS Another adsorbent without grafting of PEA is obtained, which is called MF-nPEA-AO-HPS.
  • MF-AO-HPS still has the highest adsorption capacity for U(VI), which is much larger than VO 3- , Co 2+ , Ni + , Cu 2+ , Zn 2 + , Pb 2+ , Ca 2+ , Mg 2+ , and Na + corresponding adsorption capacity.
  • Adsorption regeneration is an important indicator to evaluate the stability of the adsorbent during recycling. Therefore, we tested the adsorption and regeneration performance of MF-AO-HPS through 7 consecutive adsorption-desorption cycles. As shown in Figure 12, MF-AO-HPS still has a high adsorption capacity after 7 adsorption-desorption cycle experiments, indicating that it has better adsorption and regeneration performance, and can maintain the U( VI) Good adsorption capacity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Phenolic Resins Or Amino Resins (AREA)
  • Silicon Compounds (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

本发明属于吸附分离功能材料技术领域,涉及一种CO 2做为乳液模板制备偕胺肟功能化中空多孔吸附剂的方法;步骤为:首先制备二氧化硅纳米粒子和MF-HP;将MF-HP和PEA加入乙醇中,经超声、水浴反应,水洗、乙醇清洗、干燥,获得MF-NH 2-HP,加入戊二醛水溶液中,经水浴、水洗、醇洗、干燥后获得MF-CHO-HP,再与DAMN加入乙醇溶液中,经水浴、水洗、醇洗、干燥获得MF-CN-HP,与盐酸羟胺加入水和乙醇的混合溶液,反应后,经水洗、醇洗、干燥得到MF-AO-HPS;本发明通过接枝PEA为后续修饰大量作用位点提供了可能性,与中空多孔的结构相结合,不仅提高了吸附U(VI)的吸附容量,更加快了传质动力学。

Description

一种利用CO 2为乳液模板制备偕胺肟功能化中空多孔聚合物微球的方法 技术领域
本发明属于吸附分离功能材料制备技术领域,具体涉及一种CO 2做为乳液模板制备偕胺肟功能化中空多孔吸附剂的方法。
背景技术
由于在核工业中的特殊用途,天然存在的铀资源已成为核工业的战略性资源。已探明的铀资源主要以六价铀形式(U(VI))存在于海水中,约为45亿顿,也就是说海水是铀资源的潜在来源。由于从海水中大量提取铀相对困难,严重限制了它的广泛应用。此外,由于其铀的放射性和化学毒性,海水中存在的铀不仅对人类和环境均有害,而且很危险。因此,从海水中提取铀不仅具有经济价值,更富有环境保护和科学发展意义。已有的从海水中提取U(VI)的方法有很多种,例如电渗析法,萃取法,化学沉淀法,有机-无机离子交换法,和吸附分离法,等等。作为一种成熟的技术,具有吸附效率高、制备成本低、二次污染的产生量低且操作简单等优点的吸附法已被广泛用于从海水中提取铀。但是,从海水中提铀一直面临着巨大的挑战,包括浓度低(约3.3ppb),大量竞争离子的存在以及复杂的化学和生物环境等。为了有效地从海水中提取U(VI),迫切需要开发一种环境友好,高选择性和高效的吸附剂。
用于离子提取的吸附剂有多种类型,其中中空多孔吸附剂(HPS)因其密度低,结构明确,承载能力强而广受关注。Pickering乳液模板法是制备中空多孔吸附剂的最常用方法之一。偕胺肟基团由于其特有的空间构型,可以与U(VI)通过配位而达到选择性吸附的效果。利用这一原理,可以通过在材料表面修饰偕胺肟基团来赋予其选择性吸附U(VI)的能力。
使用传统的Pickering乳液模板法通常会存在内相洗脱过程复杂且有机溶剂的使用会带来严重的环境问题、对尺寸的控制受到限制、尺寸较大等不足。功能单体直接参与聚合,会导致有大量功能位点位于聚合物内部,不仅传质速率慢,而且一部分功能位点因无法参与反应而造成不必要的损失。为了避免以上不足,有必要研究一种新材料,应用于选择性提铀。
发明内容
针对现有技术的不足,本发明的目的在于克服现有Pickering乳液模板法制备 时的内相难以洗脱,结构不易控制等问题,提供一种偕胺肟功能化水包气乳液模板法制备中空多孔吸附剂的方法,以偕胺肟基团为选择性配体,以密胺树脂为基底,制备了一种表面接枝偕胺肟官能团的中空多孔吸附剂(MF-AO-HPS)。
为达到上述技术目的,本发明采用的技术方案如下:
(1)二氧化硅纳米粒子的制备;
将一定量正硅酸四乙酯(TEOS)添加到乙醇中,水浴加热升温后,滴加一定量的NH 3·H 2O和水的混合溶液;然后将形成的混合溶液在磁力搅拌下反应一段时间;反应完成后,离心收集产物,分别用去离子水和乙醇洗涤三遍,干燥后即可获得二氧化硅纳米粒子;
(2)中空多孔密胺树脂的制备;
将步骤(1)得到的二氧化硅纳米粒子分散在去离子水中,得到二氧化硅水分散液;然后,在一定温度条件下,将三聚氰胺添加到甲醛溶液和戊二醛溶液的混合溶液中,调节混合溶液的pH,进行搅拌,在溶液从乳白色变为澄清后继续反应一段时间;反应后,在搅拌的条件下加入二氧化硅水分散液进行反应;反应后冷却至一定温度,再次调节pH后进行反应,反应后在水浴条件下进行聚合反应,最后,通过离心收集产物,并用去离子水和乙醇进行洗涤、干燥得到粉末样品;将粉末样品加入氢氟酸溶液中进行刻蚀,离心后收集产物再用去离子水和乙醇洗涤,再次离心收集产物,经干燥后得到中空多孔密胺树脂,记为MF-HP;
(3)将步骤(2)制备的MF-HP和多乙烯多胺(PEA)分散在乙醇中得到混合溶液A,然后超声处理,将混合溶液A在磁力搅拌下置于水浴条件下进行反应;反应后离心,得到的产物用乙醇进行洗涤,再次进行离心收集产物即得到表面接枝氨基的中空多孔密胺树脂聚合物微球,记为MF-NH 2-HP;再将MF-NH 2-HP、戊二醛加入乙醇中得到混合溶液B,然后将混合溶液B在磁力搅拌下置于水浴条件下进行反应;反应结束后,将产物分别用去离子水和乙醇洗涤,离心收集得到表面接枝醛基的中空多孔密胺树脂聚合物微球,记为MF-CHO-HP;
(4)取步骤(3)制备的MF-CHO-HP和二氨基马来腈(DAMN)悬浮在40-60mL乙醇E中得到混合溶液C,然后超声处理,将混合溶液C在磁力搅拌下置于水浴条件下进行反应;反应后进行离心,得到表面接枝腈基的中空多孔密胺树脂,记为MF-CN-HP;最后,将乙醇F加入去离子水中得到乙醇水的混合液,在混合 液中加入MF-CN-HP和盐酸羟胺,调节pH后置于水浴条件下进行反应;反应后离心收集产物,经去离子水和乙醇洗涤、干燥,得到偕胺肟功能化中空多孔密胺树脂微球,记为MF-AO-HPS。
利用与步骤(3)相同的方法,区别是将MF-CHO-HP替换为MF-HP,获得另一种不接枝PEA的吸附剂,记为MF-nPEA-AO-HPS。
优选的,步骤(1)中所述正硅酸四乙酯、乙醇、NH 3·H 2O和水的用量比为8.0-10g:170-190mL:9.0-11mL:9.0-10g,反应温度为30-40℃,反应时间为2.0-4.0h。
优选的,步骤(2)中所述一定温度条件为80~90℃。
优选的,步骤(2)中所述三聚氰胺,甲醛和戊二醛混合溶液和二氧化硅分散液的用量比为1.0-2.0g:2.0-4.0mL:5.0-15mL;所述甲醛溶液的体积分数为37%,戊二醛溶液的体积分数为25%;所述二氧化硅水分散液的浓度为10wt%。
优选的,步骤(2)中所述pH调节是使用Na 2CO 3溶液将pH调节至9.0-10.0;所述Na 2CO 3溶液的浓度为2.0M。
优选的,步骤(2)中所述搅拌的条件为1200-1600rpm;所述继续反应一段时间为3.0-5.0min;所述加入二氧化硅水分散液进行反应的时间为10-30min。
优选的,步骤(2)中所述冷却至一定温度为30-50℃;所述再次调节pH的操作为:滴加浓度为2.0M HCl将pH调节至5.0-6.0;所述再次调节pH后进行反应的时间为10-30min。
优选的,步骤(2)中所述水浴的温度为30-50℃;所述聚合反应的时间为3.0-5.0h;所述氢氟酸溶液的体积浓度为2%;所述干燥的温度均为60-80℃。
优选的,步骤(3)中所述MF-HP、多乙烯多胺和乙醇的用量比为0.3-0.5mg:3.0-5.0g:40-60mL。
优选的,步骤(3)中所述超声处理的时间为5.0-10min;所述混合溶液A水浴的温度为30-40℃,反应时间为8.0-16h。
优选的,步骤(3)中所述MF-NH 2-HP、戊二醛和乙醇的用量比为0.2-0.4mg:8.0-12mL:30-50mL;所述戊二醛的体积分数为25%。
优选的,步骤(3)中所述混合溶液B水浴的温度为20-30℃,反应时间为8.0-16h。
优选的,步骤(4)中所述MF-CHO-HP、二氨基马来腈和乙醇E的用量比为0.2-0.6mg:0.4-1.2mg:40-60mL。
优选的,步骤(4)中所述混合溶液C超声处理的时间为5.0-10min,水浴的温度为20-30℃,反应时间为2.0-4.0h。
优选的,步骤(4)中乙醇F和水的体积比为9:1;所述MF-CN-HP、盐酸羟胺、乙醇F和水混合液的用量比为0.2-0.6mg:2.0-6.0g:40-60mL。
优选的,步骤(4)中所述调节pH是用1.0M NaOH将pH调节至8.0-9.0;所述水浴的温度为70-90℃,水浴反应时间为4.0-8.0h。
优选的,步骤(4)中所述干燥的温度为60-80℃。
其中乙醇E和乙醇F均为乙醇,字母E和F仅为了表达式的区分。
本发明的有益效果:
(1)本发明选择偕胺肟基团为U(VI)的选择性配体,以中空多孔的密胺树脂为基底,利用水包气乳液模板法制备了表面偕胺肟功能化的中空多孔吸附剂(MF-AO-HP),实现了对U(VI)的特异性吸附。
(2)本发明通过水包气乳液模板法制备了表面富含醛基的中空多孔密胺树脂聚合物微球,使U(VI)扩散路径缩短提高了传质动力学,本身含有的醛基避免了后续修饰造成的结合不稳定等现象,简化了制备流程;通过PEA的接枝为高密度作用位点的修饰提供了可能性;MF-AO-HP表面接枝的高密度偕胺肟位点可以和大量的的U(VI)相互作用,从而提高了吸附剂的吸附容量,通过MF-AO-HPS和MF-nPEA-AO-HPS对pH响应实验结果可以看出,在不同pH条件下MF-AO-HPS均比MF-nPEA-AO-HPS对U(VI)有更高的吸附量。
附图说明
图1中a和b为实施例1中所制备MF-HP的SEM图;c和d为实施例1中所制备MF-HP的TEM图。
图2为实施例1中制备的MF-HP、MF-NH 2-HP、MF-CHO-HP、MF-CN-HP和MF-AO-HPS的红外光谱图。
图3为实施例1制备得到的MF-HP,MF-NH 2-HP,MF-AO-HPS和MF-nPEA-AO-HPS的Zeta电位谱图。
图4中a为实施例1中制备得到的MF-AO-HPS的XPS谱图;b为实施例1 中制备得到的MF-AO-HPS的C 1s高分辨谱图;c为实施例1中制备得到的MF-AO-HPS的N 1s高分辨谱图。
图5为实施例1中制备得到的MF-HP、MF-NH 2-HP、MF-CHO-HP、MF-CN-HP和MF-AO-HPS的有机元素分析谱图。
图6为实施例1中所制备MF-AO-HPS的固体核磁共振碳谱图。
图7为实施例1中所制备MF-AO-HPS的热重分析谱图。
图8为pH值对实施例1中制备得到的MF-AO-HPS、MF-nPEA-AO-HPS和MF-HP吸附容量的影响。
图9为实施例1中制备得到的MF-AO-HPS的吸附动力学及其模型拟合曲线。
图10为温度对实施例1中制备得到的MF-AO-HPS对铀酰根离子的吸附平衡的影响及其模型拟合曲线。
图11为实施例1中制备得到的MF-AO-HPS的选择性吸附容量。
图12为实施例1中制备得到的MF-AO-HPS的吸附再生性能。
具体实施方式
本发明具体实施方式中识别性能评价按照下述方法进行:利用静态吸附实验完成。将2.0mg的MF-AO-HPS,MF-nPEA-AO-HPS和MF-HP在pH=3.0-9.0范围内对U(VI)的吸附容量,吸附后U(VI)的含量用电感耦合等离子体发射光谱仪测定,并根据结果确定最佳吸附pH;为研究MF-AO-HPS的最大吸附容量,我们在U(VI)浓度为10-500mg/L范围内进行了吸附平衡试验,采用Langmuir模型和Freundlich模型对吸附数据进行了拟合,根据结果计算吸附容量;饱和吸附后,选择其他几种与铀酰根离子有相同结构的物质,作为竞争吸附物,参与研究MF-AO-HPS的选择性吸附性能以及其吸附再生性能。
下面结合具体实施实例对本发明做进一步说明。
实施例1:
(1)二氧化硅纳米粒子的制备;
使用
Figure PCTCN2020092492-appb-000001
方法制造二氧化硅纳米颗粒:在烧瓶中,将8.735g TEOS添加到180mL的乙醇中,水浴加热升温到35℃后,滴加10mL NH 3·H 2O和9.48g水的混合溶液;然后将形成的混合溶液在磁力搅拌下反应3.0h;反应完成后,离心收集产物,分别用去离子水和乙醇洗涤三遍;干燥后即可获得直径180~200 nm的二氧化硅纳米粒子;
(2)中空多孔密胺树脂的制备;
在85℃下,将1.26g三聚氰胺添加到3.0mL 37%甲醛和25%戊二醛的混合溶液中(v/v,2:1),然后使用2.0M的Na 2CO 3溶液将pH调节至9.5,1500rpm下搅拌,在溶液从乳白色变为澄清后继续反应3.0min;随后,在搅拌下加入10mL10wt%的二氧化硅水分散液,继续反应20min;然后,将溶液冷却至40℃,滴加2.0M HCl将pH调节至5.5,并继续反应20min,停止搅拌,在40℃水浴条件下聚合4.0h;最后,通过离心收集产物,并用去离子水和乙醇进行洗涤、干燥得到粉末样品;所得的粉末在室温下加入2%HF溶液中进行刻蚀,离心收集产物并用去离子水和乙醇各洗涤三次,再次离心收集产物并在60℃下干燥即得中空多孔密胺树脂,记为MF-HP;
(3)MF-AO-HPS可以通过以下方法获得:首先,将0.4g MF-HP粉末和4.0g PEA分散在烧瓶中的50mL乙醇中,然后超声处理5.0min。随后,将形成的混合物在磁力搅拌下于35℃水浴条件下反应12h;之后,通过离心收集产物并用乙醇洗涤三次,得到表面接枝氨基的中空多孔密胺树脂聚合物微球,记为MF-NH 2-HP;其次,将0.4g MF-NH 2-HP、10mL 25%GA和40mL乙醇混合物添加到烧瓶中,然后在磁力搅拌下于35℃水浴条件下反应12h;反应结束后,将产物用水洗涤3次以除去过量的GA,然后用乙醇洗涤2次,离心收集表面接枝醛基的中空多孔密胺树脂聚合物微球,记为MF-CHO-HP;
(4)将0.4g MF-CHO-HP和0.8g DAMN悬浮在50mL乙醇中,超声处理5.0min,在磁力搅拌下于25℃反应3.0h;然后收集产物,得到表面接枝腈基的中空多孔密胺树脂,记为MF-CN-HP;最后,将0.4g的MF-CN-HP和4.0g NH 2OH·HCl分散在50mL H 2O/乙醇混合溶液(v/v,1:9)溶液中,使用1.0M NaOH将pH调节至8.0,使形成的混合物在80℃水浴下持续反应6.0h;通过离心分离,用去离子水和乙醇冲洗,然后在60℃下干燥即可得到偕胺肟功能化中空多孔密胺树脂微球,记为MF-AO-HPS。
利用与步骤(3)相同的方法,区别是将MF-CHO-HP替换为MF-HP,获得另一种不接枝PEA的吸附剂,记为MF-nPEA-AO-HPS。
如图1所示为MF-HP的SEM和TEM图;从SEM图中,我们可以发现微 球是单分散的,它们的直径在2.0μm左右,表面是多孔的,从TEM图中可以看出微球是中空的。
通过FT-IR、XPS和OEA,每种化合物的Zeta电位和CP-MAS  13C NMR光谱研究了MF-AO-HPS的接枝和化学修饰。MF-HP,MF-NH 2-HP,MF-CHO-HP,MF-CN-HP和MF-AO-HPS的FT-IR光谱如图2所示;在MF-CN-HP谱图中在2210cm -1处是C≡N的特征吸附峰,表明了DAMN修饰成功,在MF-AO-HPS谱图中吸收峰的消失是与NH 2OH·HCl反应的结果。
从图3中我们可以发现,每次反应后Zeta电位都会发生变化,这是因为在修饰不同的物质后,材料表面上的官能团不同,因此显示的Zeta电位也不同。这可以反应每一步修饰的成功以及每种材料的成功制备。
在MF-AO-HPS的XPS谱图上,如图4中a图所示,它在284.83、399.03和535.88eV处显示三个强峰,分别对应于C 1s,N 1s和O 1s核心能级;图b显示了C 1s高分辨谱图,从中我们可以发现C 1s高分辨谱图可以被拆分成C-C,C-H和C=N相对应的三个峰;图c为MF-AO-HPS的N 1s高分辨谱图,可拆分为三个特征吸收峰,这三个峰分别归因于N-O,C=N和N-H。
图5显示了每种产物中碳和氮原子含量的变化。经测试,MF-HP中的碳原子含量小于氮原子,PEA中的碳原子含量大于氮原子,因此与MF-HP相比,MF-NH 2-HP中的碳含量相对增加,而氮含量相对减少。同样的原因,MF-CHO-HP和MF-CN-HP所含碳比氮更多,MF-AO-HPS所含氮比碳更多。
图6显示了MF-AO-HPS的CP-MAS  13C NMR光谱图,它包含48.12ppm,105.80ppm,162.72ppm和219.75ppm的四个主要信号,这些信号分别对应-CH 2-NH-,-C=C-,C=NOH和C=O的碳吸收峰;以上所有结果均可证明MF-AO-HPS的成功制备;随后,通过热重分析(TGA)确定MF-AO-HPS的稳定性。
图7所示,在MF-AO-HPS曲线中观察到200℃-360℃之间的重量减轻了1.75%,这是由于表面接枝偕胺肟基团的损失,而360℃-600℃度之间的重量减轻了1.60%,是由于接枝的PEA的损失造成。MF-AO-HPS的少量失重表明它具有良好的稳定性。
实施例2:
(1)二氧化硅纳米粒子的制备;
使用
Figure PCTCN2020092492-appb-000002
方法制造二氧化硅纳米颗粒:在烧瓶中,将8.0g TEOS添加到170mL乙醇中,水浴加热升温至30℃后,滴加9.0mL的NH 3·H 2O和9.0g H 2O的混合溶液;然后将形成的混合溶液在磁力搅拌下反应2.0h;反应完成后,离心收集产物,分别用去离子水和乙醇洗涤三遍;干燥后即可获得直径约200nm的二氧化硅纳米粒子。
(2)中空多孔密胺树脂的制备;
在80℃条件下将1.0g三聚氰胺添加到2.0mL 37%甲醛和25%戊二醛的混合溶液中(v/v,2:1),然后使用2.0M Na 2CO 3溶液将pH调节至9.0,1200rpm下搅拌,在溶液从乳白色变为澄清后继续反应4.0min;随后,在搅拌下加入5.0mL 10wt%的二氧化硅水分散液,继续反应10min;然后,将溶液冷却至30℃,滴加2M HCl将pH调节至5.0,并继续反应10min,停止搅拌,在30℃水浴条件下聚合3.0h;最后,通过离心收集产物,并用去离子水和乙醇进行洗涤、干燥得到粉末样品;所得的粉末在室温下加入2%HF溶液中进行刻蚀,离心收集产物并用去离子水和乙醇各洗涤三次,再次离心收集产物并在60℃下干燥即得中空多孔密胺树脂,记为MF-HP;
(3)MF-AO-HPS可以通过以下方法获得:首先,将0.3g MF-HP粉末和3.0g PEA分散在烧瓶中的40mL乙醇中,然后超声处理8.0min;随后,将形成的混合物在磁力搅拌下于30℃水浴条件下反应8.0h;之后,通过离心收集产物并用乙醇洗涤三次,得到表面接枝氨基的中空多孔密胺树脂聚合物微球,记为MF-NH 2-HP;其次,0.2g MF-NH 2-HP、8.0mL 25%GA和30mL乙醇混合物添加到烧瓶中,然后在磁力搅拌下于30℃水浴条件下反应8.0h;反应结束后,将产物用水洗涤3次以除去过量的GA,然后用乙醇洗涤2次,离心收集表面接枝醛基的中空多孔密胺树脂聚合物微球,记为MF-CHO-HP;
(4)将0.2g MF-CHO-HP和0.4g DAMN悬浮在40mL乙醇中,超声处理8.0min,在磁力搅拌下于20℃反应2.0h。然后收集产物,得到表面接枝腈基的中空多孔密胺树脂,记为MF-CN-HP;最后,将0.2g MF-CN-HP和2.0g NH 2OH·HCl分散在40mL H 2O/乙醇混合溶液(v/v,1:9)溶液中,使用1.0M NaOH将pH调节至8.5,使形成的混合物在70℃水浴下持续反应4.0h;通过离心分 离,用蒸馏水和乙醇冲洗,然后在70℃下干燥即可得到MF-AO-HPS。
通过MF-HP与DAMN和NH 2OH·HCl的直接反应获得另一种不接枝PEA的吸附剂,称为MF-nPEA-AO-HPS。
实施例3:
(1)二氧化硅纳米粒子的制备;
使用
Figure PCTCN2020092492-appb-000003
方法制造二氧化硅纳米颗粒:在烧瓶中,将10g TEOS添加到190mL乙醇中,水浴加热升温至40℃后,滴加11mL NH 3·H 2O和10g H 2O的混合溶液。然后将形成的混合溶液在磁力搅拌下反应4.0h。反应完成后,离心收集产物,分别用去离子水和乙醇洗涤三遍。干燥后即可获得直径约200nm的二氧化硅纳米粒子。
(2)中空多孔密胺树脂的制备;
在90℃,将2.0g三聚氰胺添加到4.0mL 37%甲醛和25%戊二醛的混合溶液中(v/v,2:1),然后使用2.0M的Na 2CO 3溶液将pH调节至10.0,在1600rpm条件下搅拌,在溶液从乳白色变为澄清后继续反应5.0min;随后,在搅拌下加入15mL的10wt%的二氧化硅水分散液,继续反应30min;然后,冷却至50℃,滴加2.0M HCl将pH调节至6.0,并继续反应30min,停止搅拌,在50℃水浴条件下聚合5.0h;最后,通过离心收集产物,并用去离子水和乙醇进行洗涤、干燥得到粉末样品;所得的粉末在室温下加入2%HF溶液中进行刻蚀,离心收集产物并用去离子水和乙醇各洗涤三次,再次离心收集产物并在60℃下干燥即得中空多孔密胺树脂,记为MF-HP;
(3)首先,将0.5g MF-HP粉末和5.0g PEA分散在烧瓶中的60mL乙醇中,然后超声处理10min。随后,将形成的混合物在磁力搅拌下于40℃水浴条件下反应16h;之后,通过离心收集产物并用乙醇洗涤三次,得到表面接枝氨基的中空多孔密胺树脂聚合物微球,记为MF-NH 2-HP;其次,将0.4g MF-NH 2-HP、12mL 25%GA和50mL乙醇混合物添加到100mL单颈烧瓶中,然后在磁力搅拌下于40℃水浴条件下反应16h;反应结束后,将产物用水洗涤三次以除去过量的GA,然后用乙醇洗涤两次,离心收集表面接枝醛基的中空多孔密胺树脂聚合物微球,记为MF-CHO-HP;
(4)将0.6g MF-CHO-HP和1.2g DAMN悬浮在60mL乙醇中,超声处理 10min,在磁力搅拌下于30℃反应4.0h。然后收集产物,得到表面接枝腈基的中空多孔密胺树脂,记为MF-CN-HP;最后,将0.6g的MF-CN-HP和6.0g NH 2OH·HCl分散在60mL H 2O/乙醇(v/v,1:9)溶液中,使用1.0M NaOH将pH调节至9.0,使形成的混合物在90℃水浴下持续反应8.0h;通过离心分离,用去离子水和乙醇洗涤,然后在80℃下干燥即可得到MF-AO-HPS。
通过MF-HP与DAMN和NH 2OH·HCl的直接反应获得另一种不接枝PEA的吸附剂,称为MF-nPEA-AO-HPS。
性能测试:
环境pH值对金属离子吸附行为有巨大影响;因此研究了MF-AO-HPS,MF-nPEA-AO-HPS和MF-HP在pH 3.0-9.0范围内对U(VI)的吸附容量的影响。如图8所示,在pH值不高于7.0时MF-AO-HPS,MF-nPEA-AO-HPS和MF-HP的吸附容量均随着pH的增大呈现逐渐上升趋势,在pH值高于7.0后其吸附容量随着pH值的升高而降低,且MF-AO-HPS的吸附容量在任何pH条件下均高于MF-nPEA-AO-HPS和MF-HP的吸附容量。
MF-AO-HPS对U(VI)的吸附动力学如图9所示。由图可见,MF-AO-HPS的吸附容量在最初的30min内快速增加,在60min内达到最大吸附容量。
为研究MF-AO-HPS的最大吸附容量,我们在U(VI)浓度为10-500mg/L范围内进行了吸附平衡试验,采用Langmuir模型和Freundlich模型对吸附数据进行了拟合,并探索了温度对吸附容量的影响。如图10所示,在测试温度范围内,吸附容量随着温度的升高而增加。
干扰离子与偕胺肟基团的结合可能对MF-AO-HPS吸附U(VI)的吸附容量有巨大影响,因此我们选取VO 3-,Co 2+,Ni +,Cu 2+,Zn 2+,Pb 2+,Ca 2+,Mg 2+,和Na +作为U(VI)的竞争离子,研究了吸附剂在VO 3-,Co 2+,Ni +,Cu 2+,Zn 2+,Pb 2+,Ca 2+,Mg 2+,Na +和U(VI)的混合溶液中的吸附行为。如图11所示,在众多的干扰离子存在下,MF-AO-HPS对U(VI)仍具有最高的吸附容量,远大于VO 3-,Co 2+,Ni +,Cu 2+,Zn 2+,Pb 2+,Ca 2+,Mg 2+,和Na +相应的吸附容量。
吸附再生性是评估吸附剂循环使用过程中稳定性的重要指标,因此,我们通过7次连续的吸附-解吸附循环实验测试了MF-AO-HPS的吸附再生性能。如图12所示,MF-AO-HPS在7次吸附-解吸附循环实验后,仍具有较高的吸附容量, 表明其具有较好的吸附再生性能,且循环使用过程中能保持对U(VI)良好的吸附能力。
说明:以上实施例仅用以说明本发明而并非限制本发明所描述的技术方案;因此,尽管本说明书参照上述的各个实施例对本发明已进行了详细的说明,但是本领域的普通技术人员应当理解,仍然可以对本发明进行修改或等同替换;而一切不脱离本发明的精神和范围的技术方案及其改进,其均应涵盖在本发明的权利要求范围内。

Claims (10)

  1. 一种利用CO 2为乳液模板制备偕胺肟功能化中空多孔聚合物微球的方法,其特征在于,包括以下步骤:
    (1)二氧化硅纳米粒子的制备;
    (2)将步骤(1)得到的二氧化硅纳米粒子分散在去离子水中,得到二氧化硅水分散液;然后,在一定温度条件下,将三聚氰胺添加到甲醛溶液和戊二醛溶液的混合溶液中,调节混合溶液的pH,进行搅拌,在溶液从乳白色变为澄清后继续反应一段时间;反应后,在搅拌的条件下加入二氧化硅水分散液进行反应;反应后冷却至一定温度,再次调节pH后进行反应,反应后在水浴条件下进行聚合反应,最后,通过离心收集产物,并用去离子水和乙醇进行洗涤、干燥得到粉末样品;将粉末样品加入氢氟酸溶液中进行刻蚀,离心后收集产物再用去离子水和乙醇洗涤,再次离心收集产物,经干燥后得到中空多孔密胺树脂,记为MF-HP;
    (3)将步骤(2)制备的MF-HP和多乙烯多胺分散在乙醇中,得到混合溶液A,然后超声处理,将混合溶液A在磁力搅拌下置于水浴条件下进行反应;反应后离心,得到的产物用乙醇进行洗涤,再次进行离心收集产物即得到表面接枝氨基的中空多孔密胺树脂聚合物微球,记为MF-NH 2-HP;再将MF-NH 2-HP、戊二醛加入乙醇中得到混合溶液B,然后将混合溶液B在磁力搅拌下置于水浴条件下进行反应;反应结束后,将产物分别用去离子水和乙醇洗涤,经离心后得到表面接枝醛基的中空多孔密胺树脂聚合物微球,记为MF-CHO-HP;
    (4)取步骤(3)制备的MF-CHO-HP和二氨基马来腈悬浮在乙醇E中,得到混合溶液C,然后超声处理,将混合溶液C在磁力搅拌下置于水浴条件下进行反应;反应后进行离心,得到表面接枝腈基的中空多孔密胺树脂,记为MF-CN-HP;最后,将乙醇F加入去离子水中得到乙醇和水的混合液,再加入MF-CN-HP和盐酸羟胺,调节pH后置于水浴条件下进行反应;反应后离心收集产物,经去离子水和乙醇洗涤、干燥,得到偕胺肟功能化中空多孔密胺树脂微球,记为MF-AO-HPS。
  2. 根据权利要求1所述的一种利用CO 2为乳液模板制备偕胺肟功能化中空多孔聚合物微球的方法,其特征在于,步骤(2)中所述一定温度条件为80~90℃;所述三聚氰胺,甲醛和戊二醛混合溶液和二氧化硅分散液的用量比为1.0-2.0g:2.0-4.0mL:5.0-15mL;所述甲醛溶液的体积分数为37%,戊二醛溶液的体积分数为25%;所述二氧化硅水分散液的浓度为10wt%。
  3. 根据权利要求1所述的一种利用CO 2为乳液模板制备偕胺肟功能化中空多孔聚合物微球的方法,其特征在于,步骤(2)中所述pH调节是使用Na 2CO 3溶液将pH调节至9.0-10.0;所述Na 2CO 3溶液的浓度为2.0M;所述搅拌的条件为1200-1600rpm;所述继续反应一段时间为3.0-5.0min;所述加入二氧化硅水分散液进行反应的时间为10-30min。
  4. 根据权利要求1所述的一种利用CO 2为乳液模板制备偕胺肟功能化中空多孔聚合物微球的方法,其特征在于,步骤(2)中所述冷却至一定温度为30-50℃;所述再次调节pH的操作为:滴加浓度为2.0M HCl将pH调节至5.0-6.0;所述再次调节pH后进行反应的时间为10-30min;所述水浴的温度为30-50℃;所述聚合反应的时间为3.0-5.0h;所述氢氟酸溶液的体积浓度为2%;所述干燥的温度均为60-80℃。
  5. 根据权利要求1所述的一种利用CO 2为乳液模板制备偕胺肟功能化中空多孔聚合物微球的方法,其特征在于,步骤(3)中所述MF-HP、多乙烯多胺和乙醇的用量比为0.3-0.5mg:3.0-5.0g:40-60mL。
  6. 根据权利要求1所述的一种利用CO 2为乳液模板制备偕胺肟功能化中空多孔聚合物微球的方法,其特征在于,步骤(3)中所述超声处理的时间为5.0-10min;所述混合溶液A水浴的温度为30-40℃,反应时间为8.0-16h。
  7. 根据权利要求1所述的一种利用CO 2为乳液模板制备偕胺肟功能化中空多孔聚合物微球的方法,其特征在于,步骤(3)中所述MF-NH 2-HP、戊二醛和乙醇的用量比为0.2-0.4mg:8.0-12mL:30-50mL;所述戊二醛的体积分数为25%;所述混合溶液B水浴的温度为20-30℃,反应时间为8.0-16h。
  8. 根据权利要求1所述的一种利用CO 2为乳液模板制备偕胺肟功能化中空多孔聚合物微球的方法,其特征在于,步骤(4)中所述MF-CHO-HP、二氨基马来腈和乙醇E的用量比为0.2-0.6mg:0.4-1.2mg:40-60mL;所述混合溶液C超声处理的时间为5.0-10min,水浴的温度为20-30℃,反应时间为2.0-4.0h。
  9. 根据权利要求1所述的一种利用CO 2为乳液模板制备偕胺肟功能化中空多孔聚合物微球的方法,其特征在于,步骤(4)中乙醇F和水的体积比为9:1;所述MF-CN-HP、盐酸羟胺、乙醇和水混合液的用量比为0.2-0.6mg:2.0-6.0g:40-60mL;所述调节pH是用1.0M的NaOH将pH调节至8.0-9.0;所述水浴的温度为70-90℃,水浴反应时间为4.0-8.0h;所述干燥的温度为60-80℃。
  10. 根据权利要求1-9任意一项所述方法制备的偕胺肟功能化中空多孔吸附剂用于溶液中六价铀的选择性吸附与分离。
PCT/CN2020/092492 2019-11-11 2020-05-27 一种利用co 2为乳液模板制备偕胺肟功能化中空多孔聚合物微球的方法 WO2021093306A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CH01488/20A CH717047B1 (de) 2019-11-11 2020-05-27 Verfahren zur Herstellung von Amidoxim-Funktionalisierten hohlen porösen Polymermikrokugeln unter Verwendung von CO2 als Emulsionsmuster.
GB2018087.3A GB2590792B (en) 2019-11-11 2020-05-27 Method for preparing amidoxime functionalized hollow porous polymer microspheres using CO2 as emulsion template
JP2020565747A JP7207765B2 (ja) 2019-11-11 2020-05-27 エマルションテンプレートとしてアミドキシム機能化中空多孔質重合体マイクロビーズを調製する方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911092454.5A CN110961085B (zh) 2019-11-11 2019-11-11 一种利用co2为乳液模板制备偕胺肟功能化中空多孔聚合物微球的方法
CN201911092454.5 2019-11-11

Publications (1)

Publication Number Publication Date
WO2021093306A1 true WO2021093306A1 (zh) 2021-05-20

Family

ID=70030303

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/092492 WO2021093306A1 (zh) 2019-11-11 2020-05-27 一种利用co 2为乳液模板制备偕胺肟功能化中空多孔聚合物微球的方法

Country Status (5)

Country Link
JP (1) JP7207765B2 (zh)
CN (1) CN110961085B (zh)
CH (1) CH717047B1 (zh)
GB (1) GB2590792B (zh)
WO (1) WO2021093306A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114984919A (zh) * 2022-06-10 2022-09-02 浙江理工大学 基于双偕胺肟基纤维素吸附材料及其制备方法
CN115554988A (zh) * 2022-10-27 2023-01-03 昆明理工大学 一种有机链修饰锆基mof吸附剂及其制备方法与应用

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110961085B (zh) * 2019-11-11 2021-05-25 江苏大学 一种利用co2为乳液模板制备偕胺肟功能化中空多孔聚合物微球的方法
CN112642411B (zh) * 2020-12-17 2023-05-05 江苏大学 一种多孔/富离子通道微球吸附剂的制备方法及其应用
CN112892497B (zh) * 2021-01-19 2023-03-21 江苏大学 一种覆盆子型中空多孔聚合物微球的制备方法及其应用
CN113060750B (zh) * 2021-03-17 2022-04-08 电子科技大学 一种用于海水提铀的介孔离子化合物的制备方法
CN114160103B (zh) * 2021-11-24 2023-09-22 江苏大学 一种三维大孔偕胺肟化离子凝胶吸附剂的制备方法
CN114653348B (zh) * 2022-01-19 2023-10-10 江苏大学 一种基于液气液滴反应器制备功能性多孔水凝胶的方法
CN114433036B (zh) * 2022-01-28 2024-04-16 深圳万知达技术转移中心有限公司 一种基于溶剂混合诱导的气泡模板法制备偕胺肟功能化中空聚合物球的方法及其提铀的应用
CN114570339B (zh) * 2022-01-28 2023-12-05 上海纳鸿微球科技有限公司 一步法制备水杨醛肟/聚多巴胺中空纳米吸附剂的方法及其除铀应用
CN114643046B (zh) * 2022-02-14 2024-04-09 珠海维迈克建筑安装工程有限公司 一种偕胺肟微凝胶吸附剂的制备方法及其快速提铀应用
CN114984924B (zh) * 2022-04-21 2022-11-01 哈尔滨工程大学 纳米孔结构的海水提铀吸附材料及孔径调控制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006026588A (ja) * 2004-07-20 2006-02-02 Japan Atom Energy Res Inst 温泉水に溶存する有用・有害金属を回収および除去する方法
EP2617760A1 (en) * 2010-09-14 2013-07-24 Osaka University Amidoxime-modified polyacrylonitrile porous medium
CN105817213A (zh) * 2016-05-23 2016-08-03 大连工业大学 一种基于中空介孔二氧化硅的吸附剂及其制备方法和回收黄金的应用
CN108160058A (zh) * 2018-01-15 2018-06-15 大连工业大学 一种可磁化中空介/微孔复合纳米吸附剂及其制备方法和吸附重金属离子的应用
CN110961085A (zh) * 2019-11-11 2020-04-07 江苏大学 一种利用co2为乳液模板制备偕胺肟功能化中空多孔聚合物微球的方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59142845A (ja) * 1983-02-03 1984-08-16 Toray Ind Inc ウラン吸着性複合繊維状物およびその製造方法
JPS6154237A (ja) * 1984-08-24 1986-03-18 Toray Ind Inc ウラン吸着性複合繊維状物の製造方法
JP2007284844A (ja) 2006-04-20 2007-11-01 Japan Atomic Energy Agency 高分子基材に高密度にアミドキシム基を導入する方法とその生成物
US9249241B2 (en) 2013-03-27 2016-02-02 Ut-Battelle, Llc Surface-functionalized mesoporous carbon materials
CN105006375B (zh) 2015-06-04 2017-09-29 郑州大学 一种氮、磷共掺杂多孔碳纳米管、制备方法及应用
CN106902747B (zh) * 2017-03-29 2019-09-13 东华理工大学 一种偕胺肟化介孔二氧化硅微球吸附剂及其制备方法
CN107138134B (zh) 2017-07-03 2019-07-02 兰州大学 一种改性二氧化硅材料及其制备方法和用途

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006026588A (ja) * 2004-07-20 2006-02-02 Japan Atom Energy Res Inst 温泉水に溶存する有用・有害金属を回収および除去する方法
EP2617760A1 (en) * 2010-09-14 2013-07-24 Osaka University Amidoxime-modified polyacrylonitrile porous medium
CN105817213A (zh) * 2016-05-23 2016-08-03 大连工业大学 一种基于中空介孔二氧化硅的吸附剂及其制备方法和回收黄金的应用
CN108160058A (zh) * 2018-01-15 2018-06-15 大连工业大学 一种可磁化中空介/微孔复合纳米吸附剂及其制备方法和吸附重金属离子的应用
CN110961085A (zh) * 2019-11-11 2020-04-07 江苏大学 一种利用co2为乳液模板制备偕胺肟功能化中空多孔聚合物微球的方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114984919A (zh) * 2022-06-10 2022-09-02 浙江理工大学 基于双偕胺肟基纤维素吸附材料及其制备方法
CN115554988A (zh) * 2022-10-27 2023-01-03 昆明理工大学 一种有机链修饰锆基mof吸附剂及其制备方法与应用
CN115554988B (zh) * 2022-10-27 2023-12-22 昆明理工大学 一种有机链修饰锆基mof吸附剂及其制备方法与应用

Also Published As

Publication number Publication date
JP2022511183A (ja) 2022-01-31
GB2590792A (en) 2021-07-07
GB2590792B (en) 2022-06-08
GB202018087D0 (en) 2020-12-30
CH717047B1 (de) 2022-01-14
CN110961085A (zh) 2020-04-07
CN110961085B (zh) 2021-05-25
JP7207765B2 (ja) 2023-01-18

Similar Documents

Publication Publication Date Title
WO2021093306A1 (zh) 一种利用co 2为乳液模板制备偕胺肟功能化中空多孔聚合物微球的方法
CN112642411B (zh) 一种多孔/富离子通道微球吸附剂的制备方法及其应用
Ming et al. A novel fabrication of monodisperse melamine–formaldehyde resin microspheres to adsorb lead (II)
CN102188957B (zh) 聚乙烯亚胺修饰的磁性多孔吸附剂及其制备方法和应用
Zheng et al. Functionalization of mesoporous Fe3O4@ SiO2 nanospheres for highly efficient U (VI) adsorption
Yuan et al. Highly efficient extraction of uranium from aqueous solution using imidazole functionalized core–shell sunflower-like superparamagnetic polymer microspheres: understanding adsorption and binding mechanisms
CN108404870B (zh) 一种微孔羧基化硅胶、制备方法及其应用
Zhao et al. Self-assembly of a surface bisphenol A-imprinted core–shell nanoring amino-functionalized superparamagnetic polymer
CN108704621A (zh) 一种酰胺肟基核壳结构磁性聚膦腈纳米微球及其制备和作为铀吸附剂的应用
CN113713780A (zh) 一种3d壳聚糖/二氧化硅复合材料及其制备方法和在吸附分离铼中的应用
CN108047361B (zh) 一种磁性螯合树脂、其制备方法及其在复合污染水体净化中的应用
CN114570339A (zh) 一步法制备水杨醛肟/聚多巴胺中空纳米吸附剂的方法及其除铀应用
CN113694902A (zh) 一种海水提铀用有序片层聚偕胺肟基氧化石墨烯复合材料及其制备方法
CN108295812A (zh) 一种用于选择性去除水中金属离子的氧化石墨烯复合膜及其制备方法、应用
CN103319667A (zh) 一种用于吸附重金属离子及稀土离子的材料的制备方法
CN110354827A (zh) 一种磁性水凝胶吸附材料的合成方法
CN113231043B (zh) 一种肟基化多片层聚酰亚胺微球吸附材料及其制备方法
CN114433036B (zh) 一种基于溶剂混合诱导的气泡模板法制备偕胺肟功能化中空聚合物球的方法及其提铀的应用
Ao et al. Insights into a new alternative method with graphene oxide/polyacrylamide/Fe3O4 nanocomposite for the extraction of six odor-active esters from Strong-aroma types of Baijiu
CN112892497B (zh) 一种覆盆子型中空多孔聚合物微球的制备方法及其应用
CN109438597B (zh) 磁性聚二乙烯苯微球树脂及其制备方法和应用
Yang et al. Fe 3 O 4 nanoparticles functionalized with poly (ethylene glycol) for the selective separation and enrichment of Au (iii)
Zhou et al. Efficient and selective removal of Pb (ii) from aqueous solution by a thioether-functionalized lignin-based magnetic adsorbent
Qian et al. Magnetic poly-o-vanillin-functionalized core–shell nanomaterials as a smart sorbent for scavenging mercury (II) from aqueous solution
CN113231040B (zh) 一种用于水中放射性铯离子去除的石墨烯吸附材料

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 202018087

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20200527

ENP Entry into the national phase

Ref document number: 2020565747

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20886885

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20886885

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20886885

Country of ref document: EP

Kind code of ref document: A1