WO2021090891A1 - 血液中成分濃度測定装置 - Google Patents

血液中成分濃度測定装置 Download PDF

Info

Publication number
WO2021090891A1
WO2021090891A1 PCT/JP2020/041394 JP2020041394W WO2021090891A1 WO 2021090891 A1 WO2021090891 A1 WO 2021090891A1 JP 2020041394 W JP2020041394 W JP 2020041394W WO 2021090891 A1 WO2021090891 A1 WO 2021090891A1
Authority
WO
WIPO (PCT)
Prior art keywords
blood
component
light
absorbance
wavelengths
Prior art date
Application number
PCT/JP2020/041394
Other languages
English (en)
French (fr)
Inventor
祐光 古川
愛理 渡部
中村 新一
弘明 相澤
Original Assignee
国立研究開発法人産業技術総合研究所
Cbc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人産業技術総合研究所, Cbc株式会社 filed Critical 国立研究開発法人産業技術総合研究所
Priority to KR1020227015356A priority Critical patent/KR20220074964A/ko
Priority to US17/771,725 priority patent/US20220369959A1/en
Priority to CN202080075430.3A priority patent/CN114599281A/zh
Priority to EP20885303.6A priority patent/EP4056115A4/en
Publication of WO2021090891A1 publication Critical patent/WO2021090891A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14532Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring glucose, e.g. by tissue impedance measurement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3577Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing liquids, e.g. polluted water

Definitions

  • the present invention relates to a blood component concentration measuring device.
  • Patent Document 1 discloses a glucose concentration quantifying device that accurately quantitatively analyzes glucose concentration by considering disturbance factors.
  • This device includes a calculation means for performing regression analysis of glucose concentration based on a signal obtained by detecting near-infrared light transmitted or diffusely reflected from a living tissue or body fluid by a detection means.
  • this calculation means at least the first wavelength region, the second wavelength region, and the third wavelength region in the wavelength region of 1480 nm to 1880 nm, in which the first harmonic of the molecule can be observed and the influence of water absorption is relatively small, can be observed.
  • the continuous spectrum signal obtained by continuously measuring each wavelength in the three adjacent regions is used as an explanatory variable, and the glucose concentration is used as the target variable for quantification.
  • the first wavelength range is 1550 nm to 1650 nm for measuring the absorption derived from the OH group of the glucose molecule
  • the second wavelength range is 1480 nm to 1550 nm for measuring the absorption derived from the NH group of the biological component
  • the third wavelength range is 1650 nm to 1880 nm for measuring absorption derived from CH groups of biological components.
  • Patent Document 2 discloses a highly accurate non-invasive biochemical measuring device capable of simultaneously measuring information on attenuation of light having a wide range of wavelengths in a living body at the same location. Specifically, the light emitted from the four light sources is introduced into the four optical fibers via the four lenses, combined by the combiner element, and introduced into one optical fiber. Further, the same point of the biological sample is irradiated through the lens and detected by a photodetector.
  • the output current of the photodetector is converted into a voltage signal by the current-voltage conversion circuit, and converted into a digital signal by the analog-digital converter.
  • the signal processing device controls the light source drive circuit, calculates the dimming degree of the biological sample for each wavelength, and calculates the oxygen saturation, blood flow, and glucose concentration in the living body.
  • Patent Document 3 discloses an apparatus capable of accurately measuring the blood bilirubin concentration without requiring blood collection. Specifically, it includes a first light emitting means, a second light emitting means, a third light emitting means, and a fourth light emitting means, and emits light from these light emitting means toward a measurement site.
  • the first luminescent means has a wavelength that is absorbed by reduced hemoglobin, oxidized hemoglobin and bilirubin in blood.
  • the second luminescent means has a wavelength that is absorbed by at least the reduced hemoglobin of the reduced hemoglobin, the oxidized hemoglobin, and the bilirubin in the blood.
  • the third light emitting means has a wavelength that is absorbed by at least the oxidized hemoglobin among the reduced hemoglobin, the oxidized hemoglobin and the bilirubin in the blood.
  • the fourth light emitting means has a wavelength that is not absorbed by reduced hemoglobin, oxidized hemoglobin, and bilirubin in blood but is absorbed only by water.
  • this device is based on the light receiving means that receives the light emitted from the light emitting means and transmitted through the measurement site and converts it into an electric signal, and the first light and the second light based on the output signal of the light receiving means.
  • a signal creating means for creating a signal corresponding to each of light, a third light, and a fourth light transmission amount is provided. Further, the signal creating means includes a calculation means for calculating the blood bilirubin concentration based on each signal created at the first time and each signal created at a second time different from the first time. ing.
  • Japanese Unexamined Patent Publication No. 2010-66280 Japanese Unexamined Patent Publication No. 10-216112 Japanese Unexamined Patent Publication No. 4-332535
  • Patent Document 1 has the advantage that the light source is near-infrared light and does not require a light source that emits light in a wide wavelength range, but accurate measurement in each wavelength region is required.
  • Patent Document 2 obtains the glucose concentration by applying a multivariate analysis method, but obtains oxygen saturation, blood flow, and glucose concentration, and does not obtain only glucose concentration.
  • C (Hb) blood Hb (reduced hemoglobin) concentration
  • C (HbO2) blood HbO2 (oxidized hemoglobin) concentration
  • C (Bil) The blood bilirubin concentration is determined, and one measurement target value is not obtained.
  • An object of the present embodiment is to provide a blood component concentration measuring device capable of shortening the measurement time and accurately measuring a predetermined component concentration in blood.
  • a four-wavelength light emitting means for emitting four kinds of wavelength light toward a predetermined part of a living body, a light receiving means for receiving four kinds of wavelength light transmitted through the predetermined part of the living body, and the light receiving means.
  • a light receiving intensity information acquisition means for obtaining light receiving intensity information of the four wavelengths based on the light signal received by the user, and an absorbance time changing value for obtaining a time changing value of the absorbance corresponding to the four wavelengths based on the light receiving intensity information of the four wavelengths.
  • Acquiring means a calibration data table in which calibration data for obtaining a predetermined component in blood from the absorbance time change value is stored, and the absorbance acquired by the absorbance time change value acquisition means using the calibration data of the calibration data table. It is characterized by comprising a component concentration acquisition means for obtaining a predetermined component concentration in blood from a time-varying value.
  • the block diagram of the blood component concentration measuring apparatus which concerns on embodiment of this invention.
  • the block diagram of the computer part of the blood component concentration measuring apparatus which concerns on embodiment of this invention.
  • the block diagram of the means stored in the external storage device of the computer part of the blood component concentration measuring apparatus which concerns on embodiment of this invention.
  • the flowchart which shows the operation of the blood component concentration measuring apparatus which concerns on embodiment of this invention.
  • FIG. 1 shows a configuration diagram of a blood component concentration measuring device according to an embodiment of the present invention.
  • four LEDs 11, 12, 13, and 14 are used as the four-wavelength light emitting means.
  • LEDs 11, 12, 13 and 14 emit different four-wavelength light toward the fingertip 15 as a predetermined part of the living body.
  • the four wavelengths include the absorption wavelength of the component to be measured in blood, the absorption wavelength of the component in blood that affects the component to be measured, the absorption wavelength of water, the component to be measured, and the component in blood that affects the component to be measured. , Wavelengths that are not affected by the above water and other biological components can be selected.
  • the blood glucose level is measured as the concentration of the component to be measured. Therefore, as the four wavelengths, the absorption wavelength of sugar, which is the component to be measured in blood, is 1620 to 1680 nm, the absorption wavelength of lipid as the component in blood affecting the component to be measured is 1170-1230 nm, and the absorption wavelength of water. 1420-1480 nm, Example 1170-1230 nm absorbed by lipid as a component in blood that affects sugar, which is the component to be measured, and 1020-1180 nm can be selected as a wavelength that is not affected by water and other biological components. ..
  • the wavelength of the light emitted from the LED 11 can be, for example, 1020-1180 nm, which is not absorbed by anything, and is emitted from the LED 12.
  • the wavelength of the light for example, 1170-1230 nm, which is absorbed by the lipid, can be adopted.
  • the wavelength of the light emitted from the LED 13 can be, for example, 1420-1480 nm, which is absorbed by water, and the wavelength of the light emitted from the LED 14 can be, for example, 1620 to 1680 nm, which is absorbed by sugar.
  • the LEDs 11, 12, 13 and 14 are connected to the driver 16 and are driven by the driver 16 that operates under the control of a computer 100 such as a personal computer to emit light.
  • the light transmitted through the fingertip 15 is received by the sensor (optical sensor) 17 which is a light receiving means.
  • the light receiving means receives four types of wavelength light that has passed through the predetermined part of the living body.
  • the sensor 17 is connected to the computer 100, and the optical signal detected by the sensor 17 is taken into the computer 100.
  • FIG. 2 shows the configuration of the computer 100 part of the blood glucose level measuring device (hereinafter, simply referred to as the blood glucose level measuring device) which is the blood component concentration measuring device according to the present embodiment.
  • the computer 100 is mainly composed of a CPU 110, and reads a program, data, or the like into the main memory 111 to execute processing.
  • An external storage interface 113, an input interface 114, a display interface 115, a data output interface 116, and a data input interface 117 are connected to the CPU 110 via a bus 112.
  • the external storage interface 113 is connected to an external storage device 123 in which a program for being read by the CPU 110 and processed as a blood glucose level measuring device and various data are stored.
  • An input device 124 such as a keyboard and a pointing device 122 such as a mouse are connected to the input interface 114.
  • a display device 125 such as an LED display is connected to the display interface 115, and necessary images, characters, and the like are displayed.
  • the display interface 115 can be widely used as an output device interface, and an output device such as a printer may be connected in addition to the display device 125.
  • the driver 16 described above is connected to the data output interface 116, and a drive control signal is sent from the data output interface 116 to the driver 16 according to the drive data from the CPU, and the drive control signal is sent to the driver 16 in response to this signal.
  • the required one of the LEDs 11, 12, 13 and 14 is made to emit light for a required time.
  • a sensor 17 is connected to the data input interface 117, and the output signal of the sensor 17 is taken in, AD-converted, and sent to the CPU 110 as light-receiving intensity information (data). Therefore, the data input interface 117 functions as a light receiving intensity information acquisition means for obtaining light receiving intensity information of the above four wavelengths based on the optical signal received by the sensor 17 which is a light receiving means.
  • the external storage device 123 stores a program and various data for the CPU 110 to read and process as a blood glucose level measuring device.
  • the absorbance time change value acquisition means 201 realized by the program, the calibration data table 202, and the blood glucose level acquisition means (generally, the component concentration acquisition means) realized by the program. ) 203 is provided.
  • the absorbance time change value acquisition means 201 obtains the absorbance time change value corresponding to the four wavelengths based on the light reception intensity information of the four wavelengths acquired by the data input interface 117, which is the light receiving intensity information acquisition means.
  • the calibration data table 202 stores calibration data for obtaining the blood glucose level from the absorbance time change value. Specifically, as shown in FIG. 4, the numerical values of the calibration data a, b, c, d, ... ) Is the associated table.
  • the calibration data table 202 initially obtains blood data for a large number of people by the method of the present embodiment and stores calibration data created based on blood glucose levels obtained by a known method including an invasive method. To start. Then, based on the blood glucose level obtained by the method of the present embodiment and the blood glucose level obtained by a known method including an invasive method, the calibration data is updated by a method such as statistical analysis or machine learning. It can be highly accurate.
  • the blood glucose level acquisition means 203 obtains the blood glucose level from the time change value of the absorbance acquired by the absorbance time change value acquisition means 201 using the calibration data of the calibration data table 202.
  • the absorbance time change value acquisition means 201 acquires the absorbance time change value as, for example, aba
  • the calibration data value BB is taken out from the calibration data table 202 of FIG. 3, and the acquired absorbance time change value aba
  • the blood glucose level is obtained by performing a predetermined calculation (addition, multiplication, division, etc.) using the calibration data value BB.
  • the blood glucose level obtained as described above can be converted into display data by the CPU 110 and sent to the display interface 115. Upon receiving this, the display interface 115 can control the display device 125 to display the blood glucose level on the display device 125.
  • the CPU 110 controls the driver 16 and drives the four LEDs 11 to 14 to emit four wavelength light (S11).
  • the four LEDs 11 to 14 are sequentially driven for a predetermined time, and light having four wavelengths ⁇ 1, ⁇ 2, ⁇ 3, and ⁇ 4 is emitted toward the fingertip 15 in a predetermined time unit.
  • the blood glucose level is determined using the absorbance of four wavelengths.
  • statistical analysis such as multivariate analysis can be used, but the present invention is not limited to this, and machine learning may be used, for example.
  • machine learning may be used, for example.
  • the sensor 17 receives the light transmitted through the fingertip 15 and acquires the light receiving intensity information ai, bi, ci, and di (S12).
  • Blood data ⁇ 1 + ⁇ 2 + ⁇ 3 + ⁇ 4, which is a time-varying value of absorbance corresponding to four wavelengths, is obtained based on the light-receiving intensity information ai, bi, ci, and di (S13).
  • the pulse is measured at least once for each wavelength.
  • the wavelength is switched in the order of ⁇ 1 nm ⁇ ⁇ 2 nm ⁇ ⁇ 3 nm ⁇ ⁇ 4 nm as follows, the measurement points of each of the four wavelengths are plotted as one point.
  • the wavelength is switched from ⁇ 1 nm ⁇ ⁇ 2 nm ⁇ ⁇ 3 nm ⁇ ⁇ 4 nm for measurement, the measurement points of the four wavelengths up to this point become a two-point plot.
  • the measurement points of the four wavelengths up to this point become a three-point plot.
  • the same measurement is performed below to obtain a plot of a desired number (for example, 20) points.
  • a peak of pulse is formed at each wavelength ⁇ 1, ⁇ 2, ⁇ 3, ⁇ 4. Measurement is performed until one or more peaks of this pulse (for example, 50 peaks or 100 peaks, a unified number of peaks at each wavelength) are formed, and this is used as one set of time-series data.
  • Such one set of time series data is obtained before meals, the next set of time series data is obtained after meals, and the next set of time series data is obtained at a predetermined time after meals (for example, 3 hours). And ... Obtain time series data on a longer time scale in the same way.
  • the intermediate parameters pA, pB, pC, and pD in the following equation (1) are obtained by using singular value decomposition, and the obtained intermediate parameters pA and pB are obtained. , PC, and pD to obtain the absorbance time change value.
  • the one corresponding to the time series data at a certain time t1 is the following equation (3).
  • the one corresponding to the time-series data measured at time t2 after time t1 is the following equation (4).
  • t1, t2, ... For example, the time t1 corresponds to the time before the meal, and t2 corresponds to the time immediately after the meal.
  • an intermediate parameter formula can be created from one set of time series data.
  • the intermediate parameters pA, pB, pC, and pD are obtained by using singular value decomposition. The process of repeatedly finding the optimum solution so that the values of the intermediate parameters pA, pB, pC, and pD are the longest can be performed every four or more measurements. It is assumed that this operation is performed by the absorbance time change value acquisition means 201.
  • the blood glucose level is obtained using the calibration data of the calibration data table 202 and output from the display device 125 (S14).
  • the blood glucose level and the calibration data obtained in this way are fed back to the calibration data table 202 to improve the accuracy of the calibration data.
  • the light receiving intensity information ai, bi, ci, and di are acquired from the optical signal that actually passes through the fingertip, and the blood glucose level is calculated by calculation using the calibration data. It is possible to appropriately measure the blood glucose level by reflecting the magnitude of the resulting absorbance.
  • the light emission of the LED is controlled, the received light intensity information ai, bi, ci, and di after receiving the transmitted light is acquired, the blood data is acquired, and the blood glucose level using the calibration data is used.
  • the acquisition of blood data and the calculation of the blood glucose level using the calibration data are performed by arranging one computer at a distance, controlling the light emission of the LED, and receiving the received light intensity information ai, bi after receiving the transmitted light.
  • Ci, and di can be acquired at a plurality of points. With such a system, it is possible to concentrate the data of many people on a computer at one point and update the calibration data appropriately.
  • the blood glucose level measuring device for determining the blood glucose level as the "concentration of a predetermined component in blood” has been described, but the present invention is not limited to this. For example, it is expected that blood lipid concentration and blood cholesterol concentration can be measured.
  • the computer 100 is a personal computer or the like, but the blood component concentration measuring device according to the present embodiment may be a dedicated device, and the computer 100 may be configured as a dedicated CPU.
  • the main memory 111 may store programs and data necessary for processing as a blood glucose level measuring device.
  • the network is provided with a determination device for determining normality / abnormality or alert level based on the result measured by the blood component concentration measuring device according to the present embodiment, and the result measured by the blood component concentration measuring device according to the present embodiment. May be sent to the determination device via the network, and the determination result may be returned.
  • a determination device a storage device for storing the determination result is provided, a doctor accesses the storage device using a network to make a determination, stores the determination result in the storage device, and stores this in the storage device for blood according to the present embodiment.
  • the medium component concentration measuring device may take in and display the image.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Optics & Photonics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • Public Health (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Emergency Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

4種類の波長光を生体の所定部位へ向けて射出する4波長光射出手段と、前記生体の所定部位を透過した4種類の波長光を受光する受光手段と、前記受光手段が受光した光信号に基づいて前記4波長の受光強度情報を得る受光強度情報取得手段と、前記4波長の受光強度情報に基づき前記4波長に対応する吸光度の時間変化値を求める吸光度時間変化値取得手段201と、吸光度時間変化値から血液中の所定成分を求める校正データが記憶された校正データテーブル202と、前記校正データテーブル202の校正データを用いて前記吸光度時間変化値取得手段により取得された吸光度の時間変化値から血液中の所定成分濃度を求める成分濃度取得手段203とを具備する。

Description

血液中成分濃度測定装置
 この発明は、血液中成分濃度測定装置に関するものである。
 特許文献1には、外乱要因の考慮を行うことで精度よくグルコース濃度の定量分析を行うグルコース濃度の定量装置が開示されている。この装置は、生体組織あるいは体液を透過あるいは拡散反射した近赤外光を検出手段で検出して得られる信号を基にグルコース濃度の回帰分析を行う演算手段を備える。この演算手段は、分子の第1倍音が観察できるとともに水の吸収の影響が比較的小さい1480nmから1880nmの波長領域内における第1の波長域と第2の波長域と第3の波長域の少なくとも3つの隣接域内の各波長を連続的に測定して得られる連続スペクトル信号を説明変量とし、グルコース濃度を目的変量として定量を行うものである。
 第1の波長域は、グルコース分子のOH基由来の吸収を測定するための1550nmから1650nmであり、第2の波長域は、生体成分のNH基由来の吸収を測定するための1480nmから1550nmであり、第3の波長域は、生体成分のCH基由来の吸収を測定するための1650nmから1880nmである。
 特許文献2には、広範囲の波長の光の生体中における減衰の情報を同時に同一箇所で測定できる高精度な無侵襲生化学計測装置が開示されている。具体的には、4光源から出射された光は、4個のレンズを介して4つの光ファイバに導入され、合波素子によって合波されて一本の光ファイバに導入される。更に、レンズを介して生体試料の同一ポイントに照射され、光検出器によって検出される。
 光検出器の出力電流は電流電圧変換回路によって電圧信号に変換され、アナログ・デジタルコンバーターによりデジタル信号に変換される。信号処理装置は光源駆動回路を制御し、各波長毎の生体試料による減光度を計算し、生体中の酸素飽和度、血流量、グルコース濃度を計算する。
 更に、特許文献3には、採血を要せずして血中ビリルビン濃度を正確に測定することができる装置が開示されている。具体的には、第1発光手段と第2発光手段と第3発光手段と第4発光手段とを備え、これらの発光手段から光を測定部位に向けて発する。第1発光手段は、血液中の還元ヘモグロビン、酸化ヘモグロビン及びビリルビンに吸収される波長を有する。第2発光手段は、血液中の還元ヘモグロビン、酸化ヘモグロビン及びビリルビンのうち少なくとも還元ヘモグロビンに吸収される波長を有する。
 また、第3発光手段は、血液中の還元ヘモグロビン、酸化ヘモグロビン及びビリルビンのうち少なくとも酸化ヘモグロビンに吸収される波長を有する。第4発光手段は、血液中の還元ヘモグロビン、酸化ヘモグロビン、及びビリルビンには吸収されず水にのみ吸収される波長を有する。また、この装置は、上記の発光手段から発せられ、測定部位を透過した光を受けて電気信号に変換する受光手段と、この受光手段の出力信号に基づき、上記第1の光、第2の光、第3の光、及び第4の光の透過量にそれぞれ対応する信号を作成する信号作成手段とを具備する。更に、この信号作成手段において第1の時刻で作成された各信号と上記第1の時刻と異なる第2の時刻で作成された各信号とに基づき血中ビリルビン濃度を演算する演算手段とを備えている。
特開2010-66280号公報 特開平10-216112号公報 特開平4-332535号公報
 上記特許文献1の発明では、光源は近赤外光であり、広い波長範囲の光を発する光源を必要としなくなる利点を有するものの、各波長領域の的確な測定を求められる。
 また、特許文献2の発明は、多変量解析法を適用してグルコース濃度を求めるものであるが、酸素飽和度、血流量、グルコース濃度を得ており、グルコース濃度のみを求めるものではない。
 更に、特許文献3の発明では、3元連立一次方程式を用いてC(Hb):血中Hb(還元ヘモグロビン)濃度、C(HbO2):血中HbO2(酸化ヘモグロビン)濃度、C(Bil):血中ビリルビン濃度を求めるものであり、1つの測定対象値を得るものではない。
 本実施形態は、測定時間を短縮化し、精度良く血液中の所定成分濃度を測定することが可能な血液中成分濃度測定装置を提供することを目的とする。
 本実施形態は、4種類の波長光を生体の所定部位へ向けて射出する4波長光射出手段と、前記生体の所定部位を透過した4種類の波長光を受光する受光手段と、前記受光手段が受光した光信号に基づいて前記4波長の受光強度情報を得る受光強度情報取得手段と、前記4波長の受光強度情報に基づき前記4波長に対応する吸光度の時間変化値を求める吸光度時間変化値取得手段と、吸光度時間変化値から血液中の所定成分を求める校正データが記憶された校正データテーブルと、前記校正データテーブルの校正データを用いて前記吸光度時間変化値取得手段により取得された吸光度の時間変化値から血液中の所定成分濃度を求める成分濃度取得手段と、を具備することを特徴とする。
本発明の実施形態に係る血液中成分濃度測定装置の構成図。 本発明の実施形態に係る血液中成分濃度測定装置のコンピュータ部分の構成図。 本発明の実施形態に係る血液中成分濃度測定装置のコンピュータ部分の外部記憶装置に記憶されている手段の構成図。 本発明の実施形態に係る血液中成分濃度測定装置に備えられる校正データテーブルの内容の一例を示す図。 本発明の実施形態に係る血液中成分濃度測定装置の動作を示すフローチャート。
 以下添付図面を参照して、本発明に係る血液中成分濃度測定装置の実施形態を説明する。各図において、同一の構成要素には同一の符号を付して重複する説明を省略する。図1には、本発明の実施形態に係る血液中成分濃度測定装置の構成図が示されている。本実施形態では、4波長光射出手段として4つのLED11、12、13、14を用いる。
 LED11、12、13、14は異なる4波長光が生体の所定部位としての指先15へ向けて射出される。上記4波長としては、血液中の測定対象成分の吸収波長、上記測定対象成分に影響する血液中成分の吸収波長、水の吸収波長、上記測定対象成分、上記測定対象成分に影響する血液中成分、上記水およびその他の生体成分に影響されない波長を選択することができる。
 本実施形態では、測定対象成分濃度として、血糖値を測定するものとする。このため、4波長としては、血液中の上記測定対象成分である糖分の吸収波長として1620-1680nm、上記測定対象成分に影響する血液中成分として脂質の吸収波長1170-1230nm、上記水の吸収波長として1420-1480nm、上記測定対象成分である糖に影響する血液中成分として脂質に吸収される例1170-1230nm、上記水およびその他の生体成分に影響されない波長として1020-1180nmを選択することができる。
 上記波長をLED11、12、13、14に対応させると、LED11から射出される光の波長は何にも吸収されることのない例えば1020-1180nmを採用することができ、また、LED12から射出される光の波長は脂質に吸収される例えば1170-1230nmを採用することができる。LED13から射出される光の波長は水に吸収される例えば1420-1480nmを採用することができ、LED14から射出される光の波長は糖分に吸収される例えば1620-1680nmを採用することができる。
 LED11、12、13、14はドライバ16に接続されており、例えばパーソナルコンピュータなどのコンピュータ100の制御により動作するドライバ16により駆動されて光を射出する。
 指先15を透過した光は受光手段であるセンサ(光センサ)17により受光される。受光手段は、上記生体の所定部位を透過した4種類の波長光を受光するものである。センサ17は、コンピュータ100に接続されており、センサ17が検出した光信号はコンピュータ100に取り込まれる。
 図2には、本実施形態に係る血液中成分濃度測定装置である血糖値測定装置(以下、単に血糖値測定装置という。)のコンピュータ100部分の構成を示す。コンピュータ100は、CPU110を中心に構成されており、主メモリ111にプログラムやデータ等を読み込んで処理を実行する。CPU110には、バス112を介して外部記憶インタフェース113、入力インタフェース114、表示インタフェース115、データ出力インタフェース116、データ入力インタフェース117が接続されている。
 外部記憶インタフェース113には、CPU110が読み込んで血糖値測定装置として処理行うためのプログラムや各種データが記憶された外部記憶装置123が接続されている。入力インタフェース114には、キーボード等の入力装置124やマウス等のポインティングデバイス122が接続されている。表示インタフェース115には、LEDディスプレイなどの表示装置125が接続されており、必要な画像やキャラクタ等の表示がなされる。表示インタフェース115は、広く出力装置インタフェースとすることができ、プリンタ等の出力装置を表示装置125に加えて接続できるものであっても良い。
 データ出力インタフェース116には、先に説明したドライバ16が接続されており、CPUからの駆動データに応じてデータ出力インタフェース116からドライバ16へ駆動制御信号が送られ、ドライバ16へこの信号に応じてLED11、12、13、14の内の所要のものを所要時間発光させる。データ入力インタフェース117には、センサ17が接続されており、センサ17の出力信号を取り込むと共にAD変換して受光強度情報(データ)としてCPU110へ送るものである。このため、データ入力インタフェース117は、受光手段であるセンサ17が受光した光信号に基づいて上記4波長の受光強度情報を得る受光強度情報取得手段として機能する。
 外部記憶装置123には、先に説明したように、CPU110が読み込んで血糖値測定装置として処理を行うためのプログラムや各種データが記憶されている。具体的には、図3に示されるように、プログラムにより実現される吸光度時間変化値取得手段201、校正データテーブル202、プログラムにより実現される血糖値取得手段(一般的には、成分濃度取得手段)203が備えられている。吸光度時間変化値取得手段201は、受光強度情報取得手段であるデータ入力インタフェース117が取得した上記4波長の受光強度情報に基づき上記4波長に対応する吸光度の時間変化値を求めるものである。
 校正データテーブル202は、吸光度時間変化値から血糖値を求める校正データが記憶されているものである。具体的には、図4に示されるように、吸光度時間変化値A、B、C、D、・・・に対して校正データa、b、c、d、・・・の数値(アルファベットは数値)が対応付けられたテーブルである。
 校正データテーブル202は、当初はある程度多数の人について本実施形態の手法で血液データを得ると共に侵襲的な手法を含めた公知の手法で得られた血糖値とに基づき作成した校正データを格納してスタートする。その後、本実施形態の手法で得られた血糖値と侵襲的な手法を含めた公知の手法で得られた血糖値とに基づき、例えば統計解析や機械学習等の手法により校正データを更新して精度の高いものとすることができる。
 血糖値取得手段203は、上記校正データテーブル202の校正データを用いて上記吸光度時間変化値取得手段201により取得された吸光度の時間変化値から血糖値を求めるものである。上記吸光度時間変化値取得手段201が吸光度の時間変化値を、例えばabaとして取得した場合には、図3の校正データテーブル202から校正データ値BBを取り出し、取得されている吸光度の時間変化値abaに対し校正データ値BBを用いた所定の演算(加算や乗算や除算など)を行って血糖値を求める。
 上記のようにして求められた血糖値は、CPU110によって、表示データへ変換され、表示インタフェース115へ送られるようにすることができる。これを受けた表示インタフェース115は、表示装置125を制御して血糖値の表示を表示装置125において行うことができる。
 以上のように構成された血糖値測定装置は、図5に示すフローチャートに従って動作を行うので、このフローチャートにより動作説明を行う。動作がスタートとなると、CPU110がドライバ16を制御し、4つのLED11~14を駆動して4波長光を射出する(S11)。ここで4つのLED11~14は順に所定時間駆動され、所定時間単位で4つの波長λ1、λ2、λ3、λ4の光が指先15へ向けて射出される。
 本実施形態では、4波長の吸光度を用いて血糖値を求める。その手法としては、多変量解析をはじめとする統計解析を用いることができるが、本発明は、これに限定されず、例えば機械学習を用いても良い。統計解析による手法としては、例えば以下に示すようにすることが考えられる。上記ステップS11に続いて、指先15を透過した光をセンサ17によって受光し、受光強度情報ai、bi、ci、diを取得する(S12)。受光強度情報ai、bi、ci、diに基づき4波長に対応する吸光度の時間変化値である血液データ=η1+η2+η3+η4を求める(S13)。
 本実施形態では、各波長について少なくとも脈拍1回以上の測定を行うものとする。例えば、波長を次のようにλ1nm→λ2nm→λ3nm→λ4nmと切り替えて測定すると、ここまでで4波長それぞれの測定点が1点プロットとなる。次に、波長をλ1nm→λ2nm→λ3nm→λ4nmと切り替えて測定すると、ここまでで4波長の測定点が2点プロットとなる。次に、波長をλ1nm→λ2nm→λ3nm→λ4nmと切り替えて測定すると、ここまでで4波長の測定点が3点プロットとなる。以下同様に測定を行い、所望数(例えば、20)点のプロットを得る。
 上記の所望数のプロットをつなぐことにより、各波長λ1、λ2、λ3、λ4において脈拍の山ができる。この脈拍の山が1つ以上(例えば、50山でも100山でも、各波長において統一した数の山)できるまで測定を行い、これを1セットの時系列データとする。このような1セットの時系列データを食事前に得て、次の1セットの時系列データを食事後に得て、次の1セットの時系列データを食後所定時間(例えば、3時間)において得て、・・・以下同様に更に長いタイムスケールで時系列データを得る。
 ωλj(j=1~4)を波長λjにおける重み係数とするとき、次の式(1)の中間パラメータpA、pB、pC、pDについて特異値分解を用いて求め、求めた中間パラメータpA、pB、pC、pDに基づき吸光度時間変化値を求める。
Figure JPOXMLDOC01-appb-M000001
 上記式(1)は、次の式(2)と等価である。
Figure JPOXMLDOC01-appb-M000002
 上記式(2)における中間パラメータについては、先に説明した時系列データの中の、ある時刻t1における時系列データに対応するものが、次の式(3)であり、
Figure JPOXMLDOC01-appb-M000003
 先に説明した時系列データの中で時刻t1より後の時刻t2において測定された時系列データに対応するものが、次の式(4)であり、
Figure JPOXMLDOC01-appb-M000004
 t1、t2、・・・については、例えば、時刻t1は食事前の時刻、t2は食事直後の時刻などに対応するものである。
以下同様に、1セットの時系列データから中間パラメータの式を作成することができる。
 上記において検出した受光強度情報ai、bi、ci、diは、ノイズを含むために、脈拍1回以上の測定を行うことができる。そして、測定を2回以上とすると式(1)の行列は対角行列とならない。そこで、本実施形態では、中間パラメータpA、pB、pC、pDについて特異値分解を用いて求める。中間パラメータpA、pB、pC、pDの値か最長になるように最適解を繰り返し求める処理を、4回以上の測定の毎に行うものとすることができる。この動作は、吸光度時間変化値取得手段201が行うものとする。
 更に、吸光度時間変化値取得手段201は、吸光度時間変化値が血液データとして、血液データ=η1+η2+η3+η4であるとき、未定乗数χ1、χ2、χ3、χ4とし、次の式(5)に対し、ラグランジュ未定乗数法によりη1、η2、η3、η4を求める。
Figure JPOXMLDOC01-appb-M000005
 以上のように血液データ=η1+η2+η3+η4が求まると、校正データテーブル202の校正データを用いて血糖値を求め表示装置125から出力する(S14)。
 このようにして得られた血糖値と校正データとは、校正データテーブル202へフィードバックされて校正データの精度が上昇される。このように実際に指先を透過した光信号から受光強度情報ai、bi、ci、diを取得し、校正データを使用した演算により血糖値を求めるために、だれが測定しても脈波成分に起因する吸光度の大きさを反映させて適切に血糖値を測定することが可能である。
 なお、本実施形態では、LEDの発光の制御、透過光の受光後の受光強度情報ai、bi、ci、diの取得、更には、血液データの取得、更には、校正データを用いた血糖値の算出を1つのコンピュータで行ったが、それぞれを別のコンピュータや制御装置で行うようにしても良いし、いくつかの動作をグループ分けして2台乃至3台のコンピュータに分散させても良い。この場合に、血液データの取得、更には、校正データを用いた血糖値の算出を1つのコンピュータを遠方に配置して、LEDの発光の制御、透過光の受光後の受光強度情報ai、bi、ci、diの取得を複数地点において行うこともできる。このようなシステムとすると、数多くの人のデータを1地点のコンピュータに集中させて校正データの更新を適切に行うことができる。
 以上の実施形態においては、「血液中の所定成分濃度」として血糖値を求める血糖値測定装置について説明したが、本発明はこれに限定されない。例えば、血中脂質濃度や血中コレステロール濃度なども測定できることが期待される。
 また、上記以上の説明においては、コンピュータ100をパーソナルコンピュータなどとしたが、本実施形態に係る血液中成分濃度測定装置を専用の装置とし、コンピュータ100を専用のCPUとして構成しても良い。この場合、主メモリ111に、血糖値測定装置として処理行うための必要なプログラムやデータを記憶するようにしても良い。
 更に、ネットワークに本実施形態に係る血液中成分濃度測定装置により測定した結果に基づき正常・異常や警戒レベルを判定する判定装置を設け、本実施形態に係る血液中成分濃度測定装置により測定した結果をネットワークを介して上記判定装置へ送り、判定結果を返送するようにしても良い。勿論、判定装置ではなく、判定結果を記憶する記憶装置を設け、医師がネットワークを用いて記憶装置へアクセスして判定を行い、判定結果を記憶装置へ記憶し、これを本実施形態に係る血液中成分濃度測定装置が取り込み、表示等を行うようにしても良い。
 11~14 LED
 15  指先
 16  ドライバ
 17  センサ
 100 コンピュータ
 110 CPU
 111 主メモリ
 112 バス
 113 外部記憶インタフェース
 114 入力インタフェース
 115 表示インタフェース
 116 データ出力インタフェース
 117 データ入力インタフェース
 122 ポインティングデバイス
 123 外部記憶装置
 124 入力装置
 125 表示装置
 201 吸光度時間変化値取得手段
 202 校正データテーブル
 203 血糖値取得手段(成分濃度取得手段)

Claims (5)

  1.  4種類の波長光を生体の所定部位へ向けて射出する4波長光射出手段と、
     前記生体の所定部位を透過した4種類の波長光を受光する受光手段と、
     前記受光手段が受光した光信号に基づいて前記4波長の受光強度情報を得る受光強度情報取得手段と、
     前記4波長の受光強度情報に基づき前記4波長に対応する吸光度の時間変化値を求める吸光度時間変化値取得手段と、
     吸光度時間変化値から血液中の所定成分を求める校正データが記憶された校正データテーブルと、
     前記校正データテーブルの校正データを用いて前記吸光度時間変化値取得手段により取得された吸光度の時間変化値から血液中の所定成分濃度を求める成分濃度取得手段と、
     を具備することを特徴とする血液中成分濃度測定装置。
  2.  前記吸光度時間変化値取得手段は、一定時間間隔で受光強度情報取得手段が取得した連続する複数の受光強度情報に基づき前記4波長に対応する吸光度の時間変化値を求めることを特徴とする請求項1に記載の血液中成分濃度測定装置。
  3.  前記吸光度時間変化値取得手段は、一定時間間隔で受光強度情報取得手段が取得した連続する1回以上の取得の受光強度情報に基づき前記4波長に対応する吸光度の時間変化値を求めることを特徴とする請求項1または2に記載の血液中成分濃度測定装置。
  4.  前記4波長は、血液中の測定対象成分の吸収波長、前記測定対象成分に影響する血液中成分の吸収波長、水の吸収波長、前記測定対象成分、前記血液中成分、前記水およびその他の生体成分に影響されない波長を選択することを特徴とする請求項1乃至3のいずれか1項に記載の血液中成分濃度測定装置。
  5.  前記4波長は、血液中の前記測定対象成分の吸収波長として1620-1680nm前記測定対象成分に影響する血液中成分として脂質の吸収波長1170-1230nm、前記水の吸収波長として1420-1480nm、前記測定対象成分、前記血液中成分、前記水およびその他の生体成分に影響されない波長として1020-1180nmを選択することを特徴とする請求項4に記載の血液中成分濃度測定装置。
PCT/JP2020/041394 2019-11-08 2020-11-05 血液中成分濃度測定装置 WO2021090891A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020227015356A KR20220074964A (ko) 2019-11-08 2020-11-05 혈액 중 성분 농도 측정 장치
US17/771,725 US20220369959A1 (en) 2019-11-08 2020-11-05 Blood component concentration measurement device
CN202080075430.3A CN114599281A (zh) 2019-11-08 2020-11-05 血液中成分浓度测定装置
EP20885303.6A EP4056115A4 (en) 2019-11-08 2020-11-05 DEVICE FOR MEASUREMENT OF BLOOD COMPONENT CONCENTRATION

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-203020 2019-11-08
JP2019203020A JP7425436B2 (ja) 2019-11-08 2019-11-08 血液中成分濃度測定装置

Publications (1)

Publication Number Publication Date
WO2021090891A1 true WO2021090891A1 (ja) 2021-05-14

Family

ID=75848571

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/041394 WO2021090891A1 (ja) 2019-11-08 2020-11-05 血液中成分濃度測定装置

Country Status (6)

Country Link
US (1) US20220369959A1 (ja)
EP (1) EP4056115A4 (ja)
JP (1) JP7425436B2 (ja)
KR (1) KR20220074964A (ja)
CN (1) CN114599281A (ja)
WO (1) WO2021090891A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04332535A (ja) 1991-05-07 1992-11-19 Minolta Camera Co Ltd 血中ビリルビン濃度測定装置
JPH0956702A (ja) * 1995-08-18 1997-03-04 Minolta Co Ltd 無侵襲血中成分濃度測定装置
JPH10216112A (ja) 1997-02-04 1998-08-18 Hitachi Ltd 無侵襲生化学計測装置
JPH11128209A (ja) * 1997-09-05 1999-05-18 Samsung Electron Co Ltd 血中成分濃度の無血測定方法及び装置
JP2008289807A (ja) * 2007-05-28 2008-12-04 Panasonic Electric Works Co Ltd 生体表層組織用センシング装置
JP2010066280A (ja) 1997-03-25 2010-03-25 Panasonic Electric Works Co Ltd グルコース濃度の定量装置
JP2014018478A (ja) * 2012-07-19 2014-02-03 Panasonic Corp 血糖値測定方法及び血糖値測定装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7167734B2 (en) * 2001-04-13 2007-01-23 Abbott Laboratories Method for optical measurements of tissue to determine disease state or concentration of an analyte
KR100389906B1 (ko) * 2001-05-09 2003-07-04 삼성전자주식회사 목적물의 성분 농도 측정 장치 및 방법
JP2014016235A (ja) * 2012-07-09 2014-01-30 Seiko Epson Corp 光吸収係数分布推定装置、濃度測定装置及び光吸収係数分布推定装置の制御方法
US11653862B2 (en) * 2015-05-22 2023-05-23 Cercacor Laboratories, Inc. Non-invasive optical physiological differential pathlength sensor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04332535A (ja) 1991-05-07 1992-11-19 Minolta Camera Co Ltd 血中ビリルビン濃度測定装置
JPH0956702A (ja) * 1995-08-18 1997-03-04 Minolta Co Ltd 無侵襲血中成分濃度測定装置
JPH10216112A (ja) 1997-02-04 1998-08-18 Hitachi Ltd 無侵襲生化学計測装置
JP2010066280A (ja) 1997-03-25 2010-03-25 Panasonic Electric Works Co Ltd グルコース濃度の定量装置
JPH11128209A (ja) * 1997-09-05 1999-05-18 Samsung Electron Co Ltd 血中成分濃度の無血測定方法及び装置
JP2008289807A (ja) * 2007-05-28 2008-12-04 Panasonic Electric Works Co Ltd 生体表層組織用センシング装置
JP2014018478A (ja) * 2012-07-19 2014-02-03 Panasonic Corp 血糖値測定方法及び血糖値測定装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4056115A4

Also Published As

Publication number Publication date
JP7425436B2 (ja) 2024-01-31
EP4056115A1 (en) 2022-09-14
EP4056115A4 (en) 2023-11-15
JP2021074258A (ja) 2021-05-20
KR20220074964A (ko) 2022-06-03
US20220369959A1 (en) 2022-11-24
CN114599281A (zh) 2022-06-07

Similar Documents

Publication Publication Date Title
EP3326521B1 (en) Compact spectrometer system for non-invasive measurement of absorption and transmission spectra in biological tissue samples
US5365066A (en) Low cost means for increasing measurement sensitivity in LED/IRED near-infrared instruments
US4854699A (en) Backscatter oximeter
JP5982364B2 (ja) 測定媒体の成分または特性、特に生理的血液値を特定およびモニタするための装置ならびに方法
CA2481981C (en) A non-invasive blood constituent measuring instrument and measuring method
EP0290272B1 (en) Examination apparatus for measuring oxygenation
TWI324686B (en) Noninvasive measurement of glucose through the optical properties of tissue
EP0828533B1 (en) Method and apparatus for rapid non-invasive determination of blood composition parameters
EP1327418B1 (en) Organism optical measurement instrument
US20060167347A1 (en) Composite spectral measurement method and its spectral detection instrument
US5757002A (en) Method of and apparatus for measuring lactic acid in organism
JP6878312B2 (ja) 光電式容積脈波記録法装置
JPWO2006040841A1 (ja) 血糖値の非侵襲測定装置
JPH11183377A (ja) 光学式成分計
EP0290273A1 (en) Examination apparatus for measuring oxygenation
WO2021090891A1 (ja) 血液中成分濃度測定装置
JP2004313554A (ja) 血糖値の非侵襲測定装置
JP2017023455A (ja) 近赤外光生体計測装置及びそのプローブ
JP6741485B2 (ja) パルスフォトメータ、および血中吸光物質濃度の算出値の信頼性評価方法
JP2019170542A (ja) 生体の測定装置及びプログラム
KR100883153B1 (ko) 혈당치의 비침습 측정 장치
JP2004147706A (ja) 非侵襲型生体成分の定量装置及び定量方法
JP2003114191A (ja) 青果物の非破壊糖度測定方法及び装置
JP5477058B2 (ja) 成分測定装置
JP2010125147A (ja) 生体計測装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20885303

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227015356

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020885303

Country of ref document: EP

Effective date: 20220608