WO2021090874A1 - リチウム一次電池パックおよびガスメータ - Google Patents

リチウム一次電池パックおよびガスメータ Download PDF

Info

Publication number
WO2021090874A1
WO2021090874A1 PCT/JP2020/041332 JP2020041332W WO2021090874A1 WO 2021090874 A1 WO2021090874 A1 WO 2021090874A1 JP 2020041332 W JP2020041332 W JP 2020041332W WO 2021090874 A1 WO2021090874 A1 WO 2021090874A1
Authority
WO
WIPO (PCT)
Prior art keywords
primary battery
voltage
positive electrode
lithium
lithium primary
Prior art date
Application number
PCT/JP2020/041332
Other languages
English (en)
French (fr)
Inventor
啓祐 川邊
聡一 亘理
隆夫 工藤
Original Assignee
マクセルホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マクセルホールディングス株式会社 filed Critical マクセルホールディングス株式会社
Priority to US17/773,465 priority Critical patent/US20220376270A1/en
Priority to EP20883817.7A priority patent/EP4044273A4/en
Priority to JP2021554968A priority patent/JPWO2021090874A1/ja
Priority to CN202080071528.1A priority patent/CN114556641A/zh
Publication of WO2021090874A1 publication Critical patent/WO2021090874A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/06Electrodes for primary cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/202Casings or frames around the primary casing of a single cell or a single battery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/284Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with incorporated circuit boards, e.g. printed circuit boards [PCB]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/296Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by terminals of battery packs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/50Methods or arrangements for servicing or maintenance, e.g. for maintaining operating temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/50Methods or arrangements for servicing or maintenance, e.g. for maintaining operating temperature
    • H01M6/5083Testing apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a lithium primary battery pack and a gas meter using the lithium primary battery pack as a power source.
  • the gas meter measures the flow rate of fuel gas (for example, city gas, LP gas, etc.) used in facilities such as homes and stores. Gas meters are installed in each facility such as homes and stores. The charge is calculated based on the gas flow rate measured by the gas meter.
  • fuel gas for example, city gas, LP gas, etc.
  • Gas meters are installed in each facility such as homes and stores. The charge is calculated based on the gas flow rate measured by the gas meter.
  • the number of multifunctional gas meters equipped with a microcomputer has been increasing. For example, it detects an abnormality such as an abnormality in pressure, a gas leak, an earthquake, or a voltage drop in the battery built into the gas meter, displays the occurrence of the abnormality, or sends it to an external management company by communication means.
  • Gas meters have been developed that can notify information on the occurrence of abnormalities.
  • Patent Document 1 automatically determines when the operating environment temperature deviates from an appropriate temperature range, and based on the determination, outputs an alarm or outputs an alarm. Further, a gas meter that automatically shuts off the gas and stops the flow rate measurement is disclosed.
  • a gas meter equipped with a microcomputer a long-life battery such as a lithium primary battery is used as a power source.
  • a lithium thionyl chloride primary battery nominal voltage: 3.6V
  • a power source because of the operating voltage of electronic devices such as microcomputers.
  • the inventors have studied, for example, a lithium primary battery pack having an output voltage of 3.6 V that can replace a lithium thionyl chloride primary battery as a long-life primary battery that can be used as a power source for a gas meter or the like.
  • the material of the positive electrode active material (positive electrode activator) must be substantially limited to thionyl chloride (SOCl 2).
  • SOCl 2 thionyl chloride
  • a lithium thionyl chloride primary battery using thionyl chloride as the positive electrode active material is suitable for discharging at a low current of up to about 1 mA in the case of a size of ER18 / 50 (diameter: 18 mm, height: 52.6 mm), for example.
  • the lithium thionyl chloride primary battery has a discharge characteristic in which the change in internal resistance during discharge is small, the voltage does not drop until the end of discharge, and the voltage drops sharply immediately before the end of discharge. Therefore, the period from the detection of the battery voltage drop to the end of discharge is shortened. As a result, even if a voltage drop is detected and transmitted to the management company, it may be difficult to replace the battery while the battery is operating.
  • the present application is a lithium primary battery pack having an output voltage of 3.6 V level, which has a high degree of freedom in the material of the positive electrode active material and can easily detect the end of discharge in advance. To disclose.
  • the lithium primary battery pack according to the embodiment of the present invention has a voltage of a lithium primary battery main body including a positive electrode, a negative electrode, and a separator arranged between the positive electrode and the negative electrode, and the voltage of the lithium primary battery main body.
  • a voltage converter that boosts the voltage to 4 to 3.8 V and outputs it, a detector that detects a drop in the voltage of the lithium primary battery body, a positive electrode terminal and a negative electrode terminal connected to the voltage converter, and the detector. It is provided with a signal terminal connected to.
  • the gas meter according to the embodiment of the present invention includes the lithium primary battery pack.
  • a lithium primary battery pack having an output voltage of 3.6 V level, which has a high degree of freedom in the material of the positive electrode active material and can easily detect the end of discharge in advance. Packs can be provided.
  • FIG. 1 is a functional block diagram showing a configuration example of a lithium primary battery pack according to the present embodiment.
  • FIG. 2 is a diagram showing a configuration example of a voltage converter of a lithium primary battery pack.
  • FIG. 3 is a diagram showing a configuration example of a detector of a lithium primary battery pack.
  • FIG. 4 is a diagram showing a configuration example of the appearance of the lithium primary battery pack 100 shown in FIG.
  • FIG. 5 is a diagram showing the internal configuration of the package 24 of the lithium primary battery pack 100 shown in FIG.
  • FIG. 6 is a cross-sectional view showing a configuration example of the lithium primary battery main body 1.
  • FIG. 7 shows a cross-sectional view of the lithium primary battery main body 1 of FIG.
  • FIG. 8 is a diagram showing a modified example of the separator.
  • FIG. 9 is a diagram showing an example of discharge characteristics of a lithium primary battery using thionyl chloride as a positive electrode active material.
  • FIG. 10 is a diagram showing an example of discharge characteristics of a lithium primary battery using manganese dioxide as a positive electrode active material.
  • FIG. 11 is a functional block showing a configuration example of the gas meter.
  • the lithium primary battery pack according to the embodiment of the present invention has a voltage of a lithium primary battery main body including a positive electrode, a negative electrode, and a separator arranged between the positive electrode and the negative electrode, and the voltage of the lithium primary battery main body.
  • a voltage converter that boosts the voltage to 4 to 3.8 V and outputs it, a detector that detects a drop in the voltage of the lithium primary battery body, a positive electrode terminal and a negative electrode terminal connected to the voltage converter, and the detector. It is provided with a signal terminal connected to.
  • the voltage of the lithium primary battery body is boosted to 3.4 to 3.8V by the voltage converter and output to the positive electrode terminal and the negative electrode terminal.
  • the battery pack is provided with a detector for detecting a voltage drop of the lithium primary battery body and a signal terminal connected to the detector. Therefore, a drop in the voltage of the lithium primary battery body can be detected from the signal terminal without depending on the voltage between the positive electrode terminal and the negative electrode terminal. As a result, it becomes easy to detect the end of discharge of the lithium primary battery pack in advance. That is, according to the above configuration, it is a lithium primary battery pack having an output voltage of 3.6 V level, the degree of freedom of the material of the positive electrode active material is high, and it is easy to detect the end of discharge in advance. Battery packs can be provided.
  • the output voltage of the voltage converter is the voltage between the positive electrode terminal and the negative electrode terminal of the lithium primary battery pack. That is, the output voltage of the lithium primary battery pack is the output voltage of the voltage converter.
  • the nominal voltage of the lithium primary battery pack can be regarded as the output voltage of the voltage converter.
  • the output voltage of the voltage converter can be considered to be 3.4 to 3.8V.
  • the voltage obtained by measuring the distance between the positive electrode terminal and the negative electrode terminal of the new primary battery pack with a voltmeter can be regarded as the output voltage of the voltage converter.
  • the lithium primary battery pack may further include a switch for switching between conduction and non-conduction between the lithium primary battery main body and the voltage converter. By switching the switch, the power supply from the lithium primary battery body to the voltage converter can be switched on / off.
  • the positive electrode may contain manganese dioxide or a manganese oxide pre-doped with lithium as the positive electrode active material.
  • manganese dioxide or a manganese oxide previously doped with lithium as the positive electrode active material.
  • the discharge capacity of the lithium primary battery body can be increased. As a result, the time from the detection of the voltage drop of the primary battery body to the end of discharge becomes long. Therefore, it becomes easier to detect the end of discharge in advance.
  • the lithium primary battery pack further includes a package for integrally housing the lithium primary battery main body, the voltage converter, and the detector, and includes the positive electrode terminal and the negative electrode.
  • the terminal and the signal terminal may be pulled out to the outside of the package.
  • the voltage of the lithium primary battery main body may be less than 3.4V. If the nominal voltage of the lithium primary battery body is defined, that nominal voltage shall be the voltage of the lithium primary battery body. If the nominal voltage of the lithium primary battery body is not defined, the voltage of the new lithium primary battery body shall be the voltage of the lithium primary battery body.
  • a gas meter provided with the lithium primary battery pack according to any one of the above configurations 1 to 5 is also included in the embodiment of the present invention.
  • the gas meter is a gas meter powered by the lithium primary battery pack.
  • the positive electrode of the lithium primary battery body of the lithium primary battery pack included in the gas meter may contain manganese dioxide or a manganese oxide pre-doped with lithium as the positive electrode active material.
  • the gas meter may include a sensor for detecting the flow rate of gas and a controller for controlling the gas meter. In this case, the lithium primary battery pack powers the sensor and controller.
  • the gas meter may have an output unit that transmits information on the voltage drop of the lithium primary battery main body according to any one of the above configurations 1 to 5 to the outside.
  • the gas meter may include, as an output unit, an output device that outputs information to the outside by a sound, light, image, or display machine, or a communication module that performs data communication with the outside.
  • the communication module transmits information based on the signal output from the signal terminal of the primary battery pack to the outside.
  • the primary battery pack supplies power to the output section.
  • FIG. 1 is a functional block diagram showing a configuration example of a lithium primary battery pack according to the present embodiment.
  • a lithium primary battery is a primary battery that uses lithium as a negative electrode active material.
  • the lithium primary battery pack 100 shown in FIG. 1 includes a lithium primary battery main body 1 (hereinafter, may be simply referred to as a primary battery main body 1) composed of a lithium primary battery, a switch 21, a voltage converter 22, a detector 23, and a package 24. , Positive electrode terminal T1, negative electrode terminal T2, and signal terminal T3.
  • the primary battery body 1, the switch 21, the voltage converter 22, and the detector 23 are housed in one package 24.
  • the positive electrode terminal T1 and the negative electrode terminal T2 are connected to the voltage converter 22, and the signal terminal T3 is connected to the detector 23. Further, each terminal is pulled out to the outside of the package 24. As a result, the lithium primary battery pack 100 containing the voltage converter 22 and the detector 23 and having the positive electrode terminal T1, the negative electrode terminal T2, and the signal terminal T3 on the outside is integrally formed.
  • the primary battery body 1 includes a positive electrode, a negative electrode, and a separator arranged between the positive electrode and the negative electrode. A specific example of the primary battery body 1 will be described later.
  • the positive electrode side external terminal P1 and the negative electrode side external terminal P2 of the primary battery body 1 are electrically connected to the positive electrode and the negative electrode of the primary battery body 1, respectively, and the voltage converter 22 and the detector 23 are connected via the switch 21. Connected to.
  • the switch 21 switches between conduction and non-conduction between the positive electrode side external terminal P1 and the negative electrode side external terminal P2 of the primary battery body 1 and the voltage converter 22 and the detector 23.
  • the switch When the switch is turned on, power is supplied to the voltage converter 22 from the primary battery body 1, and the voltage converter 22 starts operating.
  • the switch is turned on, the voltage of the primary battery body 1 is supplied to the detector 23, and the detector 23 outputs a signal corresponding to this voltage.
  • the switch 21 may include, for example, a transistor (for example, MOSTFT) connected between the positive electrode side external terminal P1 and the voltage converter 22 and the detector 23.
  • the switch 21 can be configured so that the switch 21 can be turned on / off by inputting an electric signal from the outside of the package 24 or by mechanical operation.
  • the switch 21 can be turned off to disconnect the primary battery body 1 from the voltage converter 22 and the detector 23. As a result, the power of the primary battery main body 1 can be saved.
  • the switch 21 may be omitted. In this case, the positive electrode side external terminal P1 and the negative electrode side external terminal P2 are directly connected to the voltage converter 22, and the positive electrode side external terminal P1 and the negative electrode side external terminal P2 are directly connected to the detector 23.
  • the voltage converter 22 boosts the input voltage.
  • the voltage converter 22 is composed of, for example, a DC / DC converter such as a switching regulator or a linear regulator.
  • the input terminal of the voltage converter 22 is connected to the positive electrode side external terminal P1 and the negative electrode side external terminal P2 of the primary battery body 1, and the output terminals of the voltage converter 22 are the positive electrode terminal T1 and the negative electrode. Connected to terminal T2.
  • the voltage converter 22 converts the voltage of the primary battery body 1 (the voltage between the positive electrode side external terminal P1 and the negative electrode side external terminal P2) to 3.6V, and outputs the voltage to the positive electrode terminal T1 and the negative electrode terminal T2.
  • the negative electrode side external terminal P2 and the negative electrode terminal T2 are connected to the ground, that is, the ground (GND).
  • the output voltage of the voltage converter 22 is 3.6V.
  • the voltage converter 22 can be a booster circuit that boosts the voltage of the primary battery body 1 to 3.6V.
  • the output voltage of the voltage converter 22 may be set within the range of 3.4 V to 3.8 V.
  • FIG. 2 is a diagram showing a configuration example of the voltage converter 22.
  • the configuration of the voltage converter 22 is not limited to the configuration example shown in FIG.
  • the voltage converter 22 includes an inductor 221 and a diode 222, a switching element (MOS transistor) 223, and a control circuit 224.
  • the input terminal Vin of the voltage converter 22 is connected to the positive electrode side external terminal P1 of the primary battery body 1, and the output terminal Vout is connected to the positive electrode terminal T1 (see FIG. 1).
  • the inductor 221 and the diode 222 are connected in order from the input side between the input terminal Vin and the output terminal Vout.
  • the diode 222 is connected so that the direction from the input to the output is the forward direction.
  • the drain of the MOS transistor 223 is connected between the anode of the diode 222 and the inductor 221 and the source of the MOS transistor 223 is connected to the ground.
  • the control circuit 224 is connected to the gate of the MOS transistor 223 and the cathode of the diode 222.
  • a capacitor may be connected between the output terminal Vout and the ground. Further, a capacitor may be connected between the cathode of the diode 222 and the control circuit 224.
  • the control circuit 224 operates the voltage converter 22 by repeatedly turning on / off the MOS transistor 223.
  • the control circuit 224 can control the on / off of the MOS transistor 223 so that the voltage of the Vout becomes a predetermined voltage.
  • the control circuit 224 can control the voltage of the Vout to a predetermined value by feedback-controlling the on / off ratio of the MOS transistor 223 using the voltage of the Vout.
  • the control circuit 224 may control the voltage of Vout so as not to exceed a predetermined upper limit of the voltage of the lithium primary battery pack 100.
  • the configuration of the voltage converter 22 is not limited to the DC / DC converter including the coil and the switching element illustrated in FIG.
  • the voltage converter 22 may be an isolated converter using a transformer (for example, a flyback DC / DC converter) or a charge pump using a capacitor.
  • the detector 23 detects a voltage drop between the positive electrode side external terminal P1 and the negative electrode side external terminal P2 of the primary battery body 1.
  • the input terminal of the detector 23 is connected to the positive electrode side external terminal P1 of the primary battery body 1, and the output terminal of the detector 23 is connected to the signal terminal T3.
  • the negative electrode side external terminal P2 connected to the detector 23 is connected to ground, that is, ground (GND).
  • the detector 23 monitors the voltage of the primary battery body 1, that is, the voltage between the positive electrode side external terminal P1 and the negative electrode side external terminal P2, and outputs a signal corresponding to this voltage to the signal terminal T3.
  • the detector 23 may output a signal indicating that fact to the signal terminal T3. For example, the detector 23 changes the level of the output signal (for example, from a high level to a low level) when the voltage between the positive electrode side external terminal P1 and the negative electrode side external terminal P2 becomes the detection voltage. ) It may be configured. Alternatively, the detector 23 may output a signal indicating a voltage between the positive electrode side external terminal P1 and the negative electrode side external terminal P2.
  • the detected voltage can be set to, for example, 2.0 V or higher, which is lower than the voltage of the primary battery body 1.
  • the higher the detection voltage the longer the time from the detection of the voltage drop of the primary battery body 1 to the end of discharge can be lengthened.
  • the detection voltage is preferably 2.3 V or more, and more preferably 2.5 V or more.
  • FIG. 3 is a diagram showing a configuration example of the detector 23.
  • the configuration of the detector 23 is not limited to the configuration example shown in FIG.
  • the detector 23 includes a voltage detection resistor 231 and 232, a comparator 234, a reference voltage power supply 233, a switching element (MOS transistor) 235, and a pull-up resistor 236.
  • the voltage detection resistors 231 and 232 are connected in series between the input terminal Vin and the ground.
  • the node between the voltage detection resistors 231 and 232 is connected to one input terminal of the comparator 234, and the output terminal of the reference voltage power supply 233 is connected to the other input terminal of the comparator 234.
  • the output terminal of the comparator 234 is connected to the gate of the MOS transistor 235.
  • the drain of the MOS transistor 235 is connected to the output terminal Vout, and the source is connected to the ground.
  • a pull-up resistor 236 is connected between the output terminal Vout and the 3.6V line (output line of the voltage converter 22).
  • the voltage obtained by dividing the voltage of the input terminal Vin by the voltage detection resistors 231 and 232 is compared with the voltage of the reference voltage power supply.
  • the detection voltage is set by the resistance voltage division ratio of the voltage detection resistors 231 and 232. That is, when the voltage of the input terminal Vin becomes the detection voltage, the resistance voltage division ratio of the voltage detection resistors 231 and 232 is set so that the voltage divided by the voltage detection resistors 231 and 232 becomes equal to the voltage of the reference voltage power supply. It can be decided.
  • the MOS transistor 235 when the input terminal Vin is larger than the detection voltage, the MOS transistor 235 is turned off by the output of the comparator 234, the pulled-up high level signal is output to the output terminal Vout, and the input terminal Vin is equal to or lower than the detection voltage. At that time, the MOS transistor 235 is turned on, and a low level signal is output to the output terminal Vout.
  • FIG. 4 is a diagram showing a configuration example of the appearance of the lithium primary battery pack 100 shown in FIG.
  • the wiring of the positive electrode terminal T1, the wiring of the negative electrode terminal T2, and the wiring of the signal terminal T3 are drawn out from the package 24.
  • the package 24 has a cylindrical shape.
  • the positive electrode terminal T1, the negative electrode terminal T2, and the signal terminal T3 are pulled out from the end faces in the longitudinal direction of the package 24.
  • the shape of the package 24 is not limited to this example.
  • the shape of the package 24 may be a button type, a square type, or a shape conforming to the standard of the primary battery.
  • the package 24 does not necessarily have to seal the contents (primary battery body 1, switch 21, voltage converter 22 and detector 23).
  • the waterproofness and dustproofness of the lithium primary battery pack 100 can be improved by sealing the contents with the package 24.
  • the wiring drawn out to the outside of the package 24 may be a lead wire whose outer circumference is covered with an insulator, or may be an exposed metal wire or a metal ribbon.
  • three wirings of the positive electrode terminal T1, the negative electrode terminal T2, and the signal terminal T3 are drawn out from one end surface of the package 24 in the longitudinal direction.
  • the wiring pull-out position is not limited to this.
  • a part of the three wires may be pulled out from one of both ends in the longitudinal direction, and the remaining wires may be pulled out from the other end.
  • at least one of the three wires may be drawn from the outer peripheral surface of the cylindrical package 24.
  • at least one of the positive electrode terminal T1, the negative electrode terminal T2, and the signal terminal T3 may be exposed to the outside of the package 24 without via wiring.
  • FIG. 5 is a diagram showing the internal configuration of the package 24 of the lithium primary battery pack 100 shown in FIG.
  • the cylindrical primary battery body 1 and the substrate 25 are housed in the package 24.
  • the switch 21, the voltage converter 22, and the detector 23 shown in FIG. 1 are mounted on the substrate 25.
  • the substrate 25 is provided with pads to which the positive electrode side external terminal P1, the negative electrode side external terminal P2, the positive electrode terminal T1, the negative electrode terminal T2, and the signal terminal T3 of the primary battery body 1 are connected.
  • the primary battery body 1 and the substrate 25 are arranged side by side in the longitudinal direction of the package 24.
  • the substrate 25 is arranged so that the mounting surface of the substrate 25 is perpendicular to the longitudinal direction.
  • the arrangement of the primary battery body 1 and the substrate 25 is not limited to this example.
  • the substrate 25 may be arranged in the package 24 so that the mounting surface of the substrate 25 is parallel to the longitudinal direction.
  • the lithium primary battery pack 100 may be configured without the package 24.
  • the primary battery body 1 and the board 25 may be integrated by mounting the primary battery body 1 on the board 25.
  • the volume of the lithium primary battery pack 100 can be reduced and the size can be further reduced.
  • the primary battery body 1 can be composed of a plurality of batteries.
  • the primary battery main body 1 may be configured by an assembled battery in which a plurality of primary batteries are connected in parallel.
  • the details of the configuration of the primary battery main body 1 will be described below.
  • the shape of the primary battery body 1 is not particularly limited, and batteries having various shapes such as a cylinder, a square, and a sheet are used.
  • the primary battery body 1 is generally a tubular battery.
  • the primary battery body 1 is a lithium primary battery containing lithium in the negative electrode.
  • the primary battery body 1 includes an electrode body (wound electrode body) in which a positive electrode having a positive electrode active material layer and a negative electrode having a negative electrode active material layer are spirally wound via a separator.
  • a positive electrode for example, a positive electrode having a structure in which the positive electrode active material layer is formed on one side or both sides of the current collector can be used. From the viewpoint of increasing the capacity of the battery, it is preferable to increase the thickness of the positive electrode (for example, the total thickness of the positive electrode active material layer formed on one side or both sides and the current collector).
  • the thickness of the positive electrode is preferably, for example, 1 mm or more, and more preferably 1.4 mm or more.
  • the thickness of the positive electrode is preferably 2 mm or less, and more preferably 1.8 mm or less.
  • the non-aqueous electrolyte solution used in the primary cell body 1 is a solution in which an electrolyte salt is dissolved in an organic solvent, and the electrolyte salts include LiClO 4 , LiCF 3 SO 3 , LiC 2 F 5 SO 3 , and LiN (FSO 2 ). 2. Lithium salts such as LiN (CF 3 SO 2 ) 2 , LiPF 6 and LiBF 4 are used.
  • organic solvent examples include cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate and vinylene carbonate; chain carbonates such as dimethyl carbonate, diethyl carbonate and methyl ethyl carbonate; 1,2-dimethoxy.
  • Ethers such as ethane (ethylene glycol dimethyl ether), diglime (diethylene glycol dimethyl ether), triglime (triethylene glycol dimethyl ether), tetraglime (tetraethylene glycol dimethyl ether), methoxyethoxyethane, 1,2-diethoxyethane, tetrahydrofuran; ⁇ -butyrolactone Cyclic esters such as; nitrile; etc. may be mentioned, and only one of these may be used, or two or more thereof may be used in combination. In particular, it is preferable to use the above-mentioned cyclic carbonate and ether in combination.
  • Ethylene carbonate and propylene carbonate are preferably used as the cyclic carbonate. Further, as the ether, 1,2-dimethoxyethane is preferably used.
  • the ratio of cyclic carbonate to 20 volumes in the total 100% by volume of the cyclic carbonate and ether in the total solvent is 20 volumes from the viewpoint of heat resistance. % Or more, more preferably 30% by volume or more.
  • the ratio of ether is preferably 30% by volume or more, more preferably 40% by volume or more, based on 100% by volume of the total of cyclic carbonate and ether in the total solvent. Most preferably, it is 50% by volume or more.
  • the concentration of the lithium salt in the non-aqueous electrolytic solution is preferably 0.3 mol / L or more, more preferably 0.4 mol / L or more, from the viewpoint of ensuring good lithium ion conductivity. It is preferably 1.2 mol / L or less, and more preferably 1.0 mol / L or less. When a plurality of lithium salts are contained, it is preferable to adjust the total amount so as to be within the above range.
  • an electrolytic solution additive such as vinylene carbonate, propane sultone, or LiB (C 2 O 4 ) 2 can also be contained.
  • the content of the electrolytic solution additive in the non-aqueous electrolytic solution is, for example, preferably 0.1% by mass or more, preferably 0.3% by mass or more, from the viewpoint of ensuring a good effect of improving the storage characteristics. It is more preferable, and it is most preferable that it is 0.5% by mass or more.
  • the content of the electrolytic solution additive in the non-aqueous electrolytic solution is preferably 5% by mass or less, preferably 3% by mass. It is more preferably% or less, and most preferably 2% by mass or less.
  • the positive electrode has a positive electrode active material layer.
  • the positive electrode may have a structure in which the positive electrode active material layer is formed on one side or both sides of the current collector.
  • the positive electrode active material layer may contain, for example, a conductive additive or a binder.
  • the positive electrode active material examples include manganese dioxide, carbon fluoride, iron sulfide, a compound in which lithium is contained in the material in advance, a spinel-type lithium manganese composite oxide, and the like, but from the viewpoint of discharge capacity and operating voltage. Therefore, manganese dioxide is preferably used. In order to improve the discharge characteristics and the like, lithium manganese oxide (Li x MnO 2 ) formed by preliminarily containing (doping) Li in manganese dioxide can also be used as the positive electrode active material. As for the content of lithium in the lithium manganese oxide, the molar ratio to manganese: x is preferably 1/15 or less.
  • the conductive auxiliary agent examples include graphite and carbon black (Ketjen black, acetylene black, furnace black, etc.). Only one of these may be used as the conductive auxiliary agent, or two or more thereof may be used in combination.
  • a fluororesin such as polytetrafluoroethylene (PTFE) or polyvinylidene fluoride (PVDF); a rubber-based binder; or the like can be used.
  • PTFE polytetrafluoroethylene
  • PVDF polyvinylidene fluoride
  • a rubber-based binder or the like
  • fluororesins such as PTFE and PVDF
  • a dispersion type or a powder type may be used, but the dispersion type is particularly preferable.
  • the content of the positive electrode active material is preferably 92 to 97% by mass
  • the content of the conductive auxiliary agent is preferably 2 to 4% by mass
  • the content of the binder is high. It is preferably 1 to 4% by mass.
  • Examples of the current collector used for the positive electrode include stainless steel such as SUS316, SUS430, and SUS444, or those made of aluminum. Examples of the form of the current collector include plain weave wire mesh, expanded metal, lath mesh, punching metal, and foil (plate).
  • a paste-like conductive material can be applied to the surface of the positive electrode current collector. Even when a net-like current collector having a three-dimensional structure is used as the positive electrode current collector, the current collecting effect is remarkable by applying a conductive material, as in the case of using a material consisting essentially of a flat plate such as metal foil or punching metal. Improvement is observed. This is because not only the path in which the metal part of the net-like current collector comes into direct contact with the positive electrode mixture layer but also the path through the conductive material filled in the mesh is effectively used. It is presumed.
  • the conductive material for example, silver paste or carbon paste can be used.
  • carbon paste is suitable for reducing the manufacturing cost of a tubular non-aqueous electrolyte primary battery because the material cost is lower than that of silver paste and the contact effect is almost the same as that of silver paste. is there.
  • the binder of the conductive material it is preferable to use a heat-resistant material such as water glass or an imide-based binder. This is because the drying treatment is performed at a high temperature exceeding 200 ° C. when removing the water content in the positive electrode mixture layer.
  • the thickness of the positive electrode current collector is preferably 0.1 to 0.4 mm.
  • the density of the positive electrode active material layer is preferably 2.5 g / cm 3 or more, more preferably 2.6 g / cm 3 or more, and 2.7 g / cm 3 or more in order to increase the capacity of the battery. Is most preferable.
  • the density of the positive electrode active material layer is preferably 3.2 g / cm 3 or less, preferably 3.1 g / cm 3 or less. It is more preferable, and most preferably 3.0 g / cm 3 or less.
  • a positive electrode mixture (slurry) obtained by blending a conductive auxiliary agent or a binder with a positive electrode active material and adding water or the like as necessary is rolled into a preliminary sheet using a roll or the like. , This is dried and crushed and molded into a sheet shape again by roll rolling etc. to make a positive electrode mixture sheet, which is laminated on one side or both sides of the current collector, and pressed to form the positive electrode mixture sheet and the current collector.
  • the three parties are overlapped so that the outer circumference of the current collector is several mm inside the outer circumference of the two positive electrode mixture sheets, and the end portion in the length direction serving as the winding start end portion.
  • a positive electrode having positive electrode active material layers on both sides of the current collector and a part of which is fixed to the current collector can be manufactured.
  • the electrode When the thickness of the positive electrode is thin (for example, 0.7 mm or less), even if the entire one side of the positive electrode active material layer is integrated with the current collector, the electrode has excellent flexibility, so that it has a spiral shape together with the negative electrode and the separator. There is no problem in manufacturing the wound electrode body by winding it around.
  • the thickness of the positive electrode is increased to, for example, 1 mm or more, the flexibility and flexibility are lowered, and the stress applied to the positive electrode is likely to cause cracks or shedding of the active material layer. Therefore, as described above, only a part of the positive electrode active material layer is fixed to the current collector, and at the time of winding, the portion of the positive electrode active material layer that is not fixed to the current collector is displaced from the current collector. It is preferable that the structure is such that the stress applied to the positive electrode can be relaxed by the occurrence.
  • the positive electrode mixture sheet and the positive electrode current collector prior to the production of the wound electrode body.
  • the independent positive electrode mixture sheet and the positive electrode current collector may be integrated at the time of winding the wound electrode body. There is no particular problem in terms of characteristics even with such a manufacturing method.
  • the positive electrode is not limited to the one manufactured by the above-mentioned manufacturing method, and may be manufactured by another manufacturing method.
  • a positive electrode is manufactured by a manufacturing method in which a positive electrode mixture slurry is applied to one or both sides of a current collector, dried, and if necessary, pressed to form a positive electrode active material layer on the current collector. May be good.
  • the microporous film or non-woven fabric As the resin-made microporous film or non-woven fabric, the microporous film or non-woven fabric generally used as a separator in a lithium primary battery can be used.
  • the constituent resin of the microporous film or non-woven fabric include polyolefins such as polyethylene (PE) and polypropylene (PP); polyesters such as polyethylene terephthalate (PET) and polybutylene terephthalate (PBT); polyphenylene sulfide (PPS); and the like. , One or more of these can be used.
  • the negative electrode of the primary battery body 1 has a negative electrode active material layer.
  • the negative electrode may have, for example, a structure in which the negative electrode active material layer is formed on one side or both sides of the current collector.
  • the negative electrode active material layer can be composed of, for example, a lithium sheet (lithium metal foil or lithium alloy foil).
  • examples of the lithium alloy include a lithium-aluminum alloy.
  • the laminate of the lithium metal foil and the aluminum thin foil forms a lithium-aluminum alloy at the interface thereof when it comes into contact with the above-mentioned non-aqueous electrolytic solution in the battery. Therefore, when a laminate of a lithium metal foil and a thin aluminum foil is used, a lithium-aluminum alloy is formed on the surface of the lithium sheet constituting the negative electrode active material layer in the battery. At this time, since the lithium-aluminum alloy is pulverized, the specific surface area of the alloy-containing surface of the lithium sheet increases. Therefore, by making this alloy-containing surface a surface facing the positive electrode active material layer, the battery can be discharged more efficiently.
  • manganese In a battery using a manganese oxide such as manganese dioxide for the positive electrode, manganese is likely to be eluted from the positive electrode into the electrolytic solution when stored at a high temperature, and the eluted manganese is deposited on the surface of the lithium of the negative electrode.
  • a lithium-aluminum alloy on the surface of lithium, it is possible to prevent manganese from depositing on the surface of the negative electrode, which further increases the internal resistance of the battery. It can be effectively suppressed.
  • the thickness of the lithium sheet constituting the negative electrode active material layer is preferably 0.1 to 1 mm.
  • the thickness of the lithium metal foil is 0.1 to 1 mm, and the thickness of the thin aluminum foil is 0.005 to 0.05 mm. Is preferable.
  • a foil such as copper, nickel, iron, or stainless steel can be used for the negative electrode current collector. Since the internal volume of the battery container (outer can) is reduced by the thickness of the negative electrode current collector, the thickness of the negative electrode current collector is preferably as small as possible, specifically, for example, 0.1 mm or less. It is recommended that there be. That is, if the negative electrode current collector is too thick, the amount of the lithium sheet or the like constituting the negative electrode active material layer must be reduced, and the effect of improving the battery capacity by making the positive electrode thick as described above becomes small. There is a risk. Further, if the negative electrode current collector is too thin, it is easily torn. Therefore, the thickness of the negative electrode current collector is preferably 0.005 mm or more.
  • the width and length of the negative electrode current collector so that the negative electrode current collector is in contact with the entire one surface of the lithium sheet constituting the negative electrode active material layer.
  • the area of the negative electrode current collector is preferably 100 to 130% of the area of the lithium sheet.
  • FIG. 6 is a cross-sectional view showing a configuration example of the primary battery main body 1.
  • the primary battery body 1 has an outer can 2, a wound electrode body 3, a non-aqueous electrolytic solution, and a sealing structure for sealing the upper opening of the outer can 2.
  • the outer can 2 is made of iron, stainless steel, or the like, and has a bottomed cylindrical shape having an upper opening.
  • the wound electrode body 3 is formed by spirally winding a positive electrode 4 and a negative electrode 5 loaded in the outer can 2 via a separator 6.
  • the 1 has a positive electrode 4 and a negative electrode 5 via a separator 6 in a space surrounded by an outer can 2 and a sealing structure that seals an upper opening of the outer can 2. It has a power generation element such as a wound electrode body 3 formed by winding in a spiral shape and a non-aqueous electrolytic solution.
  • FIG. 7 shows a cross-sectional view of the primary battery main body 1 of FIG.
  • the wound electrode body 3 is formed by winding a long positive electrode 4 and a long negative electrode 5 via a separator 6, and is formed in a substantially cylindrical shape as a whole.
  • the positive electrode 4 has a structure in which two positive electrode mixture sheets 41 and 42 are laminated via a current collector 43.
  • the negative electrode 5 has a structure in which the negative electrode active material layer 51 and the current collector 52 are laminated.
  • one long negative electrode 5 is wound so as to be folded back at the center of winding. Therefore, in the cross section shown in FIG. 7, the negative electrodes 5 are in contact with each other on the current collector side, and the negative electrode active material layer of each negative electrode 5 faces the positive electrode 4 via the separator 6.
  • the separator 6 can also be formed by stacking a plurality of resin microporous films and / and resin non-woven fabrics. As a result, the effect of preventing an internal short circuit of the battery can be better ensured.
  • two or more resin microporous films are not bonded to each other between the positive electrode 4 and the negative electrode 5. It may be intervened in layers.
  • the positive electrode 4 has positive electrode active material layers 41 and 42 on both sides of the positive electrode current collector 43, and the negative electrode 5 is on one side of the negative electrode current collector 52. It has a negative electrode active material layer 51.
  • the sealing structure of the primary battery body 1 includes a lid plate 7, a terminal body 9, and an insulating plate 10.
  • the lid plate 7 is fixed to the inner peripheral edge of the upper opening of the outer can 2.
  • the terminal body 9 is attached to an opening formed in the central portion of the lid plate 7 via an insulating packing 8 made of polypropylene or the like.
  • the insulating plate 10 is arranged below the lid plate 7.
  • the insulating plate 10 is formed in a round plate shape that opens upward with an annular side wall 12 erected on the peripheral edge of the disk-shaped base portion 11.
  • a gas outlet 13 is provided in the center of the base portion 11.
  • the lid plate 7 is fixed to the inner peripheral edge of the upper opening of the outer can 2 by laser welding or with a crimp seal via packing while being received by the upper end portion of the side wall 12.
  • a thin-walled portion can be provided on the bottom portion 2a of the lid plate 7 or the outer can 2.
  • the positive electrode 4 and the lower surface of the terminal body 9 are connected by a positive electrode lead body 15.
  • the negative electrode lead body 16 attached to the negative electrode 5 is welded to the upper inner surface of the outer can 2.
  • a resin insulating plate 14 is arranged on the bottom portion 2a of the outer can 2.
  • the terminal body 9 is electrically connected to the positive electrode 4.
  • the outer can 2 is electrically connected to the negative electrode 5.
  • the terminal body 9 is electrically connected to the positive electrode pad of the substrate 25, and the outer can 2 is connected to the negative electrode pad of the substrate 25.
  • the primary battery body described with reference to FIGS. 6 to 8 shows an example, and the primary battery body that can be used in the present invention is not limited to this example.
  • the voltage between the positive electrode 4 and the negative electrode 5 of the lithium primary battery body 1 is boosted to 3.6V by the voltage converter 22, and the positive electrode terminal T1 outside the package 24 and the positive electrode terminal T1 and the negative electrode 5 are boosted to 3.6V. It is output to the negative electrode terminal T2. Further, the voltage drop of the primary battery body 1 is detected by the detector 23 and output as a signal to the signal terminal T3 outside the package 24. In this configuration, the voltage of the primary battery body 1 does not have to be 3.6V. Therefore, as described above, the range of selection of the material of the positive electrode active material of the positive electrode 4 is widened.
  • the material of the positive electrode active material has been limited to thionyl chloride or the like.
  • the primary battery body 1 since the voltage converter 22 is built in the lithium primary battery pack 100, for example, the primary battery body 1 has a voltage of less than 3.4 V, for example, a voltage in the range of 2.7 V to 3.3 V. It can be a lithium primary battery.
  • the material of the positive electrode active material of the primary battery body is not limited to thionyl chloride or the like, and the degree of freedom in material selection is increased. The higher the voltage of the primary battery body 1, the more preferably 2.8 V or more, and more preferably 2.9 V or more.
  • the lithium primary battery pack 100 Since the voltage converted by the voltage converter 22 is output to the positive electrode terminal T1 and the negative electrode terminal T2 of the lithium primary battery pack 100, the voltage of the primary battery body 1 is reduced between the positive electrode terminal T1 and the negative electrode terminal T2. It is difficult to detect early from the voltage of.
  • the lithium primary battery pack 100 has a built-in detector 23 that detects a voltage drop in the primary battery body 1, and the signal terminal T3 connected to the detector 23 is pulled out of the package 24. A signal indicating a decrease in the voltage of the primary battery body 1 is output from the signal terminal T3. This makes it easy to detect a drop in the voltage of the primary battery body 1 at an early stage. As a result, it becomes easy to detect the end of discharging of the lithium primary battery pack 100 in advance.
  • FIG. 9 is a diagram showing an example of the discharge characteristics of a lithium primary battery having a size of ER18 / 50 (diameter: 18 mm, height: 52.6 mm) using thionyl chloride as a positive electrode active material.
  • FIG. 9 is a diagram showing an example of the discharge characteristics of a lithium primary battery having a size of ER18 / 50 (diameter: 18 mm, height: 52.6 mm) using thionyl chloride as a positive electrode active material.
  • FIG. 10 is a diagram showing an example of the discharge characteristics of a lithium primary battery having a size of 17450 (diameter: 17 mm, height: 45 mm) using manganese dioxide as a positive electrode active material.
  • the lithium thionyl chloride battery has a discharge characteristic in which discharge proceeds at a constant voltage and the voltage drops sharply at the end of discharge.
  • the voltage drop at the end of discharge is gradual.
  • the time from the detection of a voltage drop to the end of discharge becomes long. For example, in the case of the discharge curve at the discharge current of 1 mA shown in FIG.
  • the time required for the discharge capacity to reach 1 mAh is 1 hour, so the “discharge capacity (mAh)” on the horizontal axis of the figure is used. , It can be replaced with “discharge time (time)” as it is, and the voltage change of the battery with the progress of the discharge time can be directly read.
  • the discharge current is 1 mA
  • the discharge can be performed for about 260 hours from the time when the voltage drops to 2.7 V to the time when the voltage drops further to 2.0 V. Therefore, it becomes easy to detect the end of discharge in advance.
  • the lithium primary battery pack 100 in this embodiment is preferably used as a battery for a gas meter.
  • a lithium primary battery pack 100 for a gas meter and a gas meter using the lithium primary battery pack 100 as a power source are also included in the embodiment of the present invention.
  • As a gas meter battery a battery having a voltage of 3.6 V may be required.
  • the lithium primary battery pack 100 of the present embodiment which can output 3.6 V level, has few restrictions on the positive electrode active material, and can easily detect the discharge end time in advance, is used as the power source of the gas meter. Can be done. This makes it possible to provide a lithium primary battery pack having the characteristics required for a gas meter battery.
  • a lithium thionyl chloride battery it is difficult for a lithium thionyl chloride battery to cope with pulse discharge and discharge at a current value of several mA or more. Therefore, it is conceivable to combine a backup power source such as a capacitor with a lithium thionyl chloride battery to make a gas meter battery capable of handling a large current.
  • a backup power source such as a capacitor
  • a lithium thionyl chloride battery due to the multi-functionalization of gas meters, it may be necessary to continuously discharge with a large current or to lengthen the discharge time of the peaked portion due to pulse discharge.
  • the inventors have found that it is difficult to meet such usage conditions with a combination of a lithium thionyl chloride battery and a backup power source. Therefore, by using the lithium primary battery pack of the present embodiment having a configuration in which the positive electrode active material is not limited to thionyl chloride, it is possible to meet the above-mentioned conditions for using a large current.
  • the lithium thionyl chloride battery has a short residual period until the battery is discharged even if a voltage drop is detected. Therefore, for example, even if a gas meter detects a voltage drop in the lithium primary battery and notifies the management company or the like, it may be difficult to replace the battery while the battery is operating. Even if the worker of the management company responds to the notification, depending on the situation, the battery may not be replaced in time and the gas flow rate measurement may be interrupted, or the gas shutoff valve may be activated before the battery discharge is completed. It is possible that the user will not be able to use the gas.
  • the lithium primary battery pack used in the present embodiment a lithium battery (for example, a lithium manganese dioxide battery) having a characteristic that the voltage drop at the end of discharge is gradual can be used as the primary battery body.
  • the lithium primary battery pack can be suitably used as a power source for a gas meter having a function of transmitting information on a battery voltage drop to the outside.
  • FIG. 11 is a functional block diagram showing a configuration example of the gas meter.
  • the gas meter 70 includes a lithium primary battery pack 100, a sensor 71, an output unit 72, and a controller 73.
  • the lithium primary battery pack 100 the lithium primary battery pack 100 of the present embodiment described above is used.
  • the lithium primary battery pack 100 is removable from the gas meter 70.
  • the positive electrode terminal T1 and the negative electrode terminal T2 of the lithium primary battery pack 100 are connected to the sensor 71, the output unit 72, and the controller 73.
  • the lithium primary battery pack 100 supplies electric power to the sensor 71, the output unit 72, and the controller 73.
  • the signal terminal T3 is connected to the controller 73.
  • the controller 73 can cause the output unit 72 to transmit information based on the signal of the signal terminal T3 to the outside.
  • the sensor 71 detects the gas flow rate.
  • the sensor 71 operates by receiving power supplied from the lithium primary battery pack.
  • the configuration of the sensor 71 is not particularly limited, but for example, a film type or ultrasonic type meter can be used.
  • the membrane meter detects the flow rate of gas by detecting the movement of the membrane due to the flow of gas.
  • the ultrasonic meter detects the flow rate of gas by detecting ultrasonic waves passing through the flow of gas.
  • the output unit 72 transmits the detection result of the sensor 71 and the detection result of the detector 23 of the lithium primary battery pack 100 (that is, information based on the signal of the signal terminal T3) to the outside of the gas meter 70.
  • the output unit 72 moves, for example, a speaker that transmits information to the outside by sound, a lamp that transmits information to the outside by light, a display that transmits information to the outside by an image, a needle pointing to a memory, or a tag on which information is written. It can be configured to include at least one of a display machine (mechanical display device) that transmits information to the outside or a communication module having a communication function with an external device.
  • the communication module is, for example, a communication device that enables communication with an external device (server or the like) via a network.
  • the output form of the information of the output unit 72 is not limited to a specific one.
  • the controller 73 controls the gas meter 70 including the sensor 71 and the output unit 72.
  • the controller 73 can process the detection result of the sensor 71 and the information based on the signal of the signal terminal T3 and output it to the output unit 72. Further, when the lithium primary battery pack 100 has the switch 21, the controller 73 may control the on / off of the switch 21.
  • the controller 73 may be configured to switch on / off the switch 21 based on the user's operation of an input device such as a button or switch included in the gas meter 70.
  • the controller 73 may be composed of a computer having a processor and a memory, or an electric circuit. At least two or more of the controller 73, the sensor 71, and the output unit 72 may be integrally configured.
  • the configuration of the gas meter 70 is not limited to the configuration shown in FIG.
  • the gas meter 70 may include a gas flow control device that controls the gas flow or a shutoff device that shuts off the gas flow, depending on the detection result of the sensor 71.
  • the controller 73 may be configured to control a valve that controls or shuts off the gas flow based on the detection result of the sensor 71.
  • the electric power for driving the valve may be supplied from the lithium primary battery pack 100.
  • the present invention is not limited to the above embodiment.
  • the application of the lithium primary battery pack of the present invention is not limited to the battery of the gas meter.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Primary Cells (AREA)

Abstract

リチウム一次電池パック100は、正極、負極、及びセパレータを含む一次電池本体1と、一次電池本体1の電圧を3.4~3.8Vに昇圧して出力する電圧変換器22と、一次電池本体1の電圧の低下を検出する検出器23と、電圧変換器22に接続された正極端子T1及び負極端子T2と、検出器23に接続された信号端子T3と、を備える。

Description

リチウム一次電池パックおよびガスメータ
 本発明は、リチウム一次電池パックと、それを電源とするガスメータに関する。
 ガスメータは、家庭や店舗等の施設で使用される燃料ガス(例えば、都市ガス、LPガス等)の流量を測定するものである。ガスメータは、家庭や店舗等の施設ごとに設置される。ガスメータで測定されたガスの流量に基づき料金が算出される。近年、マイコンを備えた多機能なガスメータが増えてきている。例えば、圧力の異常、ガスの漏洩、地震の発生、又は、ガスメータに内蔵された電池の電圧低下等の異常の発生を検知し、異常発生の表示を行ったり、通信手段により外部の管理会社に異常発生の情報を通知したりすることができるガスメータが開発されている。
 例えば、特開2004―144642号公報(特許文献1)には、使用環境温度が適正な温度範囲を逸脱した場合にはそれを自動的に判定し、その判定に基づいて、警報の出力、又は、さらにガスの遮断、及び、流量計測の停止を自動的に行うガスメータが開示されている。このような、マイコンを備えたガスメータには、電源として、リチウム一次電池のような長寿命型の電池が用いられる。特に欧州においては、マイコンなどの電子機器の作動電圧の関係から、3.3V以上の電圧で放電可能な塩化チオニルリチウム一次電池(公称電圧:3.6V)が電源として採用されている。
特開2004―144642号公報
 発明者らは、例えば、ガスメータ等の電源として使用できる長寿命の一次電池として、塩化チオニルリチウム一次電池の代替が可能となる3.6Vの出力電圧を有するリチウム一次電池パックを検討した。リチウム一次電池自体で、3.3V以上の電圧を得るには、正極活物質(正極活性剤)の材料を、実質的に、塩化チオニル(SOCl)に限定せざるを得ない。正極活物質の材料を限定すると、材料に起因する電池の特性も限定される場合がある。
 正極活物質に塩化チオニルを用いた塩化チオニルリチウム一次電池は、例えば、ER18/50のサイズ(直径:18mm、高さ:52.6mm)の場合、1mA程度までの低電流での放電には適するものの、パルス放電や数mA以上の電流値での放電に対応するのが難しい場合がある。また、塩化チオニルリチウム一次電池は、放電中の内部抵抗の変化が少なく、放電末期まで電圧が低下せず、放電終了直前に急激に電圧が低下する放電特性を有する。そのため、電池の電圧低下を検出してから放電終了までの期間が短くなる。その結果、電圧の低下を検出して管理会社に送信しても、電池が作動している間に電池交換をすることが難しい状況が発生し得る。
 そこで、本願は、3.6Vレベルの出力電圧を有するリチウム一次電池パックであって、正極活物質の材料の自由度が高く、且つ、放電終了の事前の検知が容易である、リチウム一次電池パックを開示する。
 本発明の実施形態に係るリチウム一次電池パックは、正極、負極、及び、前記正極と前記負極との間に配置されたセパレータを含むリチウム一次電池本体と、前記リチウム一次電池本体の電圧を3.4~3.8Vに昇圧して出力する電圧変換器と、前記リチウム一次電池本体の電圧の低下を検出する検出器と、前記電圧変換器に接続された正極端子及び負極端子と、前記検出器に接続された信号端子と、を備える。また、本発明の実施形態に係るガスメータは、前記リチウム一次電池パックを備える。
 本開示によれば、3.6Vレベルの出力電圧を有するリチウム一次電池パックであって、正極活物質の材料の自由度が高く、且つ、放電終了の事前の検知が容易である、リチウム一次電池パックが提供できる。
図1は、本実施形態におけるリチウム一次電池パックの構成例を示す機能ブロック図である。 図2は、リチウム一次電池パックの電圧変換器の構成例を示す図である。 図3は、リチウム一次電池パックの検出器の構成例を示す図である。 図4は、図1に示すリチウム一次電池パック100の外観の構成例を示す図である。 図5は、図4に示すリチウム一次電池パック100のパッケージ24の内部の構成を示す図である。 図6は、リチウム一次電池本体1の構成例を示す断面図である。 図7は、図6のリチウム一次電池本体1の横断面図を示している。 図8は、セパレータの変形例を示す図である。 図9は、塩化チオニルを正極活物質としたリチウム一次電池の放電特性の例を示す図である。 図10は、二酸化マンガンを正極活物質としたリチウム一次電池の放電特性の例を示す図である。 図11は、ガスメータの構成例を示す機能ブロックである。
 (構成1)
 本発明の実施形態に係るリチウム一次電池パックは、正極、負極、及び、前記正極と前記負極との間に配置されたセパレータを含むリチウム一次電池本体と、前記リチウム一次電池本体の電圧を3.4~3.8Vに昇圧して出力する電圧変換器と、前記リチウム一次電池本体の電圧の低下を検出する検出器と、前記電圧変換器に接続された正極端子及び負極端子と、前記検出器に接続された信号端子と、を備える。
 上記構成によれば、リチウム一次電池本体の電圧が、電圧変換器により3.4~3.8Vに昇圧され、正極端子及び負極端子に出力される。これにより、リチウム一次電池本体の電圧を3.6V程度の高電圧に限定する必要がなくなる。すなわち、リチウム一次電池本体として、例えば、電圧が3V程度のリチウム一次電池を用いることができる。そのため、リチウム一次電池本体の正極の材料の自由度が高くなる。正極端子及び負極端子には、電圧変換器で昇圧された電圧が出力されるため、正極端子及び負極端子の間の電圧に基づいてリチウム一次電池本体の電圧の低下を検出することが難しい場合がある。上記構成では、リチウム一次電池本体の電圧の低下を検出する検出器と、検出器に接続される信号端子が電池パックに設けられる。そのため、正極端子及び負極端子の間の電圧によらなくても、信号端子から、リチウム一次電池本体の電圧の低下を検出できる。結果として、リチウム一次電池パックの放電終了の事前の検知が容易になる。すなわち、上記構成によれば、3.6Vレベルの出力電圧を有するリチウム一次電池パックであって、正極活物質の材料の自由度が高く、且つ、放電終了の事前の検知が容易であるリチウム一次電池パックが提供できる。
 電圧変換器の出力電圧は、リチウム一次電池パックの正極端子及び負極端子の間の電圧となる。すなわち、リチウム一次電池パックの出力電圧は、電圧変換器の出力電圧である。リチウム一次電池パックの公称電圧を電圧変換器の出力電圧とみなすことができる。リチウム一次電池パックの公称電圧が3.4~3.8Vである場合、電圧変換器の出力電圧が、3.4~3.8Vであるとみなすことができる。リチウム一次電池パックの公称電圧が定義されていない場合、新品の一次電池パックの正極端子と負極端子間を電圧計で測定して得られる電圧を、電圧変換器の出力電圧とみなすことができる。
 (構成2)
 上記構成1において、前記リチウム一次電池パックは、前記リチウム一次電池本体と前記電圧変換器の間の導通及び非導通を切り替えるスイッチをさらに備えてもよい。スイッチの切り替えにより、リチウム一次電池本体から電圧変換器への電力供給のオン/オフを切り替えることができる。
 (構成3)
 上記構成1又は2において、前記正極は、正極活物質として二酸化マンガンまたは予めリチウムがドープされたマンガン酸化物を含んでもよい。正極活物質として二酸化マンガンまたは予めリチウムがドープされたマンガン酸化物を用いることで、リチウム一次電池本体の放電末期の電圧の低下を緩やかにすることができる。また、リチウム一次電池本体の放電容量を大きくすることもできる。これにより、一次電池本体の電圧の低下の検出から放電終了までの時間が長くなる。そのため、放電終了の事前の検知がさらに容易になる。
 (構成4)
 上記構成1~3のいずれかにおいて、前記リチウム一次電池パックは、前記リチウム一次電池本体、前記電圧変換器、及び、前記検出器を一体的に収納するパッケージをさらに備え、前記正極端子、前記負極端子、及び、前記信号端子が、前記パッケージの外側に引き出されていてもよい。リチウム一次電池本体、電圧変換器、及び、検出器を一体的に収納するパッケージを備えることにより、水滴の付着などからリチウム一次電池本体、電圧変換器、及び、検出器を保護することができ、リチウム一次電池パックの作動の信頼性を高めることができる。
 (構成5)
 上記構成1~4のいずれかのリチウム一次電池パックにおいて、前記リチウム一次電池本体の電圧が、3.4V未満であってもよい。リチウム一次電池本体の公称電圧が定義されている場合は、その公称電圧をリチウム一次電池本体の電圧とする。リチウム一次電池本体の公称電圧が定義されていない場合は、新品のリチウム一次電池本体の電圧を、リチウム一次電池本体の電圧とする。
 上記構成1~5のいずれかのリチウム一次電池パックを備えたガスメータも、本発明の実施形態に含まれる。前記ガスメータは、前記リチウム一次電池パックを電源とするガスメータである。このガスメータが備える前記リチウム一次電池パックの前記リチウム一次電池本体の正極は、正極活物質として二酸化マンガンまたは予めリチウムがドープされたマンガン酸化物を含んでもよい。また、ガスメータは、ガスの流量を検出するセンサと、ガスメータを制御するコントローラを備えてもよい。この場合、リチウム一次電池パックは、センサ及びコントローラに電力を供給する。
 上記ガスメータは、上記構成1~5のいずれかのリチウム一次電池本体の電圧低下の情報を外部に発信する出力部を有してもよい。例えば、上記ガスメータは、出力部として、音、光、画像又は表示機械により外部へ情報を出力する出力装置、又は、外部とのデータ通信を行う通信モジュールを備えてもよい。この場合、前記通信モジュールは、前記一次電池パックの信号端子から出力される信号に基づく情報を、外部へ発信する。一次電池パックは、出力部へ電力を供給する。
 [実施形態]
 以下、実施形態について図面を参照しつつ説明する。図中同一及び相当する構成については同一の符号を付し、同じ説明を繰り返さない。なお、説明を分かりやすくするために、以下で参照する図面においては、構成が簡略化または模式化して示されたり、一部の構成部材が省略されたりしている。
 (電池の構成例)
 図1は、本実施形態におけるリチウム一次電池パックの構成例を示す機能ブロック図である。リチウム一次電池は、負極活物質としてリチウムを用いた一次電池である。図1に示すリチウム一次電池パック100は、リチウム一次電池よりなるリチウム一次電池本体1(以下、単に一次電池本体1と称する場合もある)、スイッチ21、電圧変換器22、検出器23、パッケージ24、正極端子T1、負極端子T2、及び、信号端子T3を備える。一次電池本体1、スイッチ21、電圧変換器22、及び検出器23は、1つのパッケージ24内に収納される。正極端子T1及び負極端子T2は、電圧変換器22に接続され、信号端子T3は、検出器23に接続される。また、それぞれの端子は、パッケージ24の外側に引き出される。これにより、電圧変換器22及び検出器23を内蔵し、且つ、正極端子T1、負極端子T2及び信号端子T3を外側に有するリチウム一次電池パック100が、一体的に形成される。
 一次電池本体1は、正極、負極、及び、正極と負極との間に配置されたセパレータを含む。一次電池本体1の具体例は、後述する。一次電池本体1の正極側外部端子P1及び負極側外部端子P2は、それぞれ、一次電池本体1の前記正極及び前記負極と導通しており、スイッチ21を介して、電圧変換器22及び検出器23に接続される。スイッチ21は、一次電池本体1の正極側外部端子P1及び負極側外部端子P2と、電圧変換器22及び検出器23との間の導通と非導通を切り替える。スイッチがオンになると、電圧変換器22に一次電池本体1から電力が供給され、電圧変換器22が動作を開始する。また、スイッチがオンになると、検出器23に一次電池本体1の電圧が供給され、検出器23は、この電圧に応じた信号を出力する。
 スイッチ21は、例えば、正極側外部端子P1と電圧変換器22及び検出器23の間に接続されたトランジスタ(例えば、MOSTFT)を含んでもよい。パッケージ24の外部からの電気信号の入力又は機械的操作によってスイッチ21がオン/オフ可能となるようスイッチ21を構成することができる。
 例えば、リチウム一次電池パック100を使用しない時に、スイッチ21をオフにして、一次電池本体1と電圧変換器22及び検出器23との間を切断することができる。これにより、一次電池本体1の電力を節約することができる。なお、スイッチ21は省略してもよい。この場合、正極側外部端子P1及び負極側外部端子P2と、電圧変換器22とが直接接続され、正極側外部端子P1及び負極側外部端子P2と、検出器23とが直接接続される。
 電圧変換器22は、入力電圧を昇圧する。電圧変換器22は、例えば、スイッチングレギュレータ又はリニアレギュレータ等のDC/DCコンバータで構成される。図1に示す例では、電圧変換器22の入力端子は、一次電池本体1の正極側外部端子P1及び負極側外部端子P2に接続され、電圧変換器22の出力端子は、正極端子T1及び負極端子T2に接続される。電圧変換器22は、一次電池本体1の電圧(正極側外部端子P1及び負極側外部端子P2の間の電圧)を3.6Vに変換し、正極端子T1及び負極端子T2に出力する。本例では、負極側外部端子P2及び負極端子T2は、接地、すなわちグランド(GND)に接続される。
 本実施形態では、電圧変換器22の出力電圧は、3.6Vである。これにより、3.6Vレベルのリチウム一次電池パックが実現できる。例えば、一次電池本体1の電圧が3V程度の場合に、電圧変換器22は、一次電池本体1の電圧を、3.6Vに昇圧する昇圧回路とすることができる。必要に応じて、3.4V~3.8Vの範囲内で電圧変換器22の出力電圧を設定してもよい。塩化チオニルリチウム一次電池の代替のためには、出力電圧をできるだけ3.6Vに近づけることが望ましく、3.45~3.75Vの範囲で設定することが望ましく、3.5~3.7Vの範囲で設定することがより望ましく、3.52~3.68Vの範囲で設定することが特により望ましい。
 図2は、電圧変換器22の構成例を示す図である。なお、電圧変換器22の構成は、図2に示す構成例に限られない。図2に示す例では、電圧変換器22は、インダクタ221、ダイオード222、スイッチング素子(MOSトランジスタ)223、及び、制御回路224を含む。電圧変換器22の入力端子Vinは、一次電池本体1の正極側外部端子P1に接続され、出力端子Voutは、正極端子T1に接続される(図1参照)。入力端子Vinと出力端子Voutの間に、入力側から順に、インダクタ221及びダイオード222が接続される。ダイオード222は、入力から出力へ向かう方向が順方向となるよう接続される。MOSトランジスタ223のドレインは、ダイオード222のアノードとインダクタ221の間に、MOSトランジスタ223のソースは、グランドに接続される。制御回路224は、MOSトランジスタ223のゲートと、ダイオード222のカソードに接続される。なお、図示しないが、出力端子Voutとグランドの間にコンデンサが接続されてもよい。また、ダイオード222のカソードと制御回路224の間にコンデンサが接続されてもよい。
 制御回路224は、MOSトランジスタ223のオン/オフを繰り返すことで、電圧変換器22を動作させる。制御回路224は、Voutの電圧が予め決められた電圧になるように、MOSトランジスタ223のオン/オフを制御することができる。例えば、制御回路224は、Voutの電圧を用いて、MOSトランジスタ223のオン/オフの比率をフィードバック制御することで、Voutの電圧が所定値になるよう制御することができる。また、制御回路224は、Voutの電圧が、予め決められたリチウム一次電池パック100の電圧の上限を越えないよう制御してもよい。
 電圧変換器22の構成は、図2に例示されるコイル及びスイッチング素子を備えるDC/DCコンバータに限られない。例えば、電圧変換器22は、トランスを用いた絶縁方式のコンバータ(例えば、フライバック方式DC/DCコンバータ)、又は、コンデンサを用いたチャージポンプであってもよい。
 検出器23は、一次電池本体1の正極側外部端子P1と負極側外部端子P2の間の電圧の低下を検出する。検出器23の入力端子は、一次電池本体1の正極側外部端子P1に接続され、検出器23の出力端子は、信号端子T3に接続される。図1に示す例では、検出器23に接続される負極側外部端子P2は、接地、すなわちグランド(GND)に接続されている。検出器23は、一次電池本体1の電圧、すなわち、正極側外部端子P1と負極側外部端子P2の間の電圧を監視し、この電圧に応じた信号を、信号端子T3に出力する。例えば、検出器23は、正極側外部端子P1と負極側外部端子P2の間の電圧が予め設定された検出電圧を下回ると、その事を示す信号を、信号端子T3に出力してもよい。例えば、検出器23は、正極側外部端子P1と負極側外部端子P2の間の電圧が、検出電圧になった場合に、出力信号のレベルを変化させる(例えば、ハイレベルからローレベルに変化させる)構成であってもよい。或いは、検出器23は、正極側外部端子P1と負極側外部端子P2の間の電圧を示す信号を出力してもよい。
 検出電圧は、例えば、2.0V以上で、一次電池本体1の電圧よりも低い電圧に設定することができる。検出電圧を高くするほど、一次電池本体1の電圧の低下の検出から放電終了までの時間を長くすることができる。この観点から、検出電圧は、2.3V以上とすることが好ましく、2.5V以上とすることがより好ましい。
 図3は、検出器23の構成例を示す図である。なお、検出器23の構成は、図3に示す構成例に限られない。図3に示す例では、検出器23は、電圧検出抵抗231、232、比較器234、基準電圧電源233、スイッチング素子(MOSトランジスタ)235、及び、プルアップ抵抗236を含む。電圧検出抵抗231、232は、入力端子Vinとグランドの間に直列に接続される。電圧検出抵抗231、232の間のノードが比較器234の一方の入力端子に、基準電圧電源233の出力端子が、比較器234の他方の入力端子にそれぞれ接続される。比較器234の出力端子は、MOSトランジスタ235のゲートに接続される。MOSトランジスタ235のドレインは、出力端子Voutに接続され、ソースはグランドに接続される。出力端子Voutと、3.6V線(電圧変換器22の出力線)との間にプルアップ抵抗236が接続される。
 検出器23では、入力端子Vinの電圧を、電圧検出抵抗231、232で分圧された電圧が、基準電圧電源の電圧と比較される。検出電圧は、電圧検出抵抗231、232の抵抗分圧比により設定される。すなわち、入力端子Vinの電圧が、検出電圧になった時に、電圧検出抵抗231、232で分圧された電圧が、基準電圧電源の電圧と等しくなるよう電圧検出抵抗231、232の抵抗分圧比が決められる。例えば、入力端子Vinが検出電圧より大きい時は、比較器234の出力によりMOSトランジスタ235がオフとなり、出力端子Voutに、プルアップされたハイレベル信号が出力され、入力端子Vinが検出電圧以下の時は、MOSトランジスタ235がオンとなり、出力端子Voutにローレベル信号が出力される。
 図4は、図1に示すリチウム一次電池パック100の外観の構成例を示す図である。図4に示す例では、パッケージ24から、正極端子T1の配線、負極端子T2の配線、及び、信号端子T3の配線が引き出されている。図4に示す例では、パッケージ24は、円筒形である。パッケージ24の長手方向の端面から正極端子T1、負極端子T2、及び信号端子T3が引き出される。
 パッケージ24の形状は、この例に限られない。例えば、パッケージ24の形状を、ボタン型、角型その他一次電池の規格に適合した形状としてもよい。パッケージ24は、収容物(一次電池本体1、スイッチ21、電圧変換器22及び検出器23)を必ずしも密封しなくてもよい。或いは、パッケージ24により収容物を密封することで、リチウム一次電池パック100の防水性及び防塵性を高めることができる。
 パッケージ24の外側に引き出される配線は、外周が絶縁体に覆われたリード線であってもよいし、露出した金属線や金属リボンであってもよい。図4に示す例では、パッケージ24の長手方向の一方の端面から、正極端子T1、負極端子T2、及び信号端子T3の3本の配線が引き出されている。配線の引き出し位置はこれに限られない。例えば、長手方向の両端のうち一方から、3本の配線の一部が引き出され、他方から、残りの配線が引き出されてもよい。或いは、3本の配線の少なくとも1つは、円筒形のパッケージ24の外周面から引き出されてもよい。また、正極端子T1、負極端子T2、及び信号端子T3の少なくとも1つは、配線を介さずに、パッケージ24の外側に露出するものであってもよい。
 図5は、図4に示すリチウム一次電池パック100のパッケージ24の内部の構成を示す図である。図5に示す例では、パッケージ24内に、円筒形の一次電池本体1と、基板25が収納される。基板25には、図1に示すスイッチ21、電圧変換器22、及び検出器23が実装される。基板25には、一次電池本体1の正極側外部端子P1、負極側外部端子P2、正極端子T1、負極端子T2、及び信号端子T3がそれぞれ接続されるパッドが設けられる。
 図5に示す例では、パッケージ24の長手方向に、一次電池本体1と基板25が並んで配置される。基板25の実装面が上記長手方向に垂直になるよう基板25が配置される。一次電池本体1と基板25の配置は、この例に限られない。例えば、基板25の実装面が長手方向と平行になるように、パッケージ24内で基板25が配置されてもよい。
 なお、リチウム一次電池パック100は、パッケージ24を省いた構成とすることもできる。この場合には、例えば、一次電池本体1を基板25に実装するなどして一次電池本体1と基板25を一体化してもよい。パッケージ24を省いた構成の場合、リチウム一次電池パック100の体積を減少させより小型化することができる。
 また、一次電池本体1は、複数の電池で構成することも可能である。例えば、一次電池を複数並列接続した組電池により一次電池本体1を構成してもよい。
 (一次電池本体の構成例)
 以下、一次電池本体1の構成の詳細を記載する。一次電池本体1の形状は特に限定はされず、筒形、角形、シート状など種々の形状の電池が用いられる。例えば、ガスメータの電池として用いる場合は、一次電池本体1は、筒形の電池とするのが一般的である。一次電池本体1は、負極にリチウムを含むリチウム一次電池である。
 一次電池本体1は、正極活物質層を有する正極と、負極活物質層を有する負極とを、セパレータを介して渦巻状に巻回した電極体(巻回電極体)を含む。そして、正極には、例えば、正極活物質層が集電体の片面または両面に形成された構造のものが使用できる。電池の高容量化を図る観点から、正極の厚み(例えば、片面または両面に形成された正極活物質層と集電体との合計厚み)を厚くすることが好ましい。正極の厚みは、例えば、1mm以上とすることが好ましく、1.4mm以上とすることがより好ましい。ただし、正極が厚くなりすぎると、例えば、正極活物質層内で放電反応が均一に進行しなくなり、放電に十分に関与し難くなる部分が生じる虞があり、正極を厚くすることによる高容量化の効果が小さくなることがある。よって、正極の厚みは、2mm以下であることが好ましく、1.8mm以下であることがより好ましい。
 セパレータには、樹脂製の微多孔フィルムや不織布を用いることができ、これらを重ねて用いてもよい。一次電池本体1に用いられる非水電解液は、有機溶媒に電解質塩を溶解した溶液であり、前記電解質塩として、LiClO、LiCFSO、LiCSO、LiN(FSO、LiN(CFSO、LiPFおよびLiBFなどのリチウム塩が用いられる。
 前記非水電解液に使用し得る有機溶媒としては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネートなどの環状カーボネート;ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネートなどの鎖状カーボネート;1,2-ジメトキシエタン(エチレングリコールジメチルエーテル)、ジグライム(ジエチレングリコールジメチルエーテル)、トリグライム(トリエチレングリコールジメチルエーテル)、テトラグライム(テトラエチレングリコールジメチルエーテル)、メトキシエトキシエタン、1,2-ジエトキシエタン、テトラヒドロフランなどのエーテル;γ-ブチロラクトンなどの環状エステル;ニトリル;などが挙げられ、これらのうちの1種のみを用いてもよく、2種以上を併用してもよい。特に、前記の環状カーボネートとエーテルとを併用することが好ましい。
 前記環状カーボネートとしては、エチレンカーボネート、およびプロピレンカーボネートが好ましく用いられる。また、エーテルとしては、1,2-ジメトキシエタンが好ましく用いられる。
 前記非水電解液溶媒として、環状カーボネートとエーテルとを併用する場合には、耐熱性の点から、全溶媒中での環状カーボネートとエーテルとの合計100体積%中、環状カーボネートの割合を20体積%以上とすることが好ましく、30体積%以上とすることがより好ましい。一方、放電特性の点から、全溶媒中での環状カーボネートとエーテルとの合計100体積%中、エーテルの割合を30体積%以上とすることが好ましく、40体積%以上とすることがより好ましく、50体積%以上とすることが最も好ましい。
 前記非水電解液中のリチウム塩の濃度は、良好なリチウムイオン伝導性を確保する観点から、0.3mol/L以上であることが好ましく、0.4mol/L以上であることがより好ましく、1.2mol/L以下であることが好ましく、1.0mol/L以下であることがより好ましい。複数のリチウム塩を含有させる場合は、その合計量が前記範囲となるよう調整することが好ましい。
 電池の貯蔵特性を向上させるため、ビニレンカーボネート、プロパンスルトン、LiB(Cなどの電解液添加剤を含有させることもできる。非水電解液中における電解液添加剤の含有量は、貯蔵特性の改善効果を良好に確保する観点から、例えば、0.1質量%以上であることが好ましく、0.3質量%以上であることがより好ましく、0.5質量%以上であることが最も好ましい。一方、電池の内部抵抗が増大し、放電特性が低下してしまうのを防ぐ観点から、非水電解液中における電解液添加剤の含有量は、5質量%以下であることが好ましく、3質量%以下であることがより好ましく、2質量%以下であることが最も好ましい。
 正極は、前記の通り、正極活物質層を有するものである。例えば、正極は、正極活物質層が集電体の片面または両面に形成された構造とすることができる。正極活物質層には、正極活物質以外に、例えば、導電助剤やバインダを含有させてもよい。
 正極活物質としては、例えば、二酸化マンガン、フッ化カーボン、硫化鉄や、前記材料にあらかじめリチウムを含有させた化合物、スピネル型リチウムマンガン複合酸化物などが挙げられるが、放電容量や作動電圧の観点から、二酸化マンガンが好ましく用いられる。放電特性などを改善するために、二酸化マンガンにあらかじめLiを含有(ドープ)させて形成したリチウムマンガン酸化物(LiMnO)を正極活物質として用いることもできる。リチウムマンガン酸化物中のリチウムの含有量としては、マンガンに対するモル比:xが、1/15以下であることが好ましい。
 導電助剤としては、例えば、黒鉛、カーボンブラック(ケッチェンブラック、アセチレンブラック、ファーネスブラックなど)などが挙げられる。これらのうちの1種のみを導電助剤として用いてもよく、2種以上を併用してもよい。バインダとしては、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)などのフッ素樹脂;ゴム系バインダ;などが使用できる。なお、PTFE、PVDFなどのフッ素樹脂の場合、ディスパージョンタイプのものでもよいし、粉末状のものでもよいが、ディスパージョンタイプのものが特に好適である。
 正極活物質層においては、例えば、正極活物質の含有量が92~97質量%であることが好ましく、導電助剤の含有量が2~4質量%であることが好ましく、バインダの含有量が1~4質量%であることが好ましい。
 正極に用いる集電体としては、例えば、SUS316、SUS430、SUS444などのステンレス鋼、又は、アルミニウムを素材とするものが挙げられる。集電体の形態としては、平織り金網、エキスパンドメタル、ラス網、パンチングメタル、箔(板)などが例示できる。
 正極集電体の表面には、ペースト状の導電材を塗布しておくことができる。正極集電体として立体構造を有する網状のものを用いた場合も、金属箔やパンチングメタルなどの本質的に平板からなる材料を用いた場合と同様に、導電材の塗布により集電効果の著しい改善が認められる。これは、網状の集電体の金属部分が正極合剤層と直接的に接触する経路のみならず、網目内に充填された導電材を介しての経路が有効に利用されていることによるものと推測される。
 導電材としては、例えば、銀ペーストやカーボンペーストなどを用いることができる。特にカーボンペーストは、銀ペーストに比べて材料費が安く済み、しかも銀ペーストと略同等の接触効果が得られるため、筒形非水電解液一次電池の製造コストの低減化を図る上で好適である。導電材のバインダとしては、水ガラスやイミド系のバインダなどの耐熱性の材料を用いることが好ましい。これは正極合剤層中の水分を除去する際に200℃を超える高温で乾燥処理するためである。正極集電体の厚みは、0.1~0.4mmであることが好ましい。
 正極活物質層の密度は、電池の高容量化のため、2.5g/cm以上とすることが好ましく、2.6g/cm以上とすることがより好ましく、2.7g/cm以上とすることが最も好ましい。一方、非水電解液の吸液量を調整し放電特性の低下を防ぐため、正極活物質層の密度は、3.2g/cm以下とすることが好ましく、3.1g/cm以下とすることがより好ましく、3.0g/cm以下とすることが最も好ましい。
 正極は、例えば、正極活物質に導電助剤やバインダを配合し、必要に応じて水などを添加してなる正極合剤(スラリー)を、ロールなどを用いて圧延するなどして予備シート化し、これを乾燥・粉砕したものを再度ロール圧延などによってシート形状に成形して正極合剤シートとし、これを集電体の片面または両面に重ね、プレスなどにより正極合剤シートと集電体とを一体化して、集電体の片面または両面に正極合剤シートからなる層(正極活物質層)を形成する方法によって製造することができる。
 具体的には、例えば、集電体の外周が2枚の正極合剤シートの外周よりも数mm内側にくるようにして三者を重ね合わせ、巻回始端部となる長さ方向の端部から3~10mmの部分をプレスすることで、集電体の両面に正極活物質層を有し、その一部が集電体に固定された正極を製造できる。
 正極の厚みが薄い場合(例えば、0.7mm以下)には、正極活物質層の片面全体を集電体と一体化しても可撓性に優れた電極となるため、負極やセパレータとともに渦巻状に巻回して巻回電極体を作製する際に支障は生じない。正極の厚みが、例えば1mm以上と厚くなると、可撓性や柔軟性が低下し、正極に加わる応力により活物質層にひび割れや脱落を生じやすくなる。このため、前記のように、正極活物質層の一部のみを集電体に固定し、巻回時に、正極活物質層の集電体に固定されていない部分が集電体に対しずれを生じることにより、正極に加わる応力を緩和できる構成とすることが好ましい。
 なお、作業上の観点からは、巻回電極体の作製に先立って、正極合剤シートと正極集電体とを一体化しておくことが好ましい。これに対して、独立した正極合剤シートと正極集電体とを、巻回電極体の巻回時に一体化してもよい。このような製法によっても特性上は特に問題はない。
 なお、正極は、前記の製法により製造されたものに限定されず、他の製法により製造されたものであってもよい。例えば、正極合剤スラリーを集電体の片面または両面に塗布して乾燥し、必要に応じてプレス処理などを施して集電体上に正極活物質層を形成する製法により正極が製造されてもよい。
 前記樹脂製の微多孔フィルムや不織布には、リチウム一次電池でセパレータとして一般に使用されている微多孔フィルムや不織布を使用することができる。微多孔フィルムや不織布の構成樹脂としては、ポリエチレン(PE)、ポリプロピレン(PP)などのポリオレフィン;ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)などのポリエステル;ポリフェニレンスルフィド(PPS);などが挙げられ、これらのうちの1種または2種以上を用いることができる。
 一次電池本体1の負極は、前記の通り、負極活物質層を有するものである。負極は、例えば負極活物質層が集電体の片面または両面に形成された構造としてもよい。負極活物質層は、例えば、リチウムシート(リチウム金属箔またはリチウム合金箔)で構成することができる。負極活物質層がリチウム合金箔で構成される場合、そのリチウム合金としては、リチウム-アルミニウム合金などが挙げられる。特に、負極活物質層には、リチウム金属箔とアルミニウムの薄箔とを貼り合わせてなる積層体を用い、アルミニウムの薄箔側を、少なくとも、正極活物質層側に配置することが好ましい。リチウム金属箔とアルミニウム薄箔との積層体は、電池内で前述の非水電解液と触れることで、その界面においてリチウム-アルミニウム合金を生成する。よって、リチウム金属箔とアルミニウム薄箔との積層体を用いると、電池内において、負極活物質層を構成するリチウムシートの表面でリチウム-アルミニウム合金が生成する。このとき、リチウム-アルミニウム合金が微粉化するため、リチウムシートの前記合金含有面では、その比表面積が増大する。従って、この合金含有面を、正極活物質層との対向面とすることで、電池がより効率よく放電できるようになる。
 なお、正極に二酸化マンガンなどのマンガン酸化物を用いた電池では、高温で貯蔵された場合に、正極から電解液中にマンガンが溶出しやすくなり、溶出したマンガンが負極のリチウムの表面に析出して電池の内部抵抗を上昇させる虞があるが、リチウムの表面にリチウム-アルミニウム合金を形成することにより、負極の表面へのマンガンの析出を防ぐことができるので、電池の内部抵抗の上昇をより効果的に抑制することができる。
 負極活物質層を構成するリチウムシートの厚みは、0.1~1mmであることが好ましい。また、前記のリチウム金属箔とアルミニウムの薄箔との積層体を用いる場合には、リチウム金属箔の厚みが0.1~1mmであり、アルミニウムの薄箔の厚みが0.005~0.05mmであることが好ましい。
 負極集電体には、銅、ニッケル、鉄、ステンレスなどの箔を用いることができる。負極集電体の厚み分だけ電池容器(外装缶)の内部体積が減少するため、負極集電体の厚みは可及的に小さいことが好ましく、具体的には、例えば、0.1mm以下であることが推奨される。すなわち、負極集電体が厚すぎると、負極活物質層を構成するリチウムシートなどの仕込み量を少なくせざるを得ず、正極を前記のように厚くすることによる電池容量の向上効果が小さくなる虞がある。また、負極集電体が薄すぎると、破れやすくなるため、負極集電体の厚みは、0.005mm以上であることが好ましい。また、負極集電体は、負極活物質層を構成するリチウムシートの片面の全体に接するよう、幅や長さを調整することが好ましい。負極集電体の面積が、リチウムシートの面積の100~130%であることが好ましい。リチウムシートの片面の全体が負極集電体と接することによって、リチウムシートの負極集電体と接していない箇所が切れて電気的接続が断たれることを防ぐことができる。
 図6は、一次電池本体1の構成例を示す断面図である。図6に示す例では、一次電池本体1は、外装缶2と、巻回電極体3と、非水電解液と、外装缶2の上方開口部を封止する封口構造とを有している。外装缶2は、鉄やステンレス鋼などを素材とし、上方開口部を有する有底円筒状である。巻回電極体3は、外装缶2内に装填された正極4と負極5とをセパレータ6を介して渦巻状に巻回してなる。言い換えれば、図1に示す一次電池本体1は、外装缶2と外装缶2の上方開口部を封止する封口構造とで囲まれる空間内に、正極4と負極5とをセパレータ6を介して渦巻状に巻回してなる巻回電極体3や非水電解液といった発電要素を有するものである。
 図7は、図6の一次電池本体1の横断面図を示している。図7に示すように、巻回電極体3は、長尺の正極4と長尺の負極5とを、セパレータ6を介して巻回してなるものであり、全体として略円柱形状に形成されている。図7に示す一次電池本体1では、正極4は、2枚の正極合剤シート41、42が、集電体43を介して積層された構造を有している。また、負極5は、負極活物質層51と集電体52とが積層された構造を有している。巻回電極体3においては、図7に示すように1枚の長尺の負極5を巻回中心で折り返すようにして巻回している。このため、図7に示す断面では、負極5同士が互いの集電体側で接しており、それぞれの負極5の負極活物質層が、セパレータ6を介して正極4と対向している。
 なお、セパレータ6は、複数の樹脂製微多孔フィルムまたは/および樹脂製不織布を重ねることにより構成することもできる。これにより、電池の内部短絡を防ぐ効果をより良好に確保することができる。例えば、図8に示す通り、正極4と負極5との間に、2枚以上の樹脂製微多孔フィルム(図8では2枚の樹脂製微多孔フィルム61、62)を、互いに貼り合わせずに重ねて介在させるのであってもよい。また、図8に示す巻回電極体3において、正極4は、正極集電体43の両面に正極活物質層41、42を有しており、負極5は、負極集電体52の片面に負極活物質層51を有している。
 図6に示す例では、一次電池本体1の封口構造は、蓋板7と、端子体9と、絶縁板10とを有している。蓋板7は、外装缶2の上方開口部の内周縁に固定される。端子体9は、蓋板7の中央部に開設された開口に、ポリプロピレンなどを素材とする絶縁パッキング8を介して装着される。絶縁板10は、蓋板7の下部に配置される。絶縁板10は、円盤状のベース部11の周縁に環状の側壁12を立設した上向きに開口する丸皿形状に形成されている。ベース部11の中央にはガス通口13が開設されている。蓋板7は、側壁12の上端部に受け止められた状態で、外装缶2の上方開口部の内周縁に、レーザー溶接で固定するか、またはパッキングを介したクリンプシールで固定されている。電池内圧が急激に上昇したときの対策として、蓋板7または外装缶2の底部2aには、薄肉部(ベント)を設けることができる。正極4と端子体9の下面とは、正極リード体15で接続されている。また、負極5に取り付けられた負極リード体16は、外装缶2の上部内面に溶接されている。また、外装缶2の底部2aには、樹脂製の絶縁板14が配置されている。
 図6に示す例では、端子体9は、正極4に電気的に接続される。外装缶2は、負極5に電気的に接続される。パッケージ24内において、端子体9が、基板25の正極用のパッドに電気的に接続され、外装缶2が基板25の負極用のパッドに接続される。なお、図6~図8を用いて説明した一次電池本体は、一例を示すものであり、本発明に用いることのできる一次電池本体は、この例に限られない。
 本実施形態のリチウム一次電池パック100では、リチウム一次電池本体1の正極4及び負極5の間の電圧が、電圧変換器22によって3.6Vに昇圧されて、パッケージ24の外の正極端子T1及び負極端子T2に出力される。また、一次電池本体1の電圧の低下は、検出器23によって検出され、パッケージ24の外の信号端子T3に信号として出力される。この構成では、一次電池本体1の電圧を3.6Vにしなくてもよい。そのため、上記のように、正極4の正極活物質の材料の選択の幅が広がる。従来、リチウム一次電池で3.6Vの出力電圧を得るには、正極活物質の材料が、塩化チオニル等に限定されていた。本実施形態では、リチウム一次電池パック100に電圧変換器22が内蔵されているので、例えば、一次電池本体1を、3.4V未満の電圧、例えば、2.7V~3.3Vの範囲の電圧のリチウム一次電池とすることができる。これにより、一次電池本体の正極活物質の材料が、塩化チオニル等に限定されなくなり、材料選択の自由度が高くなる。一次電池本体1の電圧は、高いほど好ましく、2.8V以上が好ましく、2.9V以上がより好ましい。
 リチウム一次電池パック100の正極端子T1と負極端子T2には、電圧変換器22で変換された電圧が出力されるため、一次電池本体1の電圧の低下を、正極端子T1と負極端子T2の間の電圧から早期に検出するのが難しい。しかし、リチウム一次電池パック100は、一次電池本体1の電圧の低下を検出する検出器23を内蔵し、検出器23に接続された信号端子T3がパッケージ24外に引き出される。信号端子T3から一次電池本体1の電圧の低下を示す信号が出力される。これにより、一次電池本体1の電圧の低下を早期に検出することが容易になる。その結果、リチウム一次電池パック100の放電終了の事前の検知が容易になる。
 一例として、正極活物質として、二酸化マンガン又は、LiMnO(x≦1/15)など予めリチウムがドープされたマンガン酸化物を用いることで、塩化チオニルを正極活物質とした場合に比べて、リチウム一次電池パック100の放電終了の事前の検知がよりしやすくなる。図9は、塩化チオニルを正極活物質とした、ER18/50のサイズ(直径:18mm、高さ:52.6mm)のリチウム一次電池の放電特性の例を示す図である。図10は、二酸化マンガンを正極活物質とした、17450のサイズ(直径:17mm、高さ:45mm)のリチウム一次電池の放電特性の例を示す図である。図9に示すように、塩化チオニルリチウム電池は、一定電圧で放電が進行し、放電末期に急激に電圧が低下する放電特性を有する。これに対して、図10に示すように、二酸化マンガンリチウム電池は、放電末期の電圧低下が緩やかである。二酸化マンガンリチウム電池では、電圧の低下を検知してから、放電終了までの時間が長くなる。例えば、図10に示される1mAの放電電流での放電曲線の場合には、放電容量が1mAhに達するのに要する時間が1時間となるため、図の横軸の「放電容量(mAh)」を、そのまま「放電時間(時間)」に置き換えることができ、放電時間の進行に伴う電池の電圧変化を直接読み取ることができる。図より明らかなように、放電電流が1mAの場合、電圧が2.7Vに低下してから、さらに2.0Vに低下するまでに、およそ260時間の放電を行うことができる。そのため、放電終了を事前に検知しやすくなる。
 本実施形態におけるリチウム一次電池パック100は、ガスメータの電池に好適に用いられる。ガスメータ用のリチウム一次電池パック100、及び、リチウム一次電池パック100を電源とするガスメータも、本発明の実施形態に含まれる。ガスメータの電池として、3.6Vの電圧の電池が求められる場合がある。この場合に、3.6Vレベルの出力が可能で、正極活物質の限定が少なく、且つ、放電終了時期の事前検出が容易な本実施形態のリチウム一次電池パック100を、ガスメータの電源に用いることができる。これにより、ガスメータの電池に求められる特性を有するリチウム一次電池パックを提供できる。
 例えば、塩化チオニルリチウム電池では、パルス放電や数mA以上の電流値での放電に対応するのが難しい。そのため、キャパシタなどのバックアップ電源を、塩化チオニルリチウム電池と組み合わせて、大電流に対応可能なガスメータの電池とすることが考えられる。しかし、ガスメータの多機能化により、大電流での連続放電や、パルス放電で山になる部分の放電時間を長くしたりする必要が生じる場合がる。このような使用条件には、塩化チオニルリチウム電池とバックアップ電源との組み合わせでは対応が難しいことが発明者らによって見出されている。そこで、正極活物質を塩化チオニルに限定しない構成の本実施形態のリチウム一次電池パックを用いることで、上記のような大電流の使用条件に対応することができる。
 また、塩化チオニルリチウム電池は、電圧低下を検知したとしても、電池が放電終了するまでの残余期間が短い。そのため、例えば、ガスメータでリチウム一次電池の電圧低下を検出し、管理会社などに通知したとしても、電池が作動している間に、電池交換をすることが難しい場合がある。通知を受けて、管理会社の作業員が対応したとしても、状況によっては、電池交換が間に合わず、ガスの流量測定が途絶える、又は、電池の放電終了前にガスの遮断弁が作動して、ユーザーがガスを使用できなくなるなどの事態を生じ得る。
 一方、本実施形態で用いるリチウム一次電池パックは、放電末期の電圧低下が緩やかな特性を有するリチウム電池(例えば、二酸化マンガンリチウム電池)を一次電池本体として用いることができる。これにより、電圧低下の情報を管理会社が受信した後、電池が放電終了するまでの残余期間が長く、電池交換をするための十分な時間的余裕を持たせることができる。従って、前記リチウム一次電池パックは、電池の電圧低下の情報を外部に発信する機能を有するガスメータの電源として好適に用いることができる。
 図11は、ガスメータの構成例を示す機能ブロック図である。図11に示す例では、ガスメータ70は、リチウム一次電池パック100、センサ71、出力部72及びコントローラ73を備える。リチウム一次電池パック100は、上記の本実施形態のリチウム一次電池パック100が用いられる。リチウム一次電池パック100は、ガスメータ70に対して、着脱可能である。リチウム一次電池パック100の正極端子T1及び負極端子T2は、センサ71、出力部72及びコントローラ73に接続される。これにより、リチウム一次電池パック100は、センサ71、出力部72及びコントローラ73へ電力を供給する。信号端子T3は、コントローラ73に接続される。コントローラ73は、信号端子T3の信号に基づく情報を、出力部72に外部に発信させることができる。
 センサ71は、ガスの流量を検出する。センサ71は、リチウム一次電池パックから電力の供給を受けて動作する。センサ71の構成は特に限定されなないが、例えば、膜式又は超音波式のメータを用いることができる。膜式のメータは、ガスの流れによる膜の運動を検出することによりガスの流量を検出する。超音波式のメータは、ガスの流れを通った超音波を検出することによりガスの流量を検出する。
 出力部72は、センサ71の検出結果及びリチウム一次電池パック100の検出器23の検出結果(すなわち、信号端子T3の信号に基づく情報)を、ガスメータ70の外部へ発信する。出力部72は、例えば、音による外部へ情報を発信するスピーカ、光により外部へ情報を発信するランプ、画像により外部へ情報を発信するディスプレイ、メモリを指す針や情報を書いた札を動かすことで外部へ情報を発信する表示機械(機械式表示装置)又は、外部機器との通信機能を有する通信モジュールの少なくとも1つを含む構成とすることができる。通信モジュールは、例えば、外部機器(サーバ等)とのネットワークを介した通信を可能にする通信装置である。なお、出力部72の情報の出力形態は特定のものに限定されない。
 コントローラ73は、センサ71、出力部72を含むガスメータ70を制御する。コントローラ73は、センサ71の検出結果、及び、信号端子T3の信号に基づく情報を処理して、出力部72に出力させることができる。また、リチウム一次電池パック100が、スイッチ21を有する場合、コントローラ73が、スイッチ21のオン/オフを制御してもよい。例えば、コントローラ73は、ガスメータ70が備えるボタンやスイッチ等のユーザーによる入力装置に対するユーザーの操作に基づいて、スイッチ21のオン/オフを切り替えるよう構成されてもよい。コントローラ73は、プロセッサ及びメモリを有するコンピュータ、又は、電気回路により構成されてもよい。コントローラ73、センサ71及び出力部72の少なくとも2つ以上が一体的に構成されてもよい。
 ガスメータ70の構成は、図11に示す構成に限られない。例えば、ガスメータ70は、センサ71の検出結果に応じて、ガスの流れを制御するガス流制御装置又は、ガスの流れを遮断する遮断装置を備えてもよい。この場合、コントローラ73は、センサ71の検出結果に基づいて、ガスの流れを制御又は遮断する弁を制御するよう構成されてもよい。弁を駆動するための電力が、リチウム一次電池パック100から供給される構成であってもよい。
 以上、本発明の実施形態について説明したが、本発明は、上記実施形態に限られない。本発明のリチウム一次電池パックの用途は、ガスメータの電池に限られない。
 1:一次電池本体、21:スイッチ、22:電圧変換器、23:検出器、24:パッケージ、T1:正極端子、T2:負極端子、T3:信号端子、100:リチウム一次電池パック

Claims (7)

  1.  正極、負極、及び、前記正極と前記負極との間に配置されたセパレータを含むリチウム一次電池本体と、
     前記リチウム一次電池本体の電圧を3.4~3.8Vに昇圧して出力する電圧変換器と、
     前記リチウム一次電池本体の電圧の低下を検出する検出器と、
     前記電圧変換器に接続された正極端子及び負極端子と、
     前記検出器に接続された信号端子と、
    を備える、リチウム一次電池パック。
  2.  前記リチウム一次電池本体と前記電圧変換器の間の導通及び非導通を切り替えるスイッチをさらに備える、請求項1に記載のリチウム一次電池パック。
  3.  前記正極は、正極活物質として二酸化マンガンまたは予めリチウムがドープされたマンガン酸化物を含む、請求項1又は2に記載のリチウム一次電池パック。
  4.  前記リチウム一次電池本体、前記電圧変換器、及び、前記検出器を一体的に収納するパッケージをさらに備え、
     前記正極端子、前記負極端子、及び、前記信号端子が、前記パッケージの外側に引き出された、請求項1~3のいずれか1項に記載のリチウム一次電池パック。
  5.  前記リチウム一次電池本体の電圧が、3.4V未満である請求項1~4のいずれか1項に記載のリチウム一次電池パック。
  6.  請求項1~5のいずれかに記載のリチウム一次電池パックを備えたガスメータ。
  7.  請求項6に記載のガスメータであって、前記リチウム一次電池本体の電圧低下の情報を外部に発信する出力部を有するガスメータ。
PCT/JP2020/041332 2019-11-05 2020-11-05 リチウム一次電池パックおよびガスメータ WO2021090874A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/773,465 US20220376270A1 (en) 2019-11-05 2020-11-05 Lithium primary battery pack and gas meter
EP20883817.7A EP4044273A4 (en) 2019-11-05 2020-11-05 PRIMARY LITHIUM BATTERY PACK AND GAS METER
JP2021554968A JPWO2021090874A1 (ja) 2019-11-05 2020-11-05
CN202080071528.1A CN114556641A (zh) 2019-11-05 2020-11-05 锂一次电池组和气量计

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019200736 2019-11-05
JP2019-200736 2019-11-05

Publications (1)

Publication Number Publication Date
WO2021090874A1 true WO2021090874A1 (ja) 2021-05-14

Family

ID=75848246

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/041332 WO2021090874A1 (ja) 2019-11-05 2020-11-05 リチウム一次電池パックおよびガスメータ

Country Status (5)

Country Link
US (1) US20220376270A1 (ja)
EP (1) EP4044273A4 (ja)
JP (1) JPWO2021090874A1 (ja)
CN (1) CN114556641A (ja)
WO (1) WO2021090874A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11215716A (ja) * 1998-01-20 1999-08-06 Matsushita Electric Ind Co Ltd 電池管理装置,電池パック及び電子機器
JP2004144642A (ja) 2002-10-25 2004-05-20 Tokyo Gas Co Ltd 流量計測装置およびその制御方法
JP2013051797A (ja) * 2011-08-30 2013-03-14 Sanyo Electric Co Ltd 出力コネクタを備えるバッテリパック及びバッテリパックと電池駆動機器並びにバッテリパックを用いた充電方法
JP2015159628A (ja) * 2014-02-21 2015-09-03 ホシデン株式会社 充電用ホルダ

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0652900A (ja) * 1992-07-28 1994-02-25 Sony Corp 充電式電池モジュール
US6198250B1 (en) * 1998-04-02 2001-03-06 The Procter & Gamble Company Primary battery having a built-in controller to extend battery run time
CN1333508C (zh) * 2001-04-17 2007-08-22 松下电器产业株式会社 电池驱动式电子装置和移动通信机
JP5049066B2 (ja) * 2006-07-28 2012-10-17 パナソニック株式会社 電気機器、及び電池パック
JP6271275B2 (ja) * 2014-02-05 2018-01-31 Fdk株式会社 リチウム一次電池用非水系有機電解液、およびリチウム一次電池
US10483634B2 (en) * 2016-11-01 2019-11-19 Duracell U.S. Operations, Inc. Positive battery terminal antenna ground plane
US11527781B2 (en) * 2017-03-07 2022-12-13 Volt Technology Limited Battery with built-in voltage regulation device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11215716A (ja) * 1998-01-20 1999-08-06 Matsushita Electric Ind Co Ltd 電池管理装置,電池パック及び電子機器
JP2004144642A (ja) 2002-10-25 2004-05-20 Tokyo Gas Co Ltd 流量計測装置およびその制御方法
JP2013051797A (ja) * 2011-08-30 2013-03-14 Sanyo Electric Co Ltd 出力コネクタを備えるバッテリパック及びバッテリパックと電池駆動機器並びにバッテリパックを用いた充電方法
JP2015159628A (ja) * 2014-02-21 2015-09-03 ホシデン株式会社 充電用ホルダ

Also Published As

Publication number Publication date
CN114556641A (zh) 2022-05-27
EP4044273A4 (en) 2022-11-23
US20220376270A1 (en) 2022-11-24
EP4044273A1 (en) 2022-08-17
JPWO2021090874A1 (ja) 2021-05-14

Similar Documents

Publication Publication Date Title
EP0609101B1 (en) Electric power accumulating apparatus and electric power system
KR100345634B1 (ko) 2차 전지의 충전 방법 및 그 디바이스
US7935439B2 (en) Pouch type lithium secondary battery
US7858221B2 (en) Lead terminal and power supply device
CN101552350B (zh) 层叠式电池和具备该层叠式电池的电池模块
JP4416770B2 (ja) 組電池
US8652668B2 (en) Secondary battery; solar power generation system, wind power generation system, and vehicle provided therewith; and method for fabrication of a secondary battery
JPH06283210A (ja) 蓄電装置及び電力システム
JP4132588B2 (ja) 電気化学デバイス
JPH10294135A (ja) 電気二重層キャパシタと電池とのハイブリッド素子
JPWO2019186849A1 (ja) 電池、電池パック、蓄電装置、車両及び飛翔体
JP2003346779A (ja) 非水電解質二次電池
JP4009803B2 (ja) 非水系二次電池
WO2021090874A1 (ja) リチウム一次電池パックおよびガスメータ
JP3999534B2 (ja) 電気化学デバイス
JP2009181899A (ja) 積層式電池
JP2008192524A (ja) 筒形非水電解液一次電池
JP2004022363A (ja) 非電解質二次電池
WO2021117584A1 (ja) 電気化学セルおよび電気化学セルモジュール
JP2008027867A (ja) 巻回電池
KR20150132782A (ko) 고용량 리튬일차전지와 고출력 리튬이차전지가 결합된 하이브리드전지
JP2002056900A (ja) 非水電解液型電池装置及び電池パック
JPH09274900A (ja) 密閉型非水二次電池
JP4691919B2 (ja) 金属部材の溶接方法
JP2011204604A (ja) 電池パックおよびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20883817

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021554968

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020883817

Country of ref document: EP

Effective date: 20220429

NENP Non-entry into the national phase

Ref country code: DE