WO2021088767A1 - 一种汽车诊断设备、系统及方法 - Google Patents

一种汽车诊断设备、系统及方法 Download PDF

Info

Publication number
WO2021088767A1
WO2021088767A1 PCT/CN2020/125872 CN2020125872W WO2021088767A1 WO 2021088767 A1 WO2021088767 A1 WO 2021088767A1 CN 2020125872 W CN2020125872 W CN 2020125872W WO 2021088767 A1 WO2021088767 A1 WO 2021088767A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
communication
electrically connected
controller
diagnostic
Prior art date
Application number
PCT/CN2020/125872
Other languages
English (en)
French (fr)
Inventor
陈华明
庞海波
Original Assignee
深圳市道通科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市道通科技股份有限公司 filed Critical 深圳市道通科技股份有限公司
Priority to EP20885347.3A priority Critical patent/EP4043978A4/en
Publication of WO2021088767A1 publication Critical patent/WO2021088767A1/zh
Priority to US17/660,247 priority patent/US20220245972A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0259Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterized by the response to fault detection
    • G05B23/0262Confirmation of fault detection, e.g. extra checks to confirm that a failure has indeed occurred
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C5/00Registering or indicating the working of vehicles
    • G07C5/008Registering or indicating the working of vehicles communicating information to a remotely located station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • H04L12/40169Flexible bus arrangements
    • H04L12/40176Flexible bus arrangements involving redundancy
    • H04L12/40189Flexible bus arrangements involving redundancy by using a plurality of bus systems
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C5/00Registering or indicating the working of vehicles
    • G07C5/08Registering or indicating performance data other than driving, working, idle, or waiting time, with or without registering driving, working, idle or waiting time
    • G07C5/0808Diagnosing performance data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/12Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/023Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for transmission of signals between vehicle parts or subsystems
    • B60R16/0231Circuits relating to the driving or the functioning of the vehicle
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/24Pc safety
    • G05B2219/24065Real time diagnostics
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • H04L2012/40208Bus networks characterized by the use of a particular bus standard
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • H04L2012/40208Bus networks characterized by the use of a particular bus standard
    • H04L2012/40215Controller Area Network CAN
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • H04L2012/40267Bus for use in transportation systems
    • H04L2012/40273Bus for use in transportation systems the transportation system being a vehicle

Definitions

  • This application relates to the technical field of automobile diagnosis, and in particular to an automobile diagnosis equipment, system and method.
  • the communication protocols integrated by automobile diagnosis equipment are constantly enriched.
  • the vehicle type of the automobile to be diagnosed does not support one or more of the communication protocols in the automobile diagnosis equipment, it cannot be diagnosed.
  • the car diagnostic equipment cannot support car diagnosis of different car types, which reduces the versatility of its diagnosis.
  • the embodiments of the present invention aim to provide an automobile diagnostic equipment, system and method, which can support automobile diagnosis of different automobile types, thereby improving the versatility of automobile diagnostic equipment.
  • the embodiments of the present invention provide the following technical solutions:
  • an automobile diagnostic equipment including:
  • Automatic diagnosis circuit used to obtain the vehicle identification information of the car to be diagnosed
  • Standard communication bus circuit electrically connected with the automatic diagnosis circuit
  • a number of diagnostic communication bus circuits including at least one of a 24V CAN bus circuit, an FDCAN bus circuit, a PLC bus circuit, and a DoIP bus circuit, the plurality of diagnostic communication bus circuits supporting several communication protocols of different vehicle types;
  • the controller is respectively electrically connected with the automatic diagnosis circuit, the standard communication bus circuit, each of the plurality of diagnosis communication bus circuits and the communication module, and is used for according to the vehicle identification information, Select a target communication bus circuit, and communicate with the vehicle to be diagnosed through the target communication bus circuit to obtain diagnostic data of the vehicle to be diagnosed, and also send the diagnostic data to the host computer through the communication module ,
  • the target communication bus circuit includes one of the diagnostic communication bus circuit or the standard communication bus circuit.
  • the 24V CAN bus circuit is electrically connected to the controller.
  • the 24V CAN bus circuit includes:
  • CAN receiving circuit electrically connected to the controller, for receiving data sent by the controller according to vehicle identification information, and outputting a differential signal
  • the CAN sending circuit is electrically connected to the CAN receiving circuit and the controller respectively, and is used to make the controller communicate with the vehicle to be diagnosed according to the differential signal, and forward the diagnosis data to the control Device.
  • the CAN receiving circuit includes:
  • a first buffer circuit electrically connected to the controller, for buffering the vehicle identification information
  • a first level conversion circuit electrically connected to the first buffer circuit, for converting the buffered vehicle identification information into a first level signal
  • a second buffer circuit electrically connected to the first buffer circuit, for secondary buffering of the vehicle identification information
  • the second level conversion circuit is electrically connected to the second buffer circuit, and is used to convert the vehicle identification information after the second buffering into a second level signal.
  • the first level signal and the second level signal constitutes the differential signal and is output to the CAN transmission circuit.
  • the FDCAN bus circuit is electrically connected to the controller.
  • the PLC bus circuit is electrically connected to the controller.
  • the DoIP bus circuit is electrically connected to the controller.
  • the DoIP bus circuit includes:
  • An Ethernet hub which is electrically connected to the controller and the communication module, respectively;
  • a network transformer is electrically connected to the Ethernet hub, and is used to transform the diagnostic data and send it to the Ethernet hub.
  • the DoIP bus circuit further includes an RJ45 network port, and the RJ45 network port is electrically connected to the Ethernet hub.
  • the communication module includes:
  • a communication chip which is electrically connected to each of the communication interface circuits
  • the signal conversion unit is electrically connected to the controller and the communication chip, and is used to convert the diagnostic data into communication data corresponding to the communication interface circuit, so that the communication chip selects the corresponding communication interface circuit, and The communication data is sent to the host computer.
  • the several types of communication interface circuits include a USB interface circuit, a WIFI interface circuit, and a Bluetooth interface circuit.
  • the signal conversion unit includes:
  • a USB hub electrically connected to the controller, for forwarding the diagnostic data
  • the USB switch is electrically connected to the USB hub, the communication chip, and the USB interface circuit.
  • the USB switch is forwarded by the USB hub.
  • the diagnostic data is transmitted to the communication chip through the USB switch; when the controller controls the USB switch to work in the second switch state, the diagnostic data forwarded by the USB hub passes through the The USB switch is transmitted to the USB interface circuit.
  • an embodiment of the present invention also provides an automobile diagnosis system, including:
  • the upper computer is in communication connection with the car diagnostic equipment, and is used to display the diagnostic data sent by the car diagnostic equipment.
  • an embodiment of the present invention also provides an automobile diagnosis method, which is applied to the automobile diagnosis equipment described in any one of the above, and the method includes:
  • the beneficial effect of the present invention is that compared with the prior art, the embodiments of the present invention provide an automobile diagnostic equipment, system and method.
  • the vehicle identification information of the vehicle to be diagnosed is obtained through the automatic diagnosis circuit.
  • the controller selects the target communication bus circuit according to the vehicle identification information, and communicates with the vehicle to be diagnosed through the target communication bus circuit, so as to obtain the diagnosis data of the vehicle to be diagnosed.
  • the communication bus circuit includes a diagnostic communication bus circuit or a standard communication bus circuit, and several diagnostic communication bus circuits include at least one of 24V CAN bus circuit, FDCAN bus circuit, PLC bus circuit, and DoIP bus circuit, supporting several different types of cars letter of agreement.
  • the embodiment of the present invention uses the vehicle identification information of the vehicle to be diagnosed to determine the communication protocol supported by the vehicle to be diagnosed, and selects the corresponding target communication bus circuit according to the communication protocol, so that the vehicle diagnostic equipment supports the vehicle diagnosis of different vehicle types, thereby Improve the versatility of automotive diagnostic equipment.
  • FIG. 1 is a schematic structural diagram of an automobile diagnosis system provided by an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of one of the automobile diagnostic equipment provided by an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a communication bus circuit provided by an embodiment of the present invention.
  • Fig. 4 is a schematic structural diagram of a 24V CAN bus circuit provided by an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a DoIP bus circuit provided by an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a communication module provided by an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of one of the automobile diagnostic equipment provided by an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a multimeter circuit provided by an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of an oscilloscope circuit provided by an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of a detection channel circuit provided by an embodiment of the present invention.
  • FIG. 11 is a schematic structural diagram of an oscilloscope controller provided by an embodiment of the present invention.
  • FIG. 12 is a schematic structural diagram of a signal generating circuit provided by an embodiment of the present invention.
  • FIG. 13 is a schematic flowchart of an automobile diagnosis method provided by an embodiment of the present invention.
  • FIG. 1 is a schematic structural diagram of an automobile diagnosis system provided by an embodiment of the present invention.
  • the automobile diagnosis system 300 includes an automobile diagnosis device 100 and an upper computer 200 that is communicatively connected with the automobile diagnosis device 100.
  • the car diagnostic equipment 100 is connected to the car to be diagnosed (not shown in the figure), and is used to obtain the diagnostic data of the car to be diagnosed and send it to the upper computer 200.
  • the upper computer 200 is used to display the The diagnostic data sent by the automobile diagnostic equipment 100 is described.
  • the embodiment of the present invention provides an automobile diagnosis system, which can support automobile diagnosis of different automobile types by adopting the automobile diagnosis device disclosed in any of the following device embodiments, thereby improving the versatility of automobile diagnosis.
  • the automobile diagnosis device disclosed in any of the following device embodiments, thereby improving the versatility of automobile diagnosis.
  • FIG. 2 is a schematic structural diagram of one of the automobile diagnostic equipment provided by an embodiment of the present invention.
  • the automobile diagnostic equipment 100 includes an automatic diagnostic circuit 10, a standard communication bus circuit 20, a number of diagnostic communication bus circuits 30, a communication module 40 and a controller 50.
  • the automatic diagnosis circuit 10 is used to obtain vehicle identification information of the vehicle to be diagnosed.
  • the vehicle identification information includes model information, vehicle information, and communication protocol information.
  • the vehicle type information includes small cars, commercial vehicles, heavy trucks, large trailers, etc.
  • the vehicle information includes vehicle brand information, factory year information, historical maintenance information, mileage information, and the like.
  • the communication protocol information refers to the communication protocol supported by the circuit under test of the car to be diagnosed. It can be understood that a car to be diagnosed supports at least one communication protocol, for example, the motor control of the car to be diagnosed
  • the communication protocols supported by the system, entertainment multimedia system, body system, power transmission system, and ADAS automatic driving system can be different.
  • the car diagnostic equipment 100 includes a communication interface circuit (not shown) with the car to be diagnosed.
  • the communication interface circuit includes, for example, a DB26 connector.
  • the DB26 connector is connected to the The vehicle to be diagnosed is in communication connection, and the automatic diagnosis circuit 10 is electrically connected to the DB26 connector for obtaining vehicle identification information of the vehicle to be diagnosed through the DB26 connector.
  • the standard communication bus circuit 20 is electrically connected to the automatic diagnosis circuit 10 and the controller 50 respectively.
  • the standard communication bus circuit 20 includes a CAN communication bus circuit.
  • the CAN communication bus circuit is a communication bus based on a 5V system with a maximum transmission rate of 1 Mbps.
  • the controller 50 is based on the vehicle identification information. , Controlling the diagnosis data acquired by the automatic diagnosis circuit 10 to be sent to the controller 50 through the CAN communication bus circuit.
  • the standard communication bus circuit 20 can only be applied to a 5V system, and the transmission rate is low.
  • the embodiment of the present invention adds several diagnostic communication bus circuits 30 on the basis of the standard communication bus circuit 20.
  • Different diagnostic communication bus circuits 30 support communication protocols of different types of cars, and are suitable for car diagnosis of different types of cars.
  • the standard communication bus circuit 20 further includes at least one of common standard communication bus circuits such as LIN communication bus circuit, K-line circuit, SWCAN communication bus circuit, RS485 communication bus circuit, and VPW+PWM communication bus circuit. That is, the LIN communication bus circuit, the K-line circuit, the SWCAN communication bus circuit, the RS485 communication bus circuit, or the VPW+PWM communication bus supports the diagnostic data in the corresponding format of the communication protocol. The automatic diagnosis circuit 10 and the standard communication bus circuit 20 finally reach the controller 50.
  • common standard communication bus circuits such as LIN communication bus circuit, K-line circuit, SWCAN communication bus circuit, the RS485 communication bus circuit, or the VPW+PWM communication bus.
  • the automobile diagnosis device 100 cannot diagnose the automobile to be diagnosed.
  • Each of the plurality of diagnostic communication bus circuits 30 is connected to the controller 50 respectively.
  • the several diagnostic communication bus circuits 30 support several communication protocols of different vehicle types.
  • the plurality of diagnostic communication bus circuits 30 include at least one of a 24V CAN bus circuit 31, an FDCAN bus circuit 32, a PLC bus circuit 33, and a DoIP bus circuit 34.
  • the 24V CAN bus circuit 31 is electrically connected to the controller 50.
  • the 24V CAN bus circuit 31 is a CAN (Controller Area Networt, Controller Area Network) communication bus circuit based on the 24V system, and is mainly used for CAN bus communication of heavy trucks.
  • the 24V CAN bus circuit 31 includes a CAN receiving circuit 311 and a CAN sending circuit 312.
  • the CAN receiving circuit 311 is electrically connected to the controller 50 for receiving data sent by the controller 50 according to the vehicle identification information, and outputting a differential signal.
  • the CAN receiving circuit 311 includes a first buffer circuit 3111, a first level conversion circuit 3112, a second buffer circuit 3113, and a second level conversion circuit 3114.
  • the first buffer circuit 3111 is electrically connected to the controller 50 for buffering the vehicle identification information.
  • the first level conversion circuit 3112 is electrically connected to the first buffer circuit 3111 for converting the buffered vehicle identification information into a first level signal.
  • the second buffer circuit 3113 is electrically connected to the first buffer circuit 3111 for secondary buffering of the vehicle identification information.
  • the second level conversion circuit 3114 is electrically connected to the second buffer circuit 3113, and is used to convert the vehicle identification information after the second buffering into a second level signal.
  • the second level signal constitutes the differential signal and is output to the CAN sending circuit 312.
  • the first level signal is a high level signal
  • the second level signal is a low level signal
  • the CAN sending circuit 312 is electrically connected to the CAN receiving circuit 311 and the controller 50, respectively, and is used to enable the controller 50 to communicate with the vehicle to be diagnosed according to the differential signal, and to forward the diagnosis Data to the controller 50.
  • the controller 50 when the controller 50 detects that the communication protocol supported by the car to be diagnosed needs to communicate through the 24V CAN signal according to the vehicle identification information, it chooses to switch to the 24V CAN bus circuit 31, and the CAN receiving circuit 311 receives the controller. 50 According to the data sent by the vehicle identification information, the differential signal is output, and the CAN sending circuit 312 sends the 24V CAN signal of the vehicle to be diagnosed to the controller 50 through the transceiver of the 24V CAN bus circuit 31 according to the differential signal to realize control The device 50 communicates with the vehicle to be diagnosed, avoiding the problem that the vehicle diagnostic equipment cannot diagnose the vehicle to be diagnosed when the standard communication bus circuit 20 does not support 24V CAN signals for communication.
  • the FDCAN bus circuit 32 is electrically connected to the controller 50.
  • the FDCAN (CAN with Flexible Data rate, high-speed CAN) bus circuit 22 inherits the main characteristics of the CAN bus.
  • the CAN bus uses a two-wire serial communication protocol, based on non-destructive arbitration technology, distributed real-time control, and reliable error handling.
  • the detection mechanism makes the CAN bus very safe, but the CAN bus bandwidth and data field length are restricted.
  • the CAN FD bus makes up for the CAN bus bandwidth and data field length constraints. Therefore, the FDCAN bus circuit 32 has a higher bandwidth and data throughput, and the highest transmission rate is 8 Mbps.
  • the controller 50 When the controller 50 detects that the communication protocol supported by the vehicle to be diagnosed needs to communicate through the FDCAN signal according to the vehicle identification information, it selects to switch to the FDCAN bus circuit 32, and transmits the FDCAN signal of the vehicle to be diagnosed through the FDCAN bus.
  • the transceiver of the circuit 32 is sent to the controller 50 to realize the data interaction between the controller 50 and the car to be diagnosed.
  • the FDCAN bus circuit 32 is suitable for the car that supports FDCAN signal communication. Car diagnostics.
  • the PLC bus circuit 33 is electrically connected to the controller 50. Among them, the PLC bus circuit 33 is based on a serial data communication bus on the car power line.
  • the controller 50 When the controller 50 detects that the communication protocol supported by the car to be diagnosed needs to be communicated through PLC according to the vehicle identification information, it chooses to switch to the PLC bus circuit 33, and passes the PLC signal of the car to be diagnosed through the PLC bus circuit
  • the transceiver of 33 is sent to the controller 50 to realize the data interaction between the controller 50 and the car to be diagnosed.
  • the PLC bus circuit 33 is suitable for cars that support PLC signal communication. diagnosis.
  • the DoIP bus circuit 34 is electrically connected to the controller 50.
  • the DoIP (Diagnostic over internet protocol, Ethernet-based diagnosis) bus circuit 24 can implement a remote diagnosis function.
  • the DoIP bus circuit 34 includes an Ethernet hub 341, a network transformer 342, and an RJ45 network port 343.
  • the Ethernet hub 341 is electrically connected to the controller 50 and the communication module 40 respectively.
  • the network transformer 342 is electrically connected to the Ethernet hub 341, and is used to transform the diagnostic data and send it to the Ethernet hub 341.
  • the RJ45 network port 343 is electrically connected to the Ethernet hub 341.
  • the network transformer 342 is also electrically connected to the DB26 connector, and the RJ45 network port 343 is also communicatively connected to a terminal device for receiving terminal data uploaded by the terminal device and passing through the Ethernet hub 341 , Forward the terminal data to the controller 50, so as to realize the remote diagnosis of the car.
  • terminal device A obtains the diagnostic data of car B and stores it in the memory of terminal device A.
  • Terminal device A communicates with the car diagnostic device 100 through the RJ45 network port 343, and sends the diagnostic data of car B to the Ethernet hub 341 , It is forwarded to the controller 50 via the Ethernet hub 341, so that when the car diagnostic device 100 is different from the car B, the remote car diagnosis of the car B can also be realized, or the car diagnostic device 100 can check the history of the car B
  • the diagnosis data is visually displayed through the host computer 200.
  • the vehicle diagnostic device 100 provided by the embodiment of the present invention adds the 24V CAN bus circuit 31, the FDCAN bus circuit 32, the PLC bus circuit 33, and the standard communication bus circuit 20 to the standard communication bus circuit 20.
  • the DoIP bus circuit 34 realizes a more complete car diagnosis, and the types of cars that it can support fully cover small cars, commercial vehicles, heavy trucks, large trailers, etc., and avoid communication protocols that are not supported due to different types of cars. The problem has improved the versatility of the automobile diagnostic equipment 100.
  • the communication module 40 is electrically connected to the controller 50, and the communication module 40 is also communicatively connected to the upper computer 200 for forwarding the diagnostic data to the upper computer 200.
  • the communication module 40 includes several types of communication interface circuits 401, a communication chip 402 and a signal conversion unit 403.
  • Several communication interface circuits 401 are used to communicate with the host computer 200.
  • the several communication interface circuits 401 include a USB interface circuit 4011, a WIFI interface circuit 4012, and a Bluetooth interface circuit 4013.
  • the communication chip 402 is electrically connected to each of the communication interface circuits 401.
  • the communication chip 402 includes a radio frequency controller, a DDR random access memory, and an SPI flash memory.
  • the radio frequency controller is connected to the DDR random access memory, the SPI flash memory, and the USB switch 4032, respectively.
  • the WIFI interface circuit 4012 and the Bluetooth interface circuit 4013 are connected.
  • the USB interface circuit 4011 can be selected to send the diagnostic data through the USB switch 4032, or the WIFI interface circuit 4012 or the Bluetooth interface circuit 4013 can be directly selected to send the diagnostic data.
  • the signal conversion unit 403 is electrically connected to the controller 50 and the communication chip 402, and is used to convert the diagnostic data into communication data corresponding to the communication interface circuit, so that the communication chip 402 selects the corresponding communication
  • the interface circuit sends the communication data to the host computer 200.
  • the signal conversion unit 403 includes a USB hub 4031 and a USB switch 4032.
  • the USB hub 4031 is electrically connected to the controller 50, and is used to forward the diagnostic data.
  • the USB switch 4032 is electrically connected to the USB hub 4031, the communication chip 402, and the USB interface circuit 4011.
  • the diagnostic data forwarded by the USB hub 4031 is transmitted to the communication chip 402 through the USB switch 4032; when the controller 50 controls the USB switch 4032 to work in the second switch state, The diagnostic data forwarded by the USB hub 4031 is transmitted to the USB interface circuit 4011 through the USB switch 4032.
  • the current communication interface circuit is consistent with the communication interface circuit at the time of the last power failure. If the communication interface circuit needs to be replaced, the communication chip 402 will be selected according to the selection of the host computer 200. Instruction, update the communication signal, the communication signal is sent to the USB switch 4032, WIFI interface circuit 4012 or Bluetooth interface circuit 4013, select the USB switch 4032, WIFI interface circuit 4012 or Bluetooth interface circuit 4013 as the new communication interface circuit .
  • the controller 50 is electrically connected to the automatic diagnosis circuit 10, each communication bus circuit of the plurality of diagnosis communication bus circuits 30, and the communication module 40, and is used to select the target communication according to the vehicle identification information.
  • Bus circuit and communicate with the vehicle to be diagnosed through the target communication bus circuit to obtain diagnostic data of the vehicle to be diagnosed, and also send the diagnostic data to the host computer 200 through the communication module 40,
  • the target communication bus circuit includes one of the diagnostic communication bus circuit or the standard communication bus circuit.
  • the diagnostic data is fault code data
  • the vehicle maintenance personnel obtains fault information according to the fault code data displayed by the host computer 20, and determines the cause of the fault.
  • the controller 50 includes a single-chip microcomputer and its peripheral circuits, and the single-chip microcomputer may adopt 51 series, electrician series, STM32 series, and the like.
  • the controller 50 may also be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), an ARM (Acorn RISC Machine) or other Programmable logic device, discrete gate or transistor logic, discrete hardware components or any combination of these components; it can also be any traditional processor, controller, microcontroller or state machine; it can also be implemented as a combination of computing devices, For example, a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors combined with a DSP core, or any other such configuration.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • ARM Acorn RISC Machine
  • the automobile diagnostic equipment 100 further includes a power module and a button module (not shown).
  • the power supply module is connected to the controller 50 to provide a power supply voltage to the controller 50, wherein the power supply module includes a battery and a power management circuit, the battery is connected to the controller 50, and the The power management circuit is connected to the battery and the controller 50 respectively.
  • the button module is connected to the controller 50, and is used to generate an operation instruction according to the user operation, and send the operation instruction to the controller 50, so that the controller 50 executes according to the operation instruction Operate accordingly.
  • the operation instruction includes an acquisition instruction, a diagnosis mode instruction, and the like.
  • the controller 50 controls the automatic diagnosis circuit 10 to acquire the vehicle identification information of the vehicle to be diagnosed.
  • the embodiment of the present invention provides an automobile diagnosis equipment, which obtains the vehicle identification information of the automobile to be diagnosed through the automatic diagnosis circuit, and the controller selects the target communication bus circuit according to the vehicle identification information, and communicates with the automobile to be diagnosed through the target communication bus circuit,
  • the target communication bus circuit includes a diagnostic communication bus circuit or a standard communication bus circuit, and several diagnostic communication bus circuits include 24V CAN bus circuits, FDCAN bus circuits, PLC bus circuits, and DoIP bus circuits At least one of them supports several communication protocols for different vehicle types.
  • the embodiment of the present invention uses the vehicle identification information of the vehicle to be diagnosed to determine the communication protocol supported by the vehicle to be diagnosed, and selects the corresponding target communication bus circuit according to the communication protocol, so that the vehicle diagnostic equipment supports the vehicle diagnosis of different vehicle types, thereby Improve the versatility of automotive diagnostic equipment.
  • FIG. 7 is a schematic structural diagram of one of the automobile diagnostic equipment provided by an embodiment of the present invention.
  • the vehicle diagnostic equipment 400 includes the vehicle diagnostic equipment 100 described in the above-mentioned embodiment. For similarities, please refer to the above-mentioned various embodiments, which will not be repeated here. The difference is that the automobile diagnostic equipment 400 further includes a multimeter circuit 60, an oscilloscope circuit 70, and a signal generating circuit 80.
  • the multimeter circuit 60 is electrically connected to the controller 50, and is used to send multimeter data to the controller 50, so that the controller 50 forwards the multimeter data to the host computer through the communication module 40 200.
  • the multimeter circuit 60 includes a first test lead 601, a second test lead 602, a high-voltage protection circuit 605, a channel selection circuit 603, and a multimeter chip 604.
  • the first meter lead 601 is used for grounding.
  • the first test lead 601 is the negative test lead of the multimeter circuit 60
  • the second test lead 602 is the positive test lead of the multimeter circuit 60
  • the test terminal of the first test lead 601 and the second test lead 602 The test terminal of the test terminal acts on the circuit under test at the same time, the first meter lead 601, the second meter lead 602 and the circuit under test form a closed loop.
  • the current signal is from the first A meter lead 601 flows into the second meter lead 602.
  • the high-voltage protection circuit 605 is electrically connected between the channel selection circuit 603 and the second meter lead 602, and is used to perform high-voltage protection processing on the analog signal transmitted by the second meter lead 602.
  • the high-voltage protection circuit 605 can be omitted.
  • the channel selection circuit 603 is electrically connected to the second meter lead 602 and the controller 50, respectively, for switching to the corresponding test channel for testing according to the channel selection instruction sent by the controller 50, and generating a test signal .
  • the test channels of the multimeter circuit 60 include a resistance test channel, an AC current test channel, an AC voltage test channel, a DC current test channel, a DC voltage test channel, a capacitance test channel, a diode test channel, and a transistor test channel. , Buzzer test channel, etc.
  • the corresponding test signals include resistance signal, AC current signal, AC voltage signal, DC current signal, DC voltage signal, capacitance signal, diode voltage drop signal, transistor voltage drop signal, buzzer Signal etc.
  • the channel selection circuit 603 switches to the DC voltage test channel for testing according to the channel selection instruction sent by the controller 50, it controls the connection terminal of the first meter lead 601 to switch to the "COM" terminal, so The connection terminal of the second meter lead 602 is switched and connected to the "V ⁇ " terminal.
  • the multi-pen chip 604 is electrically connected to the channel selection circuit 603 and the controller 50 respectively, and is configured to send the multimeter data to the controller 50 according to the test signal.
  • the multimeter chip 604 sends the multimeter data to the controller 50 through a serial peripheral interface, and the corresponding multimeter data is serial data.
  • the oscilloscope circuit 70 is electrically connected to the communication module 40 for sending oscilloscope data to the host computer 200 through the communication module 40.
  • the oscilloscope data is a waveform curve signal, and according to the waveform curve signal, signal parameters such as voltage, current, frequency, phase difference, and amplitude modulation of the analog signal can be measured.
  • the oscilloscope circuit 70 includes a plurality of detection channel circuits 71, a first switch circuit 72, an analog-to-digital conversion circuit 73 and an oscilloscope controller 74.
  • Each detection channel circuit 71 is used to detect and process analog signals.
  • the detection channel circuit 71 includes a signal conditioning circuit 711 and a differentiator 712.
  • the signal conditioning circuit 711 is used to detect the analog signal and perform signal conditioning processing on the analog signal.
  • the signal conditioning circuit 711 includes a probe 7111, a signal attenuation circuit 7112, and an operational amplifier 7113.
  • the probe 7111 is used to detect analog signals.
  • the signal attenuation circuit 7112 is electrically connected to the probe 7111 for attenuating the analog signal.
  • the operational amplifier 7113 is electrically connected to the signal attenuation circuit 7112, and is used to amplify the attenuated analog signal.
  • the differentiator 712 is electrically connected to the signal conditioning circuit 711 and a corresponding analog switch 720, and is used to process the analog signal after signal conditioning to obtain a differential signal.
  • the detection channel circuit 71 further includes a second switch circuit 713.
  • the second switch circuit 713 is electrically connected between the signal conditioning circuit 711 and the differentiator 712, and the second switch circuit 713 is also electrically connected to the automatic diagnosis circuit 10.
  • the signal-conditioned analog signal is transmitted to the differentiator 712 through the second switch circuit 713;
  • the second switch circuit 713 When operating in the second switch state under the control of the automatic diagnostic circuit 10, the communication waveform signal corresponding to the diagnostic data sent from the automatic diagnostic circuit 10 is transmitted to the differentiator through the second switch circuit 713 712.
  • the communication waveform signal corresponding to the diagnostic data is converted into oscilloscope data by the second switch circuit 713, and displayed on the host computer 200 in the form of a waveform curve signal.
  • the channel circuit 71 detects and processes the oscilloscope data corresponding to the analog signal for data comparison.
  • the first switch circuit 72 includes a plurality of analog switches 720, and each of the analog switches 720 is electrically connected to one of the detection channel circuits 71.
  • the analog-to-digital conversion circuit 73 is electrically connected to each of the analog switches 720. When the target analog switch is in the on state, the processed analog signal is input to the analog-to-digital conversion circuit 73 through the target analog switch. The analog-to-digital conversion circuit 73 converts the processed analog signal into a digital signal.
  • the oscilloscope controller 74 is electrically connected to the communication module 40 and the analog-to-digital conversion circuit 73, respectively, for obtaining oscilloscope data according to the digital signal, and sending the oscilloscope data through the communication module 40 Data to the host computer 200.
  • the oscilloscope controller 74 includes an FPGA chip 741 and a data conversion unit 742.
  • the FPGA chip 741 is electrically connected to the analog-to-digital conversion circuit 73 for obtaining oscilloscope communication data according to the digital signal.
  • the data conversion unit 742 is electrically connected to the FPGA chip 741 and the communication module 40, and is configured to convert the oscilloscope communication data into oscilloscope data, and send the oscilloscope data to the oscilloscope through the communication module 40 The host computer 200.
  • the FPGA chip 741 controls the working state of the analog switch 720, and can choose to output a channel corresponding to the analog signal processed by the detection channel circuit 71 to the analog-to-digital conversion circuit 73.
  • the oscilloscope communication data is parallel data, which is transmitted to the data conversion unit 742 through the parallel interface of the FPGA chip 741, and the data conversion unit 742 converts the oscilloscope communication data into oscilloscope data. It is USB type data, and the oscilloscope data is sent to the USB hub 4031 through the USB interface of the data conversion unit 742.
  • the signal generating circuit 80 is electrically connected to the controller 50 for generating analog waveform signals in response to the driving signal of the controller 50.
  • the signal generating circuit 80 includes a signal amplifying circuit 801, a first terminal 802 and a second terminal 803.
  • the signal amplifying circuit 801 is electrically connected to the controller 50 for amplifying the driving signal sent by the controller 50 to obtain an analog waveform signal.
  • the first terminal 802 is electrically connected to the signal amplifying circuit 801 for transmitting the analog waveform signal.
  • the second terminal 803 is used for grounding.
  • the signal generating circuit 80 is connected to the circuit under test, and the analog waveform signal amplified by the signal amplifying circuit 801 acts on the circuit under test to trigger the operation of the target chip of the circuit under test. Only by realizing the work of the target chip of the circuit under test can the fault detection in the case of accurately determining the cause of the fault.
  • the diagnostic working status of the automobile diagnostic equipment 400 includes the fault code diagnostic status, the fault code diagnostic status and the oscilloscope diagnostic status, the fault code diagnostic status and the multimeter diagnostic status, the fault code diagnostic status and the signal generator diagnostic status, and the fault code diagnostic status.
  • the diagnosis data when it is adjusted to the fault code diagnosis state, includes fault code data; when it is adjusted to the fault code diagnosis state and the oscilloscope diagnosis state, the diagnosis data includes fault code data and oscilloscope data; When it is adjusted to the fault code diagnosis state and the multimeter diagnosis state, the diagnosis data includes fault code data and multimeter data; when it is adjusted to the fault code diagnosis state and the signal generator diagnosis state, the diagnosis data includes the fault Code data; when adjusted to the fault code diagnosis state, oscilloscope diagnosis state, and multimeter diagnosis state, the diagnosis data includes fault code data, oscilloscope data, and multimeter data; when adjusted to the fault code diagnosis state, oscilloscope diagnosis state In the diagnosis state with the signal generator, the diagnosis data includes fault code data and oscilloscope data; when adjusted to the fault code diagnosis state, multimeter diagnosis state, and signal generator diagnosis state, the diagnosis data includes fault code data and Multimeter data.
  • the automobile diagnostic equipment 400 sends the multimeter data to the controller 50 through the multimeter circuit 60, so that the controller 50 forwards the multimeter data to the host computer 200 through the communication module 40, and the oscilloscope circuit 70 sends the oscilloscope data to the host computer 200 through the communication module 40.
  • the signal generating circuit 80 generates analog waveform signals in response to the drive signal of the controller 50. Therefore, the automobile diagnostic equipment 400 integrates the multimeter circuit 60, the oscilloscope circuit 70, and the signal generating circuit 80 to avoid the failure to use only the fault code data. Accurately determined specific fault causes and problems have improved the adaptability of automotive diagnostic equipment.
  • FIG. 13 is a schematic flowchart of an automobile diagnosis method according to an embodiment of the present invention.
  • the automobile diagnosis method is applied to the automobile diagnosis equipment as described in any of the above embodiments, and the method includes:
  • S101 Acquire vehicle identification information.
  • S105 Communicate with the vehicle to be diagnosed through the target communication bus circuit, so that the vehicle to be diagnosed returns diagnosis data based on the target communication bus circuit.
  • the embodiment of the present invention provides a vehicle diagnosis method, by acquiring vehicle identification information, selecting a target communication bus circuit according to the vehicle identification information, and communicating with the vehicle to be diagnosed through the target communication bus circuit, so that the vehicle to be diagnosed is based on the target communication bus circuit To return the diagnostic data. Therefore, the embodiment of the present invention uses the vehicle identification information of the vehicle to be diagnosed to determine the communication protocol supported by the vehicle to be diagnosed, and selects the corresponding target communication bus circuit according to the communication protocol.
  • the target communication bus circuit includes a diagnostic communication bus circuit or Standard communication bus circuit, and the diagnostic communication bus circuit includes at least one of 24V CAN bus circuit, FDCAN bus circuit, PLC bus circuit, and DoIP bus circuit, so that the car diagnostic equipment supports the car diagnosis of different car types, thereby improving the car diagnostic equipment Versatility.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Computing Systems (AREA)
  • Small-Scale Networks (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)

Abstract

一种汽车诊断设备(100)、系统(300)及方法,涉及汽车诊断技术领域,提升了汽车诊断设备的通用性。其中,汽车诊断设备(100)包括:自动诊断电路(10),用于获取待诊断汽车的车辆识别信息;标准通信总线电路(20),与自动诊断电路(10)电连接;若干诊断通信总线电路(30),包括24V CAN总线电路(31)、FDCAN总线电路(32)、PLC总线电路(33)、DoIP总线电路(34)中的至少一个;通信模组(40);以及控制器(50),分别与自动诊断电路(10)、标准通信总线电路(20)、若干诊断通信总线电路(30)中每一诊断通信总线电路(30)及通信模组(40)电连接,用于根据车辆识别信息,选择目标通信总线电路,并且通过目标通信总线电路与待诊断汽车通信,以获取待诊断汽车的诊断数据,并且还通过通信模组(40)将诊断数据发送至上位机(200)。

Description

一种汽车诊断设备、系统及方法
本申请要求于2019年11月6日提交中国专利局、申请号为201911076893.7、申请名称为“一种汽车诊断设备、系统及方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及汽车诊断技术领域,尤其涉及一种汽车诊断设备、系统及方法。
背景技术
随着汽车诊断技术的不断发展,汽车诊断设备集成的通信协议不断丰富,但若待诊断汽车的汽车类型不支持汽车诊断设备中的某一种或多种通信协议,导致其无法被诊断,故而,该汽车诊断设备无法支持不同汽车类型的汽车诊断,降低了其诊断的通用性。
发明内容
本发明实施例旨在提供一种汽车诊断设备、系统及方法,其能够支持不同汽车类型的汽车诊断,从而提升了汽车诊断设备的通用性。
为解决上述技术问题,本发明实施例提供以下技术方案:
在第一方面,本发明实施例提供了一种汽车诊断设备,包括:
自动诊断电路,用于获取待诊断汽车的车辆识别信息;
标准通信总线电路,与所述自动诊断电路电连接;
若干诊断通信总线电路,包括24V CAN总线电路、FDCAN总线电路、PLC总线电路、DoIP总线电路中的至少一个,所述若干诊断通信总线电路支持若干种不同汽车类型的通信协议;
通信模组;以及
控制器,分别与所述自动诊断电路、所述标准通信总线电路、所述若干诊断通信总线电路中每一诊断通信总线电路及所述通信模组电连接,用于根据所述车辆识别信息,选择目标通信总线电路,并且通过所述目标通信总线电路与所述待诊断汽车通信,以获取所述待诊断汽车的诊断数据,并且还通过所述通信模组将所述诊断数据发送至上位机,其中,所述目标通信总线电路包括一个所述诊断通信总线电路或所述标准通信总线电路。
可选地,所述24V CAN总线电路与所述控制器电连接。
可选地,所述24V CAN总线电路包括:
CAN接收电路,与所述控制器电连接,用于接收所述控制器根据车辆识别信息发送的数据,输出差分信号;
CAN发送电路,分别与所述CAN接收电路和所述控制器电连接,用于根据所述差分信号,使所述控制器与所述待诊断汽车通信,并转发所述诊断数据至 所述控制器。
可选地,所述CAN接收电路包括:
第一缓冲电路,与所述控制器电连接,用于缓冲所述车辆识别信息;
第一电平转换电路,与所述第一缓冲电路电连接,用于将缓冲后的所述车辆识别信息转换成第一电平信号;
第二缓冲电路,与所述第一缓冲电路电连接,用于二次缓冲所述车辆识别信息;
第二电平转换电路,与所述第二缓冲电路电连接,用于将二次缓冲后的所述车辆识别信息转换成第二电平信号,所述第一电平信号与所述第二电平信号组成所述差分信号,并输出给所述CAN发送电路。
可选地,所述FDCAN总线电路与所述控制器电连接。
可选地,所述PLC总线电路与所述控制器电连接。
可选地,所述DoIP总线电路与所述控制器电连接。
可选地,所述DoIP总线电路包括:
以太网集线器,分别与所述控制器和所述通信模组电连接;
网络变压器,与所述以太网集线器电连接,用于对所述诊断数据作变压处理后发送至所述以太网集线器。
可选地,所述DoIP总线电路还包括RJ45网口,所述RJ45网口与所述太网集线器电连接。
可选地,所述通信模组包括:
若干种通信接口电路,用于与所述上位机通信;
通信芯片,与每个所述通信接口电路电连接;
信号转换单元,分别与所述控制器和所述通信芯片电连接,用于将所述诊断数据转换成对应通信接口电路的通信数据,以使所述通信芯片选择对应的通信接口电路,将所述通信数据发送至上位机。
可选地,所述若干种通信接口电路包括USB接口电路、WIFI接口电路及蓝牙接口电路。
可选地,所述信号转换单元包括:
USB集线器,与所述控制器电连接,用于转发所述诊断数据;
USB切换开关,分别与所述USB集线器、所述通信芯片及所述USB接口电路电连接,当所述控制器控制所述USB切换开关工作在第一开关状态时,由所述USB集线器转发的所述诊断数据通过所述USB切换开关传输给所述通信芯片;当所述控制器控制所述USB切换开关工作在第二开关状态时,由所述USB集线器转发的所述诊断数据通过所述USB切换开关传输给所述USB接口电路。
在第二方面,本发明实施例还提供了一种汽车诊断系统,包括:
如上任一项所述的汽车诊断设备;和
上位机,与所述汽车诊断设备通信连接,用于显示由所述汽车诊断设备发送的诊断数据。
在第三方面,本发明实施例还提供了一种汽车诊断方法,应用于如上任一项所述的汽车诊断设备,所述方法包括:
获取车辆识别信息;
根据所述车辆识别信息,选择目标通信总线电路;
通过所述目标通信总线电路与所述待诊断汽车通信,以使所述待诊断汽车基于所述目标通信总线电路,返回诊断数据;
接收所述诊断数据。
本发明的有益效果是:与现有技术相比较,本发明实施例提供了一种汽车诊断设备、系统及方法。通过自动诊断电路获取待诊断汽车的车辆识别信息,控制器根据车辆识别信息,选择目标通信总线电路,并且通过目标通信总线电路与待诊断汽车通信,以便获取待诊断汽车的诊断数据,其中,目标通信总线电路包括一个诊断通信总线电路或标准通信总线电路,并且若干诊断通信总线电路包括24V CAN总线电路、FDCAN总线电路、PLC总线电路、DoIP总线电路中的至少一个,支持若干种不同汽车类型的通信协议。因此,本发明实施例通过待诊断汽车的车辆识别信息,确定待诊断汽车支持的通信协议,并根据该通信协议选择对应的目标通信总线电路,使汽车诊断设备支持不同汽车类型的汽车诊断,从而提升了汽车诊断设备的通用性。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1为本发明实施例提供的一种汽车诊断系统的结构示意图;
图2为本发明实施例提供的其中一种汽车诊断设备的结构示意图;
图3为本发明实施例提供的一种通信总线电路的结构示意图;
图4为本发明实施例提供的一种24V CAN总线电路的结构示意图;
图5为本发明实施例提供的一种DoIP总线电路的结构示意图;
图6为本发明实施例提供的一种通信模组的结构示意图;
图7为本发明实施例提供的其中一种汽车诊断设备的结构示意图;
图8为本发明实施例提供的一种万用表电路的结构示意图;
图9为本发明实施例提供的一种示波器电路的结构示意图;
图10为本发明实施例提供的一种检测通道电路的结构示意图;
图11为本发明实施例提供的一种示波器控制器的结构示意图;
图12为本发明实施例提供的一种信号发生电路的结构示意图;
图13为本发明实施例提供的一种汽车诊断方法的流程示意图。
具体实施方式
为了便于理解本申请,下面结合附图和具体实施方式,对本申请进行更详细的说明。需要说明的是,当一个元件被表述“连接”另一个元件,它可以是直接连接到另一个元件、或者其间可以存在一个或多个居中的元件。此外,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性。
除非另有定义,本说明书所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。在本发明的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是用于限制本发明。本说明书所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
此外,下面所描述的本申请不同实施例中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合。
请参阅图1,为本发明实施例提供的一种汽车诊断系统的结构示意图。如图1所示,所述汽车诊断系统300包括汽车诊断设备100以及与所述汽车诊断设备100通信连接的上位机200。其中,所述汽车诊断设备100与待诊断汽车连接(图未示),用于获取所述待诊断汽车的诊断数据,并发送至所述上位机200,所述上位机200用于显示由所述汽车诊断设备100发送的诊断数据。
本发明实施例提供了一种汽车诊断系统,通过采用下述任一设备实施例所公开的汽车诊断设备,使其能够支持不同汽车类型的汽车诊断,提升了汽车诊断的通用性。未在本实施例中详尽描述的技术细节,可参见下述设备实施例。
请参阅图2,为本发明实施例提供的其中一种汽车诊断设备的结构示意图。所述汽车诊断设备100包括自动诊断电路10、标准通信总线电路20、若干诊断通信总线电路30、通信模组40以及控制器50。
所述自动诊断电路10用于获取待诊断汽车的车辆识别信息。
在本实施例中,所述车辆识别信息包括车型信息、车辆信息以及通信协议信息。其中,所述车型信息包括小型汽车、商务汽车、重型卡车、大型拖车等。所述车辆信息包括车辆品牌信息、出厂年份信息、历史维修信息、行驶里程信息等。所述通信协议信息指的是所述待诊断汽车的被测电路所支持的通信协议,可以理解,一辆所述待诊断汽车支持至少一种通信协议,例如,所述待诊断汽车的电机控制系统、娱乐多媒体系统、车身系统、动力传动系统、ADAS自动驾驶系统所支持的通信协议可以不同。
所述汽车诊断设备100包括与所述待诊断汽车的通信接口电路(图未示),所述通信接口电路包括例如DB26连接器,正常使用所述汽车诊断设备100时,所述DB26连接器与所述待诊断汽车通信连接,所述自动诊断电路10与所述DB26连接器电连接,用于通过所述DB26连接器获取待诊断汽车的车辆识别信息。
所述标准通信总线电路20分别与所述自动诊断电路10和所述控制器50电连接。
在本实施例中,所述标准通信总线电路20包括CAN通信总线电路,所述CAN通信总线电路为基于5V系统的通信总线,最高传输速率为1Mbps,所述控 制器50根据所述车辆识别信息,控制将所述自动诊断电路10获取到的诊断数据通过所述CAN通信总线电路发送至所述控制器50。
可见,所述标准通信总线电路20只能应用于5V系统,且传输速率较低,为此,本发明实施例在所述标准通信总线电路20的基础上新增了若干诊断通信总线电路30,不同的诊断通信总线电路30支持不同汽车类型的通信协议,适用于不同类型的汽车的汽车诊断。
在一些实施例中,所述标准通信总线电路20还包括LIN通信总线电路、K线电路、SWCAN通信总线电路、RS485通信总线电路以及VPW+PWM通信总线电路等常见标准通信总线电路中的至少一种,即所述LIN通信总线电路、所述K线电路、所述SWCAN通信总线电路、所述RS485通信总线电路或所述VPW+PWM通信总线所支持的通信协议对应格式的诊断数据均通过所述自动诊断电路10、所述标准通信总线电路20,最后达到所述控制器50。若所述诊断数据不是以所述LIN通信总线电路、所述K线电路、所述SWCAN通信总线电路、所述RS485通信总线电路或所述VPW+PWM通信总线所支持的通信协议进行通信传输的,则所述汽车诊断设备100无法对所述待诊断汽车进行诊断。
所述若干诊断通信总线电路30中的每一诊断通信总线电路30分别与所述控制器50连接。所述若干诊断通信总线电路30支持若干种不同汽车类型的通信协议。
请参阅图3,所述若干诊断通信总线电路30包括24V CAN总线电路31、FDCAN总线电路32、PLC总线电路33、DoIP总线电路34中的至少一个。
所述24V CAN总线电路31与所述控制器50电连接。其中,24V CAN总线电路31为基于24V系统的CAN(Controller Area Networt,控制器局域网络)的通信总线电路,主要应用于重型卡车的CAN总线通信。
请参阅图4,所述24V CAN总线电路31包括CAN接收电路311和CAN发送电路312。
所述CAN接收电路311与所述控制器50电连接,用于接收所述控制器50根据车辆识别信息发送的数据,输出差分信号。
其中,所述CAN接收电路311包括第一缓冲电路3111、第一电平转换电路3112、第二缓冲电路3113以及第二电平转换电路3114。
所述第一缓冲电路3111与所述控制器50电连接,用于缓冲所述车辆识别信息。所述第一电平转换电路3112与所述第一缓冲电路3111电连接,用于将缓冲后的所述车辆识别信息转换成第一电平信号。所述第二缓冲电路3113与所述第一缓冲电路3111电连接,用于二次缓冲所述车辆识别信息。所述第二电平转换电路3114与所述第二缓冲电路3113电连接,用于将二次缓冲后的所述车辆识别信息转换成第二电平信号,所述第一电平信号与所述第二电平信号组成所述差分信号,并输出给所述CAN发送电路312。
在本实施例中,所述第一电平信号为高电平信号,所述第二电平信号为低电平信号。
所述CAN发送电路312分别与所述CAN接收电路311和所述控制器50电连接,用于根据所述差分信号,使所述控制器50与所述待诊断汽车通信,并转发所述诊断数据至所述控制器50。
综上,当控制器50根据所述车辆识别信息,检测所述待诊断汽车所支持的通信协议需通过24V CAN信号进行通信时,选择切换至24V CAN总线电路31,CAN接收电路311接收控制器50根据车辆识别信息发送的数据,输出差分信号,CAN发送电路312根据所述差分信号,将所述待诊断汽车的24V CAN信号通过24V CAN总线电路31的收发器发送至控制器50,实现控制器50与所述待诊断汽车通信,避免了由于标准通信总线电路20不支持24V CAN信号进行通信时,导致所述汽车诊断设备不能对所述待诊断汽车进行诊断的问题。
所述FDCAN总线电路32与所述控制器50电连接。
其中,FDCAN(CAN with Flexible Data rate,高速CAN)总线电路22继承了CAN总线的主要特性,CAN总线采用双线串行通讯协议,基于非破坏性仲裁技术,分布式实时控制,可靠的错误处理和检测机制使CAN总线有很高的安全性,但CAN总线带宽和数据场长度却受到制约,CAN FD总线弥补了CAN总线带宽和数据场长度的制约。因此,FDCAN总线电路32具有更高的带宽和数据吞吐量,最高传输速率为8Mbps。
当控制器50根据所述车辆识别信息,检测所述待诊断汽车所支持的通信协议需通过FDCAN信号进行通信时,选择切换至FDCAN总线电路32,将所述待诊断汽车的FDCAN信号通过FDCAN总线电路32的收发器发送至控制器50,实现控制器50与所述待诊断汽车的数据交互,相较于所述标准通信总线电路20,FDCAN总线电路32适用于支持FDCAN信号进行通信的汽车的汽车诊断。
所述PLC总线电路33与所述控制器50电连接。其中,PLC总线电路33是基于汽车电源线上的串行数据通信总线。
当控制器50根据所述车辆识别信息,检测所述待诊断汽车所支持的通信协议需通过PLC进行通信时,选择切换至PLC总线电路33,将所述待诊断汽车的PLC信号通过PLC总线电路33的收发器发送至控制器50,实现控制器50与所述待诊断汽车的数据交互,相较于所述标准通信总线电路20,PLC总线电路33适用于支持PLC信号进行通信的汽车的汽车诊断。
所述DoIP总线电路34与所述控制器50电连接。其中,DoIP(Diagnostic over internet protocol,基于以太网的诊断)总线电路24可实现远程诊断功能。
请参阅图5,所述DoIP总线电路34包括以太网集线器341、网络变压器342以及RJ45网口343。
所述以太网集线器341分别与所述控制器50和所述通信模组40电连接。
所述网络变压器342与所述以太网集线器341电连接,用于对所述诊断数据作变压处理后发送至所述以太网集线器341。
所述RJ45网口343与所述以太网集线器341电连接。
其中,所述网络变压器342还与所述DB26连接器电连接,所述RJ45网口343还与终端设备通信连接,用于接收所述终端设备上传的终端数据,并通过所述以太网集线器341,转发所述终端数据至所述控制器50,从而实现汽车的远程诊断。例如,终端设备A获取汽车B的诊断数据,并存储于终端设备A的内存中,终端设备A通过RJ45网口343与汽车诊断设备100通信连接,并发送汽车B的诊断数据至以太网集线器341,经以太网集线器341的转发至控制器50,从而在汽车诊断设备100与汽车B异地时,亦可实现对汽车B的远程汽车诊断,或者,所述汽车诊断设备100可对汽车B的历史诊断数据,通过上位机200进行直观显示。
综上,本发明实施例提供的所述汽车诊断设备100在所述标准通信总线电路20的基础上新增所述24V CAN总线电路31、所述FDCAN总线电路32、所述PLC总线电路33以及所述DoIP总线电路34,实现了功能更齐全的汽车诊断,其可支持的汽车类型全面覆盖小型汽车、商务车、重型卡车、大型拖车等,避免了由于汽车类型不同导致的通信协议不支持的问题,提升了汽车诊断设备100的通用性。
所述通信模组40与所述控制器50电连接,所述通信模组40还与所述上位机200通信连接,用于转发所述诊断数据至所述上位机200。
请参阅图6,所述通信模组40包括若干种通信接口电路401、通信芯片402以及信号转换单元403。
若干种通信接口电路401用于与所述上位机200通信。
在本实施例中,所述若干种通信接口电路401包括USB接口电路4011、WIFI接口电路4012及蓝牙接口电路4013。
所述通信芯片402与每个所述通信接口电路401电连接。
在本实施例中,所述通信芯片402包括射频控制器、DDR随机存储器以及SPI闪存,所述射频控制器分别与所述DDR随机存储器、所述SPI闪存、所述USB切换开关4032、所述WIFI接口电路4012以及所述蓝牙接口电路4013连接。可通过USB切换开关4032,选择USB接口电路4011用于发送所述诊断数据,也可直接选择WIFI接口电路4012或蓝牙接口电路4013用于发送所述诊断数据。
所述信号转换单元403分别与所述控制器50和所述通信芯片402电连接,用于将所述诊断数据转换成对应通信接口电路的通信数据,以使所述通信芯片402选择对应的通信接口电路,将所述通信数据发送至上位机200。
其中,所述信号转换单元403包括USB集线器4031和USB切换开关4032。
所述USB集线器4031与所述控制器50电连接,用于转发所述诊断数据。
所述USB切换开关4032分别与所述USB集线器4031、所述通信芯片402及所述USB接口电路4011电连接,当所述控制器50控制所述USB切换开关4032工作在第一开关状态时,由所述USB集线器4031转发的所述诊断数据通过所述USB切换开关4032传输给所述通信芯片402;当所述控制器50控制所 述USB切换开关4032工作在第二开关状态时,由所述USB集线器4031转发的所述诊断数据通过所述USB切换开关4032传输给所述USB接口电路4011。
在所述汽车诊断设备100重新上电时,当前通信接口电路与上一次掉电时的通信接口电路保持一致,若需更换通信接口电路,则所述通信芯片402根据所述上位机200的选择指令,更新所述通信信号,所述通信信号发送至USB切换开关4032、WIFI接口电路4012或蓝牙接口电路4013,选择USB切换开关4032、WIFI接口电路4012或蓝牙接口电路4013作为新的通信接口电路。
所述控制器50分别与所述自动诊断电路10、所述若干诊断通信总线电路30中每一通信总线电路及所述通信模组40电连接,用于根据所述车辆识别信息,选择目标通信总线电路,并且通过所述目标通信总线电路与所述待诊断汽车通信,以获取所述待诊断汽车的诊断数据,并且还通过所述通信模组40将所述诊断数据发送至上位机200,其中,所述目标通信总线电路包括一个所述诊断通信总线电路或所述标准通信总线电路。
其中,所述诊断数据为故障码数据,汽车维修人员根据所述上位机20显示的所述故障码数据,获取故障信息,确定故障原因。
在本实施例中,所述控制器50包括单片机及其外围电路,所述单片机可以采用51系列、Arduino系列、STM32系列等。
在一些实施例中,所述控制器50还可以为通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)、ARM(Acorn RISC Machine)或其它可编程逻辑器件、分立门或晶体管逻辑、分立的硬件组件或者这些部件的任何组合;还可以是任何传统处理器、控制器、微控制器或状态机;也可以被实现为计算设备的组合,例如,DSP和微处理器的组合、多个微处理器、一个或多个微处理器结合DSP核、或任何其它这种配置。
在一些实施例中,所述汽车诊断设备100还包括电源模块和按键模块(图未示)。
所述电源模块与所述控制器50连接,用于为所述控制器50提供电源电压,其中,所述电源模块包括电池和电源管理电路,所述电池与所述控制器50连接,所述电源管理电路分别与所述电池和所述控制器50连接。
所述按键模块与所述控制器50连接,用于根据所述用户操作生成操作指令,并将所述操作指令发送至所述控制器50,以使所述控制器50根据所述操作指令执行相应操作。其中,所述操作指令包括获取指令、诊断模式指令等。例如,当所述操作指令为获取指令时,所述控制器50控制所述自动诊断电路10获取待诊断汽车的车辆识别信息。
本发明实施例提供了一种汽车诊断设备,通过自动诊断电路获取待诊断汽车的车辆识别信息,控制器根据车辆识别信息,选择目标通信总线电路,并且通过目标通信总线电路与待诊断汽车通信,以便获取待诊断汽车的诊断数据,其中,目标通信总线电路包括一个诊断通信总线电路或标准通信总线电路,并且若干诊断通信总线电路包括24V CAN总线电路、FDCAN总线电路、PLC总线 电路、DoIP总线电路中的至少一个,支持若干种不同汽车类型的通信协议。因此,本发明实施例通过待诊断汽车的车辆识别信息,确定待诊断汽车支持的通信协议,并根据该通信协议选择对应的目标通信总线电路,使汽车诊断设备支持不同汽车类型的汽车诊断,从而提升了汽车诊断设备的通用性。
请参阅图7,为本发明实施例提供的其中一种汽车诊断设备的结构示意图。所述汽车诊断设备400包括上述实施例所述汽车诊断设备100,相同之处请参阅上述各个实施例,在此不一一赘述。区别在于,所述汽车诊断设备400还包括万用表电路60、示波器电路70以及信号发生电路80。
所述万用表电路60与所述控制器50电连接,用于发送万用表数据至所述控制器50,以使所述控制器50通过所述通信模组40转发所述万用表数据至所述上位机200。
请参阅图8,所述万用表电路60包括第一表笔601、第二表笔602、高压保护电路605、通道选择电路603以及万用笔芯片604。
所述第一表笔601用于接地。
其中,所述第一表笔601为所述万用表电路60的负极表笔,所述第二表笔602为所述万用表电路60的正极表笔,所述第一表笔601的测试端和所述第二表笔602的测试端同时作用于被测电路,所述第一表笔601、所述第二表笔602与所述被测电路之间形成闭合回路,在所述汽车诊断设备400内部,电流信号从所述第一表笔601流入所述第二表笔602。
所述高压保护电路605电连接在所述通道选择电路603与所述第二表笔602之间,用于对所述第二表笔602传输的模拟信号作高压保护处理。
在一些实施例中,所述高压保护电路605可省略。
所述通道选择电路603分别与所述第二表笔602和所述控制器50电连接,用于根据所述控制器50发送的通道选择指令,切换至对应的测试通道进行测试,并产生测试信号。
在本实施例中,所述万用表电路60的测试通道包括电阻测试通道、交流电流测试通道、交流电压测试通道、直流电流测试通道、直流电压测试通道、电容测试通道、二极管测试通道、三极管测试通道、蜂鸣器测试通道等,对应的所述测试信号包括电阻信号、交流电流信号、交流电压信号、直流电流信号、直流电压信号、电容信号、二极管压降信号、三极管压降信号、蜂鸣器信号等。例如,当所述通道选择电路603根据所述控制器50发送的通道选择指令,切换至直流电压测试通道进行测试时,控制所述第一表笔601的连接端切换连接至“COM”端,所述第二表笔602的连接端切换连接至“VΩ”端。
所述万用笔芯片604分别与所述通道选择电路603和所述控制器50电连接,用于根据所述测试信号,向所述控制器50发送所述万用表数据。
其中,所述万用笔芯片604通过串行外设接口向所述控制器50发送所述万用表数据,对应的所述万用表数据为串行数据。
所述示波器电路70与所述通信模组40电连接,用于通过所述通信模组 40,发送示波器数据至所述上位机200。
可以理解,所述示波器数据为波形曲线信号,根据所述波形曲线信号,可测量所述模拟信号的电压、电流、频率、相位差、调幅度等信号参数。
请参阅图9,所述示波器电路70包括若干检测通道电路71、第一开关电路72、模数转换电路73以及示波器控制器74。
每一所述检测通道电路71皆用于检测并处理模拟信号。
请参阅图10,所述检测通道电路71包括信号调理电路711和差分器712。
所述信号调理电路711用于检测所述模拟信号,并对所述模拟信号作信号调理处理。
进一步的,所述信号调理电路711包括探头7111、信号衰减电路7112以及运算放大器7113。
其中,所述探头7111用于检测模拟信号。所述信号衰减电路7112与所述探头7111电连接,用于对所述模拟信号作衰减处理。所述运算放大器7113与所述信号衰减电路7112电连接,用于放大经过衰减处理后的模拟信号。
所述差分器712与所述信号调理电路711和对应的一个模拟开关720电连接,用于处理经过信号调理后的模拟信号,得到差分信号。
在一些实施例中,所述检测通道电路71还包括第二开关电路713。
所述第二开关电路713电连接在所述信号调理电路711与所述差分器712之间,并且所述第二开关电路713还与所述自动诊断电路10电连接,当所述第二开关电路713受所述自动诊断电路10的控制而工作在第一开关状态时,经过信号调理的模拟信号通过所述第二开关电路713传输给所述差分器712;当所述第二开关电路713受所述自动诊断电路10的控制而工作在第二开关状态时,来自所述自动诊断电路10发送的所述诊断数据对应的通信波形信号通过所述第二开关电路713传输给所述差分器712。
综上,所述诊断数据对应的通信波形信号通过所述第二开关电路713转换为示波器数据,以波形曲线信号的形式展示于所述上位机200,展示更为直观,便于与万用表数据、检测通道电路71检测并处理模拟信号对应的示波器数据作数据比对。
所述第一开关电路72包括多个模拟开关720,每个所述模拟开关720电连接对应一路所述检测通道电路71。
所述模数转换电路73分别与每个所述模拟开关720电连接,当目标模拟开关工作在导通状态时,处理后的模拟信号通过所述目标模拟开关输入所述模数转换电路73,所述模数转换电路73将处理后的模拟信号转换成数字信号。
所述示波器控制器74分别与所述通信模组40和所述模数转换电路73电连接,用于根据所述数字信号,得到示波器数据,并通过所述通信模组40,发送所述示波器数据至所述上位机200。
请参阅图11,所述示波器控制器74包括FPGA芯片741和数据转换单元742。
所述FPGA芯片741与所述模数转换电路73电连接,用于根据所述数字信号,得到示波器通信数据。所述数据转换单元742与所述FPGA芯片741和所述通信模组40电连接,用于将所述示波器通信数据转换成示波器数据,并通过所述通信模组40,发送所述示波器数据至所述上位机200。
在本实施例中,通过所述FPGA芯片741控制所述模拟开关720的工作状态,可选择输出对应一路所述检测通道电路71处理后的模拟信号至所述模数转换电路73。其中,所述示波器通信数据为并行数据,通过所述FPGA芯片741的并行接口传输至所述数据转换单元742,所述数据转换单元742将所述示波器通信数据转换成示波器数据,所述示波器数据为USB类型数据,通过所述数据转换单元742的USB接口将所述示波器数据发送至所述USB集线器4031。
所述信号发生电路80与所述控制器50电连接,用于响应所述控制器50的驱动信号,产生模拟波形信号。
请参阅图12,所述信号发生电路80包括信号放大电路801、第一接线端802以及第二接线端803。
所述信号放大电路801与所述控制器50电连接,用于放大所述控制器50发送的驱动信号,得到模拟波形信号。所述第一接线端802与所述信号放大电路801电连接,用于传输所述模拟波形信号。所述第二接线端803用于接地。
可以理解,所述信号发生电路80与被测电路连接,经过所述信号放大电路801放大处理后的所述模拟波形信号作用于所述被测电路,触发所述被测电路的目标芯片工作,实现在所述被测电路的目标芯片工作,才能准确确定故障原因的情况下的故障检测。
其中,所述汽车诊断设备400的诊断工作状态包括故障码诊断状态,故障码诊断状态与示波器诊断状态,故障码诊断状态与万用表诊断状态,故障码诊断状态与信号发生器诊断状态,故障码诊断状态、示波器诊断状态与万用表诊断状态,故障码诊断状态、示波器诊断状态与信号发生器诊断状态以及故障码诊断状态、万用表诊断状态与信号发生器诊断状态。
具体的,当调整至所述故障码诊断状态时,所述诊断数据包括故障码数据;当调整至所述故障码诊断状态与示波器诊断状态时,所述诊断数据包括故障码数据和示波器数据;当调整至所述故障码诊断状态与万用表诊断状态时,所述诊断数据包括故障码数据和万用表数据;当调整至所述故障码诊断状态与信号发生器诊断状态时,所述诊断数据包括故障码数据;当调整至所述故障码诊断状态、示波器诊断状态与万用表诊断状态时,所述诊断数据包括故障码数据、示波器数据以及万用表数据;当调整至所述故障码诊断状态、示波器诊断状态与信号发生器诊断状态时,所述诊断数据包括故障码数据和示波器数据;当调整至所述故障码诊断状态、万用表诊断状态与信号发生器诊断状态时,所述诊断数据包括故障码数据和万用表数据。
综上,汽车诊断设备400通过万用表电路60发送万用表数据至控制器50,以使控制器50通过通信模组40转发万用表数据至上位机200,示波器电路70 通过通信模组40,发送示波器数据至上位机200,信号发生电路80响应控制器50的驱动信号,产生模拟波形信号,因此,汽车诊断设备400通过集成万用表电路60、示波器电路70及信号发生电路80,避免了仅利用故障码数据无法准确地确定的具体故障原因问题,提升了汽车诊断设备的适应性。
请参阅图13,为本发明实施例提供的一种汽车诊断方法的流程示意图。所述汽车诊断方法应用于如上任一实施例所述的汽车诊断设备,所述方法包括:
S101:获取车辆识别信息。
S103:根据所述车辆识别信息,选择目标通信总线电路。
S105:通过所述目标通信总线电路与所述待诊断汽车通信,以使所述待诊断汽车基于所述目标通信总线电路,返回诊断数据。
S107:接收所述诊断数据。
需要说明的是,上述方法实施例与本申请的设备实施例基于同一构思,具体内容可参见本申请设备实施例中的叙述,此处不再赘述。
本发明实施例提供了一种汽车诊断方法,通过获取车辆识别信息,根据车辆识别信息,选择目标通信总线电路,通过目标通信总线电路与待诊断汽车通信,以使待诊断汽车基于目标通信总线电路,返回诊断数据。因此,本发明实施例通过待诊断汽车的车辆识别信息,确定待诊断汽车支持的通信协议,并根据该通信协议选择对应的目标通信总线电路,其中,目标通信总线电路包括一个诊断通信总线电路或标准通信总线电路,并且诊断通信总线电路包括24V CAN总线电路、FDCAN总线电路、PLC总线电路、DoIP总线电路中的至少一个,使汽车诊断设备支持不同汽车类型的汽车诊断,从而提升了汽车诊断设备的通用性。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;在本发明的思路下,以上实施例或者不同实施例中的技术特征之间也可以进行组合,步骤可以以任意顺序实现,并存在如上所述的本发明的不同方面的许多其它变化,为了简明,它们没有在细节中提供;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (14)

  1. 一种汽车诊断设备,其特征在于,包括:
    自动诊断电路,用于获取待诊断汽车的车辆识别信息;
    标准通信总线电路,与所述自动诊断电路电连接;
    若干诊断通信总线电路,包括24V CAN总线电路、FDCAN总线电路、PLC总线电路、DoIP总线电路中的至少一个,所述若干诊断通信总线电路支持若干种不同汽车类型的通信协议;
    通信模组;以及
    控制器,分别与所述自动诊断电路、所述标准通信总线电路、所述若干诊断通信总线电路中每一诊断通信总线电路及所述通信模组电连接,用于根据所述车辆识别信息,选择目标通信总线电路,并且通过所述目标通信总线电路与所述待诊断汽车通信,以获取所述待诊断汽车的诊断数据,并且还通过所述通信模组将所述诊断数据发送至上位机,其中,所述目标通信总线电路包括一个所述诊断通信总线电路或所述标准通信总线电路。
  2. 根据权利要求1所述的汽车诊断设备,其特征在于,所述24V CAN总线电路与所述控制器电连接。
  3. 根据权利要求2所述的汽车诊断设备,其特征在于,所述24V CAN总线电路包括:
    CAN接收电路,与所述控制器电连接,用于接收所述控制器根据车辆识别信息发送的数据,输出差分信号;
    CAN发送电路,分别与所述CAN接收电路和所述控制器电连接,用于根据所述差分信号,使所述控制器与所述待诊断汽车通信,并转发所述诊断数据至所述控制器。
  4. 根据权利要求3所述的汽车诊断设备,其特征在于,所述CAN接收电路包括:
    第一缓冲电路,与所述控制器电连接,用于缓冲所述车辆识别信息;
    第一电平转换电路,与所述第一缓冲电路电连接,用于将缓冲后的所述车辆识别信息转换成第一电平信号;
    第二缓冲电路,与所述第一缓冲电路电连接,用于二次缓冲所述车辆识别信息;
    第二电平转换电路,与所述第二缓冲电路电连接,用于将二次缓冲后的所述车辆识别信息转换成第二电平信号,所述第一电平信号与所述第二电平信号组成所述差分信号,并输出给所述CAN发送电路。
  5. 根据权利要求1所述的汽车诊断设备,其特征在于,所述FDCAN总线电路与所述控制器电连接。
  6. 根据权利要求1所述的汽车诊断设备,其特征在于,所述PLC总线电路与所述控制器电连接。
  7. 根据权利要求1所述的汽车诊断设备,其特征在于,所述DoIP总线电路与所述控制器电连接。
  8. 根据权利要求7所述的汽车诊断设备,其特征在于,所述DoIP总线电路包括:
    以太网集线器,分别与所述控制器和所述通信模组电连接;
    网络变压器,与所述以太网集线器电连接,用于对所述诊断数据作变压处理后发送至所述以太网集线器。
  9. 根据权利要求8所述的汽车诊断设备,其特征在于,所述DoIP总线电路还包括RJ45网口,所述RJ45网口与所述太网集线器电连接。
  10. 根据权利要求1至9任一项所述的汽车诊断设备,其特征在于,所述通信模组包括:
    若干种通信接口电路,用于与所述上位机通信;
    通信芯片,与每个所述通信接口电路电连接;
    信号转换单元,分别与所述控制器和所述通信芯片电连接,用于将所述诊断数据转换成对应通信接口电路的通信数据,以使所述通信芯片选择对应的通信接口电路,将所述通信数据发送至上位机。
  11. 根据权利要求10所述的汽车诊断设备,其特征在于,所述若干种通信接口电路包括USB接口电路、WIFI接口电路及蓝牙接口电路。
  12. 根据权利要求11所述的汽车诊断设备,其特征在于,所述信号转换单元包括:
    USB集线器,与所述控制器电连接,用于转发所述诊断数据;
    USB切换开关,分别与所述USB集线器、所述通信芯片及所述USB接口电路电连接,当所述控制器控制所述USB切换开关工作在第一开关状态时,由所述USB集线器转发的所述诊断数据通过所述USB切换开关传输给所述通信芯片;当所述控制器控制所述USB切换开关工作在第二开关状态时,由所述USB集线器转发的所述诊断数据通过所述USB切换开关传输给所述USB接口电路。
  13. 一种汽车诊断系统,其特征在于,包括:
    如权利要求1至12任一项所述的汽车诊断设备;和
    上位机,与所述汽车诊断设备通信连接,用于显示由所述汽车诊断设备发送的诊断数据。
  14. 一种汽车诊断方法,其特征在于,应用于如权利要求1至12任一项所述的汽车诊断设备,所述方法包括:
    获取车辆识别信息;
    根据所述车辆识别信息,选择目标通信总线电路;
    通过所述目标通信总线电路与所述待诊断汽车通信,以使所述待诊断汽车基于所述目标通信总线电路,返回诊断数据;
    接收所述诊断数据。
PCT/CN2020/125872 2019-11-06 2020-11-02 一种汽车诊断设备、系统及方法 WO2021088767A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20885347.3A EP4043978A4 (en) 2019-11-06 2020-11-02 AUTOMOTIVE DIAGNOSTIC DEVICE, SYSTEM AND METHOD
US17/660,247 US20220245972A1 (en) 2019-11-06 2022-04-22 Automobile diagnosis device, system and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911076893.7 2019-11-06
CN201911076893.7A CN110716535A (zh) 2019-11-06 2019-11-06 一种汽车诊断设备、系统及方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/660,247 Continuation US20220245972A1 (en) 2019-11-06 2022-04-22 Automobile diagnosis device, system and method

Publications (1)

Publication Number Publication Date
WO2021088767A1 true WO2021088767A1 (zh) 2021-05-14

Family

ID=69214818

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/125872 WO2021088767A1 (zh) 2019-11-06 2020-11-02 一种汽车诊断设备、系统及方法

Country Status (4)

Country Link
US (1) US20220245972A1 (zh)
EP (1) EP4043978A4 (zh)
CN (1) CN110716535A (zh)
WO (1) WO2021088767A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108156055B (zh) * 2017-12-27 2019-11-12 深圳市道通科技股份有限公司 Obd接口总线类型的检测方法和装置
CN113661523A (zh) * 2019-04-08 2021-11-16 沃尔沃卡车集团 用于分析车辆中的数据的系统
CN110716535A (zh) * 2019-11-06 2020-01-21 深圳市道通科技股份有限公司 一种汽车诊断设备、系统及方法
CN111741074B (zh) * 2020-05-28 2023-06-30 深圳市元征科技股份有限公司 车辆远程诊断方法、系统、车辆连接器及设备连接器
CN112217799B (zh) * 2020-09-11 2023-02-24 深圳市元征科技股份有限公司 一种车辆诊断方法、车辆诊断装置及终端设备
CN112147987B (zh) * 2020-09-30 2022-07-19 深圳市元征科技股份有限公司 一种车辆诊断方法、车辆诊断装置及终端设备
US11538288B2 (en) * 2021-04-26 2022-12-27 GM Global Technology Operations LLC Diagnostic systems and methods using automotive audio bus
CN113141599B (zh) * 2021-05-31 2023-07-07 深圳市道通科技股份有限公司 汽车诊断系统及WiFi连接方法
CN114640722B (zh) * 2022-05-09 2022-08-12 深圳市星卡软件技术开发有限公司 一种基于数据传输的多协议切换方法和装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102098326A (zh) * 2010-12-13 2011-06-15 斯必克机电产品(苏州)有限公司 汽车网络诊断的方法及其系统
CN103676936A (zh) * 2013-12-09 2014-03-26 北京天元晟业科技有限公司 车辆诊断测试系统和车辆诊断测试系统中的信息传输方法
US20140365067A1 (en) * 2013-06-07 2014-12-11 Yura Corporation Co., Ltd. Multiple electronic control unit diagnosing system and method for vehicle
CN104298231A (zh) * 2014-10-29 2015-01-21 中国重汽集团济南动力有限公司 一种车辆多控制器诊断设备
CN105223944A (zh) * 2014-07-07 2016-01-06 联车(上海)信息科技有限公司 一种适配obd ii接口和自适应多种汽车总线和诊断协议的车辆数据采集设备
CN108255158A (zh) * 2018-01-16 2018-07-06 深圳市道通科技股份有限公司 车辆诊断方法和装置
US20180342115A1 (en) * 2012-04-18 2018-11-29 Aeris Communications, Inc. Method and apparatus for remotely communicating vehicle information to the cloud
CN110716535A (zh) * 2019-11-06 2020-01-21 深圳市道通科技股份有限公司 一种汽车诊断设备、系统及方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5214582C1 (en) * 1991-01-30 2001-06-26 Edge Diagnostic Systems Interactive diagnostic system for an automobile vehicle and method
AT510379B1 (de) * 2011-12-12 2012-09-15 Ditest Fahrzeugdiagnose Gmbh Diagnosetool zum anschluss an eine fahrzeug-diagnosebuchse

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102098326A (zh) * 2010-12-13 2011-06-15 斯必克机电产品(苏州)有限公司 汽车网络诊断的方法及其系统
US20180342115A1 (en) * 2012-04-18 2018-11-29 Aeris Communications, Inc. Method and apparatus for remotely communicating vehicle information to the cloud
US20140365067A1 (en) * 2013-06-07 2014-12-11 Yura Corporation Co., Ltd. Multiple electronic control unit diagnosing system and method for vehicle
CN103676936A (zh) * 2013-12-09 2014-03-26 北京天元晟业科技有限公司 车辆诊断测试系统和车辆诊断测试系统中的信息传输方法
CN105223944A (zh) * 2014-07-07 2016-01-06 联车(上海)信息科技有限公司 一种适配obd ii接口和自适应多种汽车总线和诊断协议的车辆数据采集设备
CN104298231A (zh) * 2014-10-29 2015-01-21 中国重汽集团济南动力有限公司 一种车辆多控制器诊断设备
CN108255158A (zh) * 2018-01-16 2018-07-06 深圳市道通科技股份有限公司 车辆诊断方法和装置
CN110716535A (zh) * 2019-11-06 2020-01-21 深圳市道通科技股份有限公司 一种汽车诊断设备、系统及方法

Also Published As

Publication number Publication date
US20220245972A1 (en) 2022-08-04
CN110716535A (zh) 2020-01-21
EP4043978A1 (en) 2022-08-17
EP4043978A4 (en) 2022-11-23

Similar Documents

Publication Publication Date Title
WO2021088767A1 (zh) 一种汽车诊断设备、系统及方法
CN105759752B (zh) 用于低发射网络的系统和方法
CN108303964B (zh) 一种网络连接器及车辆诊断方法
US8049510B2 (en) Method for detecting a fault on a data line
US11349301B2 (en) Method for operating a sensor arrangement in a motor vehicle on the basis of a DSI protocol
EP3267411B1 (en) Independent module combination 3u chassis structure-based train fire alarm communication method
CN110692220B (zh) 车载通信装置、车载通信系统、通信控制方法和通信控制程序
WO2021078047A1 (zh) 一种汽车诊断设备、系统及方法
KR101647109B1 (ko) 차량에서의 냉각 팬 제어 방법 및 시스템
CN210895123U (zh) 一种汽车诊断设备及系统
CN113242532B (zh) 车辆通信设备、WiFi连接方法及车辆诊断系统
JP2013192012A (ja) ネットワークシステムおよびネットワークシステムにおける識別情報の設定方法
KR20150011223A (ko) 차량 제어장치 및 그 방법
CN210864417U (zh) 一种车辆can总线接口转换自适应系统
WO2016015331A1 (zh) 用于车辆诊断/编程的接口集成电路以及车辆诊断仪
CN111999520A (zh) 一种信号检测装置
CN210895121U (zh) 一种汽车诊断设备及系统
KR101734255B1 (ko) 차량 검사 장치 및 검사 방법
CN107155351A (zh) 光电耦合器诊断装置
KR101165398B1 (ko) 다기능 차량 버스 테스터 및 그의 초기화 방법
US11580793B2 (en) Sensor for emitting signals and for receiving reflected echo signals, and system including a control unit and such a sensor
WO2021140703A1 (ja) 検知装置、車載システムおよび検知方法
CN205262759U (zh) 车窗测试系统
CN103742265B (zh) 一种基于通信协议的汽车发动机测速系统
CN115416697B (zh) 一种列车单板式控制器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20885347

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020885347

Country of ref document: EP

Effective date: 20220509

NENP Non-entry into the national phase

Ref country code: DE