WO2021088449A1 - 一种氨基三亚甲基膦酸的生产方法 - Google Patents

一种氨基三亚甲基膦酸的生产方法 Download PDF

Info

Publication number
WO2021088449A1
WO2021088449A1 PCT/CN2020/108777 CN2020108777W WO2021088449A1 WO 2021088449 A1 WO2021088449 A1 WO 2021088449A1 CN 2020108777 W CN2020108777 W CN 2020108777W WO 2021088449 A1 WO2021088449 A1 WO 2021088449A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
formaldehyde
hydrochloric acid
phosphonic acid
temperature
Prior art date
Application number
PCT/CN2020/108777
Other languages
English (en)
French (fr)
Inventor
程终发
齐晓婧
王东海
王燕平
林学洲
Original Assignee
山东泰和水处理科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东泰和水处理科技股份有限公司 filed Critical 山东泰和水处理科技股份有限公司
Publication of WO2021088449A1 publication Critical patent/WO2021088449A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/38Phosphonic acids [RP(=O)(OH)2]; Thiophosphonic acids ; [RP(=X1)(X2H)2(X1, X2 are each independently O, S or Se)]
    • C07F9/3804Phosphonic acids [RP(=O)(OH)2]; Thiophosphonic acids ; [RP(=X1)(X2H)2(X1, X2 are each independently O, S or Se)] not used, see subgroups
    • C07F9/3808Acyclic saturated acids which can have further substituents on alkyl
    • C07F9/3817Acids containing the structure (RX)2P(=X)-alk-N...P (X = O, S, Se)

Definitions

  • the invention belongs to the technical field of industrial water treatment agent chemical engineering, and specifically relates to a production process of amino trimethylene phosphonic acid.
  • Amino trimethylene phosphonic acid also known as amino trimethylene phosphonic acid
  • ATMP is a kind of organic phosphonic acid scale and corrosion inhibitor.
  • the CP bond contained in its molecular structure is combined with the total POP or Compared with the COP bond, it has a stronger bond energy and a stronger bond. Therefore, it has high temperature thermal stability, and at the same time, its corrosion inhibition performance is 4 to 7 times stronger than that of inorganic polymer phosphate.
  • ATMP can dissociate into six positive ions and six negatively charged ions in water, and can form a polycyclic chelate with Ca 2+ and Mg 2+ in water.
  • This macromolecular chelate is dispersed in a loose manner.
  • the normal crystallization of magnesium and calcium scale is destroyed, and it can form stable complexes with Fe, Cu, Mg and other metal ions in a wide pH range, with low toxicity, easy availability of raw materials, low price and avoidance
  • the acidification treatment of raw water quality which can be characterized by "alkaline operation" has gradually become one of the main components of the composite water quality stabilizer. Therefore, ATMP has a good scale inhibition effect on calcium carbonate, magnesium silicate, calcium sulfate, etc. in water.
  • ATMP is a non-equivalent chelating agent. It has a "solvency limit effect”. One molecule can prevent dozens to hundreds of calcium, magnesium and sulfate ions from producing scale precipitation. This is its unique scale inhibition performance.
  • ATMP is generally used as a scale inhibitor for circulating cooling water, oilfield water injection and textile printing and dyeing water, as well as a soft scale regulator for boiler systems. At the same time, it can be used in conjunction with a variety of buffers and scale inhibitors, and has a good "synergy" effect with polycarboxylates, etc., and increases the corrosion and scale inhibition effects of formula products. It can also be used as a cleaning agent or detergent. Additives, metal ion shielding agents, etc.
  • the industrial synthesis method of ATMP mostly uses formaldehyde, ammonium chloride and phosphorous acid or phosphorus trichloride as raw material synthesis processes, and the specific reactions involved are as follows:
  • (1) is the main reaction
  • (2) is the side reaction.
  • the main reaction is the successive Mannich addition and the occurrence of side reactions, which often causes the product Contains a certain amount of amino dimethyl phosphonic acid (IDPA), hydroxymethyl phosphonic acid and a small amount of amino monomethylene phosphonic acid (AMP) and other products, especially the presence of inactive by-product hydroxymethyl phosphonic acid , which seriously affects product performance and yield, and increases product production costs.
  • IDPA amino dimethyl phosphonic acid
  • AMP amino monomethylene phosphonic acid
  • the purpose of the present invention is to provide a process for the production of amino trimethylene phosphonic acid, which can increase the material concentration of the reaction system, reduce the generation of by-products, and increase the yield of the effective active component amino trimethylene phosphonic acid by changing the way of material addition. Reduce product costs.
  • a production process of amino trimethylene phosphonic acid mainly includes the following steps:
  • the mass percentage content of the hydrochloric acid in the above step (1) is 15 to 36%; wherein, preferably, the mass percentage content of the hydrochloric acid is 30 to 35%.
  • n (NH4Cl) :n (HCl) 1:0.16.
  • the phosphorous acid in the above step (1) can be any of phosphorous acid crystals and phosphorous acid aqueous solution.
  • the formaldehyde dropping temperature is 95-120°C; wherein, preferably, the formaldehyde dropping temperature is 110-115°C.
  • step (2) the dropwise addition flow rate of the formaldehyde shows an increasing trend with the time of the dropwise addition.
  • the amount of formaldehyde entering the kettle in the first stage accounts for 50-90% of the total amount of formaldehyde in the process; preferably, the amount of formaldehyde entering the kettle in the first stage is 75-85% of the total amount of formaldehyde. %; more preferably 80%.
  • the additional amount of hydrochloric acid in step (3) above is 0 to 2 times the amount of hydrochloric acid added in step (1); wherein, preferably, the amount of added hydrochloric acid is 0.5 to about 0.5 to the amount of hydrochloric acid added in step (1). 1 times.
  • the beneficial effect of the present invention in the process of synthesizing amino trimethylene phosphonic acid using ammonium chloride, formaldehyde and phosphorous acid or phosphorus trichloride, the presence of the by-product hydroxymethyl phosphonic acid not only cannot serve as the effective ingredient of the product, but also reduces The yield of the main product, and at the same time easily affect the specific gravity index of the product, exceeds the scope of use requirements. Therefore, the process adopts the method of adding formaldehyde in batches.
  • the concentration of the reactants in the system in different time periods is adjusted by gradually increasing the speed of formaldehyde entering the kettle, and the concentration of the reactants in the system in different time periods is adjusted in the later stage, which effectively suppresses the side effects.
  • the production of the product, especially the hydroxymethyl phosphonic acid improves the conversion rate and product yield of the effective active component amino trimethylene phosphonic acid, and reduces the product cost.
  • the process method is simple, safe, and easy to operate, and is beneficial to industrialized production.
  • Fig. 1 and Fig. 2 are respectively the phosphorus spectra of the products of Example 1 and Comparative Example 1 under the same active content.
  • the peak No. 1 in the figure represents by-product hydroxymethylphosphonic acid.
  • the reaction After the reaction is maintained at 110°C, it is evaporated and concentrated to near dryness under normal pressure and then under negative pressure; the negative pressure is stopped, and 80Kg of hydrochloric acid is added to the system, and the temperature of the system is controlled at 110-115 °C, according to the flow rate of 200Kg/h, add the remaining formaldehyde aqueous solution totaling 264Kg. After holding for 0.5 hours, the system is steamed outside under negative pressure until no material is extracted from the system. After dilution, decolorization, and cooling and discharging, a light yellow transparent amino group with an activity of 50.04% is obtained.
  • the trimethylene phosphonic acid liquid is 3024.78 kg, and the product yield is 97.37% based on the content of effective active components, of which the yield of amino trimethylene phosphonic acid is 86.77%.
  • the reaction is kept at 110°C, it is evaporated and concentrated to near dryness under normal pressure and then under negative pressure; the negative pressure is stopped, and 39Kg of hydrochloric acid is added to the system, and the temperature of the system is controlled to 110-115 °C, according to the flow rate of 300Kg/h, add the remaining amount of formaldehyde aqueous solution totaling 900Kg.
  • the trimethylene phosphonic acid liquid is 3412.23 kg, and the product yield is 96.81% based on the effective active component content, and the yield of amino trimethylene phosphonic acid is 84.45%.
  • Table 1 shows the comparison results of the product detection and phosphorus spectrum index of each embodiment and the comparative example

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)

Abstract

本发明公开一种氨基三亚甲基膦酸的生产工艺。具体操作步骤包括:(1)将氯化铵、亚磷酸和盐酸依次加入反应釜中,开始加热并充分搅拌使物料全部溶解,(2)继续升温,加入部分甲醛水溶液,滴加结束并保温,浓缩;(3)向体系中补加盐酸并提温至100~115℃,继续滴加余量甲醛水溶液,滴加完毕,继续保温反应,经稀释、脱色、降温得合格成品。本发明有效的抑制了副产物尤其是羟甲基膦酸的产生,提高了有效活性组分氨基三甲叉膦酸的转化率和产品收率、降低了产品成本,该工艺方法简单、安全、易操作,利于工业化生产。

Description

一种氨基三亚甲基膦酸的生产方法 技术领域
本发明属于工业水处理剂化工技术领域,具体涉及一种氨基三亚甲基膦酸的生产工艺。
背景技术
氨基三亚甲基膦酸(ATMP),又称氨基三甲叉膦酸等,是一种有机膦酸类阻垢缓蚀剂,其分子结构中含有的C-P键,与无机聚合磷酸盐总的P-O-P或C-O-P键相比具有更强的键能,结合更牢固,因此,具有高温热稳定性,同时缓蚀性能比无机聚合磷酸盐强4~7倍。
同时,ATMP在水中能够离解成六个正离子和含六个负电荷的离子,能与水中Ca 2+、Mg 2+形成多元环螯合物,这个大分子螯合物以松散的方式分散于水中,使镁、钙垢的正常结晶遭到破坏,且能在较宽的pH范围内与Fe、Cu、Mg等金属离子形成稳定的络合物,毒性小、原料易得、价格低廉以及避免对原水水质的酸化处理,可以“碱性运行”等特点,逐渐成为复合水质稳定剂的主要组成之一。因此,ATMP对水中的碳酸钙、硅酸镁、硫酸钙等具有较好的阻垢作用。ATMP为非当量的螯合剂,本身有“溶限效应”,可以由一个分子阻止几十个到几百个钙、镁离子与硫酸根离子等产生水垢沉淀,这是它特有的阻垢性能。
ATMP一般用作循环冷却水、油田注水和纺织印染用水的阻垢剂,以及锅炉系统软垢的调节剂。同时,可与多种缓冲剂、阻垢剂配合使用,与聚羧酸盐等具有良好的“协同增效”作用,增加配方产品的缓蚀阻垢效果,也可以作为清洗剂或洗涤剂的添加剂,金属离子掩蔽剂等。
ATMP的工业合成方法多采用甲醛、氯化铵和亚磷酸或三氯化磷为原料合成工艺,其具体涉及的反应如下:
Figure PCTCN2020108777-appb-000001
其中,(1)为主反应,(2)为副反应,使得产品氨基三甲叉膦酸生产过程中,因主反应为逐级进行的曼尼希加成和副反应的发生,常常会使产品中含有一定量的氨基二甲叉膦酸(IDPA)、羟甲基膦酸和少量的氨基一甲叉膦酸(AMP)等产物,尤其是不充活性的副产物羟甲基膦酸的存在,严重影响产品性能和产率,增加产品生产成本。如何有效抑制该产品生产过程中副产物的生成,一直是该领域内研究的热点。
发明内容
本发明的目的在于提供一种氨基三亚甲基膦酸的生产工艺,通过改变物料投加方式,提高反应体系物料浓度,减少副产物的产生,提高有效活性组分氨基三甲叉膦酸收率、降低产品成本。
本发明目的具体可以通过如下技术方案实现:
一种氨基三亚甲基膦酸的生产工艺,主要包括以下步骤:
(1)将计量好的氯化铵、亚磷酸和盐酸依次加入反应釜中,开始加热并充分搅拌使物料全部溶解,同时开启尾气回收装置;
(2)继续升温,并控制不同流速滴加部分甲醛水溶液,滴加结束后,110℃保温1~2小时、外蒸浓缩至近干;
(3)向体系中补加盐酸并提温至100~115℃,滴加余量甲醛水溶液,滴加完毕,继续保温反应0.5~1.0小时后,外蒸至体系无物料采出,经稀释、脱色、降温得合格成品。
上述生产工艺中所述反应物氯化铵、亚磷酸和甲醛的投料摩尔比为n (NH4Cl):n (H3PO3): n (CH2O)=1:(2.5~3.0):(3.0~4.0);其中,作为优选地,n (NH4Cl):n (H3PO3):n (CH2O)=1:2.8:3.5。
上述步骤(1)中所述盐酸的质量百分比含量为15~36%;其中,作为优选地,盐酸的质量百分比含量为30~35%。
上述步骤(1)中所述盐酸与氯化铵的投料摩尔比为:n (NH4Cl):n (HCl)=1:(0.15~0.20);其中,作为优选地,氯化铵与盐酸的投料摩尔比为:n (NH4Cl):n (HCl)=1:0.16。
上述步骤(1)中所述亚磷酸可以为亚磷酸晶体、亚磷酸水溶液的任一种。
上述步骤(2)中所述甲醛滴加温度为95~120℃;其中,作为优选地,甲醛滴加温度为110~115℃。
上述步骤(2)中所述甲醛滴加流速随滴加时间不同呈递增趋势。
上述步骤(2)中所述第一阶段入釜甲醛量占工艺甲醛总用量的质量百分比为50~90%;其中,作为优选地,第一阶段入釜甲醛量为甲醛总用量的75~85%;进一步优选为80%。
上述步骤(3)中所述盐酸的补加量为步骤(1)中盐酸投料量的0~2倍;其中,作为优选地,补加盐酸量为步骤(1)中盐酸投料量的0.5~1倍。
本发明的有益作用:在利用氯化铵、甲醛和亚磷酸或三氯化磷合成氨基三亚甲基膦酸的过程中,副产物羟甲基膦酸的存在,非但不能充当产品有效成分,降低主产品收率,同时易影响产品的比重指标超出使用要求范围。因此该工艺采用甲醛分批次滴加的方法,前期通过逐渐增加甲醛入釜速度、后期通过外蒸浓缩和补加的方式来调节不同时间段内体系中反应物的浓度,有效的抑制了副产物尤其是羟甲基膦酸的产生,提高了有效活性组分氨基三甲叉膦酸的转化率和产品收率、降低了产品成本,该工艺方法简单、安全、易操作,利于工业化生产。
附图说明
图1和图2分别为相同活性含量下实施例1和对比例1产品磷谱谱图。
其中,图中1号峰代表副产羟甲基膦酸。
具体实施方式
实施例1
将321Kg氯化铵、1795Kg亚磷酸水溶液(含量规格为71.25%)和110Kg含量为32%的盐酸依次加入反应釜中,加热升温并充分搅拌使物料全部溶解,同时开启尾气回收装置;继续升温并使体系温度保持在115±2℃范围内,设置并自动控制甲醛滴加速度分别为:250Kg/h滴加0.5小时,500Kg/h滴加0.5小时,650Kg/h滴加至第一阶段共计滴加1318Kg40%规格含量的甲醛水溶液,110℃保温反应1小时后,先常压后负压条件下外蒸浓缩至近干;停止负压,并向体系中补加80Kg盐酸,控制体系温度为110~115℃,按照200Kg/h流速滴加余量甲醛水溶液共计264Kg,保温0.5小时后,负压外蒸至体系无物料采出,经稀释、脱色、降温放料得活性为50.04%的淡黄色透明氨基三亚甲基膦酸液体3024.78kg,以有效活性组分含量计产品收率为97.37%,其中氨基三亚甲基膦酸产率为86.77%。
实施例2
将321Kg氯化铵、2046Kg亚磷酸水溶液(含量规格为71.25%)和63Kg含量为32%的盐酸依次加入反应釜中,加热升温并充分搅拌使物料全部溶解,同时开启尾气回收装置;继续升温并使体系温度保持在115±2℃范围内,设置并自动控制甲醛滴加速度分别为:250Kg/h滴加0.5小时,500Kg/h滴加0.5小时,650Kg/h滴加至第一阶段共计滴加900Kg40%规格含量的甲醛水溶液,110℃保温反应1小时后,先常压后负压条件下外蒸浓缩至近干;停止负压,并向体系中补加39Kg盐酸,控制体系温度为110~115℃,按照300Kg/h流速滴加余量甲醛水溶液共计900Kg,保温1小时后,负压外蒸至体系无物料采出,经稀释、脱色、降温放料得活性为50.27%的淡黄色透明氨基三亚甲基膦酸液体3412.23kg,以有效活性组分含量计产品收率为96.81%,其中氨基三亚甲基膦酸产率为84.45%。
对比例1
将321Kg氯化铵、1795Kg亚磷酸水溶液(含量规格为71.25%)和190Kg含量为32%的盐酸依次加入反应釜中,加热升温并充分搅拌使物料全部溶解,同时开启尾气回收装置;继续升 温并使体系温度保持在115±2℃范围内,按照500Kg/h的流速将1582Kg40%规格含量的甲醛水溶液全部滴加入釜,110℃保温反应2小时后,先常压后负压条件下外蒸浓缩至体系无物料采出,经稀释、脱色、降温放料得活性为51.08%的淡黄色透明氨基三亚甲基膦酸液体2894.71kg,以有效活性组分含量计产品收率为95.12%,其中氨基三亚甲基膦酸产率为74.90%。
对比例2
将321Kg氯化铵、1795Kg亚磷酸水溶液(含量规格为71.25%)和110Kg含量为32%的盐酸依次加入反应釜中,其中,第一阶段负压外蒸后,第二阶段滴加甲醛水溶液时不补加盐酸。其他工艺参数及操作条件均同实施例1,最后经稀释、脱色、降温放料得活性为50.91%的淡黄色透明氨基三亚甲基膦酸液体2962.70kg,以有效活性组分含量计产品收率为97.03%,其中氨基三亚甲基膦酸产率为80.73%。
表1为各实施例与对比例产品检测及磷谱指标对比结果
Figure PCTCN2020108777-appb-000002

Claims (7)

  1. 一种氨基三亚甲基膦酸的生产方法,其特征在于,具体包括以下步骤:
    (1)将氯化铵、亚磷酸和盐酸依次加入反应釜中,开始加热并充分搅拌使物料全部溶解,同时开启尾气回收装置;
    (2)继续升温,并控制流速滴加部分甲醛水溶液,滴加结束并110℃保温1~2小时,外蒸浓缩至近干;
    (3)向体系中补加盐酸并提温至100~115℃,继续滴加余量甲醛水溶液,滴加完毕,继续保温反应0.5~1.0小时后,外蒸至体系无物料采出,经稀释、脱色、降温得合格成品。
  2. 根据权利要求1所述的方法,其特征在于,所述反应物氯化铵、亚磷酸和甲醛的投料摩尔比为n (NH4Cl):n (H3PO3):n (CH2O)=1:2.5~3.0:3.0~4.0。
  3. 根据权利要求1所述的方法,其特征在于,所述步骤(1)中盐酸的质量百分比含量为15~36%,其与氯化铵的投料摩尔比为:n (NH4Cl):n (HCl)=1:(0.15~0.30)。
  4. 根据权利要求1所述的方法,其特征在于,所述步骤(1)中亚磷酸可以为亚磷酸晶体、亚磷酸水溶液的任一种。
  5. 根据权利要求1所述的方法,其特征在于,所述步骤(2)中甲醛滴加温度为95~120℃,且甲醛滴加速度随时间变化递增。
  6. 根据权利要求1所述的方法,其特征在于,所述步骤(2)中入釜甲醛量占工艺甲醛总用量的质量百分比为50~90%。
  7. 根据权利要求1所述的一种氨基三亚甲基膦酸的生产工艺,其特征在于,所述步骤(3)中盐酸的补加量为步骤(1)中盐酸投料量的0~2倍。
PCT/CN2020/108777 2019-11-08 2020-08-13 一种氨基三亚甲基膦酸的生产方法 WO2021088449A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911085263.6 2019-11-08
CN201911085263.6A CN110804070B (zh) 2019-11-08 2019-11-08 一种氨基三亚甲基膦酸的生产方法

Publications (1)

Publication Number Publication Date
WO2021088449A1 true WO2021088449A1 (zh) 2021-05-14

Family

ID=69501476

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/108777 WO2021088449A1 (zh) 2019-11-08 2020-08-13 一种氨基三亚甲基膦酸的生产方法

Country Status (2)

Country Link
CN (1) CN110804070B (zh)
WO (1) WO2021088449A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110804070B (zh) * 2019-11-08 2021-09-17 山东泰和水处理科技股份有限公司 一种氨基三亚甲基膦酸的生产方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2112156A1 (en) * 2008-04-25 2009-10-28 Thermphos International B.V. Method for the Manufacture of Aminoalkylene Phosphonic Acid
CN102766158A (zh) * 2011-05-06 2012-11-07 江苏大明科技有限公司 一种氨基三甲叉膦酸的生产工艺
CN103275120A (zh) * 2013-06-05 2013-09-04 山东省泰和水处理有限公司 一种低三甲叉氨基三亚甲基膦酸及其制备方法
CN103509052A (zh) * 2012-06-21 2014-01-15 河南清水源科技股份有限公司 一种高纯度氨基三亚甲基膦酸的制备方法
CN108276441A (zh) * 2018-01-31 2018-07-13 山东大学 环己胺二甲叉膦酸的制备方法
CN110804070A (zh) * 2019-11-08 2020-02-18 山东泰和水处理科技股份有限公司 一种氨基三亚甲基膦酸的生产方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD251259A3 (de) * 1985-09-24 1987-11-11 Piesteritz Agrochemie Verfahren zur herstellung von aminomethylenphosphonsaeureloesungen
CN103848865A (zh) * 2012-12-04 2014-06-11 山东省泰和水处理有限公司 一种水处理剂氨基三亚甲基膦酸的连续化生产方法
CN103275121B (zh) * 2013-06-06 2015-08-26 山东省泰和水处理有限公司 一种氨基三亚甲基膦酸连续化生产工艺
CN103708637A (zh) * 2014-01-02 2014-04-09 山东省泰和水处理有限公司 一种氨基三亚甲基膦酸-n-氧化物及其制备方法
CN103724373A (zh) * 2014-01-02 2014-04-16 山东省泰和水处理有限公司 多聚甲醛生产氨基三亚甲基膦酸的方法
CN106518919A (zh) * 2016-08-31 2017-03-22 南通联膦化工有限公司 一种可回用甲醛废水的氨基三亚甲基磷酸及其盐的生产工艺
CN107573377A (zh) * 2017-09-09 2018-01-12 南通意特化工有限公司 可回用甲醛废水的氨基三亚甲基磷酸及其盐的生产工艺

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2112156A1 (en) * 2008-04-25 2009-10-28 Thermphos International B.V. Method for the Manufacture of Aminoalkylene Phosphonic Acid
CN102766158A (zh) * 2011-05-06 2012-11-07 江苏大明科技有限公司 一种氨基三甲叉膦酸的生产工艺
CN103509052A (zh) * 2012-06-21 2014-01-15 河南清水源科技股份有限公司 一种高纯度氨基三亚甲基膦酸的制备方法
CN103275120A (zh) * 2013-06-05 2013-09-04 山东省泰和水处理有限公司 一种低三甲叉氨基三亚甲基膦酸及其制备方法
CN108276441A (zh) * 2018-01-31 2018-07-13 山东大学 环己胺二甲叉膦酸的制备方法
CN110804070A (zh) * 2019-11-08 2020-02-18 山东泰和水处理科技股份有限公司 一种氨基三亚甲基膦酸的生产方法

Also Published As

Publication number Publication date
CN110804070B (zh) 2021-09-17
CN110804070A (zh) 2020-02-18

Similar Documents

Publication Publication Date Title
CN102766158B (zh) 一种氨基三甲叉膦酸的生产工艺
WO2021088449A1 (zh) 一种氨基三亚甲基膦酸的生产方法
CN101381327B (zh) 氨基胍碳酸氢盐的制备方法
CN104445276A (zh) 一种高效制备单氰胺溶液的方法
WO2021088457A1 (zh) 一种二乙烯三胺五亚甲基膦酸的生产方法
CN108947922B (zh) 一种1-苯基-5-巯基四氮唑的制备方法
CN107089749B (zh) 沉钒废水的处理方法
CN102633374B (zh) 适用于天然气加热炉的缓蚀阻垢剂
CN105985251B (zh) 一种亚氨基二乙酸等氨基酸类清洁生产工艺
CN102585195A (zh) 一种聚环氧琥珀酸的制备方法
CN112811614A (zh) 一种循环水无磷阻垢剂及其制备方法
CN108087018A (zh) 一种磷酸二氢盐抑爆剂的制备配方
CN107445205A (zh) 一种制取偏钒酸钠的方法及其产品和应用
CN111138021A (zh) 一种分离废水中氯化物和磷酸盐的方法
CN103420506A (zh) 一种乙二胺四甲叉膦酸钠复合型阻垢剂的配制方法
CN106396144A (zh) 一种中低压蒸汽锅炉水稳剂
CN111592449A (zh) 一种安息香的生产工艺
CN104726528B (zh) 一种直通法制备氨苄西林的工艺
CN1174877A (zh) 用于燃气轮机或电厂锅炉的重油抑钒剂
CN103087307A (zh) 一种聚环氧琥珀酸钠的制备方法
CN114456364B (zh) 一种羟基乙酸聚合物及其衍生物的合成方法及应用
CN104860404B (zh) 一种分散缓蚀阻垢剂及其制备方法
CN114538479A (zh) 一种明胶生产用废料循环利用方法
CN103421040A (zh) 一种乙二胺四甲叉膦酸的生产方法
WO2022246866A1 (zh) 安赛蜜废液的处理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20885543

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20885543

Country of ref document: EP

Kind code of ref document: A1