WO2021088190A1 - 一种多参量随钻测量确定煤体应力高峰区并预警的方法 - Google Patents

一种多参量随钻测量确定煤体应力高峰区并预警的方法 Download PDF

Info

Publication number
WO2021088190A1
WO2021088190A1 PCT/CN2019/123976 CN2019123976W WO2021088190A1 WO 2021088190 A1 WO2021088190 A1 WO 2021088190A1 CN 2019123976 W CN2019123976 W CN 2019123976W WO 2021088190 A1 WO2021088190 A1 WO 2021088190A1
Authority
WO
WIPO (PCT)
Prior art keywords
footage
drill pipe
time
torque
critical
Prior art date
Application number
PCT/CN2019/123976
Other languages
English (en)
French (fr)
Inventor
谭云亮
谭健
赵同彬
郭伟耀
赵志刚
Original Assignee
山东科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东科技大学 filed Critical 山东科技大学
Publication of WO2021088190A1 publication Critical patent/WO2021088190A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21FSAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
    • E21F17/00Methods or devices for use in mines or tunnels, not covered elsewhere
    • E21F17/18Special adaptations of signalling or alarm devices
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells

Definitions

  • the invention relates to the field of monitoring and early warning of mine dynamic disasters, in particular to a method for determining and early warning of coal body stress peak areas with multi-parameter measurement while drilling.
  • rock burst has become one of the major disasters threatening coal mine safety production.
  • rock burst mines the frequency and intensity of rockburst have increased significantly, which has brought great challenges to the prediction and forecast of rockburst.
  • High stress is a necessary condition for the occurrence of rock burst, and the cuttings method is a method to determine the peak stress area by measuring the change in the amount of cuttings during the drilling process.
  • the drill cuttings method has been widely used in coal mine rock burst forecasting and has a relatively complete and mature monitoring technology.
  • the drill cuttings method is affected by many factors. In some cases, the error is large, especially for weak coal seams or broken coal bodies.
  • the amount of drill cuttings generated during the drilling process may exceed the limit value.
  • the amount of drill cuttings alone cannot be used to determine the size of the coal body stress, and the drill cuttings method cannot measure the high stress-sensitive drill pipe speed, footage, torque and other parameters. And because of the lack of real-time monitoring of the amount of cuttings, the application of the cuttings method is limited.
  • the monitoring is performed only by the indicator of the amount of drill cuttings, or the monitoring is mainly based on the monitoring index of the amount of drill cuttings, which leads to problems such as complicated monitoring process and inaccurate judgment of the stress peak area.
  • the invention provides a multi-parameter measurement while drilling method for determining the coal body stress peak area and warning, the specific technical scheme is as follows.
  • a method for determining the peak area of coal body stress by multi-parameter measurement while drilling the steps include:
  • Step A By drilling multiple boreholes perpendicular to the coal wall in the roadway that is not affected by the mining support stress;
  • Step B Monitor the drill pipe torque per unit footage, the drill pipe rotation speed per unit footage and the footage time per unit footage, perform a weighted average of each monitoring data, and obtain the drilling depth and the drill pipe torque, drill pipe rotation speed and the normal unit footage.
  • Step C Determine the critical value of the drill pipe torque per unit footage, the drill pipe rotation speed per unit footage, and the critical value of the footage time per unit footage according to the critical index of the stress peak area;
  • Step D When the drill pipe rotation speed per unit footage is less than the corresponding critical value, or the drill pipe torque per unit footage is greater than the corresponding critical value, or the footage time per unit footage is greater than the corresponding critical value, determine the range of the borehole length as the stress Peak area.
  • the critical index in the peak stress area includes a torque rate index K M , a rotation rate index K N and a time rate index K D ;
  • the torque rate index K M is:
  • K M actual drill pipe torque per unit footage/normal drill pipe torque per unit footage
  • the rotation rate index K N is:
  • K N the actual rotation speed of the drill rod per unit of footage/the rotation speed of the drill rod per normal unit of footage
  • the time rate index K D is:
  • K D Actual unit footage time/normal unit footage time.
  • the critical index values are: torque rate index K M ⁇ 1.5, rotation rate index K N ⁇ 0.8, time rate index K D ⁇ 1.5; when the drilling depth/ coal seam thickness is between When it is between 1.5 and 3, the critical index values are: the torque rate index K M is 2 to 3, the rotation rate index K N is 0.4 to 0.8, and the time rate index K D is 2 to 3; when the drilling depth / When the coal seam thickness is ⁇ 3, the critical index values are: torque rate index K M ⁇ 4, rotation rate index K N >0, time rate index K D ⁇ 4.
  • step C the relationship curve between the drilling depth and the critical value is also obtained, including the curve of the drill rod torque of the critical unit footage changing with the drilling depth, and the curve of the drill rod rotation speed of the critical unit footage changing with the drilling depth.
  • a multi-parameter measurement while drilling method for determining the peak stress area of a coal body and early warning method includes the following steps:
  • the three parameters of drill rod torque, drill rod speed and footage time per unit footage are used as the basis for determining the stress peak area and warning of rock burst hazards. Compared with the collection of drill cuttings in the drill cuttings method, the selected parameters are The monitoring is more convenient, and the error of human operation is reduced; and through the joint judgment of multiple parameters, the accuracy, reliability and scientificity of the determination result of the stress peak area are increased.
  • the relationship curve between the drilling depth and the drill pipe torque, drill pipe speed and footage time of the normal unit footage can be obtained, which can be based on the relationship curve.
  • the stress peak area is determined in real time and an early warning is given.
  • Figure 1 is a schematic diagram of the relationship between the drilling depth and the critical value before mining in the construction drawing
  • Figure 2 is a schematic diagram of actual drill pipe torque and critical value of drill pipe torque after mining in the construction drawing
  • Figure 3 is a schematic diagram of the actual drill pipe rotation speed and the critical value of the drill pipe rotation speed after mining in the construction drawing;
  • Figure 4 is a schematic diagram of the actual footage time and the critical value of the footage time after mining in the construction drawing.
  • a method for determining the peak area of coal body stress by multi-parameter measurement while drilling the steps include:
  • Step A By drilling multiple boreholes perpendicular to the coal wall in the roadway that is not affected by the mining support stress.
  • the number of drilling holes is determined according to the specific roadway size. It is best to set 5-8 holes to ensure the accuracy of the measurement and save time.
  • Step B Monitor the drill pipe torque per unit footage, the drill pipe rotation speed per unit footage and the footage time per unit footage.
  • One side of the data can be recorded at intervals of 0.1-1m during the monitoring process, where the drill pipe torque, rotation speed and footage time can be passed rig sensor measured directly, for each monitoring data weighted averaging, the parameters obtained as a normal drill string torque footage unit normal N, the unit normal drill footage normal speed K, the normal time unit footage footage D is normal ; and the relationship curve between the drilling depth and the drill rod torque, drill rod speed and footage time of the normal unit footage is obtained.
  • Step C Determine the critical value of the drill pipe torque per unit footage, the drill pipe rotation speed per unit footage, and the critical value of the footage time per unit footage according to the critical index of the stress peak area.
  • the critical indicators of the stress peak area include torque rate indicator K M , rotation rate indicator K N and time rate indicator K D.
  • the torque rate index K M is:
  • K M actual drill pipe torque per unit footage (kN/m)/normal drill pipe torque per unit footage (kN/m);
  • the speed index K N is:
  • K N the actual rotation speed of the drill rod per unit of footage (r/m) / the rotation speed of the drill rod per normal unit of footage (r/m);
  • the time rate indicator K D is:
  • K D Actual unit footage time (min/m)/normal unit footage time (min/m).
  • the critical index values are: torque rate index K M ⁇ 1.5, rotation rate index K N ⁇ 0.8, and time rate index K D ⁇ 1.5;
  • the critical index values are: the torque rate index K M is 2 to 3, the rotation rate index K N is 0.4 to 0.8, and the time rate index K D is 2 to 3;
  • the critical index values are: torque rate index K M ⁇ 4, rotation rate index 0.4>K N >0, time rate index K D ⁇ 4; see Table 1 for details Shown.
  • Step D When the drill pipe rotation speed per unit footage is less than the corresponding critical unit footage drill pipe rotation speed, or the drill pipe torque per unit footage is greater than the corresponding critical unit footage drill pipe torque, or the footage time per unit footage is greater than the corresponding critical unit The footage time of the footage determines the range of the borehole length as the stress peak area.
  • the footage time the normal unit footage time ⁇ K D.
  • a multi-parameter measurement while drilling method for determining the peak stress area of the coal body and early warning method specifically using the above-mentioned method for determining the stress peak area of the multi-parameter measurement while drilling, the steps include: completing steps A to D in the roadway, and then passing Drilling to monitor the danger of rock burst; real-time comparison of the actual monitored drill pipe torque, drill pipe rotation speed and footage time per unit footage, and the relationship curve between the drilling depth and the drill pipe torque, drill pipe rotation speed and footage time of the normal unit footage; And compare the actual monitored drill pipe torque, drill pipe rotation speed and footage time per unit footage, and the relationship between the critical value; determine the stress peak area based on the comparison and real-time warning of the danger of rock burst.
  • the multi-parameter measurement-while-drilling stress peak area determination and early warning method of the present invention is applied to a specific mine.
  • a certain mine is mainly mining 3 coals with an average coal seam thickness of 3.4m; the coal seam is stable and the thickness does not change. Big.
  • the roof rock layers are siltstone (thickness 2-5m) and fine siltstone (thickness 11-22m) from bottom to top.
  • the section shape is rectangular, and the roadway size is 4.0 ⁇ 3.0m wide and high.
  • the implementation steps include:
  • Step A By drilling 6 boreholes perpendicular to the coal wall in the roadway that is not affected by the mining support stress.
  • Step B Monitor the drill pipe torque per unit footage, the drill pipe rotation speed per unit footage and the footage time per unit footage.
  • One side of the data can be recorded at intervals of 0.1m during the monitoring process.
  • the drill pipe torque, rotation speed and footage time can be passed through the drill rig. measured directly on the sensor, each monitoring data weighted averaging, the parameters obtained as a normal drill string torque footage unit normal N, the unit normal drill footage normal speed K, the normal time unit footage footage D Normal ; and get the relationship curve between drilling depth and normal unit footage of drill pipe torque, drill pipe rotation speed and footage time, as shown in Figure 1, where the position of L1 is the stress peak position before mining, and with the mining of the working face , The stress peak will change accordingly.
  • Step C Determine the critical value of the drill pipe torque per unit footage, the drill pipe rotation speed per unit footage, and the critical value of the footage time per unit footage according to the critical index of the stress peak area.
  • the critical index values are: torque rate index K M ⁇ 1.5, rotation rate index K N ⁇ 0.8, and time rate index K D ⁇ 1.5;
  • the critical index values are: the torque rate index K M is 2 to 3, the rotation rate index K N is 0.4 to 0.8, and the time rate index K D is 2 to 3;
  • the critical index values are: torque rate index K M ⁇ 4, rotation rate index K N >0, time rate index K D ⁇ 4; calculated borehole depth and The relationship curve of the critical value.

Abstract

一种多参量随钻测量确定煤体应力高峰区并预警的方法,涉及矿山灾害预警领域,具体是在不受采动支承应力影响的巷道内,垂直于煤壁打设多个钻孔,并监测单位进尺的钻杆扭矩、钻杆转速和进尺时间,对各监测数据进行加权平均,得到钻孔深度与正常的单位进尺的钻杆扭矩、钻杆转速和进尺时间的关系曲线,结合应力高峰区临界指标确定单位进尺的钻杆扭矩、钻杆转速和进尺时间的临界值,当单位进尺的钻杆转速小于相应的临界值,或单位进尺的钻杆扭矩、进尺时间大于相应的临界值,确定该钻孔长度的范围为应力高峰区,并进行预警。采用钻杆扭矩、转速和进尺时间作为监测指标,可以准确的确定应力高峰区并预警。

Description

一种多参量随钻测量确定煤体应力高峰区并预警的方法 技术领域
本发明涉及矿山动力灾害监测预警领域,尤其是一种多参量随钻测量确定煤体应力高峰区并预警的方法。
背景技术
随着煤矿开采强度及深度不断增加,冲击地压已经成为威胁煤矿安全生产的重大灾害之一。随着冲击地压矿井的不断增加,冲击地压发生频率和烈度均有显著增加,这为冲击地压的预测预报工作带来了极大挑战。高应力是冲击地压发生的必要条件,而钻屑法是一种通过测量钻孔过程中钻屑量的变化来确定应力高峰区的方法。
目前,钻屑法已广泛用于煤矿冲击地压预测预报,具有一套较为完整、成熟的监测技术。但钻屑法作为一种单指标测量方法,受很多因素影响,在某些情况下误差较大,尤其是对于软弱煤层或破碎煤体,钻孔过程中产生的钻屑量可能超过极限值,无法单独利用钻屑量判定煤体应力大小,以及钻屑法无法对高应力敏感的钻杆转速、进尺、扭矩等参量进行测量。并且由于钻屑量的监测具有不具备实时性,限制了钻屑法的应用。
为此,需要提供一种可以根据多参量指标评价,并且能够随钻杆钻进来测量确定应力高峰区的方法,达到一孔多用目的,减小应力高峰区域确定的误差,并提高应力高峰区预测准确率。
发明概述
技术问题
问题的解决方案
技术解决方案
本发明鉴于现有的钻屑法监测中,仅通过钻屑量这一指标进行监测,或者主要是以钻屑量监测指标进行监测,导致的监测过程复杂、应力高峰区判断不准确等问题,提出了采用钻杆扭矩、转速和进尺时间作为监测指标进行多参量判断 ,从而不需要监测钻孔的煤粉量,准确的确定应力高峰区并进行冲击地压危险预警;由于以钻杆扭矩、转速和进尺时间作为参量进行预警,因此可以实现钻孔监测的在线实时预警。
本发明提供的一种多参量随钻测量确定煤体应力高峰区并预警的方法,具体技术方案如下。
一种多参量随钻测量确定煤体应力高峰区的方法,步骤包括:
步骤A.通过在不受采动支承应力影响的巷道内,垂直于煤壁打设多个钻孔;
步骤B.监测单位进尺的钻杆扭矩、单位进尺的钻杆转速和单位进尺的进尺时间,对各个监测数据进行加权平均,并得到钻孔深度与正常单位进尺的钻杆扭矩、钻杆转速和进尺时间的关系曲线;
步骤C.根据应力高峰区临界指标确定单位进尺的钻杆扭矩、单位进尺的钻杆转速和单位进尺的进尺时间的临界值;
步骤D.当单位进尺的钻杆转速小于相应的临界值,或单位进尺的钻杆扭矩大于相应的临界值,或单位进尺的进尺时间大于相应的临界值,确定该钻孔长度的范围为应力高峰区。
优选的是,应力高峰区临界指标包括扭矩率指标K M、转速率指标K N和时间率指标K D
所述扭矩率指标K M为:
K M=实际单位进尺的钻杆扭矩量/正常单位进尺的钻杆扭矩量;
所述转速率指标K N为:
K N=实际单位进尺的钻杆转速量/正常单位进尺的钻杆转速量;
所述时间率指标K D为:
K D=实际单位进尺时间量/正常单位进尺时间量。
进一步优选的是,应力高峰区临界指标中,
当钻孔深度/煤层厚度≤1.5时,临界指标的取值为:扭矩率指标K M≥1.5、转速率指标K N≥0.8、时间率指标K D≥1.5;当钻孔深度/煤层厚度介于1.5~3之间时,临界指标的取值为:扭矩率指标K M为2~3、转速率指标K N为0.4~0.8、时间率指标K D为2~3;当钻孔深度/煤层厚度≥3时,临界指标的取值为:扭矩率指标K M ≥4、转速率指标K N>0、时间率指标K D≥4。
还优选的是,临界值具体是:临界单位进尺的钻杆扭矩=正常单位进尺的钻杆扭矩量×K M;所述临界单位进尺的钻杆转速=正常单位进尺的钻杆转速量×K N;所述临界单位进尺的进尺时间=正常单位进尺时间量×K D
优选的是,步骤C中还得到钻孔深度与临界值的关系曲线,包括临界单位进尺的钻杆扭矩随钻孔深度变化的曲线,临界单位进尺的钻杆转速随钻孔深度变化的曲线,临界单位进尺的进尺时间随钻孔深度变化的曲线。
一种多参量随钻测量确定煤体应力高峰区并预警的方法,利用上述的多参量随钻测量应力高峰区确定的方法,步骤包括:
在巷道内完成步骤A至步骤D,然后通过钻孔监测冲击地压危险;实时对比实际监测的单位进尺的钻杆扭矩、单位进尺的钻杆转速和单位进尺的进尺时间,与钻孔深度和正常单位进尺的钻杆扭矩、正常单位进尺的钻杆转速及正常单位进尺的进尺时间关系曲线之间的关系;并且对比实际监测的单位进尺的钻杆扭矩、钻杆转速和进尺时间,与临界值之间的关系;根据所述对比进行实时预警。
发明的有益效果
有益效果
本发明的有益效果是,
(1)利用单位进尺的钻杆扭矩、钻杆转速和进尺时间三个参量作为确定应力高峰区并进行冲击地压危险预警的依据,相较于钻屑法中钻屑的收集,选用参量的监测更加方便,减小了人为操作的误差;并且通过多个参量共同判断,增加了应力高峰区确定结果的准确性、可靠性和科学性。
(2)通过现在巷道内设置多个钻孔并对监测数据进行加权平均,从而得到钻孔深度与正常单位进尺的钻杆扭矩、钻杆转速和进尺时间的关系曲线,从而可以根据该关系曲线与实际的监测参数进行对比,结合应力高峰区临界指标实时确定应力高峰区并进行预警。
对附图的简要说明
附图说明
图1是施工图中开采前的钻孔深度与临界值的关系曲线示意图;
图2是施工图中开采后的实际钻杆扭矩与钻杆扭矩临界值示意图;
图3是施工图中开采后的实际钻杆转速与钻杆转速临界值示意图;
图4是施工图中开采后的实际进尺时间与进尺时间临界值示意图。
发明实施例
本发明的实施方式
结合图1至图4所示,本发明提供的一种多参量随钻测量确定煤体应力高峰区并预警的方法具体实施方式如下。
实施例1
一种多参量随钻测量确定煤体应力高峰区的方法,步骤包括:
步骤A.通过在不受采动支承应力影响的巷道内,垂直于煤壁打设多个钻孔。钻孔的数目根据具体的巷道尺寸进行确定,最好打设5-8个钻孔,即可以保证测量的准确性,还能节省时间。
步骤B.监测单位进尺的钻杆扭矩、单位进尺的钻杆转速和单位进尺的进尺时间,可以在监测过程中每间隔0.1-1m记录一侧数据,其中钻杆扭矩、转速和进尺时间可以通过钻机上的传感器直接测量得到,对各个监测数据进行加权平均,得到的参数作为正常的单位进尺的钻杆扭矩N 正常、正常的单位进尺的钻杆转速K 、正常的单位进尺的进尺时间D 正常;并得到钻孔深度与正常单位进尺的钻杆扭矩、钻杆转速和进尺时间的关系曲线。
步骤C.根据应力高峰区临界指标确定单位进尺的钻杆扭矩、单位进尺的钻杆转速和单位进尺的进尺时间的临界值。
其中,应力高峰区临界指标包括扭矩率指标K M、转速率指标K N和时间率指标K D
扭矩率指标K M为:
K M=实际单位进尺的钻杆扭矩量(kN/m)/正常单位进尺的钻杆扭矩量(kN/m);
转速率指标K N为:
K N=实际单位进尺的钻杆转速量(r/m)/正常单位进尺的钻杆转速量(r/m) ;
时间率指标K D为:
K D=实际单位进尺时间量(min/m)/正常单位进尺时间量(min/m)。
应力高峰区临界指标中,当钻孔深度/煤层厚度≤1.5时,临界指标的取值为:扭矩率指标K M≥1.5、转速率指标K N≥0.8、时间率指标K D≥1.5;当钻孔深度/煤层厚度介于1.5~3之间时,临界指标的取值为:扭矩率指标K M为2~3、转速率指标K N为0.4~0.8、时间率指标K D为2~3;当钻孔深度/煤层厚度≥3时,临界指标的取值为:扭矩率指标K M≥4、转速率指标0.4>K N>0、时间率指标K D≥4;具体如表1所示。
表1应力高峰区临界指标
[Table 1]
钻孔深度/煤层厚度 1.5 1.5-3 3
转速率指标K N ≥0.8 0.4-0.8 >0且<0.4
扭矩率指标K M ≥1.5 2-3 ≥4
时间率指标K D ≥1.5 2-3 ≥4
根据表1还可以得到钻孔深度与临界值的关系曲线,包括临界单位进尺的钻杆扭矩随钻孔深度变化的曲线,其临界单位进尺的钻杆扭矩N 临界=N 正常×K N,临界单位进尺的钻杆转速随钻孔深度变化的曲线,其临界单位进尺的钻杆转速M =M 正常×K M,临界单位进尺的进尺时间随钻孔深度变化的曲线,临界单位进尺的进尺时间D 临界=D 正常×K D
步骤D.当单位进尺的钻杆转速小于相应的临界单位进尺的钻杆转速,或单位进尺的钻杆扭矩大于相应的临界单位进尺的钻杆扭矩,或单位进尺的进尺时间大于相应的临界单位进尺的进尺时间,确定该钻孔长度的范围为应力高峰区。
其中临界值具体是:临界单位进尺的钻杆扭矩=正常单位进尺的钻杆扭矩量×K M;临界单位进尺的钻杆转速=正常单位进尺的钻杆转速量×K N;临界单位进尺的进尺时间=正常单位进尺时间量×K D
一种多参量随钻测量确定煤体应力高峰区并预警的方法,具体是利用上述的多参量随钻测量应力高峰区确定的方法,步骤包括:在巷道内完成步骤A至步骤D,然后通过钻孔监测冲击地压危险;实时对比实际监测的单位进尺的钻杆扭矩、钻杆转速和进尺时间,与钻孔深度与正常单位进尺的钻杆扭矩、钻杆转速和进尺时间的关系曲线;并且对比实际监测的单位进尺的钻杆扭矩、钻杆转速和进尺时间,与临界值之间的关系;根据对比确定应力高峰区并实时预警冲击地压危险。
实施例2
本实施例将本发明的多参量随钻测量应力高峰区确定与预警方法应用于具体的矿井中,具体为,某矿主采3煤,煤层厚度平均3.4m;煤层层位稳定,厚度变化不大。顶板岩层自下向上依次为粉砂岩(厚度为2-5m)和细粉砂岩(厚度为11-22m),断面形状为矩形,巷道尺寸宽×高为4.0×3.0m。实施的步骤包括:
步骤A.通过在不受采动支承应力影响的巷道内,垂直于煤壁打设6个钻孔。
步骤B.监测单位进尺的钻杆扭矩、单位进尺的钻杆转速和单位进尺的进尺时间,可以在监测过程中没间隔0.1m记录一侧数据,其中钻杆扭矩、转速和进尺时间可以通过钻机上的传感器直接测量得到,对各个监测数据进行加权平均,得到的参数作为正常的单位进尺的钻杆扭矩N 正常、正常的单位进尺的钻杆转速K 、正常的单位进尺的进尺时间D 正常;并得到钻孔深度与正常单位进尺的钻杆扭矩、钻杆转速和进尺时间的关系曲线,如图1所示,其中L1的位置为开采前的应力高峰位置,随着工作面的开采,应力高峰会随之变化。
步骤C.根据应力高峰区临界指标确定单位进尺的钻杆扭矩、单位进尺的钻杆转速和单位进尺的进尺时间的临界值。应力高峰区临界指标中,当钻孔深度/煤层厚度≤1.5时,临界指标的取值为:扭矩率指标K M≥1.5、转速率指标K N≥0.8、时间率指标K D≥1.5;当钻孔深度/煤层厚度介于1.5~3之间时,临界指标的取值为:扭矩率指标K M为2~3、转速率指标K N为0.4~0.8、时间率指标K D为2~3;当钻孔深度/煤层厚度≥3时,临界指标的取值为:扭矩率指标K M≥4、转速率指标K N>0、时间率指标K D≥4;计算得到钻孔深度与临界值的关系曲线。
然后通过钻孔监测冲击地压危险;实时对比实际监测的单位进尺的钻杆扭矩、 钻杆转速和进尺时间,与钻孔深度与正常单位进尺的钻杆扭矩、钻杆转速和进尺时间的关系曲线,如图2至图4所示,从而确定了应力高峰区移动至L 2、L 3或L 4的位置。并且对比实际监测的单位进尺的钻杆扭矩、钻杆转速和进尺时间,与临界值之间的关系,确定应力高峰区并根据对比实时预警,当监测到单位进尺的钻杆转速、进尺时间小于相应的临界值,或单位进尺的钻杆扭矩大于相应的临界值时进行预警。由于采用钻杆扭矩、转速和进尺时间作为监测指标进行多参量判断,从而不需要监测钻孔的煤粉量,可以准确的确定应力高峰区并进行冲击地压危险预警。
当然,上述说明并非是对本发明的限制,本发明也并不仅限于上述举例,本技术领域的技术人员在本发明的实质范围内所做出的变化、改型、添加或替换,也应属于本发明的保护范围。

Claims (6)

  1. 一种多参量随钻测量确定煤体应力高峰区的方法,其特征在于,步骤包括:
    步骤A.通过在不受采动支承应力影响的巷道内,垂直于煤壁打设多个钻孔;
    步骤B.监测单位进尺的钻杆扭矩、单位进尺的钻杆转速和单位进尺的进尺时间,对各监测数据进行加权平均,并得到钻孔深度与正常单位进尺的钻杆扭矩、钻杆转速和进尺时间的关系曲线;
    步骤C.根据应力高峰区临界指标确定单位进尺的钻杆扭矩、单位进尺的钻杆转速和单位进尺的进尺时间的临界值;
    步骤D.当单位进尺的钻杆转速小于相应的临界值,或单位进尺的钻杆扭矩大于相应的临界值,或单位进尺的进尺时间大于相应的临界值,确定该钻孔长度的范围为应力高峰区。
  2. 根据权利要求1所述的一种多参量随钻测量确定煤体应力高峰区的方法,其特征在于,所述应力高峰区临界指标包括扭矩率指标K M、转速率指标K N和时间率指标K D
    所述扭矩率指标K M为:
    K M=实际单位进尺的钻杆扭矩量/正常单位进尺的钻杆扭矩量;
    所述转速率指标K N为:
    K N=实际单位进尺的钻杆转速量/正常单位进尺的钻杆转速量;
    所述时间率指标K D为:
    K D=实际单位进尺时间量/正常单位进尺时间量。
  3. 根据权利要求2所述的一种多参量随钻测量确定煤体应力高峰区的方法,其特征在于,所述应力高峰区临界指标中,
    当钻孔深度/煤层厚度≤1.5时,临界指标的取值为:扭矩率指标K M≥1.5、转速率指标K N≥0.8、时间率指标K D≥1.5;当钻孔深度/煤层厚度介于1.5~3之间时,临界指标的取值为:扭矩率指标K M为2~3、转速率指标K N为0.4~0.8、时间率指标K D为2~3;当钻孔深度/煤 层厚度≥3时,临界指标的取值为:扭矩率指标K M≥4、转速率指标K N>0、时间率指标K D≥4。
  4. 根据权利要求1或3所述的一种多参量随钻测量确定煤体应力高峰区的方法,其特征在于,所述临界值具体是:临界单位进尺的钻杆扭矩=正常单位进尺的钻杆扭矩量×K M;所述临界单位进尺的钻杆转速=正常单位进尺的钻杆转速量×K N;所述临界单位进尺的进尺时间=正常单位进尺时间量×K D
  5. 根据权利要求4所述的一种多参量随钻测量确定煤体应力高峰区的方法,其特征在于,所述步骤C中还得到钻孔深度与临界值的关系曲线,包括临界单位进尺的钻杆扭矩随钻孔深度变化的曲线,临界单位进尺的钻杆转速随钻孔深度变化的曲线,临界单位进尺的进尺时间随钻孔深度变化的曲线。
  6. 一种多参量随钻测量确定煤体应力高峰区并预警的方法,其特征在于,利用权利要求1-3任一项所述的多参量随钻测量应力高峰区确定的方法,步骤包括:
    在巷道内完成步骤A至步骤D,然后通过钻孔监测冲击地压危险;实时对比实际监测的单位进尺的钻杆扭矩、单位进尺的钻杆转速和单位进尺的进尺时间,与钻孔深度和正常单位进尺的钻杆扭矩、正常单位进尺的钻杆转速及正常单位进尺的进尺时间关系曲线之间的关系;并且对比实际监测的单位进尺的钻杆扭矩、钻杆转速和进尺时间,与临界值之间的关系;根据所述对比进行实时预警。
PCT/CN2019/123976 2019-11-06 2019-12-09 一种多参量随钻测量确定煤体应力高峰区并预警的方法 WO2021088190A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911073657.X 2019-11-06
CN201911073657.XA CN110778363B (zh) 2019-11-06 2019-11-06 一种多参量随钻测量确定煤体应力高峰区并预警的方法

Publications (1)

Publication Number Publication Date
WO2021088190A1 true WO2021088190A1 (zh) 2021-05-14

Family

ID=69389274

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/123976 WO2021088190A1 (zh) 2019-11-06 2019-12-09 一种多参量随钻测量确定煤体应力高峰区并预警的方法

Country Status (2)

Country Link
CN (1) CN110778363B (zh)
WO (1) WO2021088190A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116644975A (zh) * 2023-07-27 2023-08-25 山东卓越精工集团有限公司 一种防冲隐蔽工程施工的智能监管方法以及系统

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111291997B (zh) * 2020-02-18 2022-02-25 山东科技大学 基于随钻测量技术的煤层冲击危险性实时评估方法
CN112434418B (zh) * 2020-11-20 2022-09-09 山东科技大学 一种开采引起冲击动能估算方法
CN115234303A (zh) * 2022-07-28 2022-10-25 华北科技学院 一种定力钻屑预测冲击地压危险的方法与装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3330802A1 (de) * 1983-08-26 1985-03-14 Bergwerksverband Gmbh, 4300 Essen Verfahren und beurteilung gebirgsschlaggefaehrlicher spannungen und messvorrichtung
DE202005015571U1 (de) * 2005-10-05 2006-02-02 Jäger, Frank-Michael Vorrichtung zur Spannungsermittlung im Gebirge
CN104763470A (zh) * 2015-03-27 2015-07-08 辽宁工程技术大学 矿用一孔多指标智能预警冲击地压系统及方法
CN105041306A (zh) * 2015-07-22 2015-11-11 山东科技大学 基于多参数临界煤粉量指标的冲击危险预警方法
CN109812259A (zh) * 2017-11-20 2019-05-28 辽宁工程技术大学 一种煤矿用钻孔多指标测试装置及方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104989389B (zh) * 2015-06-11 2018-04-03 中国矿业大学 一种煤体强度分布特征连续探测方法及装置
CN108286459B (zh) * 2018-01-16 2019-10-25 山东科技大学 巷道顶板潜在危险性岩层范围的确定方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3330802A1 (de) * 1983-08-26 1985-03-14 Bergwerksverband Gmbh, 4300 Essen Verfahren und beurteilung gebirgsschlaggefaehrlicher spannungen und messvorrichtung
DE202005015571U1 (de) * 2005-10-05 2006-02-02 Jäger, Frank-Michael Vorrichtung zur Spannungsermittlung im Gebirge
CN104763470A (zh) * 2015-03-27 2015-07-08 辽宁工程技术大学 矿用一孔多指标智能预警冲击地压系统及方法
CN105041306A (zh) * 2015-07-22 2015-11-11 山东科技大学 基于多参数临界煤粉量指标的冲击危险预警方法
CN109812259A (zh) * 2017-11-20 2019-05-28 辽宁工程技术大学 一种煤矿用钻孔多指标测试装置及方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HAO, ZHIYONG, WANG SHUAILING, PAN YISHAN: "Experimental study on prediction of rock burst risk by multi-parameter indexes of borehole", COAL GEOLOGY AND EXPLORATION, vol. 46, no. 6, 1 January 2018 (2018-01-01), pages 203 - 211, XP055812579, ISSN: 1001-1986, DOI: 10.3969/j.issn.1001-1986.2018.06.031 *
WANG CHUNHUA, LIU YAQIANG;ZHAO YAZHI;HAO ZHIYONG: "Experimental study on determination of stress of coal body by joint method of thrust and rotation speed of drill pipe", CHINESE JOURNAL OF APPLIED MECHANICS, vol. 36, no. 1, 28 February 2019 (2019-02-28), XP055812588, ISSN: 1000-4939, DOI: 10.11776/cjam.36.01.B110 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116644975A (zh) * 2023-07-27 2023-08-25 山东卓越精工集团有限公司 一种防冲隐蔽工程施工的智能监管方法以及系统
CN116644975B (zh) * 2023-07-27 2023-10-10 山东卓越精工集团有限公司 一种防冲隐蔽工程施工的智能监管方法以及系统

Also Published As

Publication number Publication date
CN110778363A (zh) 2020-02-11
CN110778363B (zh) 2023-05-05

Similar Documents

Publication Publication Date Title
WO2021088190A1 (zh) 一种多参量随钻测量确定煤体应力高峰区并预警的方法
CN107605536B (zh) 基于多源信息融合的煤与瓦斯突出实时预警装置与方法
RU2567878C2 (ru) Способ прогнозирования опасности выброса угля и газа посредством объединения различной информации
WO2020258589A1 (zh) 煤层瓦斯参数随钻快速测试的反演计算方法
CN110219692B (zh) 利用煤层钻孔施工中瓦斯涌出数据反演突出主控参数的方法
US8082104B2 (en) Method to determine rock properties from drilling logs
WO2018121106A1 (zh) 一种基于采空区压力监测的煤矿采空区飓风灾害预警方法
Wang et al. Comprehensive monitoring technique based on electromagnetic radiation and its applications to mine pressure
WO2016041392A1 (zh) 一种水体下充填采煤导水裂隙高度测试方法
CN108710759B (zh) 一种通过现场测量煤体软化模量指数判断冲击倾向性的方法
Liu et al. Fractal characterization for the mining crack evolution process of overlying strata based on microseismic monitoring technology
Karasawa et al. Experimental results on the effect of bit wear on torque response
CN113294143A (zh) 一种煤层底板灰岩水害地面超前区域探查治理效果评价方法
CN101975075B (zh) 利用掘进面瓦斯涌出参数反演的煤体瓦斯含量测定方法
US11808152B2 (en) Method for real-time strength estimation, grading, and early warning of rock mass in tunnel boring machine (TBM) tunneling
CN105756709B (zh) 一种工作面顶板来压及破断的监测方法
CN115467662B (zh) 岩体碎胀特性原位测试与评价方法
CN105333905B (zh) 煤岩上行钻孔瓦斯参数的测定系统
CN109886550A (zh) 煤矿地面压裂坚硬顶板控制强矿压效果综合评价方法
CN108426663A (zh) 一种矩形钻孔应力监测装置及监测方法
CN114810023A (zh) 一种适应于密集井眼防碰的施工方法
CN111861138A (zh) 煤岩微芯数字智能精细探测预报系统、方法及装置
CN113047829B (zh) 基于掘进机运行参数的煤体结构坚固性的确定方法
Song et al. A method for determining the overburden failure height of coal mining based on the change of drilling speed and the leakage of sectional water injection in underground upward bolehole
CN113833432B (zh) 水力压裂弱化卸压施工方法及施工系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19951639

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19951639

Country of ref document: EP

Kind code of ref document: A1