WO2018121106A1 - 一种基于采空区压力监测的煤矿采空区飓风灾害预警方法 - Google Patents

一种基于采空区压力监测的煤矿采空区飓风灾害预警方法 Download PDF

Info

Publication number
WO2018121106A1
WO2018121106A1 PCT/CN2017/110689 CN2017110689W WO2018121106A1 WO 2018121106 A1 WO2018121106 A1 WO 2018121106A1 CN 2017110689 W CN2017110689 W CN 2017110689W WO 2018121106 A1 WO2018121106 A1 WO 2018121106A1
Authority
WO
WIPO (PCT)
Prior art keywords
goaf
pressure
goaf area
rock
hurricane
Prior art date
Application number
PCT/CN2017/110689
Other languages
English (en)
French (fr)
Inventor
谢建林
许家林
朱卫兵
Original Assignee
中国矿业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国矿业大学 filed Critical 中国矿业大学
Publication of WO2018121106A1 publication Critical patent/WO2018121106A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21FSAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
    • E21F17/00Methods or devices for use in mines or tunnels, not covered elsewhere
    • E21F17/18Special adaptations of signalling or alarm devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/02Agriculture; Fishing; Forestry; Mining

Definitions

  • the invention relates to a method for calculating a gap of a hurricane disaster early warning method in a coal mine goaf based on pressure monitoring of a goaf, and belongs to the field of coal mining.
  • the detection methods of goafs at home and abroad generally include two major categories: borehole detection and geophysical exploration.
  • the results obtained through borehole observation have obvious characteristics.
  • Verification; physical exploration results have multiple solutions, insufficient positioning accuracy, etc., so traditional methods of observation have certain limitations.
  • the problem to be solved by the present invention is to provide a method which is convenient to install, simple in operation, low in implementation cost, and capable of early warning of hurricane disasters in a goaf.
  • the invention provides an early warning method for hurricane disasters in coal mine goaf based on pressure monitoring of goaf, comprising the following steps:
  • Step 1 First determine the working face of a certain coal seam, and obtain the thickness M of the working face. According to the columnar data of the drilling rock face of the working face, and then combined with the rock mass mechanical parameters test, the crushing coefficient Kp of the rock mass can be respectively obtained.
  • Rock mass density ⁇ Rock mass density ⁇ ;
  • Step 2 Arrange a number of goaf pressure pillows in the goaf of the coal mine.
  • the pressure pillow of the goaf is connected with the pressure transmitter, and the signal of the pressure transmitter is transmitted to the data collection substation located in the roadway through the cable. Therefore, the pressure value of the goaf is obtained, and the rock fall height ⁇ h can be obtained according to the pressure calculation formula, and then the internal void ⁇ of the goaf can be obtained according to the calculation formula of the internal void of the goaf;
  • Step 3 According to the columnar data of the drilling rock face of the working face, combined with the material mechanics formula, the maximum deflection value of the hard roof can be calculated as Smax; the internal clearance ⁇ of the goaf is compared with the maximum deflection value Smax of the hard roof, when ⁇ 0.8Smax It is the warning moment for hurricane disasters in the goaf.
  • a number of pressure measuring points are arranged in the goaf, and when the coal seam is produced, the rear goaf will gradually fall. According to the change of the falling state of the roof, the pressure monitoring data inside the goaf also changes accordingly. According to the pressure value obtained by the monitoring, the gap size inside the goaf is obtained by inverse calculation. According to the material mechanics formula, the hard roof can be calculated. The maximum deflection value at the time of breaking is compared with the critical deflection value of the hard roof calculated by the monitoring pressure, and the corresponding early warning coefficient is set to warn the hurricane disaster in the goaf.
  • the invention only monitors the change of the pressure in the goaf by setting the pressure pillow in the goaf, and can realize the early warning of the hurricane disaster in the goaf without manual surveying, the operation is simple, the implementation cost is low, and the labor is artificial. Low strength.
  • Figure 1 is a schematic view of the state of the hard top of the goaf before the fall.
  • FIG. 1 Schematic diagram of the goaf area pressure monitoring system.
  • a gob area pressure monitoring system first determines a coal mining face 5 in the coal mine working area, and then arranges a number of goaf pressure pillows 1 in the goaf area 6, the gob area pressure
  • the pillow 1 is connected to the pressure transmitter 2, and the signal of the pressure transmitter 2 is transmitted through the cable 3 to the data collection substation 4 in the roadway 7 in front of the working surface 5, and the real-time collection and storage is performed through the data collection substation 4.
  • Zone pressure value When the coal seam is produced, the rear goaf 6 will gradually fall. According to the change of the roof collapse state as shown in Fig. 2, the pressure monitoring data inside the goaf 6 also changes, according to the monitoring.
  • the pressure value inversion calculates the size of the gap inside the goaf 6.
  • the expansion coefficient Kp is expressed.
  • the hard rock strata are large and well-arranged, and the coefficient of collapse is small.
  • the soft rock is broken, the small block is arranged in a disorderly manner, and the coefficient of expansion is Kp.
  • the crushing coefficient Kp can also be obtained by taking the core.
  • the maximum deflection value of the hard top plate 8 can be calculated as Smax, which is the critical value of the breaking of the hard top plate 8, that is, when the deflection of the hard top plate 8 is greater than Smax, the breaking will occur.
  • the clearance ⁇ of the goaf is closer to the maximum deflection value Smax of the hard top plate 8, the hard top plate 8 is more likely to break. If the calculated clearance ⁇ 0.8Smax of the goaf indicates that the probability of breakage of the hard roof is greater, the hurricane disaster warning in the goaf is required, and corresponding measures are taken for roof treatment.
  • the invention arranges a plurality of pressure measuring points in the goaf 6, and when the coal seam is produced, the rear goaf will gradually occur.
  • the pressure monitoring data inside the goaf 6 also changes accordingly.
  • the gap size inside the goaf is obtained, which can be calculated according to the material mechanics formula.
  • the maximum deflection value of the hard roof 8 is broken.
  • the gap between the goaf calculated according to the monitoring pressure is compared with the theoretically calculated hard roof critical deflection value, and the corresponding early warning coefficient is set to carry out the hurricane disaster in the goaf. Early warning.
  • the present invention only monitors the change of the pressure in the goaf by setting the pressure pillow in the goaf 6, and can realize the early warning of the hurricane disaster in the goaf without manual surveying, the operation is simple, the implementation cost is low, and the labor is manual. Low strength.

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Strategic Management (AREA)
  • Economics (AREA)
  • Mining & Mineral Resources (AREA)
  • Human Resources & Organizations (AREA)
  • General Business, Economics & Management (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Marketing (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Animal Husbandry (AREA)
  • Operations Research (AREA)
  • Game Theory and Decision Science (AREA)
  • Development Economics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Agronomy & Crop Science (AREA)
  • Quality & Reliability (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

一种基于采空区压力监测的煤矿采空区飓风灾害预警方法,属于煤矿开采技术领域。该方法包括:步骤一:确定某个工作面厚度值,由工作面钻孔岩层柱状资料并结合岩体力学参数测试实验得出岩体的碎胀系数、岩体容重;步骤二:在采空区内部布置采空区压力枕,采空区压力枕与压力变送器连接,压力变送器的信号通过电缆传输到设在巷道中的数据采集分站,得到采空区压力值,可得到岩体垮落高度和采空区内部空隙Δ;步骤三:同时结合材料力学公式可以计算坚硬顶板最大挠度值Smax;将Δ与最大挠度值Smax进行对比,当Δ≥0.8Smax时则为采空区飓风灾害预警时刻。该方法基于一种安装简便、操作简单、实施成本低的采空区压力监测系统实现对采空区飓风灾害预警。

Description

一种基于采空区压力监测的煤矿采空区飓风灾害预警方法 技术领域
本发明涉及基于采空区压力监测的煤矿采空区飓风灾害预警方法区空隙计算方法,属于煤矿开采领域。
背景技术
当煤层或薄直接顶上方存在厚度与强度较大的坚硬岩层时,其不会随着工作面开采而及时自行垮落,若不采用其他强制放顶措施则容易造成大面积悬顶采空区,当悬顶面积达到一定程度,坚硬顶板承受载荷将超出其自身强度极限而瞬间发生大面积垮落,积聚于顶板内部的能量迅速释放,从而发生采空区飓风灾害等重大矿井动力灾害,极易造成矿井设备的严重损坏和现场人员的重大伤亡。发生采空区飓风灾害的前提是采空区内部空隙太大,由于无法对采空区内部空隙进行直接监测,故需通过一种间接监测方法对采空区内部空隙进行反演计算。目前,国内外对采空区的探测方法大致包括钻孔探测法和地球物理勘探法两大类。通过钻孔观测得到的结果具有直观的特点,但由于受工程费用高、操作实施困难等限制,无法进行大量的测点布置同时也难以对采空区的边界范围进行确定,仅能进行少数工程验证;物理勘探结果具有多解性、定位精度不足等问题,因此传统的观测方法都具有一定的局限性。
发明内容
本发明要解决的问题是提供一种安装方便、操作简单、实施成本低且能够对采空区实现飓风灾害预警的方法。
本发明提供基于采空区压力监测的煤矿采空区飓风灾害预警方法,包括如下步骤:
步骤一:首先确定某个煤层的工作面,由此得到其工作面厚度值M,根据工作面钻孔岩层柱状资料,然后结合岩体力学参数测试实验可以分别得出岩体的碎胀系数Kp、岩体容重γ;
步骤二:在煤矿采空区内部布置若干个采空区压力枕,采空区压力枕与压力变送器连接,压力变送器的信号通过电缆传输到设在巷道中的数据采集分站,从而得到采空区压力值为P,根据压力计算公式可得到岩体垮落高度∑h,再根据采空区内部空隙计算公式,即可得到采空区内部空隙Δ;
步骤三:根据工作面钻孔岩层柱状资料,同时结合材料力学公式可以计算坚硬顶板最大挠度值为Smax;将采空区内部空隙Δ与坚硬顶板最大挠度值Smax进行对比,当Δ≥0.8Smax时则为采空区飓风灾害预警时刻。
进一步地,所述岩体垮落高度为∑h的计算公式为P/γ。
进一步地,采空区内部空隙计算公式为Δ=M+∑h-Kp·∑h。
相比现有技术,本发明的有益效果在于:
(1)在采空区内布置若干压力测点,当煤层采出后,后方采空区将逐渐发生垮落, 根据顶板垮落状态的变化,采空区内部的压力监测数据也随之发生变化,根据监测得到的压力值反算得到采空区内部的空隙大小,根据材料力学公式可以讣算得出坚硬顶板发生破断时的最大挠度值,将根据监测压力计算得到的采空区空隙与理论计算的坚硬顶板临界挠度值进行对比,设定相应的预警系数,从而对采空区飓风灾害事故进行预警。
(2)本发明仅仅通过在采空区设置压力枕,实时监测采空区压力的变化,不需要人工进行勘测,就能实现采空区飓风灾害预警,操作简单,实施成本低,且人工劳动强度低。
附图说明
图1采空区坚硬顶层垮落前状态示意图。
图2采空区压力监测系统示意图。
附图标记:采空区压力枕-1;压力变送器-2;电缆-3;数据采集分站-4;工作面-5;采空区-6;巷道-7;坚硬顶板-8。
具体实施方式
为使本发明实现的技术手段、创作特征、达成目的与功效易于明白了解,下面结合具体实施方式,进一步阐述本发明。
如附图1所示的一种采空区压力监测系统,首先确定煤矿工作区的某个采煤工作面5,然后在采空区6内布置若干采空区压力枕1,采空区压力枕1与压力变送器2连接,压力变送器2的信号通过电缆3传输到工作面5前方的巷道7中的数据采集分站4中,通过数据采集分站4进行实时采集存储采空区压力值。当煤层采出后,后方采空区6将逐渐发生垮落,根据如附图2所示的顶板垮落状态的变化,采空区6内部的压力监测数据也随之发生变化,根据监测得到的压力值反演计算出采空区6内部的空隙大小。发生采空区飓风灾害的条件之一是采空区6内部存在的空隙太大。坚硬顶板8垮落,在采空区6形成岩石散体堆积结构,具整个体积大于岩块垮落前体积,这种垮落岩体体积增大的性质即为岩石碎胀特性,通常用碎胀系数Kp表示。坚硬岩层垮落块体大且排列整齐,碎胀系数Kp较小;软岩破碎后块体小排列较乱,碎胀系数Kp较大,而碎胀系数Kp也可以通过在岩体上取芯并结合相应的岩体力学参数测试方法得到,因此如何确定垮落高度∑h成为计算采空区内部空隙的关键。由于无法直接进行测量,本发明所述的方法通过上述的采空区压力监测系统得到采空区内部的压力,若监测得到的采空区压力值为P,工作面5的厚度为M,而垮落岩体容重为γ可以通过岩体力学参数测试方法得到,由此得到坚硬顶板垮落高度∑h为P/γ;再由空隙计算公式Δ=M-P/·(Kp-1),从公式可以看出,采空区压力P越小,空隙Δ越大,发生采空区飓风灾害概率更大。
发生采空区飓风灾害的另一条件是坚硬顶板8出现破断。根据材料力学公式可以计算坚硬顶板8的最大挠度值为Smax,该挠度值为坚硬顶板8破断的临界值,即当坚硬顶板8的挠度大于Smax将发生破断。
显然,当采空区空隙Δ越接近坚硬顶板8的最大挠度值Smax,则坚硬顶板8越容易发生破断。如果计算出的采空区空隙Δ≥0.8Smax时,则说明坚硬顶板出现破断的概率越大,则需进行采空区飓风灾害预警,并采取相应措施进行顶板处理。
本发明在采空区6内布置若干压力测点,当煤层采出后,后方采空区将逐渐发生垮 落,根据顶板垮落状态的变化,采空区6内部的压力监测数据也随之发生变化,根据监测得到的压力值反算得到采空区内部的空隙大小,根据材料力学公式可以计算得出坚硬顶板8发生破断时的最大挠度值,将根据监测压力计算得到的采空区空隙与理论计算的坚硬顶板临界挠度值进行对比,设定相应的预警系数,从而对采空区飓风灾害事故进行预警。且本发明仅仅通过在采空区6内设置压力枕,实时监测采空区压力的变化,不需要人工进行勘测,就能实现采空区飓风灾害预警,操作简单,实施成本低,且人工劳动强度低。
本技术领域中的普通技术人员应当认识到,以上的实施例仅是用来说明本发明,而并非用作为对本发明的限定,只要在本发明的实质精神范围内,对以上所述实施例的变化、变型都将落在本发明的权利要求范围内。

Claims (3)

  1. 一种基于采空区压力监测的煤矿采空区飓风灾害预警方法,其特征在于,包括如下步骤:
    步骤一:首先确定某个煤层的工作面,由此得到其工作面厚度值M,根据工作面钻孔岩层柱状资料,然后结合岩体力学参数测试实验可以分别得出岩体的碎胀系数Kp、岩体容重γ;
    步骤二:在煤矿采空区内部布置若干个采空区压力枕,采空区压力枕与压力变送器连接,压力变送器的信号通过电缆传输到设在巷道中的数据采集分站,从而构成一个完整的采空区压力监测系统,由采空区压力枕得到采空区压力值为P,根据压力计算公式可得到岩体垮落高度∑h,再根据采空区内部空隙计算公式,即可得到采空区内部空隙Δ;
    步骤三:根据工作面钻孔岩层柱状资料,同时结合材料力学公式可以计算坚硬顶板最大挠度值为Smax;将采空区内部空隙Δ与坚硬顶板最大挠度值Smax进行对比,当Δ≥0.8Smax时则为采空区飓风灾害预警时刻。
  2. 根据权利要求1所述的基于采空区压力监测的煤矿采空区飓风灾害预警方法,其特征在于:所述岩体垮落高度为∑h的计算公式为P/γ。
  3. 根据权利要求1所述的基于采空区压力监测的煤矿采空区飓风灾害预警方法,其特征在于:采空区内部空隙计算公式为Δ=M+∑h-Kp·∑h。
PCT/CN2017/110689 2016-12-28 2017-11-13 一种基于采空区压力监测的煤矿采空区飓风灾害预警方法 WO2018121106A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611232051.2A CN106779231B (zh) 2016-12-28 2016-12-28 一种基于采空区压力监测的煤矿采空区飓风灾害预警方法
CN201611232051.2 2016-12-28

Publications (1)

Publication Number Publication Date
WO2018121106A1 true WO2018121106A1 (zh) 2018-07-05

Family

ID=58921794

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/110689 WO2018121106A1 (zh) 2016-12-28 2017-11-13 一种基于采空区压力监测的煤矿采空区飓风灾害预警方法

Country Status (2)

Country Link
CN (1) CN106779231B (zh)
WO (1) WO2018121106A1 (zh)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109060599A (zh) * 2018-09-18 2018-12-21 中国矿业大学(北京) 煤矿采空区内低温氮气运移规律模拟实验平台及实验方法
CN111428357A (zh) * 2020-03-20 2020-07-17 山西工程技术学院 基于覆岩剩余自由空间高度的地表最大下沉值确定方法
CN112763020A (zh) * 2020-12-17 2021-05-07 华能煤炭技术研究有限公司 倾斜煤层采空区的水量监测方法、装置及电子设备
CN112906208A (zh) * 2021-02-02 2021-06-04 中煤能源研究院有限责任公司 一种切眼外错布置条件下顶板见方垮落步距的计算方法
CN114547723A (zh) * 2021-12-31 2022-05-27 安徽郎溪南方水泥有限公司 智慧矿山管控方法及装置
CN114575845A (zh) * 2022-03-01 2022-06-03 中煤能源研究院有限责任公司 一种房柱式悬顶采空区防爆隔离煤柱宽度校核方法
CN115467662A (zh) * 2022-11-15 2022-12-13 中国矿业大学(北京) 岩体碎胀特性原位测试与评价方法
CN115542417A (zh) * 2022-10-14 2022-12-30 山东省地质矿产勘查开发局八〇一水文地质工程地质大队(山东省地矿工程勘察院) 一种采空区覆岩稳定性监测系统
CN115639350A (zh) * 2022-11-08 2023-01-24 绍兴文理学院 一种模拟不同高度垮落下测量碎胀性的实验装置及方法
CN116026698A (zh) * 2022-12-23 2023-04-28 平顶山天安煤业股份有限公司 扰动应力下煤层采空区顶板垮塌的试验方法
CN116104538A (zh) * 2023-03-16 2023-05-12 山东省地质矿产勘查开发局第五地质大队(山东省第五地质矿产勘查院) 基于矿区地层稳定性勘察的采空区快速达稳方法
CN117420170A (zh) * 2023-12-18 2024-01-19 山东科技大学 煤矿采空区煤自燃三带划分方法
CN118010102A (zh) * 2024-04-09 2024-05-10 煤炭科学研究总院有限公司 顶板微变形与煤体应力协同监测的灾害预警方法及装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106779231B (zh) * 2016-12-28 2018-12-11 中国矿业大学 一种基于采空区压力监测的煤矿采空区飓风灾害预警方法
CN109269899A (zh) * 2018-09-05 2019-01-25 中国矿业大学(北京) 一种采空区顶板破断模拟试验装置
CN112525148B (zh) * 2020-11-04 2023-04-14 中铁第四勘察设计院集团有限公司 一种采空区变形范围的确定方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7659847B2 (en) * 2006-06-29 2010-02-09 Stolar, Inc. Radar mining guidance control system
CN102678118A (zh) * 2011-12-09 2012-09-19 王志强 采场垮落带高度的确定方法
CN102928144A (zh) * 2012-10-14 2013-02-13 中国矿业大学 一种采空区应力实时监测系统及覆岩破断判断方法
CN104850695A (zh) * 2015-05-14 2015-08-19 辽宁工程技术大学 一种确定有效采空区放顶爆破方案的方法
CN105808818A (zh) * 2016-01-28 2016-07-27 中煤科工集团唐山研究院有限公司 一种采煤塌陷区地基稳定性的评价方法
CN106779231A (zh) * 2016-12-28 2017-05-31 中国矿业大学 一种基于采空区压力监测的煤矿采空区飓风灾害预警方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7659847B2 (en) * 2006-06-29 2010-02-09 Stolar, Inc. Radar mining guidance control system
CN102678118A (zh) * 2011-12-09 2012-09-19 王志强 采场垮落带高度的确定方法
CN102928144A (zh) * 2012-10-14 2013-02-13 中国矿业大学 一种采空区应力实时监测系统及覆岩破断判断方法
CN104850695A (zh) * 2015-05-14 2015-08-19 辽宁工程技术大学 一种确定有效采空区放顶爆破方案的方法
CN105808818A (zh) * 2016-01-28 2016-07-27 中煤科工集团唐山研究院有限公司 一种采煤塌陷区地基稳定性的评价方法
CN106779231A (zh) * 2016-12-28 2017-05-31 中国矿业大学 一种基于采空区压力监测的煤矿采空区飓风灾害预警方法

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109060599A (zh) * 2018-09-18 2018-12-21 中国矿业大学(北京) 煤矿采空区内低温氮气运移规律模拟实验平台及实验方法
CN111428357A (zh) * 2020-03-20 2020-07-17 山西工程技术学院 基于覆岩剩余自由空间高度的地表最大下沉值确定方法
CN111428357B (zh) * 2020-03-20 2023-03-28 山西工程技术学院 基于覆岩剩余自由空间高度的地表最大下沉值确定方法
CN112763020A (zh) * 2020-12-17 2021-05-07 华能煤炭技术研究有限公司 倾斜煤层采空区的水量监测方法、装置及电子设备
CN112906208A (zh) * 2021-02-02 2021-06-04 中煤能源研究院有限责任公司 一种切眼外错布置条件下顶板见方垮落步距的计算方法
CN114547723A (zh) * 2021-12-31 2022-05-27 安徽郎溪南方水泥有限公司 智慧矿山管控方法及装置
CN114575845A (zh) * 2022-03-01 2022-06-03 中煤能源研究院有限责任公司 一种房柱式悬顶采空区防爆隔离煤柱宽度校核方法
CN115542417A (zh) * 2022-10-14 2022-12-30 山东省地质矿产勘查开发局八〇一水文地质工程地质大队(山东省地矿工程勘察院) 一种采空区覆岩稳定性监测系统
CN115639350A (zh) * 2022-11-08 2023-01-24 绍兴文理学院 一种模拟不同高度垮落下测量碎胀性的实验装置及方法
CN115467662B (zh) * 2022-11-15 2023-01-24 中国矿业大学(北京) 岩体碎胀特性原位测试与评价方法
CN115467662A (zh) * 2022-11-15 2022-12-13 中国矿业大学(北京) 岩体碎胀特性原位测试与评价方法
CN116026698A (zh) * 2022-12-23 2023-04-28 平顶山天安煤业股份有限公司 扰动应力下煤层采空区顶板垮塌的试验方法
CN116104538A (zh) * 2023-03-16 2023-05-12 山东省地质矿产勘查开发局第五地质大队(山东省第五地质矿产勘查院) 基于矿区地层稳定性勘察的采空区快速达稳方法
CN116104538B (zh) * 2023-03-16 2023-10-10 山东省地质矿产勘查开发局第五地质大队(山东省第五地质矿产勘查院) 基于矿区地层稳定性勘察的采空区快速达稳方法
CN117420170A (zh) * 2023-12-18 2024-01-19 山东科技大学 煤矿采空区煤自燃三带划分方法
CN117420170B (zh) * 2023-12-18 2024-03-12 山东科技大学 煤矿采空区煤自燃三带划分方法
CN118010102A (zh) * 2024-04-09 2024-05-10 煤炭科学研究总院有限公司 顶板微变形与煤体应力协同监测的灾害预警方法及装置

Also Published As

Publication number Publication date
CN106779231A (zh) 2017-05-31
CN106779231B (zh) 2018-12-11

Similar Documents

Publication Publication Date Title
WO2018121106A1 (zh) 一种基于采空区压力监测的煤矿采空区飓风灾害预警方法
Zhang et al. Compaction characteristics of the caving zone in a longwall goaf: a review
CN104454010B (zh) 一种深井巷道掘进施工动态综合监测预警系统与预警方法
CN110486007B (zh) 煤矿随钻围岩力学参数原位测试装置及方法
Yu et al. Experimental study of the mechanical behavior of sandstone affected by blasting
Li et al. Microseismic monitoring and numerical simulation on the stability of high-steep rock slopes in hydropower engineering
CN107392394B (zh) 一种动态监测掘进工作面煤与瓦斯突出危险性预测方法
Li et al. Survey of measurement-while-drilling technology for small-diameter drilling machines
Xue et al. Rockburst prediction and analysis of activity characteristics within surrounding rock based on microseismic monitoring and numerical simulation
WO2021088190A1 (zh) 一种多参量随钻测量确定煤体应力高峰区并预警的方法
CN102997886A (zh) 远程测控底板岩层破坏深度监测方法
Gao et al. Relevance between abutment pressure and fractal dimension of crack network induced by mining
CN103244185B (zh) 一种锚杆支护巷道顶板离层失稳预警方法
Guo et al. Stress-strain-acoustic responses in failure process of coal rock with different height to diameter ratios under uniaxial compression
Liu et al. A case study of collapses at the Yangshan tunnel of the Coal Transportation Channel from the Western Inner Mongolia to the Central China
Zhao et al. In situ investigation into fracture and subsidence of overburden strata for solid backfill mining
Chen et al. Determination of caved and water-conducting fractured zones of “two soft and one hard” unstable coal seam
WO2022057947A1 (zh) 页岩气开采过程中跨断层界面牛顿力主动测量装置及方法
CN105467429B (zh) 一种硬岩矿山地压耦合预测的方法
Lin et al. Stability analysis of underground surrounding rock mass based on block theory
CN104832163A (zh) 一种煤矿地下开采中冲击地压危险性的监测方法
Liu et al. The spatio-temporal evolution law of overlying rock fractures in an experimental working face (N00 mining method) based on microseismic monitoring technology
CN116595809A (zh) 地下工程围岩钻进卸压-探测评价方法
CN103323156A (zh) 危岩滑坡体应力采集传感器及其安设方法
Xiang et al. Stability analysis and failure control of a longwall panel with a large mining height considering fracture distribution

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17886165

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17886165

Country of ref document: EP

Kind code of ref document: A1