WO2016041392A1 - 一种水体下充填采煤导水裂隙高度测试方法 - Google Patents

一种水体下充填采煤导水裂隙高度测试方法 Download PDF

Info

Publication number
WO2016041392A1
WO2016041392A1 PCT/CN2015/081316 CN2015081316W WO2016041392A1 WO 2016041392 A1 WO2016041392 A1 WO 2016041392A1 CN 2015081316 W CN2015081316 W CN 2015081316W WO 2016041392 A1 WO2016041392 A1 WO 2016041392A1
Authority
WO
WIPO (PCT)
Prior art keywords
coal mining
resistivity
monitoring
roadway
working face
Prior art date
Application number
PCT/CN2015/081316
Other languages
English (en)
French (fr)
Inventor
张吉雄
李猛
李剑
王东升
黄鹏
Original Assignee
中国矿业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国矿业大学 filed Critical 中国矿业大学
Publication of WO2016041392A1 publication Critical patent/WO2016041392A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/40Seismology; Seismic or acoustic prospecting or detecting specially adapted for well-logging

Definitions

  • the invention relates to a method for testing the height of water-conducting fissures of coal mining under water, and is particularly suitable for testing the development height of water-conducting fissures of overlying strata in solid-filled coal mining under water.
  • solid filling materials such as vermiculite, fly ash, loess and aeolian sand are transported to the underground through the ground transportation system and the solid filling material vertical placement system, and then transported to the rear of the working surface through the underground material transportation system.
  • the porous bottom unloading conveyor is unloaded to the gob area at the rear of the working surface to achieve filling of the working surface.
  • the solid filling material is produced by replacing the coal in the working face, and then serves as the main support to carry the main load of the overburden, thereby restricting the movement of the overburden; at this time, the roof rock movement of the working face From the traditional fall zone, fissure zone, and curved subsidence zone to only the fracture zone and the curved subsidence zone, the safe coal mining under the water body is realized within a certain range, and the deformation of the overburden rock layer is effectively controlled.
  • the object of the present invention is to provide a method for testing the height of the water-conducting fracture of the overburden layer when the solid-filled coal is subjected to solid-filled coal under water in view of the problems in the prior art.
  • a method for testing the height of water-conducting fractures of coal mining under water characterized in that: monitoring holes are arranged on the coal wall of the working face of the coal mining face roadway, and the resistance in the coal mining process is monitored and collected in real time. Rate, according to the change law of the resistivity imaging image obtained, determine the development height of the water-cracking fissure of the overburden roof.
  • the resistivity tester is used to monitor and collect the real-time resistivity of the electrodes arranged in the monitoring borehole to obtain the borehole resistivity imaging image;
  • the angle between the projection of the inclined borehole in the tunnel plane and the laneway is 8°-12°, and the angle ⁇ between the monitoring borehole and the tunnel plane is 10°-15°;
  • the plurality of electrodes are evenly arranged at intervals of 1 to 3 m.
  • the invention can accurately test the development height of the water guiding crack in the actual mining of the working face, and is suitable for the height test of the water conducting fracture of the overburden layer when the solid filling coal is carried out under the water body. It can accurately test the development of water-conducting fissures in overlying rock strata under water, provide feedback theoretical data for the design of coal filling rate under water, and provide theoretical reference for the safe implementation of sub-filled coal mining. In practical application, it is only necessary to monitor the borehole by the coal wall layout of the coal face of the working face of the coal mining face and collect the data in real time to realize the test of the development height of the water-crushing fissure of the overburden layer on the working face.
  • the crack development height changes with the change of mining height and filling rate.
  • the test results have practical guidance for the design of solid filling coal filling rate, and it can ensure the safe mining of solid filling coal mining under water.
  • the method is simple, safe and reliable, saves time and labor, and has wide practicality.
  • FIG. 1 is a drilling arrangement diagram of a water-fracture height test of a coal-filled coal mining body according to the present invention
  • Figure 2 (a) is a cross-sectional view showing the initial state resistivity of the resistivity imaging during the advancement of the working surface
  • Figure 2 (b) is a cross-sectional view of the resistivity imaging advancement 40m resistivity during the advancement of the working surface
  • Figure 2 (c) is a cross-sectional view of the resistivity imaging advancement 70m resistivity during the advancement of the working surface
  • Figure 2(d) is a cross-sectional view of the resistivity imaging advancement 90m resistivity during the advancement of the working face.
  • the method for testing the water guiding fracture height of coal mining under water body according to the invention, the monitoring drilling hole is arranged on the coal wall side of the working face of the coal mining working face roadway, and the resistivity in the coal mining process is monitored and collected in real time, according to the collected
  • the law of the change of resistivity imaging map determines the development height of the water-conducting fracture of the overburden roof.
  • the resistivity tester is used to monitor and collect the real-time resistivity of the electrodes arranged in the monitoring borehole to obtain the borehole resistivity imaging image;
  • the angle between the projection of the monitoring borehole in the roadway plane and the roadway is 8° ⁇ 12°, and the drilling and roadway plane are monitored.
  • the angle ⁇ is 10° to 15°; the plurality of electrodes in the monitoring bore are evenly arranged at intervals of 1 to 3 m.
  • Embodiment 1 Take a mine CT101 as an example, and the specific implementation steps are as follows:
  • the resistivity tester is used to monitor and collect the real-time resistivity of the electrodes arranged in the monitoring borehole, and collect and record the data once before the working face is recovered, and then advance with the working surface. Collecting recorded data, the data is collected once every 20m of the working surface; when the working face is located within the monitoring drilling monitoring area, the working surface is collected once every 7 ⁇ 10m, and the working surface is advanced to the drilling hole.
  • the drilling resistivity imaging image is obtained, as shown in Figure 2;

Landscapes

  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • Remote Sensing (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

一种水体下充填采煤导水裂隙高度测试方法,通过向固体充填采煤工作面巷道(1)工作面侧煤壁打钻孔(2),在钻孔(2)和巷道(1)中布置电极(4)并采集数据,而后根据电阻率成像变化规律确定工作面上覆顶板裂隙发育高度。该方法可对水体下充填采煤上覆岩层导水裂隙的发育情况进行准确测试,为水体下充填采煤充实率设计提供反馈理论数据,以及为水体下充填采煤的安全实施提供理论借鉴。测试结果对于固体充填采煤充实率的设计具有实践指导作用,更能保障固体充填采煤实现在水体下的安全开采。该方法简单,安全可靠,省时省力。

Description

一种水体下充填采煤导水裂隙高度测试方法 技术领域
本发明涉及一种水体下充填采煤导水裂隙高度测试方法,尤其适用于在水体下固体充填采煤对上覆岩层导水裂隙发育高度的测试。
背景技术
在固体充填采煤技术中,矸石、粉煤灰、黄土及风积沙等固体充填物料通过地面运输系统、固体充填物料垂直投放系统运输至井下,而后通过井下物料运输系统运至工作面后部多孔底卸式输送机并卸至工作面后部采空区,从而实现工作面的充填。在固体充填采煤技术中,固体充填物料通过置换的方法采出工作面煤炭,而后作为主要支撑体承载上覆岩层的主要载荷,从而限制上覆岩层的移动;此时,工作面顶板岩层移动从传统的垮落带、裂隙带、弯曲下沉带变为只有裂隙带和弯曲下沉带,在一定范围内实现了水体下的安全采煤,上覆岩层的变形得到有效控制。但因导水裂隙发育高度随采高和充实率的变化而变化,因此,准确测试工作面实际开采中导水裂隙发育高度对于充填采煤充实率的反馈设计以及实现水体下的安全采煤具有重要的意义。
发明内容
技术问题:本发明的目的是针对现有技术中存在问题,提供一种操作方便、测试准确、效果好的在水体下进行固体充填采煤时上覆岩层导水裂隙发育高度测试方法。
技术方案:一种水体下充填采煤导水裂隙高度测试方法,其特征在于:通过向采煤工作面巷道的工作面侧煤壁上布置监测钻孔并实时监测和采集采煤过程中的电阻率,根据采集到的电阻率成像图变化规律确定覆岩顶板导水裂隙发育高度,具体步骤如下:
(1)在工作面巷道内沿工作面推进方向的煤壁上倾斜施工一个监测钻孔,在监测钻孔中间隔距离布置多个电极,同时,在巷道中布置电极并接地,以便测量钻孔中电极所产生的电位差;
(2)随着工作面的回采,采用电阻率测试仪对监测钻孔内所布置的电极进行实时电阻率监测及采集,得到钻孔电阻率成像图;
(3)由钻孔电阻率成像图观察工作面回采时覆岩电阻率变化规律,并与工作面未回采时覆岩电阻率进行对比,当电阻率增大时,表明此处覆岩发生破裂,最终确定覆岩导水裂隙发育高度。
所述倾斜施工的监测钻孔在巷道平面的投影与巷道的夹角α为8°~12°,监测钻孔与巷道平面的夹角β为10°~15°;所述监测钻孔中的多个电极间隔1~3m均匀布置。
有益效果:由于采用了上述技术方案,本发明能够准确测试工作面实际开采中导水裂隙发育高度,适合于在水体下进行固体充填采煤时上覆岩层导水裂隙发育高度测试。可对水体下充填采煤上覆岩层导水裂隙的发育情况进行准确测试,为水体下充填采煤充实率设计提供反馈理论数据,以及为水体下充填采煤的安全实施提供理论借鉴。在实际应用中只需通过向固体充填采煤工作面巷道工作面侧煤壁布置监测钻孔并实时采集数据便可实现对工作面上覆岩层导水裂隙发育高度的测试,撑握因导水裂隙发育高度随采高和充实率变化而变化的情况,测试结果对于固体充填采煤充实率的设计具有实践指导作用,更能保障固体充填采煤实现在水体下的安全开采。其方法简单,安全可靠,省时省力,具有广泛的实用性。
附图说明
图1为本发明水体下充填采煤导水裂隙高度测试钻孔布置图;
图中:1-工作面巷道;2-监测钻孔;3-工作面切眼;4-电极;5-电线电缆。
图2(a)为工作面推进过程中监测电阻率成像初始状态电阻率剖面图;
图2(b)为工作面推进过程中监测电阻率成像推进40m电阻率剖面图;
图2(c)为工作面推进过程中监测电阻率成像推进70m电阻率剖面图;
图2(d)为工作面推进过程中监测电阻率成像推进90m电阻率剖面图。
具体实施方式
下面结合附图对本发明的一个实施例作进一步的描述:
本发明的水体下充填采煤导水裂隙高度测试方法,通过向采煤工作面巷道的工作面侧煤壁上布置监测钻孔并实时监测和采集采煤过程中的电阻率,根据采集到的电阻率成像图变化规律确定覆岩顶板导水裂隙发育高度,具体步骤如下:
(1)在工作面巷道内沿工作面推进方向的煤壁上倾斜施工一个监测钻孔,在监测钻孔中间隔距离布置多个电极,同时,在巷道中布置电极并接地,以便测量钻孔中电极所产生的电位差;
(2)随着工作面的回采,采用电阻率测试仪对监测钻孔内所布置的电极进行实时电阻率监测及采集,得到钻孔电阻率成像图;
(3)由钻孔电阻率成像图观察工作面回采时覆岩电阻率变化规律,并与工作面未回采时覆岩电阻率进行对比,当电阻率增大时,表明此处覆岩发生破裂,最终确定覆岩导水裂隙发育高度。
所述监测钻孔在巷道平面的投影与巷道的夹角α为8°~12°,监测钻孔与巷道平面 的夹角β为10°~15°;所述监测钻孔中的多个电极间隔1~3m均匀布置。
实施例1、以某矿CT101为例,具体实施步骤如下:
(1)在CT101工作面巷道内沿工作面推进方向的煤壁上倾斜施工一个监测钻孔,布置的钻孔在巷道平面的投影与巷道夹角α为10°,钻孔与巷道平面的夹角β为13°,钻孔长为105m,终孔孔径91mm,在监测钻孔中间隔3m距离布置35个电极,同时,在巷道中布置电极并接地,以便测量钻孔中电极所产生的电位差,钻孔布置图如图1所示;
(2)随着工作面的回采,采用电阻率测试仪对监测钻孔内所布置的电极进行实时电阻率监测及采集,在工作面回采前进行1次数据采集并记录,然后随工作面推进采集记录数据,工作面每推进20m进行1次数据采集;当回采工作面位于监测钻孔监测区域以内时,工作面每推进7~10m进行1次数据采集,当工作面推进至钻孔孔口附近时,监测工作结束,得到钻孔电阻率成像图,如图2所示;
(3)由钻孔电阻率成像图观察工作面回采40m(图2(b))、70m(图2(c))及90m(图2(d))时覆岩电阻率变化规律,并与工作面未回采(图2(a))时覆岩电阻率进行对比,当电阻率增大时,表明此处覆岩发生破裂,最终确定覆岩导水裂隙发育高度为10.3m。

Claims (3)

  1. 一种水体下充填采煤导水裂隙高度测试方法,其特征在于:通过向采煤工作面巷道的工作面侧煤壁上布置监测钻孔并实时监测和采集采煤过程中的电阻率,根据采集到的电阻率成像图变化规律确定覆岩顶板导水裂隙发育高度,具体步骤如下:
    (1)在工作面巷道(1)内沿采煤工作面推进方向的煤壁上倾斜施工一个监测钻孔(2),在监测钻孔(2)中间隔距离布置多个电极(4),同时,在巷道中布置电极并接地,以便测量钻孔中电极所产生的电位差;
    (2)随着工作面的回采,采用电阻率测试仪对监测钻孔(2)内所布置的电极(4)进行实时电阻率监测及采集,得到钻孔电阻率成像图;
    (3)由钻孔电阻率成像图观察工作面回采时覆岩电阻率变化规律,并与工作面未回采时覆岩电阻率进行对比,当电阻率增大时,表明此处覆岩发生破裂,最终确定覆岩导水裂隙发育高度。
  2. 根据权利要求1所述的一种水体下充填采煤导水裂隙高度测试方法,其特征在于:所述倾斜施工的监测钻孔(2)在巷道平面的投影与巷道的夹角α为8°~12°,监测钻孔(2)与巷道平面的夹角β为10°~15°。
  3. 根据权利要求1所述的一种水体下充填采煤导水裂隙高度测试方法,其特征在于:所述监测钻孔(2)中的多个电极(4)间隔1~3m均匀布置。
PCT/CN2015/081316 2014-09-19 2015-06-12 一种水体下充填采煤导水裂隙高度测试方法 WO2016041392A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410483629.6A CN104280779A (zh) 2014-09-19 2014-09-19 一种水体下充填采煤导水裂隙高度测试方法
CN201410483629.6 2014-09-19

Publications (1)

Publication Number Publication Date
WO2016041392A1 true WO2016041392A1 (zh) 2016-03-24

Family

ID=52255840

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/081316 WO2016041392A1 (zh) 2014-09-19 2015-06-12 一种水体下充填采煤导水裂隙高度测试方法

Country Status (2)

Country Link
CN (1) CN104280779A (zh)
WO (1) WO2016041392A1 (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108508184A (zh) * 2018-04-09 2018-09-07 山东科技大学 一种复杂条件煤层开采地表沉陷相似模拟试验装置及方法
CN110500089A (zh) * 2019-08-15 2019-11-26 中石化石油工程技术服务有限公司 基于阵列感应测井资料的页岩气水平井层理裂缝评价方法
CN110821475A (zh) * 2019-11-28 2020-02-21 中煤科工集团西安研究院有限公司 煤矿工作面底板钻孔电阻率监测方法及线缆推送装置
CN111008758A (zh) * 2019-11-12 2020-04-14 山东科技大学 基于双指标权重法的特厚煤层沿空煤巷开掘时间设计方法
CN111415038A (zh) * 2020-03-19 2020-07-14 中煤科工集团西安研究院有限公司 一种多工作面采空区涌水量随采精细化预测方法
CN111444620A (zh) * 2020-03-30 2020-07-24 中煤能源研究院有限责任公司 一种邻位注浆充填钻孔参数的确定方法
CN111781657A (zh) * 2020-06-16 2020-10-16 中煤科工开采研究院有限公司 测量裂隙带贯穿高度的装置及方法
CN113605900A (zh) * 2021-07-20 2021-11-05 山东省邱集煤矿有限公司 一种测量巷道底板裂隙发育深度的装置及方法
CN114184153A (zh) * 2021-12-06 2022-03-15 中国矿业大学 基于光纤及渗压计的采场覆岩及土层复合导高监测方法
CN114295052A (zh) * 2021-12-30 2022-04-08 平安煤炭开采工程技术研究院有限责任公司 采煤沉陷覆岩离层空间大小计算方法及装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104280779A (zh) * 2014-09-19 2015-01-14 中国矿业大学 一种水体下充填采煤导水裂隙高度测试方法
CN105093352A (zh) * 2015-08-11 2015-11-25 武汉迈格睿地质环境科技有限公司 一种野外现场测量统计岩体体裂隙率的方法
CN106246162B (zh) * 2016-09-21 2019-03-22 山东科技大学 工作面底板跨孔成像装置及注浆效果监测方法
CN110206533B (zh) * 2019-06-06 2023-08-29 山东科技大学 单巷、跨斜孔电阻率ct成像装置及工作面底板水动态监测方法
CN111102008B (zh) * 2019-12-14 2021-06-29 陕西煤业化工技术研究院有限责任公司 一种承压水体上无煤柱开采的底板破坏深度的探查方法
CN111042866B (zh) * 2019-12-30 2021-07-09 安徽惠洲地质安全研究院股份有限公司 一种多物理场协同的突水监测方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101581234A (zh) * 2009-06-29 2009-11-18 张平松 煤层采动顶底板岩层变形与破坏井下综合测试方法
WO2013169256A1 (en) * 2012-05-10 2013-11-14 Bp Corporation North America Inc. Prediction and diagnosis of lost circulation in wells
CN104280779A (zh) * 2014-09-19 2015-01-14 中国矿业大学 一种水体下充填采煤导水裂隙高度测试方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2538562B1 (fr) * 1982-12-27 1985-07-19 Inst Francais Du Petrole Methode et appareillage de detection des fractures par echographie ultrasonique le long de la paroi d'un materiau ou d'une formation
US6694262B2 (en) * 2000-03-31 2004-02-17 Alexander T. Rozak Method for determining geologic formation fracture porosity using geophysical logs
CN202362466U (zh) * 2011-12-08 2012-08-01 山西潞安环保能源开发股份有限公司 采煤工作面导水裂隙带高度探测装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101581234A (zh) * 2009-06-29 2009-11-18 张平松 煤层采动顶底板岩层变形与破坏井下综合测试方法
WO2013169256A1 (en) * 2012-05-10 2013-11-14 Bp Corporation North America Inc. Prediction and diagnosis of lost circulation in wells
CN104280779A (zh) * 2014-09-19 2015-01-14 中国矿业大学 一种水体下充填采煤导水裂隙高度测试方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WANG, HUA;: "Research on Timely Prospecting Technology of Water Flowing Fracture Zone by Parallel Electrical Resistivity Method", SAFETY IN COAL MINES, 31 July 2007 (2007-07-31), pages 1 - 5 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108508184A (zh) * 2018-04-09 2018-09-07 山东科技大学 一种复杂条件煤层开采地表沉陷相似模拟试验装置及方法
CN108508184B (zh) * 2018-04-09 2023-08-18 山东科技大学 一种复杂条件煤层开采地表沉陷相似模拟试验装置及方法
CN110500089B (zh) * 2019-08-15 2022-11-01 中石化石油工程技术服务有限公司 基于阵列感应测井资料的页岩气水平井层理裂缝评价方法
CN110500089A (zh) * 2019-08-15 2019-11-26 中石化石油工程技术服务有限公司 基于阵列感应测井资料的页岩气水平井层理裂缝评价方法
CN111008758A (zh) * 2019-11-12 2020-04-14 山东科技大学 基于双指标权重法的特厚煤层沿空煤巷开掘时间设计方法
CN111008758B (zh) * 2019-11-12 2023-06-23 山东科技大学 基于双指标权重法的特厚煤层沿空煤巷开掘时间设计方法
CN110821475A (zh) * 2019-11-28 2020-02-21 中煤科工集团西安研究院有限公司 煤矿工作面底板钻孔电阻率监测方法及线缆推送装置
CN111415038A (zh) * 2020-03-19 2020-07-14 中煤科工集团西安研究院有限公司 一种多工作面采空区涌水量随采精细化预测方法
CN111444620A (zh) * 2020-03-30 2020-07-24 中煤能源研究院有限责任公司 一种邻位注浆充填钻孔参数的确定方法
CN111444620B (zh) * 2020-03-30 2023-02-28 中煤能源研究院有限责任公司 一种邻位注浆充填钻孔参数的确定方法
CN111781657A (zh) * 2020-06-16 2020-10-16 中煤科工开采研究院有限公司 测量裂隙带贯穿高度的装置及方法
CN111781657B (zh) * 2020-06-16 2023-07-28 中煤科工开采研究院有限公司 测量裂隙带贯穿高度的装置及方法
CN113605900A (zh) * 2021-07-20 2021-11-05 山东省邱集煤矿有限公司 一种测量巷道底板裂隙发育深度的装置及方法
CN114184153A (zh) * 2021-12-06 2022-03-15 中国矿业大学 基于光纤及渗压计的采场覆岩及土层复合导高监测方法
CN114295052A (zh) * 2021-12-30 2022-04-08 平安煤炭开采工程技术研究院有限责任公司 采煤沉陷覆岩离层空间大小计算方法及装置

Also Published As

Publication number Publication date
CN104280779A (zh) 2015-01-14

Similar Documents

Publication Publication Date Title
WO2016041392A1 (zh) 一种水体下充填采煤导水裂隙高度测试方法
AU2017421071B2 (en) Three-aspect integrated monitoring method for strata control
CN104181611B (zh) 一种矿井工作面顶底板采动破坏裂隙发育动态监测方法
WO2018103326A1 (zh) 巷道顶板岩性成分的随钻探测装置及方法
CN104481587B (zh) 大采深、大跨度综放采煤工作面顶板砂岩裂隙水探防方法
CN101581234B (zh) 煤层采动顶底板岩层变形与破坏井下综合测试方法
CN103967476B (zh) 随钻钻孔物探超前探测装置及探测方法
Rostami et al. Rock characterization while drilling and application of roof bolter drilling data for evaluation of ground conditions
Tan et al. In situ investigations of failure zone of floor strata in mining close distance coal seams
CA2997155C (en) Sound level meter-based tunnel roof rock protodyakonov coefficient detecting-while-drilling apparatus and method
CN113464121A (zh) 一种随钻方位伽马地质导向钻进轨迹确定方法
WO2016041389A1 (zh) 一种固体充填采煤工作面充填质量评价方法
CN106248672B (zh) 一种基于dic技术的现场孔内岩体裂纹扩展模式识别方法及系统
CN105909254A (zh) 突出煤层底板上仰穿层定向孔超前区域掩护煤巷掘进方法
CN104360405B (zh) 一种采场覆岩动态活动特征的综合探测方法
CN104018830A (zh) 一种煤层水力压裂效果时空评价方法
CN110145306B (zh) 浅埋弱胶结顶板工作面覆岩分带划分方法及应用
CN110792450B (zh) 一种确定注浆锚索超前支护的方法
CN103244101A (zh) 随钻进的岩层质量评价方法
CN102852524B (zh) 利用液压支柱提高铝土矿回采率的方法
CN110645039A (zh) 一种厚硬顶板冲击地压与瓦斯复合灾害综合防治方法
CN106285776A (zh) 一种基于定向钻进技术的顶板水疏放方法
CN110609335A (zh) 一种基于多手段的残采区复杂条件探测方法
CN104373154A (zh) 一种巷道顶板稳定性监测方法
WO2021134929A1 (zh) 构造活化双参数监测系统及监测方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15842754

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15842754

Country of ref document: EP

Kind code of ref document: A1