WO2021088136A1 - 以废弃油脂制备环氧增塑剂的方法 - Google Patents

以废弃油脂制备环氧增塑剂的方法 Download PDF

Info

Publication number
WO2021088136A1
WO2021088136A1 PCT/CN2019/119883 CN2019119883W WO2021088136A1 WO 2021088136 A1 WO2021088136 A1 WO 2021088136A1 CN 2019119883 W CN2019119883 W CN 2019119883W WO 2021088136 A1 WO2021088136 A1 WO 2021088136A1
Authority
WO
WIPO (PCT)
Prior art keywords
fatty acid
reaction
alkyl ester
lipase
acid alkyl
Prior art date
Application number
PCT/CN2019/119883
Other languages
English (en)
French (fr)
Inventor
赵雪冰
戴玲妹
杜伟
刘德华
Original Assignee
东莞深圳清华大学研究院创新中心
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东莞深圳清华大学研究院创新中心, 清华大学 filed Critical 东莞深圳清华大学研究院创新中心
Publication of WO2021088136A1 publication Critical patent/WO2021088136A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/15Heterocyclic compounds having oxygen in the ring
    • C08K5/151Heterocyclic compounds having oxygen in the ring having one oxygen atom in the ring
    • C08K5/1515Three-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/04Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing chlorine atoms
    • C08L27/06Homopolymers or copolymers of vinyl chloride
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11CFATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
    • C11C3/00Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom
    • C11C3/04Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom by esterification of fats or fatty oils
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • C12P7/6436Fatty acid esters

Definitions

  • the invention relates to the field of biochemical industry, in particular to a method for preparing epoxy plasticizers from waste oils, especially waste vegetable oils, such as frying waste oil, waste oil, slop oil, acidified oil and other oil materials.
  • Polyvinyl chloride has excellent features such as good mechanical properties, fire and flame retardant, chemical resistance, and low price. Its products are widely used in packaging materials and many other industries. It is the second-largest general-purpose plastic in the world. However, the interaction between PVC molecular chains is relatively strong, and the temperature required for the softening and melting of pure PVC resin is relatively high, which is very inconvenient to process. Plasticizer is one of the most used additives in PVC products. Its addition is beneficial to reduce the interaction force between PVC molecules and increase its plasticity, thereby improving the fluidity of PVC resin during molding and processing, making it easier to process, and at the same time The flexibility of the product is also improved.
  • Phthalate plasticizers have the advantages of good compatibility and high plasticizing efficiency. For a long time, they have been the product with the largest amount of plasticizers. In recent years, with the progress of research on the toxicity of plasticizers, it has been discovered that phthalate plasticizers not only pollute the environment, but also have potential carcinogenic and teratogenic effects on the human body. Therefore, a considerable number of countries and organizations have successively legislated or adopted relevant policies to restrict the use of phthalate plasticizers. Therefore, the development of non-toxic and environmentally friendly plasticizers is one of the key issues to be solved in the PVC industry.
  • the existing environmentally friendly plasticizers mainly include citric acid esters, aliphatic dibasic acid esters, polyols, polyesters, epoxy and other varieties.
  • Epoxy plasticizers are compounds containing epoxy groups in their molecular structure. During the processing of PVC resin, epoxy plasticizer not only has a plasticizing effect on PVC, but the epoxy group in it can also absorb hydrogen chloride generated by the degradation of PVC resin, thereby inhibiting the continuous catalytic decomposition of PVC and stabilizing PVC products. And the role of extending the period of use. In the preparation process of PVC products, the characteristics of both light and heat stability are also used to improve the weather resistance of the products.
  • epoxy plasticizers are almost non-toxic, and have the advantages of heat resistance, light resistance, and low price. They have been approved for use in pharmaceutical and food packaging materials in many countries and regions. According to the different raw materials, epoxy plasticizers can be divided into epoxy neutral grease obtained by epoxidation using unsaturated vegetable oil as raw material, and epoxy resin obtained by epoxidation using unsaturated fatty acid methyl ester as raw material. Fatty acid methyl esters.
  • epoxy fatty acid methyl esters Compared with epoxy vegetable oils such as epoxidized soybean oil, epoxy fatty acid methyl esters have the following advantages: First, fatty acid methyl esters can be obtained by ester exchange reaction of oil and fat raw materials, and can also be obtained by esterification reaction of fatty acids.
  • the reaction raw materials The source of this product is more extensive, and even waste grease such as waste oil can also be used as raw materials;
  • the epoxy plasticizer prepared by the epoxidation of fatty acid methyl esters can increase the added value of biodiesel and increase the potential benefits of the biodiesel industry;
  • the addition of epoxy fatty acid methyl ester as a plasticizer can also obtain better stretch performance and longer aging time.
  • CN100590188C discloses a method for producing epoxy plasticizer by using waste fat and oil. It uses waste fat and oil as raw material. After pretreatment, the obtained glyceride is transesterified with methanol under alkali catalysis to obtain fatty acid methyl ester. Directly carry out epoxidation reaction with peroxy organic acid, which is the reaction product of hydrogen peroxide and organic acid, to obtain crude epoxy fatty acid methyl ester, then wash off the acid with water, and obtain the finished epoxy fatty acid methyl ester product by distillation and dehydration.
  • peroxy organic acid which is the reaction product of hydrogen peroxide and organic acid
  • CN201010245634.5 discloses a method for producing epoxy fatty acid methyl esters by using waste vegetable fats and oils, which is to remove mixed waste vegetable oils such as waste vegetable oils or catering slop oils and enter a distillation tower to directly remove fatty acids by molecular distillation to make the acid value of the vegetable fats 1 ⁇ 0.2 neutral grease; then add 1%-3% sodium methoxide and 20%-25% methanol, slowly increase the temperature to 68°C ⁇ 2°C while stirring, react for 40-50 minutes, and let stand for 25-35 Minutes, drain the crude glycerin to obtain fatty acid methyl ester, then add 2%-4% formic acid, slowly increase the temperature to 45-55°C while stirring, start adding 20%-30% hydrogen peroxide, and the reaction time is 7 ⁇ 0.5 hours.
  • An object of the present invention is to provide a method for preparing an epoxy plasticizer from waste oil, which converts waste oil vegetable oil into an environmentally friendly epoxy plasticizer, and realizes high value and resource utilization of waste oil.
  • waste vegetable oils still have a high degree of unsaturation, and epoxy plasticizers can be obtained through epoxidation.
  • waste vegetable fats and oils also tend to have higher free fatty acid content.
  • a primary precursor condition is to first convert the neutral fats and fatty acids into fatty acid alkyl esters, such as fatty acid methyl esters or fatty acid ethyl esters.
  • fatty acid alkyl esters such as fatty acid methyl esters or fatty acid ethyl esters.
  • the traditional alkaline conversion process requires sufficient pretreatment of the raw materials to remove free fatty acids, which not only requires a complicated pretreatment process, but also causes a waste of resources (fatty acids). Therefore, it is necessary to develop a method that can simultaneously convert both neutral oils and fatty acids into fatty acid alkyl esters, which can avoid complicated pretreatment processes and make full use of resources.
  • the present invention provides a method for preparing epoxy plasticizer from waste grease, which includes:
  • Step (1) Provide waste grease raw materials or selectively pretreat waste grease to remove inorganic acid to obtain pretreated grease;
  • Step (2) Transesterify and esterify the fat in step (1) to obtain a fatty acid alkyl ester mixture
  • Step (3) Distill and wash the fatty acid alkyl ester mixture obtained in Step (2) to obtain fatty acid alkyl ester;
  • Step (4) epoxidizing the fatty acid alkyl ester obtained in step (3) to obtain an epoxidized fatty acid alkyl ester mixture;
  • Step (5) the epoxidized fatty acid alkyl ester mixture obtained in step (4) is subjected to impurity removal, washing and drying to obtain an epoxy plasticizer.
  • the waste oil and fat raw material in step (1) contains more inorganic acid (for example, when the content of the inorganic acid is more than 0.5%), the pretreatment described above is required.
  • the pretreatment in step (1) is performed with one or more reagents selected from calcium carbonate, calcium hydroxide, and calcium oxide; optionally, the pretreatment The treatment is to add the waste oil and fat raw materials to the pretreatment reagent, and then treat the mixed system at a temperature of 20-80° C. for 10-120 minutes; optionally, the amount of the pretreatment reagent is 0.5%-10% by weight of the fat.
  • the pretreatment mixing system further contains water, and the content of water is 10%-100% by weight of the fat.
  • the fatty acid alkyl ester obtained by transesterifying and esterifying the oil and fat is carried out by reacting with a low-chain fatty alcohol under the catalysis of a lipase; optionally;
  • the lipase is free lipase and/or immobilized lipase;
  • the low-chain fatty alcohol is selected from one of methanol and ethanol; preferably, the transesterification and esterification reaction It is carried out in a solvent-free system.
  • the transesterification and esterification reaction of fats and oils catalyzed by lipase in the step (2) is a two-step reaction, wherein the first step is catalyzed by free lipase, and the second step is by immobilized fat. Enzyme catalysis.
  • the first step reaction conditions in step (2) of the present invention are: the amount of free lipase is 0.5%-5% by weight of oil, the water content is 1%-20% by weight of oil; the amount of low-chain alcohol is oil The weight is 15%-30%, the temperature is 30-50°C, the stirring rate is 200-800rpm, and the reaction time is 6-12 hours. Under normal circumstances, the yield of the reaction product is more than 85% of the theoretical yield.
  • the reaction conditions of the second step in step (2) of the present invention are: the amount of immobilized lipase is 0.5%-5% of the weight of the oil phase after the first reaction, and the amount of low-chain alcohol is the oil after the first reaction.
  • the phase weight is 2%-8%; the temperature is 40-50°C; the reaction time is 1-5 hours.
  • the second step reaction can be carried out under stirring conditions as required. Normally, the reaction makes the conversion rate of residual neutral oil and fatty acid above 90%.
  • the low-chain alcohol in the first step of the lipase-catalyzed transesterification and esterification of fats and oils in the step (2) is added to the reactor in a multi-step addition mode;
  • the low-chain alcohol is added to the reactor in 10-5 steps at 10%-20% of the total volume in the first 10-5 hours of the reaction; further preferably, the time interval for adding the low-chain alcohol is 30- 120 minutes.
  • the second step of the transesterification and esterification of fats and oils catalyzed by lipase in step (2) is carried out in an airlift loop reactor; preferably, the reactor It is coupled with on-line dehydration equipment to remove water in the reaction system on-line.
  • step (3) the process of distilling the fatty acid alkyl ester mixture to obtain fatty acid alkyl ester is at a temperature of 40-80° C. and an absolute pressure of 1-80 kpa. ongoing.
  • the epoxidation of the fatty acid alkyl ester in the step (4) is carried out under the catalysis of a lipase; optionally, the lipase is selected from free lipase and One of the immobilized lipases; optionally, the epoxidation reaction is carried out in an organic solvent system, and the organic solvent is selected from the group consisting of toluene, tert-butanol, ethyl acetate, cyclohexane, and petroleum ether One;
  • the oxygen carrier used in the epoxidation reaction is selected from formic acid, acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, heptanoic acid, lauric acid, palmitic acid, oleic acid and A kind of stearic acid.
  • the epoxidation reaction conditions in the step (4) are: the amount of oxygen carrier is 5%-25% based on the weight of fatty acid alkyl ester, and the amount of hydrogen peroxide is based on the fatty acid alkyl ester.
  • the amount of lipase is 1.5%-20% based on the weight of the fatty acid alkyl ester
  • the amount of the solvent is 1-6 times the weight of the fatty acid alkyl ester
  • the temperature is 30-50°C
  • stirring The speed is 100-500rpm; the reaction time is 2-24 hours; preferably, hydrogen peroxide is added to the reaction system in a stepwise manner, and the preferred way of addition is that the hydrogen peroxide is added within the first 150 minutes of the reaction.
  • the time interval for each addition is 5-15 minutes, and the amount of each addition is 1/30-1/10 of the total amount.
  • the conditions for washing, removing impurities and drying the epoxidized fatty acid alkyl ester mixture in the step (5) to obtain the epoxy plasticizer are: the oil phase is at 70-100°C , After 30-120 minutes of distillation treatment under 10-50kpa absolute pressure, use 3%-5% sodium chloride solution to wash 1-3 times at 50-80°C, and then at 70-100°C, 20- Distillation treatment under 80kpa absolute pressure for 30-120 minutes.
  • Waste vegetable oil resources such as frying waste oil, waste oil, slop oil, etc.
  • these oil and fat resources can also be used to prepare epoxy plasticizers, such as epoxy fatty acid methyl ester or epoxy fatty acid ethyl ester.
  • epoxy plasticizers such as epoxy fatty acid methyl ester or epoxy fatty acid ethyl ester.
  • waste fats and oils have high fatty acid content. How to effectively convert waste fats into fatty acid alkyl esters is the key to preparing epoxy fatty acid alkyl ester plasticizers.
  • Traditional grease transesterification process usually uses alkali as a catalyst, but the presence of fatty acids requires that the waste grease be pretreated before alkali-catalyzed transesterification to remove free fatty acids or convert them into alkyl esters.
  • Optional pretreatment methods include alkaline washing, molecular distillation, etc., but these pretreatment methods are not only complicated in operation, but also the removed fatty acids have not been well converted and utilized.
  • An advantage of the method provided by the present invention is that the lipase catalyst has a good catalytic effect on both neutral oils and free fatty acids, wherein the neutral oils and low-chain fatty alcohols, such as methanol or ethanol, undergo transesterification to produce fatty acids. Methyl or ethyl ester, and free fatty acid and methanol or ethanol undergo an esterification reaction to produce fatty acid methyl or ethyl ester.
  • the waste oil and fat raw materials are mixed with inorganic acids, such as sulfuric acid, phosphoric acid, and low-chain fatty acids
  • inorganic acids such as sulfuric acid, phosphoric acid, and low-chain fatty acids
  • one or more reagents of calcium carbonate, calcium hydroxide, and calcium oxide can be used first.
  • the waste oil is pretreated to remove these acids as much as possible, which can avoid the inhibitory effect of these inorganic acids on the catalytic effect of the lipase in the method of the present invention.
  • the amount, temperature, time, and water content of the reagents used in the pretreatment process can vary according to the source of the waste oil and fat raw materials.
  • the waste oil and fat raw materials used are treated under the condition that the amount of pretreatment reagent is 0.5%-10% of the weight of the oil, the temperature is 20-80°C, and the amount of water is 10%-100% of the weight of the oil.
  • the amount of pretreatment reagent is 0.5%-10% of the weight of the oil
  • the temperature is 20-80°C
  • the amount of water is 10%-100% of the weight of the oil.
  • a variety of catalysts can be used, including chemical catalysts, such as acids or alkalis, and biological catalysts, including a variety of lipases, including free lipase, immobilized lipase, and Bacteria or immobilized cells containing lipase.
  • Alkaline catalysts usually have a better conversion rate of neutral fats than acid catalysts, but the content of fatty acids in the raw materials needs to be strictly controlled to avoid the saponification reaction.
  • Lipase catalyst has the advantages of wide raw material adaptability, mild reaction conditions, etc., and is especially suitable for transesterification and esterification reactions of waste oil with high acid value.
  • Free lipase is liquid, relatively low in price, usually contains high moisture content, and it catalyzes the transesterification and esterification of grease with a high reaction rate.
  • Low-chain fatty alcohols commonly used in the transesterification of neutral oils and fatty acids are methanol and ethanol.
  • methanol and ethanol themselves have an inhibitory effect on lipase catalysis, and the concentration of methanol or ethanol in the system needs to be strictly controlled.
  • immobilized lipase has the advantages of good stress resistance and easy recovery.
  • the reaction system is a solvent-free system, that is, when no organic solvent is added as the reaction medium, the immiscibility of oil and water will cause the reaction system This emulsification will cause the protein of the immobilized lipase prepared by the adsorption method to fall off and inactivate, resulting in a decrease in the apparent enzyme activity.
  • the transesterification and esterification of the pretreated oils catalyzed by lipase is carried out in a two-step reaction, in which the first step is catalyzed by free lipase, and the second step is by immobilized lipase. catalytic.
  • the first step reaction is carried out in an organic solvent-free system, which is an oil-water emulsification system, and free lipase can catalyze the reaction at the oil-water interface.
  • the conditions of the first step reaction need to be effectively controlled to obtain a higher conversion rate of neutral oil and fatty acid, that is, the amount of free lipase is 0.5% to 5% of the weight of the pretreated oil, and the water content It is 1%-20% of the oil weight; the amount of low-chain alcohol is 15%-30% of the oil weight, the temperature is 30-50°C, the stirring speed is 200-800rpm, and the reaction time is 6-12 hours.
  • the low-chain alcohol is added to the reactor in 10-5 steps at 10%-20% of the total volume in the first 10-5 hours of the reaction; further preferably, the low-chain alcohol is added The time interval is 30-120 minutes to obtain a faster reaction rate without causing lipase inactivation.
  • the oil phase of the reaction system is further converted with immobilized lipase to convert the remaining neutral oils and fatty acids.
  • the reaction system is homogeneous, and there is no emulsification in the first step reaction system, so the immobilized lipase maintains the enzyme activity well.
  • the preferred reaction conditions for the second step are: the amount of immobilized lipase is 0.5% to 5% of the weight of the oil phase after the first reaction, and the amount of methanol is 2% of the weight of the oil phase after the first reaction. %-8%; the temperature is 40-50°C; the reaction time is 1-5 hours, so that the maximum reaction rate and conversion rate can be obtained.
  • the second-step reaction is carried out in an airlift loop reactor to avoid catalyst fragmentation and pulverization caused by the stirred reactor.
  • the reaction system can be connected with an online dehydration device to remove the water in the system online.
  • the fatty acid alkyl ester mixture obtained after two-step lipase-catalyzed conversion needs to remove residual low-chain alcohols and other substances before undergoing the epoxidation reaction. According to the difference between the boiling point of low-chain alcohols and fatty acid alkyl esters, these substances can be removed by distillation. According to a specific embodiment of the present invention, the best removal effect can be obtained under the conditions of a temperature of 40-80° C. and an absolute pressure of 1-80 kpa, and a relatively pure fatty acid alkyl ester can be obtained.
  • Fatty acid alkyl esters can be prepared by epoxidation to prepare epoxy fatty acid alkyl ester plasticizers.
  • the traditional epoxidation process uses hydrogen peroxide as the oxygen donor, organic acids such as formic acid or acetic acid as the oxygen carrier, and sulfuric acid as the catalyst. Hydrogen peroxide and organic acid generate peroxy organic acid under the catalysis of sulfuric acid. Peroxy organic acid undergoes epoxidation reaction with the unsaturated double bond of fatty acid alkyl ester at the oil-water interface.
  • the method provided by the present invention uses lipase, especially immobilized lipase as a catalyst, which can catalyze the production of peroxy organic acids under mild conditions, and then epoxidize fatty acid alkyl esters, which can realize transesterification, esterification and cyclization.
  • lipase especially immobilized lipase as a catalyst
  • epoxidize fatty acid alkyl esters which can realize transesterification, esterification and cyclization.
  • Integrated integration of oxidation hydrogen peroxide has a significant toxic effect on lipase, and the commonly used formic acid or acetate oxygen carriers also have a significant inhibitory effect on lipase, so it is necessary to re-screen the oxygen carriers and strictly control the reaction conditions.
  • the hydrogen peroxide used in the epoxidation process is usually a 30% aqueous solution.
  • the oxygen carrier used in the epoxidation reaction is selected from formic acid, acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, heptanoic acid, lauric acid, palmitic acid, and oleic acid.
  • the oxygen carrier is a medium and long-chain fatty acid selected from one of heptanoic acid, lauric acid, palmitic acid, oleic acid and stearic acid to avoid fatty acid acid bands The negative effects of coming.
  • the organic solvent is one of toluene, tert-butanol, ethyl acetate, cyclohexane, and petroleum ether to obtain a good homogeneous reaction system while avoiding negative effects on lipase .
  • the epoxidation reaction conditions are the key control factors that affect the stability and activity of the enzyme and the efficiency of epoxidation.
  • the amount of oxygen carrier is 5%-25% based on the weight of fatty acid alkyl ester
  • the amount of hydrogen peroxide is 5%-20% based on the weight of fatty acid alkyl ester
  • the amount of lipase is based on 1.5%-20% of the weight of fatty acid alkyl ester
  • the amount of solvent is 1-6 times based on the weight of fatty acid alkyl ester
  • the temperature is 30-50°C
  • the stirring speed is 100-500rpm
  • the reaction time is 2-24 hours.
  • 30% hydrogen peroxide needs to be added to the reaction system in a stepwise manner.
  • the preferred way of addition is that the hydrogen peroxide is added within the first 150 minutes of the reaction.
  • the time interval for each addition is 5-15 minutes, and the amount of each addition is 1/30-1/10 of the total amount to avoid the inactivation of lipase caused by excessive hydrogen peroxide concentration.
  • the epoxidized fatty acid alkyl mixture prepared by the above method needs to be further purified to obtain a qualified epoxy fatty acid alkyl ester plasticizer.
  • washing, impurity removal and drying treatment of the epoxidized fatty acid alkyl ester mixture can remove residual hydrogen peroxide, water and other impurities.
  • the preferred purification conditions are: the oil phase is distilled at 70-100°C, 10-50kpa absolute pressure for 30-120 minutes, and then washed with a 3%-5% sodium chloride solution at 50-80°C. 1-3 times, and then distill for 30-120 minutes at 70-100°C and 20-80kpa absolute pressure.
  • impurities such as residual hydrogen peroxide and water can be effectively removed without significantly reducing the epoxy value.
  • the method provided by the present invention can simultaneously convert both the neutral oil and fatty acid in the waste vegetable oils into fatty acid alkyl esters and further into environmentally friendly epoxy plasticizers, which avoids complicated oil pretreatment processes. It also makes full use of the fatty acid components in the waste oil, and lipase can also catalyze the epoxidation of fatty acid alkyl esters under mild conditions, which can realize the transesterification of neutral oils and fatty acids to fatty acid alkyl esters. The epoxidation is integrated to prepare epoxy plasticizer.
  • Fig. 1 is a technical process for preparing epoxy plasticizer from waste grease provided by the present invention.
  • Example 1 Preparation of epoxy fatty acid ethyl ester by transesterification and esterification with methanol as a low-chain alcohol
  • this embodiment provides a method for converting waste vegetable oils and fats into epoxy fatty acid alkyl ester epoxy plasticizers.
  • the method is mainly carried out in accordance with the following operations:
  • Step 1 Waste oil raw material and its pretreatment
  • Kitchen waste oil was purchased from Hunan province, and its water content was 0.9%, acid value: 121.1, saponification value: 199.2, triglycerides: 18.1%, diglycerides: 1.3%, and monoglycerides: 18.1%.
  • triglycerides 18.1%
  • diglycerides 1.3%
  • monoglycerides 18.1%.
  • Using 1% calcium carbonate based on oil weight and adding 10% water based on oil weight it was treated at 60°C for 30 minutes and then centrifuged and filtered to analyze the oil layer. The water content was 1.2% and the acid value was 118.3. Saponification value: 195.2, triglyceride: 17.9%, diglyceride: 1.4%, monoglyceride: 18.4%. It can be seen that calcium carbonate treatment can slightly reduce the acid value of the kitchen waste oil, but the decrease is not obvious.
  • Acidified waste oil was purchased from Guangdong province. Its water content is: 1.5%, acid value: 140 (including inorganic acid), saponification value: 160.2. Calcium oxide based on oil weight is used at 5%, and 20% water based on oil weight is added. The oil layer was subjected to centrifugal filtration after 30 minutes of treatment at 60°C under the conditions of, and the water content of the oil layer was 2.1%, acid value: 110.3, and saponification value: 155.2. It can be seen that calcium carbonate treatment can significantly reduce the acid value of acidified oil. This is because there are some inorganic acids and organic acids in the acidified oil, which can be removed by reacting with calcium oxide in the pretreatment process.
  • Step 2 Free lipase catalytic conversion of pre-treated waste oil raw materials
  • the waste oil raw material used is the kitchen waste oil after pretreatment in step one.
  • Add 2000g of pretreated waste oil into a 5L reactor add 200g of water (10% based on oil weight), 30g of liquid lipase (based on 1.5% of oil weight), and 400ml of anhydrous methanol (based on volume of 20% of oil weight)
  • the yield of fatty acid methyl esters was measured to be 10%. It can be seen that when methanol is added to the reactor at one time at the beginning of the reaction, the yield of fatty acid methyl esters is low due to the inhibitory effect of methanol.
  • Step 3 Immobilized lipase catalyzes the reduction of acid value of fatty acid methyl ester mixture
  • the esterification reaction of fatty acids and alcohols is an equilibrium reaction, it will inevitably cause the hydrolysis of neutral oils and the incomplete conversion of fatty acids.
  • the fatty acid methyl ester mixture obtained in step 2 is subjected to centrifugal separation, and the oil phase is taken for catalytic conversion of immobilized lipase. Add 180g of oil phase, 2g of immobilized lipase, and 20g of methanol into a 200ml airlift loop reactor, and analyze the oil phase after reacting at 40°C for 2 hours.
  • the fatty acid methyl ester content is 97% and the glycerol content is 0.035%.
  • the acid value is 0.98mgKOH/g, and the iodine value is 72.
  • the 100 batches of immobilized lipase used for recycling had no significant enzyme activity reduction. It can be seen that the residual neutral oil and fatty acids in the fatty acid methyl ester mixture after the first step of enzymatic hydrolysis can be effectively converted into fatty acid methyl esters in the second step of the immobilized enzyme catalytic conversion process, and the immobilized enzyme has good stability Sex.
  • the reaction of immobilized lipase catalyzing the acid value reduction of fatty acid methyl ester mixture is affected by factors such as water content, immobilized enzyme dosage, and alcohol-to-oil molar ratio.
  • the water content affects the balance of the esterification reaction of fatty acids and alcohols in the system.
  • the acid value of the oil phase is 2.5mgKOH/g and 0.8mgmgKOH, respectively /g. Therefore, combined with online dehydration, such as molecular sieve adsorption or online membrane dehydration processes, can promote the reduction of acid value, that is, the further conversion of fatty acids into fatty acid methyl esters.
  • the acid value When the amount of immobilized enzyme is increased from 0.5% to 2.0%, the acid value will be 3.8, 2.0, 1.2 and 0.9mgKOH/g after 2 hours of reaction under the above reaction conditions, so in order to obtain a higher acid value reduction effect
  • the preferred amount of immobilized enzyme is 1.5%-2.0%.
  • the amount of methanol affects the reaction balance, which in turn affects the acid value reduction effect.
  • the molar ratio of alcohol to oil drops from 2.2:1 to 0.18:1
  • the acid value of the oil phase is 1.0-4.0 mgKOH/g after 2 hours of reaction under the above conditions.
  • the preferred molar ratio of alcohol to oil is 1:1, that is, the amount of methanol is About 10%-15% based on the weight of the oil phase.
  • Step 4 Immobilized lipase catalyzes fatty acid methyl esters to prepare epoxy fatty acid methyl esters
  • the oil phase fatty acid methyl ester obtained in step 3 was vacuum rotary evaporated at 20 kpa and 80° C. for 30 minutes, and then used for epoxidation after being cooled to room temperature. Since the heterogeneous reaction will lead to the shedding of immobilized lipase protein and loss of enzyme activity, the epoxidation reaction is carried out in an organic solvent system. Compare the effect of different organic solvents on the epoxy value, as shown in Table 1. It can be seen that ethyl acetate, cyclohexane, and petroleum ether have lower epoxy values as solvents. Tert-butanol and toluene are better solvents and can get relatively high epoxy values.
  • tert-butanol is less toxic and has a lower boiling point, which is more conducive to recovery. It is the preferred solvent for the epoxidation process.
  • the effect of tert-butanol dosage on epoxy value was further optimized, and it was found that the best epoxidation effect can be obtained when the dosage of tert-butanol is 5ml/g grease.
  • the epoxy value has been reduced during the third batch of reaction. To less than 2.5%; adding 1/9 of the total amount every 10 minutes will increase the concentration of hydrogen peroxide in the system, which will also affect the maintenance of enzyme activity. The epoxy value will also drop to 1% in the fourth batch of reactions. the following.
  • the best hydrogen peroxide addition strategy among the three stepwise addition methods is to add 1/14 of the total amount every 10 minutes and add all the hydrogen peroxide within 140 minutes. At this time, the epoxy value of the fifth batch of reaction is higher than 2.5%.
  • the influence of the total amount of 30% hydrogen peroxide was further optimized, and it was found that when the amount of 30% hydrogen peroxide was 0.32 g/g fatty acid methyl ester, an epoxy value of 6.0% could be obtained after 12 hours of reaction.
  • Fatty acids are used as oxygen carriers in the process of preparing epoxy soybean oil.
  • Formic acid or acetic acid are generally used as oxygen carriers in the process of preparing epoxy soybean oil by chemical methods. Because formic acid or acetic acid is more acidic, it is easy to inactivate enzymes. Therefore, biological enzymatic methods generally use long-chain fatty acids as oxygen carriers. Under enzyme catalysis, long-chain fatty acids and hydrogen peroxide react to form peroxy fatty acids, which oxidize double bonds to obtain epoxy soybean oil. However, when the carbon chain is too long, the steric hindrance is enhanced, which is not conducive to the reaction of fatty acids and hydrogen peroxide to generate peroxy fatty acids.
  • fatty acids with different carbon chain lengths including formic acid, acetic acid, propionic acid, n-butyric acid, n-valeric acid, n-hexanoic acid, n-heptanoic acid, lauric acid, oleic acid and stearic acid. It is found that lauric acid can obtain the best epoxy value (4.5%), and the epoxy value of 4.0% can still be obtained after three batches of lipase reuse.
  • the response surface center compound design is further used to optimize the reaction conditions and parameters.
  • the variables include the amount of 30% hydrogen peroxide (g/g soybean oil), the amount of immobilized enzyme (g/g soybean oil), and the amount of solvent tert-butanol (ml /g soybean oil) and the reaction temperature (°C), the results show that at 45°C, the amount of solvent added is 3.75ml/g fatty acid methyl ester, the amount of enzyme is 0.075g/g fatty acid methyl ester, and the amount of 30wt% hydrogen peroxide is 0.32g /Fatty acid methyl ester, the best epoxy value is 5.28%.
  • Example 2 Using ethanol as a low-chain alcohol for transesterification and esterification to prepare epoxy fatty acid ethyl esters similar to methanol.
  • ethanol is used as the low-chain alcohol reactant.
  • the waste oil is pretreated as described in Example 1, the first step of liquid lipase catalytic conversion, the second step of immobilized lipase catalytic conversion, and the immobilized lipase catalytic conversion as described in example 1, and the immobilized lipase catalytic epoxidation are respectively followed. After the product is washed and evaporated under reduced pressure, an epoxy value of 5.5% can be obtained.
  • ethanol can also be used as a low-chain alcohol reactant to effectively convert waste grease into epoxy plasticizer.
  • a significant advantage of using ethanol is that ethanol is mainly derived from the fermentation of starch or cellulose, while starch and cellulose themselves are the most abundant carbohydrate biomass in nature, so that all raw materials for the epoxy plasticizer produced are derived from To biomass, thereby further reducing the net emission of carbon dioxide.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Medicinal Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Fats And Perfumes (AREA)

Abstract

本发明提供了一种以废弃油脂制备环氧增塑剂的方法,具体涉及将废弃植物油脂转化为环氧脂肪酸烷基酯类环氧增塑剂的方法,包括如下步骤:提供废弃油脂原料或将废弃油脂选择性地进行预处理得到预处理油脂;将油脂进行转酯化和酯化反应,得到脂肪酸烷基酯混合物;将得到的脂肪酸烷基酯混合物进行蒸馏和水洗处理,得到脂肪酸烷基酯;将得到的脂肪酸烷基酯进行环氧化,获得环氧化脂肪酸烷基酯混合物,进一步进行除杂、洗涤和干燥后,获得环氧增塑剂。本发明提供的方法中,废弃油脂的转酯化、酯化以及环氧化均采用脂肪酶作为催化剂,不仅具有原料适应性广、反应条件温和的优点,而且可以避免使用无机酸、碱等催化剂,具有环境友好性。

Description

以废弃油脂制备环氧增塑剂的方法 技术领域
本发明涉及生物化工领域,具体涉及一种以废弃油脂,特别是废弃植物油,例如煎炸废油、地沟油、潲水油、酸化油等油脂原料制备环氧增塑剂的方法。
背景技术
聚氯乙烯(PVC)具有机械性能好、防火阻燃、耐化学腐蚀、价格便宜等优异特点,其制品普遍应用于包装材料等诸多行业,是世界上用量第二大的通用塑料。然而,PVC分子链间的相互作用力较强,纯的PVC树脂软化和熔融所需的温度较高,加工起来十分不便。增塑剂是PVC制品中用量最多的一种助剂,它的加入有利于降低PVC分子间的相互作用力使之可塑性增强,从而改善PVC树脂成型加工时的流动性使之更容易加工,同时制品的柔韧性也得到改善。邻苯二甲酸酯类增塑剂具有相容性好、增塑效率高等优点,长期以来,其一直都是增塑剂中用量最大的产品。近年来,随着对增塑剂毒性等研究工作的进行,人们发现邻苯二甲酸酯类增塑剂不仅会污染环境,对人体也有潜在的致癌致畸作用。因此,相当多的国家和组织先后立法或采取相关政策以限制邻苯二甲酸酯类增塑剂的使用。因此,开发无毒的环保型增塑剂是PVC产业亟待解决的关键问题之一
现有的环保型增塑剂主要包括柠檬酸酯类、脂肪族二元酸酯类、多元醇类、聚酯类、环氧类等品种。环氧增塑剂是指分子结构中含有环氧基团的化合物。在PVC树脂的加工过程中,环氧增塑剂不仅对PVC具有增塑作用,其中的环氧基还可以吸收PVC树脂降解产生的氯化氢,从而抑制了PVC的连续催化分解,起到了稳定PVC产品并延长使用期限的作用。在PVC产品的制备过程中,也是利用其同时具有光热稳定性的特点,以改善产品的耐候性。相比与邻苯酯类增塑剂,环氧增塑剂几乎无毒,还具有耐热、耐光、价格便宜等优点,在很多国家和地区已被批准应用于医药及食品的包装材料等。环氧增塑剂根据原料的不同,主要可以分为以不饱和植物油脂为原料经环氧化得到的环氧中性油脂,和以不饱和脂肪酸甲酯为原料经环氧化得到的环氧脂肪酸甲酯。相对于环氧大豆油等环氧植物油脂,环氧脂肪酸甲酯存在以下优点:第一,脂肪酸甲酯可经由油脂原料经酯交换 反应得到,也可以由脂肪酸经酯化反应得到,因此反应原料的来源更广泛,甚至地沟油等废弃油脂也可以作为原料;第二,脂肪酸甲酯环氧化制备环氧增塑剂可以提高生物柴油的附加值,增加生物柴油产业的潜在收益;第三,相比于环氧植物油脂,环氧脂肪酸甲酯拥有更好的润滑性,在PVC制品中分散效果更好,可添加比例也更大,并且在纤维素树脂和合成橡胶的合成中有更独特的增塑性能;此外,环氧脂肪酸甲酯作为增塑剂添加还可以获得更加优良的伸展性能和更长的老化时间。
以废弃油脂为原料制备环氧脂肪酸酯类增塑剂的方法已有公开。CN100590188C公开了一种利用废弃油脂生产环氧增塑剂的方法,其采用废弃油脂作为原料,经预处理,得到的甘油酯,在碱催化下,与甲醇进行酯交换反应得到脂肪酸甲酯,再与由过氧化氢和有机酸的反应产物—过氧有机酸直接进行环氧化反应,得到环氧脂肪酸甲酯粗品,再经水洗去酸,蒸馏脱水得到环氧脂肪酸甲酯成品。CN201010245634.5公开了利用废弃植物油脂生产环氧脂肪酸甲酯的方法,其是将混合地沟油或餐饮潲水油等废植物油除杂后进入蒸馏塔直接进行分子蒸馏除去脂肪酸,使植物油脂的酸值为1±0.2的中性油脂;再加入1%-3%甲醇钠和20%-25%的甲醇,在搅拌中慢慢升温至68℃±2℃反应40-50分钟,静置25-35分钟,排出粗甘油,得到脂肪酸甲酯,再加入2%-4%的甲酸,在搅拌中慢慢升温至45-55℃,开始滴加20%-30%双氧水反应时间为7±0.5小时,得到环氧脂肪酸甲酯;再加入15%-25%氢氧化钠液体进行中和,使物料pH=7±0.5,水洗,蒸馏,即得到环氧脂肪酸甲酯增塑剂。
技术问题
可见,目前已有的关于废弃油脂制备环氧脂肪酸酯类增塑剂的研究主要是先采用预处理工艺将废弃油脂中的脂肪酸除去,得到中性油脂后再通过碱催化转化为脂肪酸烷基酯,这不仅需要复杂的预处理工艺,而且造成资源浪费,且碱催化过程中碱催化剂的排放也会带来污染问题。另一方面,目前的环氧化过程多以有机酸,例如甲酸和乙酸为载氧体,硫酸为催化剂,也不可避免地带来酸污染问题。因此,有必要开发适用于多种废弃植物油脂原料,而且可以在温和条件下实现油脂原料转酯化、酯化和环氧化的新方法,以提高原料利用性和过程环境效益。
技术解决方案
本发明的一个目的在于提供一种以废弃油脂制备环氧增塑剂的方法,将废油植物油脂转化为环保型环氧增塑剂,实现废弃油脂的高值化、资源化利用。
本案发明人发现,废弃植物油脂仍然具有较高的不饱和度,可通过环氧化获得环氧增塑剂。然而废弃植物油脂也往往具有较高的游离脂肪酸含量。要实现废弃油脂向环氧脂肪酸烷基酯类增塑剂转化,一个首要的前体条件是将其中的中性油脂和脂肪酸首先转化为脂肪酸烷基酯,例如脂肪酸甲酯或脂肪酸乙酯。但传统的碱法转化过程需要对原料进行充分预处理,以除去游离脂肪酸,这不仅需要复杂的预处理过程,而且造成了资源(脂肪酸)的浪费。因此,需要开发一种可以同时将中性油脂和脂肪酸均转化为脂肪酸烷基酯的方法,既避免繁杂的预处理过程又充分利用资源。
为此,本发明提供了一种以废弃油脂制备环氧增塑剂的方法,其包括:
步骤(1):提供废弃油脂原料或将废弃油脂选择性地进行预处理以去除无机酸得到预处理油脂;
步骤(2):将步骤(1)中的油脂进行转酯化和酯化反应,得到脂肪酸烷基酯混合物;
步骤(3):将步骤(2)中得到的脂肪酸烷基酯混合物进行蒸馏和水洗处理,得到脂肪酸烷基酯;
步骤(4):将步骤(3)中得到的脂肪酸烷基酯进行环氧化,获得环氧化脂肪酸烷基酯混合物;
步骤(5):将步骤(4)中得到的环氧化脂肪酸烷基酯混合物进行除杂、洗涤和干燥,获得环氧增塑剂。
根据本发明的具体实施方案,步骤(1)中的废弃油脂原料如果含有较多的无机酸(例如,当无机酸含量在0.5%以上时),需要进行所述的预处理。
本发明的一个优选实施方案中,所述步骤(1)中的预处理是采用选自碳酸钙、氢氧化钙、氧化钙中的一种或多种试剂进行的;任选地,所述预处理是将所述废弃油脂原料加入预处理试剂后,混合体系在温度为20-80℃下处理10-120min;任选地,所述预处理试剂的用量为油脂重量的0.5%-10%。任选地,所述预处理混合体系中还含有水,水的含量为油脂重量的10%-100%。
本发明的一个优选实施方案中,所述步骤(2)中将所述油脂进行转酯化和 酯化反应获得脂肪酸烷基酯是在脂肪酶催化下与低链脂肪醇反应进行的;任选地,所述脂肪酶为游离脂肪酶和/或固定化脂肪酶;任选地,所述低链脂肪醇选自甲醇和乙醇中的一种;优选地,所述转酯化和酯化反应是在无溶剂体系下进行的。
本发明的一个优选实施方案中,所述步骤(2)中脂肪酶催化的油脂转酯化和酯化反应为两步反应,其中第一步采用游离脂肪酶催化,第二步采用固定化脂肪酶催化。
任选地,本发明步骤(2)中第一步反应条件为:游离脂肪酶用量为油脂重量的0.5%-5%,水含量为油重量的1%-20%;低链醇用量为油重量的15%-30%,温度为30-50℃,搅拌速率为200-800rpm,反应时间为6-12小时。通常情况下,反应产物得率为理论得率的85%以上。
任选地,本发明步骤(2)中第二步反应条件为:固定化脂肪酶用量为第一步反应后油相重量的0.5%-5%,低链醇用量为第一步反应后油相重量的2%-8%;温度为40-50℃;反应时间为1-5小时。第二步反应根据需要可在搅拌条件下进行。通常情况下,反应使残余的中性油脂、脂肪酸转化率在90%以上。
本发明的一个优选实施方案中,所述步骤(2)中脂肪酶催化的油脂转酯化和酯化反应中第一步反应中的低链醇以多步添加的方式加入到反应器中;优选地,低链醇以总体积用量的10%-20%分10-5步在反应的前10-5小时内添加到反应器中;进一步优选地,低链醇添加的时间间隔为30-120分钟。
本发明的一个优选实施方案中,所述步骤(2)中脂肪酶催化的油脂转酯化和酯化反应中第二步反应是在气升式环流反应器中进行的;优选地,反应器与在线脱水设备相偶联,以在线除去反应体系中的水分。
本发明的一个优选实施方案中,步骤(3)中将所述脂肪酸烷基酯混合物进行蒸馏处理得到脂肪酸烷基酯的过程是在温度为40-80℃、绝对压力为1-80kpa的条件下进行的。
本发明的一个优选实施方案中,所述步骤(4)中对所述脂肪酸烷基酯进行环氧化是在脂肪酶催化下进行的;任选地,所述脂肪酶选自游离脂肪酶和固定化脂肪酶中的一种;任选地,所述环氧化反应在有机溶剂体系下进行,所述有机溶剂选自甲苯、叔丁醇、乙酸乙酯、环己烷、石油醚中的一种;任选地,所述环氧化反应中所采用的载氧体选自甲酸、乙酸、丙酸、丁酸、戊酸、己酸、庚酸、月桂酸、棕榈酸、油酸和硬脂酸中的一种。
本发明的一个优选实施方案中,所述步骤(4)中的环氧化反应条件为:载氧体用量为基于脂肪酸烷基酯重量的5%-25%,过氧化氢用量为基于脂肪酸烷基酯重量的5%-20%,脂肪酶用量为基于脂肪酸烷基酯重量的1.5%-20%,溶剂用量为基于脂肪酸烷基酯重量的1-6倍,温度为30-50℃,搅拌速率为100-500rpm;反应时间为2-24小时;优选地,过氧化氢采取分步添加的方式加入到反应体系中,优选的添加方式为过氧化氢在反应的前150分钟内添加完,每次添加的时间间隔为5-15分钟,每次添加量为总用量的1/30-1/10。
本发明的一个优选实施方案中,所述步骤(5)对环氧化脂肪酸烷基酯混合物进行洗涤、除杂和干燥处理获得环氧增塑剂的条件为:对油相在70-100℃,10-50kpa绝压下蒸馏处理30-120分钟后,采用质量分数为3%-5%的氯化钠溶液在50-80℃下洗涤1-3次,再在70-100℃,20-80kpa绝压下蒸馏处理30-120分钟。
废弃植物油脂资源,例如煎炸废油、地沟油、潲水油等,是一种潜在的生物质资源。除可用于生产生物柴油外,这些油脂资源也可用于制备环氧增塑剂,例如环氧脂肪酸甲酯或环氧脂肪酸乙酯。但废弃油脂具有较高的脂肪酸含量,如何将废弃油脂有效转化为脂肪酸烷基酯是制备环氧脂肪酸烷基酯增塑剂的关键。传统的油脂转酯化过程通常采用碱作为催化剂,但脂肪酸的存在要求在碱催化转酯化前必须先对废弃油脂进行预处理,将游离脂肪酸除去或转化为烷基酯形式。可选的预处理方法包括碱洗、分子蒸馏等,但这些预处理方法不仅操作复杂,而且除去的脂肪酸未能得到很好的转化利用。本发明提供的方法的一个优点在于,脂肪酶催化剂对于中性油脂和游离的脂肪酸均具有很好的催化效果,其中中性油脂与低链脂肪醇,例如甲醇或乙醇发生转酯化反应生成脂肪酸甲酯或乙酯,而游离脂肪酸与甲醇或乙醇发生酯化反应,生成脂肪酸甲酯或乙酯。
根据本发明一些的具体实施方案,当废弃油脂原料中混杂有无机酸,例如硫酸、磷酸,以及低链脂肪酸,可先采用碳酸钙、氢氧化钙、氧化钙中的一种或多种试剂对废弃油脂进行预处理,以尽可能除去这些酸类,可避免这些无机酸对于本发明方法中的脂肪酶催化效果的抑制作用。预处理过程中所用试剂的量、温度、时间以及含水量等可根据废弃油脂原料的来源不同而不同。根据本发明具体实施方案,将所用废弃油脂原料在预处理试剂的用量为油脂重量的0.5%-10%,温度为20-80℃,水用量为油脂重量的10%-100%的条件下处理10-120分钟时,可获得最佳的抑制物去除效果。
将预处理后的油脂进行转酯化和酯化时,可以选用多种催化剂,包括化学催化剂,例如酸或碱,以及生物催化剂,包括多种脂肪酶,包括游离脂肪酶、固定化脂肪酶以及含有脂肪酶的菌体或固定化菌体。碱催化剂通常比酸催化剂具有更好的中性油脂转化率,但需要严格控制原料中脂肪酸的含量,以避免皂化反应发生。脂肪酶催化剂具有原料适应性广、反应条件温和等优点,特别适用于高酸价废油的转酯化和酯化反应。游离脂肪酶为液态,价格相对低廉,通常含有较高的水分含量,且其催化油脂的转酯化和酯化具有较高的反应速率。中性油脂转酯化以及脂肪酸酯化过程中常用的低链脂肪醇为甲醇和乙醇。但甲醇和乙醇本身对脂肪酶催化具有抑制作用,需要严格控制体系中甲醇或乙醇的浓度。固定化脂肪酶相比于游离脂肪酶具有抗逆性好、易于回收等优点,但当反应体系为无溶剂体系,即不添加有机溶剂作为反应介质时,由于油水的不互溶性会造成反应体系的乳化,而这种乳化作用会导致由吸附法制得的固定化脂肪酶的蛋白脱落和失活,致使表观酶活降低。本发明的一个优选实施方案中,脂肪酶催化预处理后的油脂进行转酯化和酯化是采用两步反应进行的,其中第一步采用游离脂肪酶催化,第二步采用固定化脂肪酶催化。第一步反应在无有机溶剂体系下进行,即为油水的乳化体系,游离脂肪酶可在油水界面上催化反应进行。根据本发明的具体实施方案,第一步反应的条件需有效控制,以获得较高的中性油脂和脂肪酸转化率,即游离脂肪酶用量为预处理油脂重量的0.5%-5%,水含量为油重量的1%-20%;低链醇用量为油重量的15%-30%,温度为30-50℃,搅拌速率为200-800rpm,反应时间为6-12小时。此外,甲醇或乙醇以分步添加的方式加入到体系中,可避免脂肪酶失活。根据本发明的具体实施方案,低链醇以总体积用量的10%-20%分10-5步在反应的前10-5小时内添加到反应器中;进一步优选地,低链醇添加的时间间隔为30-120分钟,以获得较快的反应速率的同时不造成脂肪酶的失活。经过第一步反应后,大部分中性油脂和脂肪酸转化为脂肪酸烷基酯,将反应体系的油相进一步采用固定化脂肪酶将残余的中性油脂和脂肪酸进行转化。此时,反应体系为均相,不存在第一步反应体系中的乳化现象,因此固定化脂肪酶很好地保持酶活。根据本发明的实施例,第二步的优选反应条件为:固定化脂肪酶用量为第一步反应后油相重量的0.5%-5%,甲醇用量为第一步反应后油相重量的2%-8%;温度为40-50℃;反应时间为1-5小时,以此可获得最大的反应速率和转化率。进一步优选地,第二步反应在气升式环流反应器中进行,以避免搅拌式反应器造 成的催化剂破碎和粉化。由于脂肪酸与低链醇的酯化反应生成水,而酯化反应为平衡反应,为促进反应向酯化反应进行,反应体系可与在线脱水设备相连,以在线除去体系中的水分。
经过两步脂肪酶催化转化后获得的脂肪酸烷基酯混合物在进行环氧化反应之前,需要除去残余的低链醇等物质。根据低链醇沸点与脂肪酸烷基酯的差异,可通过蒸馏的方式去除这些物质。根据本发明的具体实施方案,在温度为40-80℃、绝对压力为1-80kpa的条件下可获得最佳的去除效果,获得较纯的脂肪酸烷基酯。
脂肪酸烷基酯可通过环氧化制备环氧脂肪酸烷基酯增塑剂。传统的环氧化过程是采用过氧化氢作为氧供体,有机酸,例如甲酸或乙酸作为载氧体,硫酸作为催化剂。过氧化氢和有机酸在硫酸的催化作用下生成过氧有机酸,过氧有机酸在油水界面与脂肪酸烷基酯的不饱和双键发生环氧化反应。本发明提供的方法采用脂肪酶,特别是固定化脂肪酶作为催化剂,可以在温和条件下催化过氧有机酸的生产,进而环氧化脂肪酸烷基酯,可以实现转酯化、酯化和环氧化的一体化集成。但过氧化氢对于脂肪酶具有显著的毒性作用,且常用的甲酸或乙酸载氧体对脂肪酶亦具有显著的抑制作用,所以需要重新筛选载氧体和严格控制反应条件。另一方面,环氧化过程中所用的过氧化氢通常为30%的水溶液,大量过氧化氢溶液添加到体系中必然会体系变为非均相,为避免非均相反应带来的固定化脂肪酶蛋白脱落的问题,可采用有机溶剂体系来获得均相体系。根据本发明的具体实施方案,所述环氧化反应中所采用的载氧体选自甲酸、乙酸、丙酸、丁酸、戊酸、己酸、庚酸、月桂酸、棕榈酸、油酸和硬脂酸中的一种;进一步优选地,所述载氧为中长链脂肪酸,选自庚酸、月桂酸、棕榈酸、油酸和硬脂酸中的一种,以避免脂肪酸酸性带来的负面作用。根据本发明的实施例,所述有机溶剂甲苯、叔丁醇、乙酸乙酯、环己烷、石油醚中的一种,以获得良好的均相反应体系的同时,避免对脂肪酶的负面影响。此外,环氧化反应条件是影响酶稳定性和活性以及环氧化效率的关键控制因素。根据本发明提供的具体实施方案,载氧体用量为基于脂肪酸烷基酯重量的5%-25%,过氧化氢用量为基于脂肪酸烷基酯重量的5%-20%,脂肪酶用量为基于脂肪酸烷基酯重量的1.5%-20%,溶剂用量为基于脂肪酸烷基酯重量的1-6倍,温度为30-50℃,搅拌速率为100-500rpm;反应时间为2-24小时时可以获得较高的环氧值。更重要地是,30%过氧化氢需采取分步添加的方式加入到反应体系中,根据本发明提供的具体实施方案,优选的添加方式为过氧化 氢在反应的前150分钟内添加完,每次添加的时间间隔为5-15分钟,每次添加量为总用量的1/30-1/10,以避免过氧化氢浓度过高导致的脂肪酶失活。
以上方法制备得到的环氧化脂肪酸烷基混合物需要进一步净化以获得合格的环氧脂肪酸烷基酯增塑剂。根据本发明提供的具体实施方案,对环氧化脂肪酸烷基酯混合物进行洗涤、除杂和干燥处理可以除去残余的过氧化氢、水等杂质。优选的净化条件为:对油相在70-100℃,10-50kpa绝压下蒸馏处理30-120分钟后,采用质量分数为3%-5%的氯化钠溶液在50-80℃下洗涤1-3次,再在70-100℃,20-80kpa绝压下蒸馏处理30-120分钟。由此可将残余过氧化氢、水等杂质有效除去,而不对环氧值造成显著降低。
有益效果
综上所述,本发明提供的方法可以同时将废弃植物油脂中的中性油脂和脂肪酸均转化为脂肪酸烷基酯并进一步转化为环保型环氧增塑剂,既避免繁杂的油脂预处理过程又充分利用了废油中脂肪酸组分,而且脂肪酶还可以在温和条件下催化脂肪酸烷基酯的环氧化,即可实现从中性油脂的转酯化、脂肪酸的酯化到脂肪酸烷基酯的环氧化一体化制备环氧增塑剂。
附图说明
图1为本发明所提供的废弃油脂制备环氧增塑剂的技术流程。
图中标号说明:
1、预处理;2、第一步转酯化/酯化;3、液液分离;4、第二步转酯化/酯化;5、固液分离;6、环氧化;7、固液分离;8、净化除杂
本发明的实施方式
为了更详细地说明本发明,给出下述实例。但本发明的范围并不局限于此。
实施例1:以甲醇为低链醇进行转酯化和酯化制备环氧脂肪酸乙酯
请参见图1所示,本实施例提供一种将废弃植物油脂转化为环氧脂肪酸烷基酯类环氧增塑剂的方法。该方法主要按照以下操作进行:
步骤一:废油原料及其预处理
餐厨废油购自湖南省,其水含量为:0.9%,酸价:121.1,皂化价:199.2,甘油三酯:18.1%,甘油二酯:1.3%,甘油单酯:18.1%。采用基于油重量为1% 的碳酸钙,添加基于油重10%的水的条件下在60℃下处理30分钟后离心过滤,对油层进行分析,其含水量为1.2%,酸价:118.3,皂化价:195.2,甘油三酯:17.9%,甘油二酯:1.4%,甘油单酯:18.4%。可见碳酸钙处理可稍微降低该餐厨废油的酸价,但下降并不明显。
酸化废油购自广东省,其水含量为:1.5%,酸价:140(含无机酸),皂化价:160.2.采用基于油重量为5%的氧化钙,添加基于油重20%的水的条件下在60℃下处理30分钟后离心过滤,对油层进行分析,其含水量为2.1%,酸价:110.3,皂化价:155.2。可见碳酸钙处理可显著降低酸化油的酸价。这是由于酸化油中还有部分无机酸、有机酸,其可在预处理过程中与氧化钙反应而除去。
步骤二:预处理废油原料的游离脂肪酶催化转化
所用废油原料为步骤一中预处理后餐厨废油。在5L反应器中加入2000g预处理废油,添加200g水(基于油重的10%),30g液体脂肪酶(基于油重的1.5%),以及400ml无水甲醇(基于油重20%的体积量),在500rpm转速和45℃反应温度下反应8小时后,测得脂肪酸甲酯的得率为10%。可见,当把甲醇在反应初期一次性添加到反应器中时,由于甲醇的抑制作用,脂肪酸甲酯得率较低。当甲醇分六批次逐步添加,在第0h、1h、2h、3h、4h、5h时分别添加甲醇总量的35%、20%、15%、15%、10%、5%时,8小时后脂肪酸甲酯的得率达到85%,油相酸价为12。可见,甲醇通过分步添加的方式,可以显著降低其抑制作用,提高脂肪酸甲酯得率。
步骤三:固定化脂肪酶催化脂肪酸甲酯混合物降酸价
由于第一步反应在含水体系下进行,且脂肪酸与醇的酯化反应为平衡反应,因此不可避免地会造成中性油脂的水解以及脂肪酸无法完全转化。为进一步将残余的油脂和脂肪酸转化为脂肪酸甲酯,即降低酸价,将步骤二得到的脂肪酸甲酯混合物进行离心分离,取油相进行固定化脂肪酶催化转化。在200ml气升式环流反应器中加入180g油相,2g固定化脂肪酶,和20g甲醇,在40℃下反应2小时后分析油相,得到脂肪酸甲酯含量为97%,甘油含量为0.035%,酸价为0.98mgKOH/g,碘值为72。固定化脂肪酶循环使用100个批次无显著酶活降低。可见,经过第一步酶解转化后的脂肪酸甲酯混合物中的残余中性油脂和脂肪酸可以在第二步固定化酶催化转化过程中有效转化为脂肪酸甲酯,且固定化酶具有良好 的稳定性。
固定化脂肪酶催化脂肪酸甲酯混合物降酸价的反应受到含水量、固定化酶用量、醇油摩尔比等因素影响。水含量影响体系中脂肪酸与醇酯化反应的平衡,当含水量从2%降低到400ppm时,在上述的反应条件下反应2小时后,油相酸价分别为2.5mgKOH/g和0.8mg mgKOH/g。因此结合在线脱水,例如分子筛吸附或在线膜脱水工艺,可以促进酸价降低,即脂肪酸的进一步转化为脂肪酸甲酯。当固定化酶的用量从0.5%增加到2.0%时,在上述反应条件下反应2小时后,酸价分别为3.8、2.0、1.2和0.9mgKOH/g,因此为获得较高的降酸价效果,优选的固定化酶用量为1.5%-2.0%。甲醇用量影响反应平衡,进而影响降酸价效果。当醇油摩尔比2.2:1下降到0.18:1时,在上述条件下反应2h后,油相酸价为1.0-4.0mgKOH/g,优选的醇油摩尔比为1:1,即甲醇用量为基于油相重量的约10%-15%。
步骤四:固定化脂肪酶催化脂肪酸甲酯制备环氧脂肪酸甲酯
步骤三中得到的油相脂肪酸甲酯在20kpa、80℃下真空旋转蒸发30分钟,冷却至室温后用于环氧化。由于非均相反应会导致固定化脂肪酶蛋白脱落和酶活损失,因此选择在有机溶剂体系下进行环氧化反应。比较不同有机溶剂对环氧值的影响,如表1所示。可知,乙酸乙酯、环己烷和石油醚为溶剂得到的环氧值较低。叔丁醇和甲苯是较好的溶剂,可以得到相对较高的环氧值。由于甲苯毒性较大,且沸点较高,而相比之下叔丁醇毒性较小,沸点较低,更利于回收,是环氧化过程的优选溶剂。进一步优化叔丁醇用量对环氧值的影响,发现叔丁醇用量为5ml/g油脂时可获得最佳的环氧化效果。
表1不同溶剂对环氧化反应的影响
Figure PCTCN2019119883-appb-000001
高浓度的过氧化氢会对脂肪酶的活性造成损害,因此在反应过程中过氧化氢 的添加方式会影响到环氧值的大小。为比较不同过氧化氢对脂肪酶活性的影响,取10g大豆油、0.1g油酸和100mL叔丁醇在锥形瓶中混合,加入2.0g固定化脂肪酶,置于40℃、300rpm的恒温摇床中进行振荡,15min后向其中分别以一次性添加和分步添加的方式(每次加入总量的1/20)加入总量相等的过氧化氢反应24h后过滤分离其中的固定化酶,测定脂肪酶酶活。结果表明,过氧化氢一次性加入时反应一个批次后脂肪酶酶活即下降了90%,将脂肪酶继续回用于环氧化反应后脂肪酶酶活完全丧失,而采用分步添加过氧化氢时脂肪酶酶活降低程度可以显著减小。为进一步比较不同过氧化氢添加策略的影响,比较三种添加策略,即①方法1:每10min加入总量的1/28,280min加完;②方法2:每10min加入总量的1/14,140min加完;③方法3:每10min加入总量的1/9,90min加完。结果表明,每10min加入总量1/28的添加方式会导致有效反应时间延长,从而使得脂肪酶与过氧化氢作用时间延长,不利于酶活的保持,第三批反应时环氧值已降至2.5%以下;每10min加入总量1/9的添加方式会使过氧化氢在体系中积累浓度偏高,对酶活的保持也有影响,第四批反应时环氧值也降至1%以下。在三种分步添加方式中最好的过氧化氢添加策略是每10min加入总量的1/14于140min内加完所有的过氧化氢,此时第五批次反应的环氧值高于2.5%。进一步优化30%过氧化氢总用量的影响,发现30%过氧化氢用量为0.32g/g脂肪酸甲酯时,反应12小时后可获得6.0%的环氧值。
制备环氧大豆油过程中起到载氧体作用的是脂肪酸,化学法制备环氧大豆油过程中一般使用甲酸或乙酸作为载氧体,由于甲酸或乙酸酸性较强,很容易使酶失活,因而,生物酶法一般采用长链脂肪酸作为载氧体。在酶催化下,长链脂肪酸和过氧化氢反应生成过氧脂肪酸,过氧脂肪酸氧化双键得到环氧大豆油。但碳链太长时,空间位阻效应增强,不利于脂肪酸和过氧化氢反应生成过氧脂肪酸。因此,比较了不同碳链长度的脂肪酸对环氧化过程的影响,包括甲酸、乙酸、丙酸、正丁酸、正戊酸、正己酸、正庚酸、月桂酸、油酸和硬脂酸,发现月桂酸可以获得最佳的环氧值(4.5%),且脂肪酶回用三个批次后仍能得到4.0%的环氧值。
进一步采用响应面中心复合设计对反应条件参数进行优化,变量包括30%过氧化氢用量(g/g大豆油)、固定化酶的用量(g/g大豆油)、溶剂叔丁醇用量(ml/g大豆油)和反应温度(℃),结果表明在45℃,溶剂添加量为3.75ml/g 脂肪酸甲酯,酶用量为0.075g/g脂肪酸甲酯,30wt%过氧化氢用量为0.32g/脂肪酸甲酯,得到最优的环氧值为5.28%。
实施例2:以乙醇为低链醇进行转酯化和酯化制备环氧脂肪酸乙酯类似于甲醇的情形,本实施例采用乙醇作为低链醇反应剂,将实施例1所述的餐厨废油经过如实施例1所述的预处理后,分别按照实施例1所述的第一步液体脂肪酶催化转化、第二步固定化脂肪酶催化转化以及固定化脂肪酶催化环氧化,产品进行洗涤、减压蒸发后可获得5.5%的环氧值。可见,乙醇也可作为低链醇反应剂有效将废弃油脂转化为环氧增塑剂。采用乙醇的一个显著优点是:乙醇主要来自于淀粉或纤维素发酵,而淀粉和纤维素本身是自然界中最丰富的碳水化合物类生物质,从而可以实现所生产的环氧增塑剂原料全部来自于生物质,从而进一步降低二氧化碳的净排放。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求的保护范围为准。

Claims (10)

  1. 一种以废弃油脂制备环氧增塑剂的方法,其包括:
    步骤(1):提供废弃油脂原料或将废弃油脂选择性地进行预处理以去除无机酸得到预处理油脂;
    步骤(2):将步骤(1)中的油脂进行转酯化和酯化反应,得到脂肪酸烷基酯混合物;
    步骤(3):将步骤(2)中得到的脂肪酸烷基酯混合物进行蒸馏和水洗处理,得到脂肪酸烷基酯;
    步骤(4):将步骤(3)中得到的脂肪酸烷基酯进行环氧化,获得环氧化脂肪酸烷基酯混合物;
    步骤(5):将步骤(4)中得到的环氧化脂肪酸烷基酯混合物进行除杂、洗涤和干燥,获得环氧增塑剂。
  2. 根据权利要求1所述的方法,其中,步骤(1)中的预处理是向废弃油脂中加入预处理试剂进行,所述预处理试剂选自碳酸钙、氢氧化钙、氧化钙中的一种或多种;
    任选地,所述预处理是将所述废弃油脂原料加入预处理试剂后,混合体系在温度为20-80℃下处理10-120min;
    任选地,所述预处理试剂的用量为油脂重量的0.5%-10%;
    任选地,所述预处理混合体系中还含有水,水的含量为油脂重量的10%-100%。
  3. 根据权利要求1或2所述的方法,其中,步骤(2)中将油脂进行转酯化和酯化反应是在脂肪酶催化下与低链脂肪醇反应进行的;
    任选地,所述脂肪酶包括游离脂肪酶和/或固定化脂肪酶;
    任选地,所述低链脂肪醇选自甲醇和乙醇中的一种;
    优选地,所述转酯化和酯化反应是在无溶剂体系下进行的。
  4. 根据权利要求3所述的方法,其中,步骤(2)中的转酯化和酯化反应为两步反应,其中第一步采用游离脂肪酶催化,第二步采用固定化脂肪油脂酶催化;
    任选地,第一步反应条件为:游离脂肪酶用量为油脂重量的0.5%-5%,水含量为油重量的1%-20%;低链脂肪醇用量为油重量的15%-30%,温度为30-50℃,搅拌速率为200-800rpm,反应时间为6-12小时;
    任选地,第二步反应条件为:固定化脂肪酶用量为第一步反应后油相重量的0.5%-5%,低链醇用量为第一步反应后油相重量的2%-8%;温度为40-50℃;反应时间为1-5小时。
  5. 根据权利要求4所述的方法,其中,步骤(2)中的油脂转酯化和酯化反应中,第一步反应中的低链脂肪醇以多步添加的方式加入到反应中;优选地,低链脂肪醇以总体积用量的10%-20%分10-5步在反应的前10-5小时内添加到反应器中;进一步优选地,低链脂肪醇添加的时间间隔为30-120分钟。
  6. 根据权利要求4所述的方法,其中,步骤(2)中的油脂转酯化和酯化反应中,第二步反应是在气升式环流反应器中进行;优选地,反应器与在线脱水设备相偶联,以在线除去反应体系中的水分。
  7. 根据权利要求1所述的方法,其中,步骤(3)中将脂肪酸烷基酯混合物进行蒸馏处理是在温度为40-80℃、绝对压力为1-80kpa的条件下进行的。
  8. 根据权利要求1所述的方法,其中,步骤(4)中对脂肪酸烷基酯进行环氧化是在脂肪酶催化下进行的;
    任选地,所述脂肪酶选自游离脂肪酶和固定化脂肪酶中的一种;
    任选地,环氧化反应在有机溶剂体系下进行,所述有机溶剂选自甲苯、叔丁醇、乙酸乙酯、环己烷、石油醚中的一种;
    任选地,环氧化反应中采用的载氧体,所述载氧体选自甲酸、乙酸、丙酸、丁酸、戊酸、己酸、庚酸、月桂酸、棕榈酸、油酸和硬脂酸中的一种。
  9. 根据权利要求8所述的方法,其中,步骤(4)中的环氧化反应条件为:载氧体用量为基于脂肪酸烷基酯重量的5%-25%,过氧化氢用量为基于脂肪酸烷基酯重量的5%-20%,脂肪酶用量为基于脂肪酸烷基酯重量的1.5%-20%,溶剂用量为基于脂肪酸烷基酯重量的1-6倍,温度为30-50℃,搅拌速率为100-500rpm;反应时间为2-24小时;
    优选地,过氧化氢采取分步添加的方式加入到反应体系中,优选的添加方式为过氧化氢在反应的前150分钟内添加完,每次添加的时间间隔为5-15min,每次添加量为总用量的1/30-1/10。
  10. 根据权利要求1所述的方法,其中,步骤(5)中对环氧化脂肪酸烷基酯混合物进行洗涤、除杂和干燥处理的条件为:对油相在70-100℃、10-50kpa绝压下蒸馏处理30-120分钟后,采用质量分数为3%-5%的氯化钠溶液在50-80℃下洗涤1-3次,再在70-100℃、20-80kpa绝压下蒸馏处理30-120分钟。
PCT/CN2019/119883 2019-11-06 2019-11-21 以废弃油脂制备环氧增塑剂的方法 WO2021088136A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911075367.9 2019-11-06
CN201911075367.9A CN110669254B (zh) 2019-11-06 2019-11-06 以废弃油脂制备环氧增塑剂的方法

Publications (1)

Publication Number Publication Date
WO2021088136A1 true WO2021088136A1 (zh) 2021-05-14

Family

ID=69086304

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/119883 WO2021088136A1 (zh) 2019-11-06 2019-11-21 以废弃油脂制备环氧增塑剂的方法

Country Status (2)

Country Link
CN (1) CN110669254B (zh)
WO (1) WO2021088136A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115074183A (zh) * 2022-07-12 2022-09-20 陕西海斯夫生物工程有限公司 利用废弃油脂制备的环保增塑剂及其制备方法与它的用途

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112961404B (zh) * 2020-12-24 2022-11-25 中国林业科学研究院林产化学工业研究所 一种环氧低聚醚甘油酯增塑剂及其制备方法
CN113817226B (zh) * 2021-10-12 2022-05-10 南京工业大学 一种高分子复合材料添加剂及其应用
CN114316460A (zh) * 2021-11-01 2022-04-12 江苏赛贝尔新材料科技有限公司 一种高强度耐热pvc复合板材及其制备方法
CN114752096B (zh) * 2022-03-24 2022-12-13 安徽工程大学 基于全生物基阻燃剂的高分子阻燃材料及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101070510A (zh) * 2007-05-22 2007-11-14 李祥庆 利用废弃油脂生产环氧增塑剂的方法
CN102925287A (zh) * 2012-11-19 2013-02-13 北京化工大学 一种生物-化学催化偶联制备生物柴油的方法
CN103740471A (zh) * 2014-01-02 2014-04-23 北京化工大学 一种生物催化法制备环氧脂肪酸短链醇酯的方法
CN106497090A (zh) * 2016-10-14 2017-03-15 袁春华 一种用废弃油脂制备增塑剂的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015209819B4 (de) * 2015-05-28 2019-03-28 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Neue Verfahren zur Herstellung von neuartigen epoxidierten Synthesebausteinen auf Basis pflanzlicher Öle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101070510A (zh) * 2007-05-22 2007-11-14 李祥庆 利用废弃油脂生产环氧增塑剂的方法
CN102925287A (zh) * 2012-11-19 2013-02-13 北京化工大学 一种生物-化学催化偶联制备生物柴油的方法
CN103740471A (zh) * 2014-01-02 2014-04-23 北京化工大学 一种生物催化法制备环氧脂肪酸短链醇酯的方法
CN106497090A (zh) * 2016-10-14 2017-03-15 袁春华 一种用废弃油脂制备增塑剂的方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115074183A (zh) * 2022-07-12 2022-09-20 陕西海斯夫生物工程有限公司 利用废弃油脂制备的环保增塑剂及其制备方法与它的用途
CN115074183B (zh) * 2022-07-12 2023-02-17 陕西海斯夫生物工程有限公司 利用废弃油脂制备的环保增塑剂及其制备方法与它的用途

Also Published As

Publication number Publication date
CN110669254A (zh) 2020-01-10
CN110669254B (zh) 2020-12-15

Similar Documents

Publication Publication Date Title
WO2021088136A1 (zh) 以废弃油脂制备环氧增塑剂的方法
RU2414299C2 (ru) Катализатор переэтерификации и споcоб его приготовления
EP2145011B1 (en) Method for producing biodiesel
US9249437B2 (en) Process for preparing biodiesel from renewable oil and fat catalyzed by lipase with online dehydration
JP5001287B2 (ja) 炭化水素燃料の調製のための方法
EP1893764B2 (en) Enzymatic production of degummed fatty acid alkyl esters
CN104178531B (zh) 一种利用高酸价植物油生产富含植物甾醇酯功能油脂的方法
CN101029177A (zh) 用地沟油及废弃动植物油制备环氧增塑剂的方法
CN106566658B (zh) 一种高酸价油脂的酶法脱酸方法
CN112852892B (zh) 一种甘油解反应制备偏甘油酯的方法
CN106906194A (zh) 一种偏甘油酯脂肪酶及富含pufa的油脂的酶法脱酸方法
CN102660386B (zh) 碱催化与脂肪酶催化联合制备生物柴油的方法
US10870869B2 (en) Enzymatic method for preparing glyceryl butyrate
CN111187800B (zh) 一种酶法高效合成植物甾醇酯的方法
CN110029133B (zh) 一种分离dha藻油中饱和脂肪酸和不饱和脂肪酸的方法
CN114989897B (zh) 低酸价生物柴油及其制备方法
CN111172209A (zh) 一种酶法制备甘油单酯型n-3PUFA的方法
CN111321191B (zh) 一种酶法制备植物甾醇酯的方法
CN1850944A (zh) 一种生物柴油的合成方法
CN112695060A (zh) 一种新型生物酶法生产生物柴油工艺
CN117568418B (zh) 一种脂肪酶和强酸型树脂催化耦合制备生物柴油的方法
CN111349665B (zh) 一种酶法催化高酸价油脂制备生物柴油的方法
CN117511658A (zh) 一种废弃油脂处理工艺
CN111471530A (zh) 一种生物柴油的制备方法
CN111440665A (zh) 一种脂肪酸弱碱酯化和高酸值油脂一步酯交换的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19951989

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19951989

Country of ref document: EP

Kind code of ref document: A1