CN110029133B - 一种分离dha藻油中饱和脂肪酸和不饱和脂肪酸的方法 - Google Patents

一种分离dha藻油中饱和脂肪酸和不饱和脂肪酸的方法 Download PDF

Info

Publication number
CN110029133B
CN110029133B CN201910182206.3A CN201910182206A CN110029133B CN 110029133 B CN110029133 B CN 110029133B CN 201910182206 A CN201910182206 A CN 201910182206A CN 110029133 B CN110029133 B CN 110029133B
Authority
CN
China
Prior art keywords
fatty acid
reaction product
dha
algae oil
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910182206.3A
Other languages
English (en)
Other versions
CN110029133A (zh
Inventor
何建林
洪碧红
孙继鹏
谭然
白锴凯
方华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
XIAMEN HUISON BIOTECH Co.,Ltd.
Third Institute of Oceanography MNR
Original Assignee
Xiamen Huison Biotech Co ltd
Third Institute of Oceanography MNR
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiamen Huison Biotech Co ltd, Third Institute of Oceanography MNR filed Critical Xiamen Huison Biotech Co ltd
Priority to CN201910182206.3A priority Critical patent/CN110029133B/zh
Publication of CN110029133A publication Critical patent/CN110029133A/zh
Application granted granted Critical
Publication of CN110029133B publication Critical patent/CN110029133B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • C12P7/6409Fatty acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • C12P7/6409Fatty acids
    • C12P7/6427Polyunsaturated fatty acids [PUFA], i.e. having two or more double bonds in their backbone

Abstract

本发明公开了一种分离DHA藻油中饱和脂肪酸和不饱和脂肪酸的方法,包括以下步骤:(1)在氮气的保护下,将DHA藻油与无水乙醇混合,搅拌,得到反应液;(2)将步骤(1)得到的反应液与1,3‑固定化脂肪酶混合,进行乙酯化反应,得到反应产物A;(3)将步骤(2)得到的反应产物A,减压蒸馏,得到回收乙醇和反应产物B;(4)将步骤(3)得到的反应产物B加热,进料至分子蒸馏系统内,经分子蒸馏,得到轻组分饱和脂肪酸和重组分不饱和脂肪酸。本发明的分离方法简单,成本低,效率高,绿色环保,无污染,可以有效提高藻油中DHA的含量。

Description

一种分离DHA藻油中饱和脂肪酸和不饱和脂肪酸的方法
技术领域
本发明涉及一种油脂的分离纯化技术,尤其涉及一种分离DHA藻油中饱和脂肪酸和不饱和脂肪酸的方法。
背景技术
二十二碳六烯酸(Docosahexaenoic Acid,DHA)是一种重要的ω-3型长链多不饱和脂肪酸。现代医学证明DHA可促进婴幼儿视力和智力发育,对心血管系统疾病、癌症、炎症等也具有积极的防治作用。
目前,鱼是DHA的主要来源,为了提高DHA的含量,工业上主要采取乙酯化鱼油的办法富集DHA。但是,人体胰脏和肝脏的主要脂肪酶是专一性水解甘油酯的,不能有效地水解乙酯,因此,乙酯型DHA鱼油的人体吸收率较低,同时,存在诸如乙酯型DHA鱼油代谢产物为乙醇,不适合儿童以及酒精过敏人群,乙酯型DHA鱼油的稳定性差,易被氧化,其氧化产物对人体有害和来源于鱼油的产品很难避免重金属如甲基汞以及有机污染物如多氯联苯的污染等问题,以上原因造成乙酯型DHA鱼油的药用和保健效果较差,限制了DHA的应用。
DHA藻油是以藻类为原料,通过发酵、分离、提纯等工艺生产的DHA。与乙酯型DHA鱼油相比,甘油三酯型DHA藻油具有DHA含量高、二十碳五烯酸含量低、抗氧化能力强、不存在重金属污染等优点,因此,开发甘油三酯型DHA藻油具有广阔的市场前景。
目前,DHA藻油的发酵技术已经比较成熟,例如裂壶藻发酵获取的藻油,其DHA含量可达45%左右,如何进一步提高藻油中DHA的含量,成为提高产品附加值的技术瓶颈。而提高藻油中DHA的含量,其核心是去除藻油中的饱和脂肪酸。
CN102746947A公开了一种分离、纯化裂壶藻油中DHA和饱和脂肪酸的方法,在氮气保护下,先将裂壶藻油皂化、盐析、酸化,得到游离混合脂肪酸,然后采用尿素包合法分离饱和度不同的脂肪酸,过滤得滤液和固体;滤液经浓缩、萃取得到富含DHA和DPA的多不饱和脂肪酸;固体经酸解浸出、萃取提取饱和脂肪酸以及回收尿素,尿素可循环使用,该发明可以分离裂壶藻油中饱和脂肪酸,但是此法使用强酸强碱,并使用正己烷等有机溶剂,步骤繁琐,成本较高。
因此,亟需一种成本低、效率高、无污染的分离DHA藻油中饱和脂肪酸和不饱和脂肪酸的方法。
发明内容
本发明的目的是针对现有技术的不足,提供一种分离DHA藻油中饱和脂肪酸和不饱和脂肪酸的方法:在氮气的保护下,向DHA藻油中加入无水乙醇,利用1,3-固定化脂肪酶催化将DHA藻油中1位和3位的饱和脂肪酸乙酯化,再利用分子蒸馏法,分离乙酯化的饱和脂肪酸,从而实现从DHA藻油中分离脂肪酸的目的。该方法能有效提高藻油中DHA的含量,同时具有成本低,效率高,无污染等优点。
为实现上述目的,本发明采用如下技术方案:
一种分离DHA藻油中饱和脂肪酸和不饱和脂肪酸的方法,包括以下步骤:
(1)在氮气的保护下,将DHA藻油与无水乙醇混合,搅拌,得到反应液;
(2)将步骤(1)得到的反应液与1,3-固定化脂肪酶混合,进行乙酯化反应,得到反应产物A;
(3)将步骤(2)得到的反应产物A,减压蒸馏,得到回收乙醇和反应产物B;
(4)将步骤(3)得到的反应产物B加热,进料至分子蒸馏系统内,经分子蒸馏,得到轻组分饱和脂肪酸和重组分不饱和脂肪酸。
优选地,步骤(1)中所述DHA藻油和无水乙醇的质量比为1:0.5-5。
优选地,步骤(1)中所述搅拌在20-50℃的水浴中进行。
优选地,步骤(2)中所述的1,3-固定化脂肪酶为脂肪酶采用本领域常规的固定化方法制备而成,所述的脂肪酶来源于疏棉状嗜热丝孢菌Thermomyces lanuginosus、米黑根毛霉Rhizomucor miehei和南极假丝酵母Candida antarctica中的一种或几种。
优选地,步骤(2)中所述乙酯化反应的时间为4-24小时。
优选地,步骤(4)中所述的加热为加热至30-50℃。
优选地,步骤(4)中所述进料的速度为1-10g/min。
优选地,步骤(4)中所述分子蒸馏的条件为:蒸发器温度为100-200℃,冷凝温度为20-50℃,系统压力小于10Pa,薄膜蒸馏刮板转速为150-370rpm;进一步优选地,所述系统压力小于0.04Pa。
优选地,所述的DHA藻油来源于寇氏隐甲藻、裂壶藻和吾肯氏壶藻中的一种或几种。
与现有发明相比,本发明的有益效果为:
(1)本发明所用方法无需采用强酸强碱,无需使用正己烷和其他毒性较强的有机溶剂萃取,仅使用无水乙醇作为反应物,绿色环保。
(2)本发明采用1,3-固定化脂肪酶作为催化剂,利用饱和脂肪酸较多分布在甘油骨架1位和3位的特点,定点分离DHA藻油中的饱和脂肪酸,分离效果好。同时,本发明人发现,虽然南极假丝酵母Candida antarctica脂肪酶为非特异性的脂肪酶,但在本发明的乙醇反应体系下,也表现出1,3位的特异性,具有较好的分离效果。
(3)本发明所得产物为DHA含量70%以上的重组分,以及棕榈酸含量83%以上的轻组分,实现饱和脂肪酸和不饱和脂肪酸分离的同时,还达到了分别富集的效果。
(4)本发明实现了乙醇的回收使用,同时固定化脂肪酶亦可反复使用。该工艺降低生产成本的同时,把对环境的污染降到了最低。
具体实施方式
为了进一步说明本发明,以下结合实施例对本发明提供的一种分离DHA藻油中饱和脂肪酸和不饱和脂肪酸的方法进行详细描述。
本发明对所有原料的来源并没有特殊的限制,以下实施例中所用的试剂均为普通的市售产品。其中,本实施例所采用的1,3-固定化脂肪酶为Lipozyme TL IM、Lipozyme RMIM和Novozym 435。
一种分离DHA藻油中饱和脂肪酸和不饱和脂肪酸的方法,包括以下步骤:
(1)在氮气的保护下,将质量比为1:0.5-5的DHA藻油与无水乙醇混合,在20-50℃的水浴中搅拌,得到反应液;
(2)将步骤(1)得到的反应液与1,3-固定化脂肪酶混合,乙酯化反应4-24小时,得到反应产物A;
(3)将步骤(2)得到的反应产物A,减压蒸馏,得到回收乙醇和反应产物B;
(4)将步骤(3)得到的反应产物B加热至30-50℃,以1-10g/min的速度进料至系统压力小于10Pa的分子蒸馏系统内,在蒸发器温度为100-200℃,冷凝温度为20-50℃,薄膜蒸馏刮板转速为150-370rpm的条件下,进行分子蒸馏,得到轻组分饱和脂肪酸和重组分不饱和脂肪酸。
优选地,所述的DHA藻油来源于寇氏隐甲藻、裂壶藻和吾肯氏壶藻中的一种或几种。
实施例1
在氮气的保护下,将40g裂壶藻油与20g无水乙醇混合,在40℃水浴中磁力搅拌5min,然后以3ml/min的速度泵入装有Lipozyme RM IM固定化酶反应器中,酯化反应4h后停止,减压蒸馏,得到回收乙醇和反应物,将得到的反应物加热到30℃,以1g/min的速度进料至压力小于10Pa的分子蒸馏系统内,在蒸发器温度为100℃,冷凝器温度为50℃,薄膜蒸馏刮板转速为370rpm的条件下,进行分子蒸馏,得轻组分13g,重组分25g。
实施例2
在氮气的保护下,将100g隐甲藻油与500g无水乙醇混合,在50℃水浴中悬臂搅拌5min,然后以3ml/min的速度泵入装有Lipozyme TL IM固定化酶反应器中,循环反应24h后停止,减压蒸馏,回收乙醇,将得到的反应物加热到50℃,以10g/min的速度进料至压力小于0.04Pa的分子蒸馏系统内,在蒸发器温度为200℃,冷凝器温度为20℃,薄膜蒸馏刮板转速为150rpm的条件下,进行分子蒸馏,得轻组分33g,重组分64g。
实施例3
在氮气的保护下,将100g吾肯氏壶藻油与200g无水乙醇混合,在40℃水浴中悬臂搅拌5min,然后以3ml/min的速度泵入装有Lipozyme RM IM固定化酶反应器中,循环反应8h后停止,减压蒸馏,回收乙醇,将得到的反应物加热到40℃,以2g/min的速度进料至压力小于0.001Pa的分子蒸馏系统内,在蒸发器温度为120℃,冷凝器温度为40℃,薄膜蒸馏刮板转速为280rpm的条件下,进行分子蒸馏,得轻组分20g,重组分78g。
实施例4
本实施例与实施例3的不同之处在于,将分子蒸馏获得的重组分100g,进行二次分子蒸馏,所述二次分子蒸馏的条件为进料速度1g/min,蒸发器温度为180℃,薄膜蒸馏刮板转速为350rpm,冷凝器温度为40℃,系统压力为0.001Pa,薄膜蒸馏刮板转速为260rpm,得轻组分10g,重组分89g。
实施例5
本实施例与实施例3的不同之处在于,所述1,3-固定化脂肪酶和无水乙醇实施例3反应后回收的1,3-固定化脂肪酶和回收乙醇,得轻组分20g,重组分79g。
实施例6
本实施例与实施例3的不同之处在于,所述1,3-固定化脂肪酶为Novozym435,得轻组分21g,重组分78g。
实施例7
本实施例与实施例2的不同之处在于,所述1,3-固定化脂肪酶为Novozym435,得轻组分34g,重组分63g。
实施例8
本实施例与实施例1的不同之处在于,所述1,3-固定化脂肪酶为Novozym435。得轻组分12g,重组分26g。
检测实施例1-8得到的轻重组分中脂肪酸含量,如表1所示。
表1实施例1-8中脂肪酸含量
Figure BDA0001991664330000071
由表1可知,本发明采用1,3-固定化脂肪酶作为催化剂,利用饱和脂肪酸较多分布在甘油骨架1位和3位的特点,定点分离DHA藻油中的饱和脂肪酸,发明所得产物为DHA含量70%以上的重组分,以及棕榈酸含量83%以上的轻组分,实现饱和脂肪酸和不饱和脂肪酸分离的同时,还达到了分别富集的效果。
同时,本发明人发现,虽然南极假丝酵母Candida antarctica脂肪酶为非特异性的脂肪酶,但在本发明的乙醇反应体系下,也表现出1,3位的特异性,具有较好的分离效果。
本发明实现了乙醇的回收和1,3-固定化脂肪酶的反复使用,降低生产成本的同时,把对环境的污染降到了最低。
以上是结合具体实施例对本发明进一步的描述,但这些实施例仅仅是范例性的,并不对本发明的范围构成任何限制。本领域技术人员应该理解的是,在不偏离本发明的精神和范围下可以对本发明技术方案的细节和形式进行修改或替换,但这些修改和替换均落入本发明的保护范围内。

Claims (2)

1.一种分离DHA藻油中饱和脂肪酸和不饱和脂肪酸的方法,其特征在于,包括以下步骤:
(1)、在氮气的保护下,将DHA藻油与无水乙醇混合,搅拌,得到反应液;
DHA藻油和无水乙醇的质量比为1:5或1:2;
步骤(1)中所述搅拌在40-50℃的水浴中进行;
(2)、将步骤(1)得到的反应液与1,3-固定化脂肪酶混合,进行乙酯化反应,得到反应产物A;
所述1,3-固定化脂肪酶为脂肪酶采用本领域常规的固定化方法制备而成;
所述的脂肪酶来源于南极假丝酵母Candida antarctica中的一种或几种;
所述的1,3-固定化脂肪酶为Novozym 435;
步骤(2)中所述乙酯化反应的时间为8-24小时;
(3)、将步骤(2)得到的反应产物A,减压蒸馏,得到回收乙醇和反应产物B;
(4)、将步骤(3)得到的反应产物B加热,进料至分子蒸馏系统内,经分子蒸馏,得到轻组分饱和脂肪酸和重组分不饱和脂肪酸;
步骤(4)中所述的加热为加热至40-50℃;步骤(4)中所述进料的速度为2-10g/min;步骤(4)中所述分子蒸馏的条件为:蒸发器温度为120-200℃,冷凝温度为20-40℃,系统压力小于0.04Pa,薄膜蒸馏刮板转速为150-280rpm。
2.根据权利要求1所述的方法,其特征在于,所述的DHA藻油来源于寇氏隐甲藻、裂壶藻和吾肯氏壶藻中的一种或几种。
CN201910182206.3A 2019-03-12 2019-03-12 一种分离dha藻油中饱和脂肪酸和不饱和脂肪酸的方法 Active CN110029133B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910182206.3A CN110029133B (zh) 2019-03-12 2019-03-12 一种分离dha藻油中饱和脂肪酸和不饱和脂肪酸的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910182206.3A CN110029133B (zh) 2019-03-12 2019-03-12 一种分离dha藻油中饱和脂肪酸和不饱和脂肪酸的方法

Publications (2)

Publication Number Publication Date
CN110029133A CN110029133A (zh) 2019-07-19
CN110029133B true CN110029133B (zh) 2021-03-19

Family

ID=67235818

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910182206.3A Active CN110029133B (zh) 2019-03-12 2019-03-12 一种分离dha藻油中饱和脂肪酸和不饱和脂肪酸的方法

Country Status (1)

Country Link
CN (1) CN110029133B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110699185A (zh) * 2019-10-10 2020-01-17 齐鲁工业大学 从谷糠油、藜麦麸皮油、牡丹籽油、鱼油、磷虾油、蜂花粉油等油脂中精练脂肪酸的方法
CN112980898B (zh) * 2021-04-30 2022-08-23 浙江师范大学 浓缩裂殖壶藻油脂中dha的方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO319194B1 (no) * 2002-11-14 2005-06-27 Pronova Biocare As Lipase-katalysert forestringsfremgangsmate av marine oljer
NZ564157A (en) * 2005-05-23 2011-11-25 Natural Nutrition Dev As Concentration of fatty acid alkyl esters by enzymatic reactions with glycerol
CN102746947B (zh) * 2012-07-18 2013-10-02 福建华尔康生物科技有限公司 一种分离、纯化裂壶藻油中dha和饱和脂肪酸的方法
WO2015024055A1 (en) * 2013-08-20 2015-02-26 Deakin University Separation of omega-3 fatty acids
CN103525876B (zh) * 2013-09-20 2015-10-28 中国海洋大学 一种富集鲨鱼肝油中烷氧基甘油的方法
CN103880672B (zh) * 2014-03-20 2016-05-04 江苏中邦制药有限公司 高纯度dha藻油乙酯及其转化为甘油酯的制备方法
CN105132153B (zh) * 2015-08-19 2019-06-14 威海博宇食品有限公司 一种制备鱿鱼肝脏油的方法
CN108977471B (zh) * 2018-08-27 2021-07-02 潘志杰 天然甘油酯型深海鱼油非乙酯型途径转化为浓缩型甘油酯的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
An insight on acyl migration in solvent-free ethanolysis of model triglycerides using Novozym 435;Daniel Alberto Sanchez等;《Journal of Biotechnology》;20160112;第220卷;第92-99页 *
Methods of extraction, refining and concentration of fish oil as a source of omega-3 fatty acids;Jeimmy Rocio Bonilla-Mendez等;《Corpoica Ciencia y Tecnología Agropecuaria》;20181231;第19卷(第3期);第645-668页 *
Sn-2二十二碳六烯酸甘油单酯的酶法合成;何建林等;《中国粮油学报》;20160531;第31卷(第5期);第76-80页 *

Also Published As

Publication number Publication date
CN110029133A (zh) 2019-07-19

Similar Documents

Publication Publication Date Title
CN110325637B (zh) 甘油酯形式的n-3脂肪酸的酶促富集
CN1231590C (zh) 利用脂肪酶的甘油酯的制造方法
US11208672B2 (en) Method for enzymatic deacidification of polyunsaturated fatty acid-rich oil
AU2021201921B2 (en) Polyunsaturated fatty acid triglyceride and preparation and uses thereof
JP2002537442A (ja) 海産油のリパーゼ触媒したエステル化
CN110951796B (zh) 一种脂肪酸乙酯转化为甘油二酯的方法
CN111088296B (zh) 一种富集油脂中n-3多不饱和脂肪酸甘油酯的方法
CN110029133B (zh) 一种分离dha藻油中饱和脂肪酸和不饱和脂肪酸的方法
CN105925628A (zh) 酶法生产生物柴油和多元不饱和脂肪酸酯富集的耦合工艺
US10870869B2 (en) Enzymatic method for preparing glyceryl butyrate
CN104388485A (zh) 一种富含多不饱和脂肪酸的甘油酯型鱼油的生产方法
JP2007070486A (ja) グリセリド及びその製造方法
CN105441494A (zh) 一种酶法合成1,2-甘油二酯的方法
Kosugi et al. Large‐scale immobilization of lipase fromPseudomonas fluorescens biotype I and an application for sardine oil hydrolysis
CN103525876A (zh) 一种富集鲨鱼肝油中烷氧基甘油的方法
JP5237627B2 (ja) 高度不飽和脂肪酸の濃縮方法
CN110004188A (zh) 一种从微生物发酵得到的毛油中制备PUFAs甘油酯的方法
CN113337551B (zh) 一种结构甘油三酯的制备方法
CN113584092A (zh) 一种酶法水解富集鱼油中epa、dha的方法
JP5852972B2 (ja) 高度不飽和脂肪酸の濃縮方法
CN113957104A (zh) 一种酶法制备甘油二酯的方法
JP3734905B2 (ja) ω−3系高度不飽和脂肪酸の精製方法
CN113481249B (zh) 一种酶法制备卵磷脂型n-3PUFA的方法
CN105420300A (zh) 一种甘油酯型pufa的制备方法
JP2000023689A (ja) トランス―10異性体中の化合物の濃縮方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20200611

Address after: 361005 No. 178, University Road, Xiamen, Fujian

Applicant after: THIRD INSTITUTE OF OCEANOGRAPHY, MINISTRY OF NATURAL RESOURCES

Applicant after: XIAMEN HUISON BIOTECH Co.,Ltd.

Address before: 361005 No. 178, University Road, Xiamen, Fujian

Applicant before: THIRD INSTITUTE OF OCEANOGRAPHY, MINISTRY OF NATURAL RESOURCES

GR01 Patent grant
GR01 Patent grant