WO2021088085A1 - 一种资源指示的方法及装置 - Google Patents

一种资源指示的方法及装置 Download PDF

Info

Publication number
WO2021088085A1
WO2021088085A1 PCT/CN2019/116885 CN2019116885W WO2021088085A1 WO 2021088085 A1 WO2021088085 A1 WO 2021088085A1 CN 2019116885 W CN2019116885 W CN 2019116885W WO 2021088085 A1 WO2021088085 A1 WO 2021088085A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
period
data
resource
frequency resources
Prior art date
Application number
PCT/CN2019/116885
Other languages
English (en)
French (fr)
Inventor
温容慧
王俊伟
余政
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2019/116885 priority Critical patent/WO2021088085A1/zh
Priority to CN201980101684.5A priority patent/CN114600516B/zh
Publication of WO2021088085A1 publication Critical patent/WO2021088085A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements

Definitions

  • the embodiments of the present application relate to the field of wireless communication, and in particular, to a method and device for resource indication.
  • the controller needs to keep time synchronization with the actuator.
  • the controller sends control signaling to the actuator to instruct the actuator to execute the command at a certain time. If the actuator and the controller have different perceptions of time, that is, the time is not synchronized, the actuator will execute the command at the wrong time, resulting in The task execution failed.
  • the network equipment can be used as the time synchronization source of the terminal equipment, sending instruction information to the terminal equipment, so that all the terminal equipment in the cell are synchronized with the network equipment, indirectly reaching the time between the terminal equipment Synchronize.
  • the network device and the terminal device can periodically exchange time information (for example, time sensitive network (TSN) information), and adjust the clock according to the time information to maintain time synchronization.
  • TSN information is transmitted on a configured resource (such as a configured grant (CG) resource or a semi-persistent scheduling (SPS) resource).
  • CG configured grant
  • SPS semi-persistent scheduling
  • the period of resource configuration is greater than the service period, and the time delay for transmitting time information is larger; as shown in Figure 1 (b), if the period of resource configuration is Less than the business cycle, some configuration resources (the resources corresponding to the moment marked with " ⁇ " in the figure) will not transmit the business cycle, which wastes configuration resources. Therefore, how to improve the utilization of system resources is an urgent problem to be solved.
  • This application provides a method and device for resource indication, which solves the problem of how to improve the utilization rate of system resources.
  • this application provides a resource indication method, which can be applied to a network device, or the method can be applied to a communication device that can support the network device to implement the method, for example, the communication device includes a chip system.
  • the method includes: indicating M first time-frequency resources among the N first time-frequency resources by sending first indication information, and using the N first time-frequency resources as a period, the N first time-frequency resources Send or receive data on the M first time-frequency resources in. Wherein, each of the M first time-frequency resources is used to transmit data, and N and M are both positive integers.
  • the resource indication method provided in the embodiment of the present application selects the smallest resource cycle period and the smallest number of resources to be used on the premise of meeting the data transmission delay, so that the business and resource periods can achieve the best matching relationship. Therefore, the network The device receives or sends data on the designated first time-frequency resource, and by indicating the first time-frequency resource for sending data, the terminal device can send or receive data on the designated first time-frequency resource, thereby reducing the indication Information overhead improves the utilization of system resources.
  • the method further includes: determining M first time in the number N of first time-frequency resources according to the first start time, the first period, the second start time, and the second period.
  • Frequency resource the first starting moment is the starting moment of sending the first time-frequency resource
  • the first period is the period of sending the first time-frequency resource
  • the second starting moment is the starting moment of the data service period
  • the second period It is the business cycle of data
  • the second cycle is greater than the first cycle.
  • the method for determining resource allocation selects the smallest resource cycle period and the smallest number of resources to be used on the premise of meeting the data transmission delay, so that the business and resource periods can achieve the best matching relationship, so as to facilitate
  • the network device receives or sends data on the designated first time-frequency resource, thereby reducing the overhead of indication information and improving the utilization rate of system resources.
  • the method further includes: sending first resource configuration information, where the first resource configuration information includes a first starting time and a first period. Therefore, it is convenient for the terminal device to determine the first time-frequency resource for receiving data according to the first indication information and the first resource configuration information, and to receive the data on the determined first time-frequency resource.
  • the method further includes: sending second resource configuration information, where the second resource configuration information includes a third starting time and a third period, and the third starting time is sending the second time-frequency resource
  • the third period is the period for sending the second time-frequency resource
  • the number K of the second time-frequency resources is determined according to the third start time, the third period, the second start time, and the second period L second time-frequency resources, the second period is greater than the third period, K and L are both positive integers
  • the first indication is also used to indicate the L second time-frequency resources among the K second time-frequency resources
  • the second time-frequency resource is a period, and data is sent or received on L second time-frequency resources among the K second time-frequency resources. Therefore, it is convenient for the terminal device to determine the second time-frequency resource for receiving data according to the first indication information and the second resource configuration information, and to receive the data on the determined second time-frequency resource.
  • the first indication information includes an identifier of a first time-frequency resource for transmitting data and an identifier of a second time-frequency resource for transmitting data. Therefore, it is convenient for the terminal device to determine the time-frequency resource for transmitting data according to the identifier of the time-frequency resource, and send or receive data on the designated first time-frequency resource and the second time-frequency resource, thereby reducing the overhead of indication information and improving Improved system resource utilization.
  • this application provides a resource indication method, which can be applied to terminal equipment, or the method can be applied to a communication device that can support terminal equipment to implement the method, for example, the communication device includes a chip system.
  • the method includes: receiving first indication information, using N first time-frequency resources as a period, and receiving or sending data on M first time-frequency resources among the N first time-frequency resources.
  • the first indication information is used to indicate the M first time-frequency resources among the N first time-frequency resources, and each of the M first time-frequency resources is used to transmit data, where N and M All are positive integers.
  • the resource indication method provided by the embodiment of the present application can better match the service and resource cycle on the premise of meeting the data transmission delay, and the terminal device receives or sends data on the designated first time-frequency resource, thereby, Improved system resource utilization.
  • the receiving end may perform blind detection on the first time-frequency resource to receive data. If the receiving end performs blind detection on all configured first time-frequency resources, some of the first time-frequency resources do not carry data, which will result in wasted power consumption of the receiving end.
  • the embodiment of the present application provides a resource indication method. The receiving end performs blind detection on the first time-frequency resource indicated by the first indication information to receive data, which avoids blind detection of all configured first time-frequency resources, which not only effectively improves The utilization of time-frequency resources also saves the power consumption of the receiving end.
  • N and M are determined according to the first starting time, the first period, the second starting time, and the second period.
  • the first starting time is the starting time for sending the first time-frequency resource.
  • the first period is a period for sending the first time-frequency resource, the second start moment is the start moment of a data service period, the second period is a data service period, and the second period is greater than the first period.
  • the method further includes: receiving first resource configuration information, where the first resource configuration information includes a first starting time and a first period. Therefore, the terminal device can determine the first time-frequency resource for receiving data according to the first indication information and the first resource configuration information, and receive the data on the determined first time-frequency resource.
  • the method further includes: receiving second resource configuration information, where the second resource configuration information includes a third starting time and a third period, and the third starting time is sending the second time-frequency resource
  • the third period is the period for sending the second time-frequency resources.
  • the first indication is also used to indicate the L second time-frequency resources among the K second time-frequency resources.
  • K and L are based on the third time-frequency resources.
  • the start time, the third period, the second start time, and the second period are determined.
  • the second period is greater than the third period, and K and L are both positive integers; taking K second time-frequency resources as the period, in the Kth period Data is received or sent on L second time-frequency resources in the second time-frequency resources. Therefore, the terminal device can determine the second time-frequency resource for receiving data according to the first indication information and the second resource configuration information, and receive data on the determined second time-frequency resource.
  • the first indication information includes an identifier of a first time-frequency resource for transmitting data and an identifier of a second time-frequency resource for transmitting data. Therefore, the terminal device can determine the time-frequency resource for transmitting data according to the identifier of the time-frequency resource, and send or receive data on the designated first time-frequency resource and the second time-frequency resource, thereby reducing the overhead of indication information and improving System resource utilization.
  • this application provides a resource indication method, which can be applied to network equipment, or the method can be applied to a communication device that can support network equipment to implement the method, for example, the communication device includes a chip system.
  • the method includes: sending first resource configuration information, the first resource configuration information includes a first period, and the first period is a period for sending the first time-frequency resource; then, according to the first period, the second period, and the i-1th period The time and the j-1th time determine the jth time, and send or receive data on the first time-frequency resource at the jth time.
  • the second cycle is the business cycle of the data, the second cycle is greater than the first cycle, the i-1th time is the starting time of the i-1th business cycle of the data, and the j-1th time is the i-1th transmission data
  • the starting time of the first time-frequency resource, the j-th time is the starting time of the first time-frequency resource for the i-th transmission of data, and both i and j are positive integers.
  • a network device before sending or receiving data, a network device first determines a first time-frequency resource that can send or receive data, so as to send or receive data on the determined first time-frequency resource, Effectively improve the utilization of configuration resources.
  • this application provides a resource indication method, which can be applied to terminal equipment, or the method can be applied to a communication device that can support terminal equipment to implement the method, for example, the communication device includes a chip system.
  • the method includes: receiving first resource configuration information, where the first resource configuration information includes a first period, and the first period is a period for transmitting the first time-frequency resource; and according to the first period, the second period, and the i-1th time And the j-1th time to determine the jth time, and receive or send data on the first time-frequency resource at the jth time.
  • the second cycle is the data business cycle
  • the second cycle is greater than the first cycle
  • the i-1th time is the starting time of the i-1th business cycle of the data
  • the j-1th time is the i-1th time
  • the j-th time is the start time of the first time-frequency resource for the i-th data transmission
  • both i and j are positive integers.
  • the terminal device first determines the first time-frequency resource that can receive or send the data before receiving or sending data, so as to receive or send data on the determined first time-frequency resource, Effectively improve the utilization of configuration resources.
  • determining the jth time according to the first cycle, the second cycle, the i-1th time and the j-1th time includes: determining the first time according to the i-1th time and the j-1th time The first value is the difference between the j-1th time and the i-1th time, or the first value is the absolute value of the difference between the j-1th time and the i-1th time; then, according to the first The period, the first value and the second period determine n, n is a positive integer, n is the number of the first period, the number of the first period meets the minimum value of the first condition, and the first condition is the first period and the first period. The sum of the values is greater than the second period; the sum of n first periods and the first value is determined to be the j-th time.
  • the j-th time is determined according to the first cycle, the second cycle, the i-1th time, and the j-1th time, including: according to the j-1th time, the first cycle, and the i-th time Determine n, n is a positive integer, n is the number of the first cycle, the number of the first cycle meets the minimum value of the first condition, and the first condition is that the sum of the first cycle and the j-1th time is greater than the i-th time ,
  • the i-th time is the starting time of the i-th business cycle of data, and the sum of the i-1th time and the second cycle is equal to the i-th time;
  • the j-th time is determined according to the n first cycles and the j-1th time,
  • the j-th moment is the minimum value among the starting moments of the first time-frequency resource that is greater than the i-th moment.
  • the method further includes: sending a second value, where the second value is used to indicate the start time of the p-th service cycle of data and the start of the first time-frequency resource for transmitting the q-th data
  • the time difference or the absolute value of the difference between the start time of the p-th service cycle of data and the start time of the first time-frequency resource for transmitting the q-th data. Therefore, the network device can adjust the difference between the start time of the qth service cycle of data and the start time of the first time-frequency resource of the qth transmission data, and reduce the time error between the terminal device and the network device.
  • the device configures more accurate time-frequency resources for the terminal device. Among them, p and q are positive integers.
  • the embodiments of the present application also provide a communication device, and the beneficial effects can be referred to the description of the first aspect and will not be repeated here.
  • the communication device has the function of realizing the behavior in the method example of the first aspect described above.
  • the function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the communication device includes: a transceiver unit and a processing unit.
  • the transceiver unit is configured to send first indication information, and the first indication information indicates M first time-frequency resources among the N first time-frequency resources; the transceiver unit is further configured to use the N first time-frequency resources
  • the resource is a period, and data is sent or received on M first time-frequency resources among the N first time-frequency resources.
  • each of the M first time-frequency resources is used to transmit data, and N and M are both positive integers.
  • the embodiments of the present application also provide a communication device, and the beneficial effects can be referred to the description of the second aspect and will not be repeated here.
  • the communication device has the function of realizing the behavior in the method example of the second aspect described above.
  • the function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the communication device includes: a transceiver unit and a processing unit.
  • the transceiving unit is configured to receive the first indication information; the transceiving unit is further configured to use the N first time-frequency resources as a period, among the M first time-frequency resources, Receive or send data on.
  • the first indication information is used to indicate the M first time-frequency resources among the N first time-frequency resources, and each of the M first time-frequency resources is used to transmit data, where N and M Both are positive integers.
  • N and M are determined according to the first start time, the first period, the second start time, and the second period.
  • the first start time is the start time for sending the first time-frequency resource, and the first period It is the period for transmitting the first time-frequency resource, the second start moment is the start moment of the data service period, the second period is the data service period, and the second period is greater than the first period.
  • an embodiment of the present application also provides a communication device.
  • the communication device has the function of realizing the behavior in the method example of the third aspect described above.
  • the function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the communication device includes: a transceiver unit and a processing unit.
  • the transceiving unit is configured to send first resource configuration information, the first resource configuration information includes a first cycle, and the first cycle is a cycle for sending the first time-frequency resource;
  • the processing unit is configured to send first cycle, first cycle The second cycle, the i-1th time and the j-1th time determine the jth time;
  • the transceiver unit is further configured to send or receive data on the first time-frequency resource at the jth time.
  • the second cycle is the business cycle of the data, the second cycle is greater than the first cycle, the i-1th time is the starting time of the i-1th business cycle of the data, and the j-1th time is the i-1th transmission data
  • the starting time of the first time-frequency resource, the j-th time is the starting time of the first time-frequency resource of the i-th transmission data, and both i and j are positive integers.
  • the embodiments of the present application also provide a communication device, and the beneficial effects can be referred to the description of the fourth aspect and will not be repeated here.
  • the communication device has the function of realizing the behavior in the method example of the fourth aspect described above.
  • the function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the communication device includes: a transceiver unit and a processing unit.
  • the transceiving unit is configured to receive first resource configuration information, the first resource configuration information includes a first cycle, and the first cycle is a cycle for sending the first time-frequency resource;
  • the processing unit is configured to receive first cycle and first cycle The second cycle, the i-1th time and the j-1th time determine the jth time;
  • the transceiver unit is further configured to receive or send data on the first time-frequency resource at the jth time.
  • the second cycle is the data business cycle
  • the second cycle is greater than the first cycle
  • the i-1th time is the starting time of the i-1th business cycle of the data
  • the j-1th time is the i-1th time
  • the j-th time is the start time of the first time-frequency resource for the i-th data transmission
  • both i and j are positive integers.
  • a communication device may be the terminal device in the foregoing method embodiment, or a chip set in the terminal device.
  • the communication device includes a communication interface, a processor, and optionally, a memory.
  • the memory is used to store a computer program or instruction, and the processor is coupled with the memory and a communication interface.
  • the processor executes the computer program or instruction
  • the communication device executes the method executed by the terminal device in the foregoing method embodiment.
  • a communication device may be the network device in the foregoing method embodiment, or a chip set in the network device.
  • the communication device includes a communication interface, a processor, and optionally, a memory.
  • the memory is used to store a computer program or instruction, and the processor is coupled with the memory and a communication interface.
  • the processor executes the computer program or instruction
  • the communication device executes the method executed by the network device in the foregoing method embodiment.
  • a computer program product includes: computer program code, which when the computer program code is running, causes the methods executed by the terminal device in the above aspects to be executed.
  • a computer program product comprising: computer program code, when the computer program code is executed, the method executed by the network device in the above aspects is executed.
  • the present application provides a chip system, which includes a processor, and is configured to implement the functions of the terminal device in the methods of the foregoing aspects.
  • the chip system further includes a memory for storing program instructions and/or data.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • the present application provides a chip system, which includes a processor, and is configured to implement the functions of the network device in the methods of the foregoing aspects.
  • the chip system further includes a memory for storing program instructions and/or data.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • this application provides a computer-readable storage medium that stores a computer program, and when the computer program is executed, the method executed by the terminal device in the above aspects is implemented.
  • the present application provides a computer-readable storage medium that stores a computer program, and when the computer program is executed, the method executed by the network device in the above aspects is implemented.
  • FIG. 1 is a schematic diagram of sending time information provided by an embodiment
  • FIG. 2 is an example diagram of the architecture of a mobile communication system provided by an embodiment
  • FIG. 3 is an example diagram of the architecture of a communication system provided by an embodiment
  • Fig. 4 is a flowchart of a method for resource indication provided by an embodiment
  • FIG. 5 is a flowchart of a method for resource indication provided by an embodiment
  • FIG. 6 is a schematic diagram of sending time information provided by an embodiment
  • FIG. 7 is a flowchart of a method for resource indication provided by an embodiment
  • FIG. 8 is a schematic diagram of sending time information provided by an embodiment
  • FIG. 9 is a flowchart of a method for resource indication provided by an embodiment
  • FIG. 10 is a schematic diagram of the composition of a communication device provided by an embodiment
  • FIG. 11 is a schematic diagram of the composition of a communication device provided by an embodiment.
  • words such as “exemplary” or “for example” are used as examples, illustrations, or illustrations. Any embodiment or design solution described as “exemplary” or “for example” in the embodiments of the present application should not be construed as being more preferable or advantageous than other embodiments or design solutions. To be precise, words such as “exemplary” or “for example” are used to present related concepts in a specific manner.
  • the 5G mobile communication system is also called the new radio access technology (NR) system.
  • the International Telecommunication Union (ITU) defines three types of application scenarios for 5G and future mobile communication systems: enhanced mobile broadband (eMBB), URLLC, massive machine type communications, mMTC), Multimedia Broadcast Multicast Service (MBMS) and positioning services.
  • Deployment scenarios include indoor hotspot (Indoor hotspot), dense urban area (Dense Urban), suburban area, urban macro coverage (Urban Macro) and high-speed rail scenarios.
  • Typical eMBB services include ultra-high-definition video, augmented reality (AR) and virtual reality (VR).
  • the main characteristics of these services include a large amount of transmitted data and a high transmission rate.
  • Typical mMTC services include smart grid distribution automation and smart cities.
  • the main characteristics of these services include a huge number of networked devices, a small amount of transmitted data, and data insensitive to transmission delays.
  • These mMTC terminals need to meet the requirements of low cost and very long standby time.
  • Typical URLLC business includes wireless control in industrial manufacturing or production processes, motion control of unmanned vehicles and unmanned aircraft, and tactile interaction applications such as remote repair and remote surgery.
  • the main characteristics of these services are that they require ultra-high reliability, low latency, less data transmission, and burstiness.
  • V2X vehicle-to-everything
  • the end-to-end delay is 5 milliseconds (millisecond, ms); power distribution (power distribution) requires a reliability of 99.9999%.
  • the end-to-end delay is 5ms; the reliability of factory automation is 99.9999%, and the end-to-end delay is 2ms.
  • the smallest time scheduling unit is a transmission time interval (TTI) with a time length of 1 ms.
  • TTI transmission time interval
  • 5G supports not only the time-domain scheduling granularity of the time unit level, but also the time-domain scheduling granularity of the micro-time unit, as well as meeting the delay requirements of different services.
  • the time unit is mainly used for eMBB services
  • the micro time unit is mainly used for URLLC services.
  • the above-mentioned time unit and micro-time unit are general terms.
  • a specific example can be that the time unit can be called a time slot, and the micro-time unit can be called a mini-slot or non-slot (non-slot).
  • a time slot may include, for example, 14 time domain symbols, and the number of time domain symbols included in a mini-slot is less than 14, such as 2, 3, 4, 5, 6, or 7, etc.; or, for example, a time slot may include There are 7 time-domain symbols.
  • the number of time-domain symbols included in a mini-slot is less than 7, such as 2 or 4, and the specific value is not limited.
  • the time domain symbols here may be orthogonal frequency division multiplexing (OFDM) symbols.
  • the resource allocation cycle defined by the NR protocol includes the following possible value ranges (units are symbols).
  • the network device and the terminal device can periodically exchange time information on the configuration resource based on the period of the configuration resource and the service period.
  • the configuration resources may be CG resources or SPS resources.
  • the business cycle may refer to the cycle of business arrival, that is, the data that needs to be transmitted is generated periodically, the business cycle may be the cycle when data is generated at a higher layer (for example, the application layer), or the data is interacted from the upper layer of the device to the The period of the physical layer.
  • business can be understood as data that needs to be transmitted.
  • Data can also be described as data information or time information (such as: TSN information, time-sensitive network information).
  • an embodiment of the present application provides a method for indicating resources.
  • the method includes: a network device sends first indication information to indicate M first time-frequency resources among N first time-frequency resources. Time-frequency resources, where N and M are both positive integers. Each of the M first time-frequency resources is used to transmit data. So that the network equipment and the terminal equipment can use N first time-frequency resources as the cycle, the network equipment sends data on the M first time-frequency resources among the N first time-frequency resources, and the terminal device transmits data on the N first time-frequency resources.
  • the data is received on the M first time-frequency resources in the resources, or the terminal device sends data on the M first time-frequency resources among the N first time-frequency resources, and the network device is in the N first time-frequency resources.
  • Data is received on M first time-frequency resources.
  • the resource indication method provided by the embodiment of the present application indicates the first time-frequency resource for sending data, so that network equipment and terminal equipment can receive or send data on the designated first time-frequency resource, thereby effectively improving the configuration. Resource utilization.
  • data can refer to time information.
  • TSN information Such as: TSN information.
  • One first time-frequency resource can be used to transmit one piece of data or multiple pieces of data or multiple repetitions of one piece of data.
  • FIG. 2 shows an example diagram of the architecture of a mobile communication system that can be applied to the embodiments of the present application.
  • the mobile communication system includes a core network device 201, a network device 202, and at least one terminal device (the terminal device 203 and the terminal device 204 shown in FIG. 2).
  • the terminal device is connected to the network device in a wireless manner
  • the network device is connected to the core network device in a wireless or wired manner.
  • the core network equipment and the network equipment can be separate and different physical equipment, or they can integrate the functions of the core network equipment and the logical functions of the network equipment on the same physical device, or it can be a physical device that integrates part of the core network.
  • the function of the device and the function of part of the network device can be separate and different physical equipment, or they can integrate the functions of the core network equipment and the logical functions of the network equipment on the same physical device, or it can be a physical device that integrates part of the core network.
  • the terminal device can be a fixed location, or it can be movable.
  • FIG. 2 is only a schematic diagram.
  • the mobile communication system may also include other network devices, such as wireless relay devices and wireless backhaul devices, which are not shown in FIG. 2.
  • the embodiments of the present application do not limit the number of core network equipment, network equipment, and terminal equipment included in the mobile communication system.
  • Network equipment is the access equipment that terminal equipment accesses to the mobile communication system in a wireless manner. It can be a base station (base station), an evolved base station (evolved NodeB, eNodeB), a transmission reception point (TRP), The next generation NodeB (gNB) in the 5G mobile communication system, the base station in the future mobile communication system or the access node in the WiFi system, etc.; it can also be a module or unit that completes part of the base station function, for example, it can be The centralized unit (central unit, CU) may also be a distributed unit (distributed unit, DU).
  • the embodiment of the present application does not limit the specific technology and specific device form adopted by the radio access network device.
  • wireless access network equipment is referred to as network equipment. Unless otherwise specified, network equipment refers to wireless access network equipment.
  • the terminal device may also be called a terminal, user equipment (UE), mobile station (mobile station, MS), mobile terminal (mobile terminal, MT), and so on.
  • Terminal devices can be mobile phones, tablets, computers with wireless transceiver functions, virtual reality (VR) terminal devices, augmented reality (Augmented Reality, AR) terminal devices, industrial control (industrial control) Wireless terminals in ), wireless terminals in unmanned driving (self-driving), wireless terminals in remote medical surgery, wireless terminals in smart grid (smart grid), wireless terminals in transportation safety (transportation safety) Terminals, wireless terminals in smart cities, wireless terminals in smart homes, and so on.
  • the embodiments of the present application do not limit the specific technology and specific device form adopted by the terminal device.
  • FIG. 3 is an example diagram of a communication system provided by an embodiment of this application.
  • the base station and the terminal equipment 1 to the terminal equipment 6 form a communication system.
  • the terminal equipment 1-terminal equipment 6 can send uplink data to the base station, and the base station receives the uplink data sent by the terminal equipment 1-terminal equipment 6.
  • the base station may also send downlink data to terminal equipment 1 to terminal equipment 6, and terminal equipment 1 to terminal equipment 6 receive the downlink data.
  • the terminal device 4 to the terminal device 6 may also form a communication system.
  • the terminal device 5 can receive the uplink information sent by the terminal device 4 or the terminal device 6 and the downlink information sent by the terminal device 5 to the terminal device 4 or the terminal device 6.
  • Network equipment and terminal equipment can be deployed on land, including indoor or outdoor, handheld or vehicle-mounted; they can also be deployed on water; they can also be deployed on airborne aircraft, balloons, and satellites.
  • the embodiments of the present application do not limit the application scenarios of network equipment and terminal equipment.
  • the network equipment and the terminal equipment can communicate through a licensed spectrum, or communicate through an unlicensed spectrum, or communicate through a licensed spectrum and an unlicensed spectrum at the same time.
  • the network equipment and the terminal equipment can communicate through a frequency spectrum below 6 gigahertz (GHz), or communicate through a frequency spectrum above 6 GHz, and can also communicate using a frequency spectrum below 6 GHz and a frequency spectrum above 6 GHz at the same time.
  • GHz gigahertz
  • the embodiment of the present application does not limit the spectrum resource used between the network device and the terminal device.
  • the time domain symbol may be an OFDM symbol or a single carrier-frequency division multiplexing (SC-FDM) symbol.
  • SC-FDM single carrier-frequency division multiplexing
  • the PDSCH and PUSCH in the embodiments of this application are just examples of downlink data channels and uplink data channels.
  • data channels and control channels may have different names.
  • the embodiment of the present application does not limit this.
  • the first time-frequency resource may be indicated by the indication information, and the network device or the terminal device receives or sends data on the indicated first time-frequency resource.
  • Fig. 4 is a flow chart of a method for resource indication provided by an embodiment of the application. As shown in Figure 4, the method may include:
  • the network device sends first indication information to a terminal device, where the first indication information is used to indicate M first time-frequency resources among the N first time-frequency resources.
  • the network device may send the first indication information to the terminal device through high-level signaling.
  • the high-level signaling may refer to the signaling sent by the high-level protocol layer.
  • the high-level protocol layer is at least one protocol layer above the physical layer.
  • the high-level protocol layer may include at least one of the following protocol layers: medium access control (MAC) layer, radio link control (RLC) layer, packet data convergence protocol (PDCP) ) Layer, radio resource control (RRC) layer and non-access stratum (NAS).
  • MAC medium access control
  • RLC radio link control
  • PDCP packet data convergence protocol
  • RRC radio resource control
  • NAS non-access stratum
  • the network device may send the first indication information to the terminal device through RRC signaling.
  • the network device sends RRC signaling to the terminal device, and the RRC signaling includes the first indication information.
  • the network device may send the first indication information to the terminal device through physical layer signaling.
  • the following line of control signaling dynamic control indication, DCI).
  • the first indication information is used to indicate the M first time-frequency resources among the N first time-frequency resources, where N and M are both positive integers, and each of the M first time-frequency resources Used to transfer data.
  • the first indication information may be a bit sequence, and the bit sequence is used to indicate the M first time-frequency resources among the N first time-frequency resources.
  • the first indication information may be a bitmap, and the bitmap may include N bits. If the M bits of the N bits are 1, it can indicate that each first time-frequency resource in the first time-frequency resources indicated by the M bits is used for data transmission, and the NM of the N bits The number of bits of each bit is 0, which may indicate that each of the first time-frequency resources indicated by the NM bits is not used for data transmission.
  • the M bits of the N bits are 0, it can indicate that each of the first time-frequency resources indicated by the M bits is used to transmit data, and the NM of the N bits
  • the number of bits of each bit is 1, which may indicate that each of the first time-frequency resources indicated by the NM bits is not used for data transmission. Or, the value of N is also indicated in the first information.
  • the first time-frequency resource that is not used for data transmission can transmit other service information or service information of other users, which is not limited in this application.
  • S402 The terminal device receives the first indication information sent by the network device.
  • the first indication information is used to indicate the M first time-frequency resources among the N first time-frequency resources, and each of the M first time-frequency resources is used for data transmission.
  • the first indication information please refer to the explanation of S401, which will not be repeated.
  • the data when the network device sends data to the terminal device, the data may be sent on the first time-frequency resource indicated by the first indication information, where the data may be downlink data, and the first time-frequency resource may be PDSCH.
  • the data sent by the network device to the terminal device refer to the explanation of S403 and S404.
  • the network device uses the N first time-frequency resources as a period, and sends data to the terminal device on M first time-frequency resources among the N first time-frequency resources.
  • the data sent to the terminal device on the M first time-frequency resources among the N first time-frequency resources may be M pieces of data.
  • Each of the M pieces of data may be a data transmission block (transmit block, TB), or a group of data transmission blocks, and the group of data transmission blocks may be multiple repetitions of a transmission block, It can also be multiple transmission blocks, which will not be described in detail later.
  • first time-frequency resources starting from the first starting moment, using N first time-frequency resources as the resource cycle period, data is sent on the M first time-frequency resources in each resource cycle period.
  • the first starting time is the starting time for sending the first time-frequency resource.
  • Each piece of data information sent on the first time-frequency resource may be the same or different, and is not limited.
  • the terminal device uses the N first time-frequency resources as a period, and receives data sent by the network device on M first time-frequency resources among the N first time-frequency resources.
  • the terminal device may determine the time to send the first time-frequency resource according to the first start time and the first period, where the first start time is the start time of sending the first time-frequency resource, and the first period is the first time to send The period of a time-frequency resource.
  • the terminal device receives the first indication information, starting from the first starting moment, using the N first time-frequency resources as the resource cycle period, the terminal device receives data on the M first time-frequency resources in each resource cycle period.
  • the data received on the first time-frequency resource may be M pieces of data, and the M pieces of data may be the same or different.
  • Each of the M pieces of data may be 1 TB or a group of data transmission blocks, and the group of data transmission blocks may be multiple repetitions of one transmission block, or multiple transmission blocks, I won't repeat it later.
  • the data when the terminal device sends data to the network device, the data may be sent on the first time-frequency resource indicated by the first indication information, where the data may be uplink data, and the first time-frequency resource may It's PUSCH.
  • the data sent by the terminal device to the network device refer to the description of S405 and S406.
  • the terminal device uses the N first time-frequency resources as a period, and sends data to the network device on M first time-frequency resources among the N first time-frequency resources.
  • the N first time-frequency resources are used as the resource cycle period, and the M first time-frequency resources in each resource cycle period Data is sent on the frequency resource.
  • the network device uses the N first time-frequency resources as a period, and receives data sent by the terminal device on M first time-frequency resources among the N first time-frequency resources.
  • starting from the first starting moment taking the N first time-frequency resources as the resource cycle period, and receiving M data on the M first time-frequency resources in each resource cycle period.
  • the resource indication method provided by the embodiment of the present application indicates the first time-frequency resource for sending data, so that network equipment and terminal equipment can receive or send data on the designated first time-frequency resource, thereby effectively improving the configuration. Resource utilization.
  • the receiving end may perform blind detection on the first time-frequency resource to receive data. If the receiving end performs blind detection on all configured first time-frequency resources, some of the first time-frequency resources do not carry data, which will result in wasted power consumption of the receiving end.
  • the embodiment of the application provides a resource indication method. The receiving end performs blind detection on the first time-frequency resource indicated by the first indication information to receive data, avoiding blind detection of all configured first time-frequency resources, which not only effectively improves The utilization of time-frequency resources also saves the power consumption of the receiving end.
  • the embodiment of the present application provides a method for determining resource allocation.
  • the method provided in the embodiments of the present application can better match the service and resource periods, avoid the deviation of the receiver's and the sender's understanding of available resources, thereby ensuring service delay and reliability.
  • N and M may be determined by the network device according to the first starting moment, the first period, the second starting moment, and the second period.
  • the second starting moment is the starting moment of the data service cycle.
  • the second cycle is the business cycle of data. Because after the service arrives, if the time when the service arrives is different from the time when the first time-frequency resource is sent, the data is sent after waiting until the time when the first time-frequency resource is sent. In order to ensure the time delay of sending data and avoid the situation that a certain service has not been sent and the next service has arrived, the first period should be set to be less than the second period. As shown in FIG. 5, before sending the first instruction information, that is, S401, S501 is executed.
  • the network device determines M first time-frequency resources in the number N of first time-frequency resources according to the first starting time, the first period, the second starting time, and the second period.
  • the network device may determine the specific values of N and M according to the first period and the second period. N and M satisfy the following formula (1).
  • P_tr represents the second cycle
  • P_re represents the first cycle
  • the M first time-frequency resources for transmitting data among the N first time-frequency resources are determined.
  • the second starting moment is the starting moment of the data service cycle
  • the second starting moment is the same as the first starting moment, that is, the moment when the first service arrives is the same as the moment when the first time-frequency resource is first sent
  • the first time-frequency resource corresponding to the first starting time can be determined as the first time-frequency resource for transmitting data
  • the first time-frequency resource corresponding to the time of the first time-frequency resource closest to the time of service arrival can be determined as The first time-frequency resource for transmitting data, and so on, so as to determine M first time-frequency resources among the N first time-frequency resources.
  • the second period can be configured for the network device and the terminal device in advance. Therefore, the network device does not need to obtain the second period from other network elements. Or through the information exchange between the terminal device and the network device, the second period is obtained before the data is transmitted.
  • the determination of M first time-frequency resources in the number N of first time-frequency resources will be described.
  • a suitable first time-frequency resource is searched for in the first time-frequency resource less than 0.833 ms. For example, for a time slot with a subcarrier spacing of 15kHz, the time length of 2 symbols is 1/7ms, the time length of 7 symbols is 0.5ms, and the time length of 14 symbols is 1ms. Therefore, the first cycle is The value can be 0.5ms or 1/7ms.
  • the first One cycle is 0.5ms.
  • Figure 6 a schematic diagram of sending data.
  • the moment of sending the first time-frequency resource may be 0, 0.5, 1, 1.5, 2, 2.5, and so on. No data will be transmitted on the first time domain resource corresponding to the moment marked with " ⁇ " in the figure.
  • the service sequence number 0 represents the first data arrival, the arrival time of the first data arrival is 0ms, the time of sending the first time domain resource is 0ms, and the time of sending the data for the first time is 0ms.
  • Service sequence number 1 indicates the second data arrival, the arrival time of the second data arrival is 0.833333ms, the time of sending the first time domain resource is 1ms, and the time of the second data transmission is 1ms.
  • the delay is 0.166667.
  • the service sequence number 2 represents the third data arrival, the arrival time of the third data arrival is 1.666667ms, the time of sending the first time domain resource is 2ms, and the time of transmitting the data for the third time is 2ms.
  • the delay is 0.333333. No data is sent on the first time-frequency resource corresponding to 0.5ms and the first time-frequency resource of 1.5ms, and the loops are in turn.
  • every 5 first time-frequency resources is a resource cycle period. For each resource cycle period, data is sent or received on the first first time-frequency resource, the third first time-frequency resource, and the fifth first time-frequency resource, and the second first time-frequency resource and the fifth first time-frequency resource are sent or received. No data is sent on the four first time-frequency resources.
  • the first indication information may indicate three first time-frequency resources among the five first time-frequency resources. If the first indication information is a bitmap, the bitmap is 10101. Or the value of N is also indicated in the first information.
  • the first indication information may indicate three first time-frequency resources among the five first time-frequency resources. Every 5 first time-frequency resources is a resource cycle period. For each resource cycle period, data is sent or received on the second first time-frequency resource, the fourth first time-frequency resource, and the fifth first time-frequency resource. No data is sent on the three first time-frequency resources. If the first indication information is a bitmap, the bitmap is 01011. Or the first message also indicates that the value of N is 5.
  • the network device may configure the first time-frequency resource for the terminal device, so that the terminal device can receive or send data on the first time-frequency resource. As shown in Fig. 5, before S501, S502 to S503 are executed.
  • S502 The network device sends first resource configuration information to the terminal device.
  • the network device may send the first resource configuration information to the terminal device through high-level signaling.
  • the network device may send the first resource configuration information to the terminal device through RRC signaling.
  • the high-level parameter configuredGrantConfig in RRC signaling, configuredGrantConfig includes rrc-ConfiguredUplinkGrant.
  • the first resource configuration information is rrc-ConfiguredUplinkGrant.
  • the first resource configuration information includes the first starting time and the first period.
  • S503 The terminal device receives the first resource configuration information sent by the network device.
  • the terminal device may send or receive data on the first time-frequency resource configured periodically.
  • the terminal device receives the downlink control information (DCI), activates the first time-frequency resource configured by the first resource configuration information, and configures it periodically. Send or receive data on the first time-frequency resource.
  • DCI downlink control information
  • the first resource configuration information includes the first starting time and the first period.
  • the network device may configure multiple sets of time-frequency resources for the terminal device, and receive data on the multiple sets of time-frequency resources. As shown in Figure 7, the method further includes.
  • S701 The network device sends second resource configuration information to the terminal device.
  • the network device may send the second resource configuration information to the terminal device through high-level signaling.
  • the network device may send the second resource configuration information to the terminal device through RRC signaling.
  • the high-level parameters configuredGrantConfig and configuredGrantConfig in the RRC signaling include the second resource configuration information (such as rrc-ConfiguredUplinkGran).
  • the second resource configuration information includes a third start moment and a third period, the third start moment is the start moment of sending the second time-frequency resource, and the third period is the period of sending the second time-frequency resource.
  • S702 The terminal device receives the second resource configuration information sent by the network device.
  • the terminal device may send or receive data on the periodically configured second time-frequency resource.
  • the terminal device activates the second time-frequency resource configured by the second resource configuration information after receiving the DCI, and sends or Receive data.
  • the second resource configuration information includes the third starting moment and the third period.
  • sequence of the steps of the resource indication method provided in the embodiment of the present application can be appropriately adjusted.
  • sequence between S502 and S701 can be interchanged, that is, the network device can first send the second resource configuration information to the terminal device, and then send the first resource configuration information to the terminal device.
  • the network device may also determine L second time-frequency resources among the number K of second time-frequency resources, that is, determine the resource cycle period of the second time-frequency resources. As shown in FIG. 7, before sending the first instruction information, that is, S401, S703 is executed.
  • the network device determines L second time-frequency resources in the number K of second time-frequency resources according to the third start moment, the third period, the second start moment, and the second period.
  • the network device may determine K and L according to the third start moment, the third period, the second start moment, and the second period, where K and L are both positive integers, and K and L satisfy the formula ( 1). For details, please refer to the description of S501, which will not be repeated.
  • the first indication is also used to indicate the L second time-frequency resources among the K second time-frequency resources.
  • Each second time-frequency resource in the L second time-frequency resources is used for data transmission.
  • the data when the network device sends data to the terminal device, the data may be sent on the second time-frequency resource indicated by the first indication information, where the data may be downlink data, and the second time-frequency resource may be PDSCH.
  • the data sent by the network device to the terminal device refer to the description of executing S704 and S705.
  • the network device uses the K second time-frequency resources as a period, and sends data to the terminal device on L of the K second time-frequency resources.
  • data is sent on the L second time-frequency resources in each resource cycle period.
  • the terminal device uses the K second time-frequency resources as a period, and receives data sent by the network device on the L second time-frequency resources among the K second time-frequency resources.
  • the terminal device may determine the time to send the second time-frequency resource according to the third starting time and the third period. After the terminal device receives the first indication information, starting from the third starting moment, taking K second time-frequency resources as the resource cycle period, receive M on the L second time-frequency resources in each resource cycle period. Data.
  • the data received on the second time-frequency resource may be one or more, and each data in the multiple data may be the same or different, which is not limited.
  • the terminal device when the terminal device sends data to the network device, it may send data on the second time-frequency resource indicated by the first indication information, where the data may be uplink data, and the second time-frequency resource may be PUSCH.
  • the terminal device when it sends data to the network device, it may send data on the second time-frequency resource indicated by the first indication information, where the data may be uplink data, and the second time-frequency resource may be PUSCH.
  • the terminal device when the terminal device sends data to the network device, it may send data on the second time-frequency resource indicated by the first indication information, where the data may be uplink data, and the second time-frequency resource may be PUSCH.
  • the terminal device uses the K second time-frequency resources as a period, and sends data to the network device on the L second time-frequency resources among the K second time-frequency resources.
  • K second time-frequency resources are used as the resource cycle period, and L second time-frequency resources in each resource cycle period L data are sent on the time-frequency resource.
  • the network device uses the K second time-frequency resources as a period, and receives data sent by the terminal device on the L second time-frequency resources among the K second time-frequency resources.
  • L data is received on the L second time-frequency resources in each resource cycle period.
  • the first indication information is a bitmap, and the bitmap includes N+K bits.
  • the M bits of the N bits indicate the first time-frequency resource for sending or receiving data.
  • the L bits of the K bits indicate the second time-frequency resource for sending or receiving data. Or the value of N is also indicated in the first information.
  • the bits of the L bits in the K bits are 1, it can indicate that each of the second time-frequency resources indicated by the L bits is used for data transmission, and among the K bits The KL bits of is 0, which may indicate that each of the second time-frequency resources indicated by the KL bits is not used for data transmission. If the bits of the L bits in the K bits are 0, it can indicate that each of the second time-frequency resources indicated by the L bits is used for data transmission, and the KL of the K bits The number of bits is 1, which may indicate that each of the second time-frequency resources indicated by the KL bits is not used for data transmission.
  • M+L data is the business cycle period.
  • data for example, M data
  • data for example, L data
  • L data is received on L second time-frequency resources.
  • the first starting time is 0 ms
  • the first period is 1 ms
  • the time for sending the first time-frequency resource can be an integer number of milliseconds, such as 0, 1, 2, and 3.
  • the third starting time is 0.5ms
  • the third period is 1ms
  • the time for sending the second time-frequency resource can be a half-integer millisecond, such as 0.5, 1.5, and 2.5.
  • the time when the first time-frequency resource is sent is 0.5 ms away from the time when the second time-frequency resource is sent.
  • the second cycle is 0.833ms. No data will be transmitted on the first time domain resource corresponding to the moment marked with " ⁇ " in the figure.
  • the service sequence number 0 represents the first data arrival
  • the arrival time of the first data arrival is 0ms
  • the time of sending the first time domain resource is 0ms
  • the time of sending the data for the first time is 0ms.
  • Service sequence number 1 indicates the second data arrival, the arrival time of the second data arrival is 0.833333ms, the time of sending the first time domain resource is 1ms, and the time of the second data transmission is 1ms.
  • the delay is 0.166667.
  • Service sequence number 2 indicates the third data arrival, the arrival time of the third data arrival is 1.666667ms, the time of sending the first time domain resource is 2ms, and the time of the third data transmission is 2ms.
  • the delay is 0.333333. No data is sent on the first time-frequency resource corresponding to 3ms and the first time-frequency resource of 4ms.
  • the service sequence number 3 represents the fourth data arrival, the arrival time of the fourth data arrival is 2.5ms, the time of sending the first time domain resource is 2.5ms, and the time of sending the data for the fourth time is 2.5ms.
  • Service sequence number 4 represents the fifth data arrival
  • the arrival time of the fifth data arrival is 3.333333ms
  • the time of sending the first time domain resource is 3.5ms
  • the time of transmitting the data for the fifth time is 3.5ms.
  • the delay is 0.166667.
  • the service sequence number 5 indicates the 6th data arrival, the arrival time of the 6th data arrival is 4.166667ms, the time of sending the first time domain resource is 4.5ms, and the time of transmitting the data for the 6th time is 4.5ms.
  • the delay is 0.333333. No data is sent on the first time-frequency resource corresponding to 0.5ms and the first time-frequency resource of 1.5ms. Cycle in turn.
  • every 5 first time-frequency resources is a first resource cycle period. For each first resource cycle period, send or receive data on the first first time-frequency resource, the second first time-frequency resource, and the third first time-frequency resource, and the fourth first time-frequency resource And no data is sent on the fifth first time-frequency resource. Every 5 second time-frequency resources is a second resource cycle period. For each second resource cycle period, send or receive data on the third first time-frequency resource, the fourth first time-frequency resource, and the fifth first time-frequency resource, the first first time-frequency resource And no data is sent on the second first time-frequency resource.
  • the first indication information may indicate three first time-frequency resources among the five first time-frequency resources and three second time-frequency resources among the five second time-frequency resources.
  • the bitmap is 1110000111.
  • the first message also indicates that the value of N is 10.
  • the first indication information includes the identifier of the first time-frequency resource for transmitting M data and the identifier of the second time-frequency resource for transmitting L data.
  • M+L data is the business cycle period. In each service cycle period, M data are received on M first time-frequency resources, and L data are received on L second time-frequency resources.
  • the first indication information may indicate the identities of three first time-frequency resources and three second time-frequency resources, namely 1, 1, 1, 2, 2, 2.
  • the first arrival time of data is 0ms
  • the first starting time is 0ms.
  • the first time-frequency resource is used for the first data transmission. Therefore, the data is transmitted three times continuously, that is, the first, second, and third data are transmitted.
  • the arrival time of the fourth data is 2.5ms. After 2ms of the third data transmission, 2.5ms is the first time to transmit data. Therefore, send 3 on the second time-frequency resource.
  • the secondary data that is, the 4th, 5th, and 6th data are transmitted using the second time-frequency resource. Transfer data by analogy.
  • Fig. 9 is a flow chart of a method for resource indication provided by an embodiment of the application. As shown in Figure 9, the method may include:
  • the network device sends first resource configuration information to the terminal device.
  • the first resource configuration information includes the first period.
  • the first cycle is the cycle for sending the first time-frequency resource.
  • the network device may send the first resource configuration information to the terminal device through high-level signaling.
  • sending the first resource configuration information please refer to the explanation of S502, which will not be repeated.
  • S902 The terminal device receives the first resource configuration information sent by the network device.
  • the first resource configuration information includes the first period.
  • S503 For a specific explanation about receiving the first resource configuration information, please refer to the description of S503, which will not be repeated.
  • the network device may first determine the first time-frequency resource for sending the data, where the data may be downlink data, and the first time-frequency resource may be the PDSCH. Perform S903 and S906.
  • the network device determines the jth time according to the first cycle, the second cycle, the i-1th time, and the j-1th time.
  • the second cycle is the business cycle of data, and the second cycle is greater than the first cycle.
  • the i-1th time is the start time of the i-1th service cycle of data
  • the j-1th time is the start time of the first time-frequency resource of the i-1th transmission data
  • the jth time is the ith time.
  • i and j are both positive integers.
  • each first time-frequency resource can be detected to determine the first time-frequency resource that can send data.
  • the network device may first determine the first value according to the i-1th time and the j-1th time.
  • the first value is the difference between the j-1th time and the i-1th time, or the first The value is the absolute value of the difference between the j-1th time and the i-1th time.
  • n is a positive integer
  • n is the number of the first period, the number of the first period meets the minimum value of the first condition
  • the first condition is the first The sum of the first period and the first value is greater than the second period.
  • the sum of the n first periods and the first value is determined as the j-th time.
  • the j-th moment satisfies formula (2).
  • T j represents the jth time
  • c 1 represents the first cycle
  • n represents the number of the first cycle
  • t i-1 represents the i-1 time
  • T i-1 represents the i-1 time
  • c 2 represents The second cycle.
  • the network device may determine the time of sending the first time-frequency resource of the data according to the start time of the service cycle (or the arrival time of the service).
  • the network device may first determine n according to the j-1th time, the first cycle, and the i-th time, where n is a positive integer, n is the number of the first cycle, and the number of the first cycle satisfies the first
  • the minimum value of the condition, the first condition is that the sum of the first cycle and the j-1th time is greater than the i-th time
  • the i-th time is the start time of the i-th business cycle of data
  • the i-1th time and the second cycle The sum is equal to the i-th moment.
  • the j-th moment is determined according to the n first cycles and the j-1th moment, and the j-th moment is the minimum value among the starting moments of the first time-frequency resource that is greater than the i-th moment.
  • T j represents the j-th time
  • c 1 represents the first cycle
  • n represents the number of the first cycle
  • t i represents the i-th time
  • T j-1 represents the j-1-th time.
  • the network device sends data to the terminal device on the first time-frequency resource at the jth time.
  • the network device sends data on the determined first time-frequency resource, and the first time-frequency resource that has not sent data can send other information, which effectively improves the utilization rate of the configuration resource.
  • the terminal device determines the j-th time according to the first cycle, the second cycle, the i-1th time, and the j-1th time.
  • each first time-frequency resource can be detected to determine the first time-frequency resource that can send data.
  • the network device can determine the time of sending the first time-frequency resource of the data according to the start time of the service cycle (or the arrival time of the service). For details, please refer to the description of S903, which will not be repeated.
  • the terminal device receives the data sent by the network device on the first time-frequency resource at the jth time.
  • the terminal device receives data on the determined first time-frequency resource, and the first time-frequency resource that does not receive data can receive other information, which effectively improves the utilization rate of the configuration resource.
  • blind detection of all configured first time-frequency resources is avoided, and blind detection is performed on the determined first time-frequency resources, which saves the power consumption of the terminal device.
  • the terminal device may first determine the first time-frequency resource for sending data before sending data to the network device, where the data may be uplink data, and the first time-frequency resource may be PUSCH. Perform S907 and S910.
  • the terminal device determines the jth time according to the first cycle, the second cycle, the i-1th time, and the j-1th time.
  • the terminal device sends data to the network device on the first time-frequency resource at the jth time.
  • the network device determines the jth time according to the first period, the second period, the i-1th time, and the j-1th time.
  • the network device receives data sent by the terminal device on the first time-frequency resource at the jth time.
  • transmission time refers to the time of data transmission determined according to the resource indication method described in this embodiment of the application.
  • “*Business arrival” indicates the time of actual data transmission.
  • the terminal device may send a second value to the network device.
  • the second value is used to indicate the start time of the p-th service period of data and the start time of the first time-frequency resource for transmitting the q-th data. Or the absolute value of the difference between the start time of the p-th service cycle of data and the start time of the first time-frequency resource for transmitting the q-th data.
  • the starting time of the first time-frequency resource for the first data transmission may be the first starting time, and the first starting time is the starting time of sending the first time-frequency resource.
  • the terminal device may receive the first resource configuration information sent by the network device to obtain the first starting time.
  • the network device and the terminal device include hardware structures and/or software modules corresponding to each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application scenarios and design constraints of the technical solution.
  • FIG. 10 and FIG. 11 are schematic structural diagrams of possible communication devices provided by embodiments of this application. These communication devices can be used to implement the functions of the terminal device or the network device in the foregoing method embodiment, and therefore can also achieve the beneficial effects of the foregoing method embodiment.
  • the communication device may be the terminal device 203 or the terminal device 204 shown in FIG. 2, or the wireless access network device 202 shown in FIG. 2, or it may be applied to the terminal device. Or a module of a network device (such as a chip).
  • the communication device 1000 includes a processing unit 1010 and a transceiving unit 1020.
  • the communication device 1000 is used to implement the functions of the terminal device or the network device in the method embodiment shown in FIG. 4, FIG. 5, FIG. 7 or FIG. 9 above.
  • the transceiver unit 1020 is used to perform S402, S404, and S405.
  • the transceiver unit 1020 is used in S401, S403, and S406.
  • the transceiver unit 1020 is used to perform S402, S404, S405, and S503.
  • the transceiver unit 1020 is used for S401, S403, S406, and S502, and the processing unit 1010 is used for S501.
  • the transceiver unit 1020 is used to execute S402, S404, S405, S503, S702, S705, and S706.
  • the transceiver unit 1020 is used for S401, S403, S406, S502, S701, S704, and S707, and the processing unit 1010 is used for S501 and S703.
  • the transceiving unit 1020 is used to perform S902, S906, and S908, and the processing unit 1010 is used to S905 and S907.
  • the transceiving unit 1020 is used to execute S901, S904, and S910, and the processing unit 1010 is used to S903 and S909.
  • processing unit 1010 and the transceiver unit 1020 can be obtained directly by referring to the relevant descriptions in the method embodiments shown in FIG. 4, FIG. 5, FIG. 7 or FIG. 9, and will not be repeated here.
  • the communication device 1100 includes a processor 1110 and an interface circuit 1120.
  • the processor 1110 and the interface circuit 1120 are coupled to each other.
  • the interface circuit 1120 may be a transceiver or an input/output interface.
  • the communication device 1100 may further include a memory 1130 for storing instructions executed by the processor 1110 or storing input data required by the processor 1110 to run the instructions or storing data generated after the processor 1110 runs the instructions.
  • the processor 1110 is used to perform the function of the above-mentioned processing unit 1010
  • the interface circuit 1120 is used to perform the function of the above-mentioned transceiving unit 1020.
  • the terminal device chip When the foregoing communication device is a chip applied to a terminal device, the terminal device chip implements the function of the terminal device in the foregoing method embodiment.
  • the terminal device chip receives information from other modules in the terminal device (such as a radio frequency module or antenna), and the information is sent by the network device to the terminal device; or, the terminal device chip sends information to other modules in the terminal device (such as a radio frequency module or antenna).
  • the antenna sends information, which is sent from the terminal device to the network device.
  • the network device chip implements the function of the network device in the foregoing method embodiment.
  • the network device chip receives information from other modules in the network device (such as radio frequency modules or antennas), and the information is sent by the terminal device to the network device; or, the network device chip sends information to other modules in the network device (such as radio frequency modules or antennas).
  • the antenna sends information, which is sent by the network device to the terminal device.
  • the processor in the embodiments of the present application may be a central processing unit (Central Processing Unit, CPU), or other general-purpose processors, digital signal processors (Digital Signal Processors, DSPs), and application specific integrated circuits. (Application Specific Integrated Circuit, ASIC), Field Programmable Gate Array (Field Programmable Gate Array, FPGA) or other programmable logic devices, transistor logic devices, hardware components, or any combination thereof.
  • the general-purpose processor may be a microprocessor or any conventional processor.
  • the method steps in the embodiments of the present application can be implemented by hardware, or can be implemented by a processor executing software instructions.
  • Software instructions can be composed of corresponding software modules, which can be stored in random access memory (Random Access Memory, RAM), flash memory, read-only memory (Read-Only Memory, ROM), and programmable read-only memory (Programmable ROM) , PROM), Erasable Programmable Read-Only Memory (Erasable PROM, EPROM), Electrically Erasable Programmable Read-Only Memory (Electrically EPROM, EEPROM), register, hard disk, mobile hard disk, CD-ROM or well-known Any other form of storage medium.
  • RAM Random Access Memory
  • ROM read-only memory
  • PROM programmable read-only memory
  • PROM Erasable Programmable Read-Only Memory
  • EPROM Erasable Programmable Read-Only Memory
  • Electrically Erasable Programmable Read-Only Memory Electrically Erasable Programmable Read-Only Memory
  • register hard disk
  • An exemplary storage medium is coupled to the processor, so that the processor can read information from the storage medium and write information to the storage medium.
  • the storage medium may also be an integral part of the processor.
  • the processor and the storage medium may be located in the ASIC.
  • the ASIC can be located in a network device or a terminal device.
  • the processor and the storage medium may also exist as discrete components in the network device or the terminal device.
  • the above-mentioned embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer programs or instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, network equipment, user equipment, or other programmable devices.
  • the computer program or instruction may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer program or instruction may be downloaded from a website, computer, The server or data center transmits to another website site, computer, server or data center through wired or wireless means.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center that integrates one or more available media.
  • the usable medium may be a magnetic medium, such as a floppy disk, a hard disk, and a magnetic tape; it may also be an optical medium, such as a digital video disc (digital video disc, DVD); and it may also be a semiconductor medium, such as a solid state drive (solid state drive). , SSD).
  • “at least one” refers to one or more, and “multiple” refers to two or more.
  • “And/or” describes the association relationship of the associated objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A alone exists, A and B exist at the same time, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the associated object before and after is an “or” relationship; in the formula of this application, the character “/” indicates that the associated object before and after is a kind of "division" Relationship.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

公开了一种资源指示的方法及装置,涉及通信领域,解决了如何提高配置资源的利用率的问题。该方法包括:网络设备通过发送第一指示信息,来指示N个第一时频资源中的M个第一时频资源,其中,N和M均为正整数。该M个第一时频资源中的每个第一时频资源用于传输数据。使得网络设备和终端设备可以以N个第一时频资源为周期,网络设备在N个第一时频资源中的M个第一时频资源上发送数据,终端设备在N个第一时频资源中的M个第一时频资源上接收数据,或者终端设备在N个第一时频资源中的M个第一时频资源上发送数据,网络设备在N个第一时频资源中的M个第一时频资源上接收数据。

Description

一种资源指示的方法及装置 技术领域
本申请实施例涉及无线通信领域,尤其涉及一种资源指示的方法及装置。
背景技术
随着移动通信技术的发展,第五代(the fifth generation,5G)移动通信技术已成为全球研发的热点。移动互联网和物联网作为未来通信发展的主要驱动力,将在人们的居住、工作、休闲和交通等领域产生巨大影响,5G业务需求呈现多样化。例如,在工业控制场景中,控制器需要和执行器之间保持时间同步。控制器给执行器发送控制信令,指示执行器在确定的时间执行命令,若执行器与控制器对时间的认知不同,即时间不同步,会导致执行器在错误的时间执行命令,导致任务执行失败。网络设备作为终端设备的集中控制器,可以作为终端设备的时间同步源,向终端设备发送指示信息,使小区内所有的终端设备均与网络设备保持时间同步,间接的达到终端设备之间的时间同步。
网络设备和终端设备可以周期性地交互时间信息(如:时效性网络(time sensitive networking,TSN)信息),根据时间信息调整时钟保持时间同步。例如,在配置资源(如:免授权调度(configured grant,CG)资源或半静态调度(semi-persistent scheduling,SPS)资源)上传输TSN信息。但是,由于业务周期(如:TSN信息的周期)与配置资源的周期不同,在业务到达后,若业务到达的时刻与发送配置资源的时刻不同,则等到发送配置资源的时刻后发送TSN信息。在一些实施例中,如图1中的(a)所示,配置资源的周期大于业务周期,传输时间信息的时延较大;如图1中的(b)所示,如果配置资源的周期小于业务周期,有些配置资源(如图中画“×”的时刻对应的资源)上不会传输业务周期,浪费配置资源。因此,如何提高系统资源的利用率,是一个亟待解决的问题。
发明内容
本申请提供一种资源指示的方法及装置,解决了如何提高系统资源的利用率的问题。
为达到上述目的,本申请采用如下技术方案:
第一方面,本申请提供了一种资源指示的方法,该方法可应用于网络设备,或者该方法可应用于可以支持网络设备实现该方法的通信装置,例如该通信装置包括芯片系统。所述方法包括:通过发送第一指示信息来指示N个第一时频资源中的M个第一时频资源,并以N个第一时频资源为周期,在N个第一时频资源中的M个第一时频资源上发送或接收数据。其中,M个第一时频资源中的每个第一时频资源用于传输数据,N和M均为正整数。
本申请实施例提供的资源指示的方法,在满足数据传输时延的前提下,选取最小的资源循环周期和最少的资源使用个数,使业务和资源周期达到最佳的匹配关系,因 此,网络设备在指定的第一时频资源上接收或发送数据,并通过指示发送数据的第一时频资源,使得终端设备可以在指定的第一时频资源上发送或接收数据,从而,降低了指示信息的开销,提高了系统资源利用率。
在一种可能的设计中,所述方法还包括:根据第一起始时刻、第一周期、第二起始时刻和第二周期确定第一时频资源的个数N中的M个第一时频资源,第一起始时刻为发送第一时频资源的起始时刻,第一周期为发送第一时频资源的周期,第二起始时刻为数据的业务周期的起始时刻,第二周期为数据的业务周期,第二周期大于第一周期。本申请实施例提供的确定资源分配的方法,在满足数据传输时延的前提下,选取最小的资源循环周期和最少的资源使用个数,使业务和资源周期达到最佳的匹配关系,以便于网络设备在指定的第一时频资源上接收或发送数据,从而,降低了指示信息的开销,提高了系统资源利用率。
在另一种可能的设计中,所述方法还包括:发送第一资源配置信息,第一资源配置信息包含第一起始时刻和第一周期。从而,以便于终端设备根据第一指示信息和第一资源配置信息确定接收数据的第一时频资源,在确定的第一时频资源上接收数据。
在另一种可能的设计中,所述方法还包括:发送第二资源配置信息,第二资源配置信息包含第三起始时刻和第三周期,第三起始时刻为发送第二时频资源的起始时刻,第三周期为发送第二时频资源的周期;根据第三起始时刻、第三周期、第二起始时刻和第二周期确定第二时频资源的个数K中的L个第二时频资源,第二周期大于第三周期,K和L均为正整数,第一指示还用于指示K个第二时频资源中的L个第二时频资源;以K个第二时频资源为周期,在K个第二时频资源中的L个第二时频资源上发送或接收数据。从而,以便于终端设备根据第一指示信息和第二资源配置信息确定接收数据的第二时频资源,在确定的第二时频资源上接收数据。
在另一种可能的设计中,第一指示信息包括传输数据的第一时频资源的标识和传输数据的第二时频资源的标识。从而,以便于终端设备根据时频资源的标识确定传输数据的时频资源,在指定的第一时频资源和第二时频资源上发送或接收数据,从而,降低了指示信息的开销,提高了系统资源利用率。
第二方面,本申请提供了一种资源指示的方法,该方法可应用于终端设备,或者该方法可应用于可以支持终端设备实现该方法的通信装置,例如该通信装置包括芯片系统。所述方法包括:接收到第一指示信息,以N个第一时频资源为周期,在N个第一时频资源中的M个第一时频资源上接收或发送数据。第一指示信息用于指示N个第一时频资源中的M个第一时频资源,M个第一时频资源中的每个第一时频资源用于传输数据,其中,N和M均为正整数。
本申请实施例提供的资源指示的方法,在满足数据传输时延的前提下,能够使业务和资源周期更好的匹配,终端设备在指定的第一时频资源上接收或发送数据,从而,提高了系统资源利用率。
另外,由于第一时频资源是半静态资源,接收端(网络设备或终端设备)可以对第一时频资源进行盲检测接收数据。如果接收端对配置的所有第一时频资源进行盲检测,有些第一时频资源上未承载数据,会导致浪费了接收端的功耗。本申请实施例提供资源指示的方法,接收端对第一指示信息指示的第一时频资源进行盲检测接收数据, 避免了对配置的所有第一时频资源进行盲检测,不仅有效地提高了时频资源的利用率,还节省了接收端的功耗。
在一种可能的设计中,N和M是根据第一起始时刻、第一周期、第二起始时刻和第二周期确定的,第一起始时刻为发送第一时频资源的起始时刻,第一周期为发送第一时频资源的周期,第二起始时刻为数据的业务周期的起始时刻,第二周期为数据的业务周期,第二周期大于第一周期。
在另一种可能的设计中,所述方法还包括:接收第一资源配置信息,第一资源配置信息包含第一起始时刻和第一周期。从而,终端设备可以根据第一指示信息和第一资源配置信息确定接收数据的第一时频资源,在确定的第一时频资源上接收数据。
在另一种可能的设计中,所述方法还包括:接收第二资源配置信息,第二资源配置信息包含第三起始时刻和第三周期,第三起始时刻为发送第二时频资源的起始时刻,第三周期为发送第二时频资源的周期,第一指示还用于指示K个第二时频资源中的L个第二时频资源,K和L是根据第三起始时刻、第三周期、第二起始时刻和第二周期确定的,第二周期大于第三周期,K和L均为正整数;以K个第二时频资源为周期,在K个第二时频资源中的L个第二时频资源上接收或发送数据。从而,终端设备可以根据第一指示信息和第二资源配置信息确定接收数据的第二时频资源,在确定的第二时频资源上接收数据。
在另一种可能的设计中,第一指示信息包括传输数据的第一时频资源的标识和传输数据的第二时频资源的标识。从而,使得终端设备根据时频资源的标识确定传输数据的时频资源,在指定的第一时频资源和第二时频资源上发送或接收数据,从而,降低了指示信息的开销,提高了系统资源利用率。
第三方面,本申请提供了一种资源指示的方法,该方法可应用于网络设备,或者该方法可应用于可以支持网络设备实现该方法的通信装置,例如该通信装置包括芯片系统。所述方法包括:发送第一资源配置信息,第一资源配置信息包含第一周期,第一周期为发送第一时频资源的周期;然后,根据第一周期、第二周期、第i-1时刻和第j-1时刻确定第j时刻,并在第j时刻的第一时频资源上发送或接收数据。第二周期为数据的业务周期,第二周期大于第一周期,第i-1时刻为数据的第i-1个业务周期的起始时刻,第j-1时刻为第i-1次传输数据的第一时频资源的起始时刻,第j时刻为第i次传输数据的第一时频资源的起始时刻,i和j均为正整数。
本申请实施例提供的资源指示的方法,网络设备在发送或接收数据前,先确定可以发送或接收数据的第一时频资源,从而,在确定的第一时频资源上发送或接收数据,有效地提高了配置资源的利用率。
第四方面,本申请提供了一种资源指示的方法,该方法可应用于终端设备,或者该方法可应用于可以支持终端设备实现该方法的通信装置,例如该通信装置包括芯片系统。所述方法包括:接收第一资源配置信息,第一资源配置信息包含第一周期,第一周期为发送第一时频资源的周期;并根据第一周期、第二周期、第i-1时刻和第j-1时刻确定第j时刻,在第j时刻的第一时频资源上接收或发送数据。其中,第二周期为数据的业务周期,第二周期大于第一周期,第i-1时刻为数据的第i-1个业务周期的起始时刻,第j-1时刻为第i-1次传输数据的第一时频资源的起始时刻,第j时刻为第i 次传输数据的第一时频资源的起始时刻,i和j均为正整数。
本申请实施例提供的资源指示的方法,终端设备在接收或发送数据前,先确定可以接收或发送数据的第一时频资源,从而,在确定的第一时频资源上接收或发送数据,有效地提高了配置资源的利用率。
在一种可能的设计中,根据第一周期、第二周期、第i-1时刻和第j-1时刻确定第j时刻,包括:根据第i-1时刻和第j-1时刻确定第一数值,第一数值为第j-1时刻与第i-1时刻的差值,或者,第一数值为第j-1时刻和第i-1时刻的差值的绝对值;然后,根据第一周期、第一数值和第二周期确定n,n为正整数,n为第一周期的个数,第一周期的个数满足第一条件的最小值,第一条件为第一周期与第一数值之和大于第二周期;确定n个第一周期与第一数值之和为第j时刻。
在另一种可能的设计中,根据第一周期、第二周期、第i-1时刻和第j-1时刻确定第j时刻,包括:根据第j-1时刻、第一周期和第i时刻确定n,n为正整数,n为第一周期的个数,第一周期的个数满足第一条件的最小值,第一条件为第一周期与第j-1时刻之和大于第i时刻,第i时刻为数据的第i个业务周期的起始时刻,第i-1时刻和第二周期之和等于第i时刻;根据n个第一周期与第j-1时刻确定第j时刻,第j时刻为大于第i时刻的第一时频资源的起始时刻中的最小值。
在另一种可能的设计中,方法还包括:发送第二数值,第二数值用于指示数据的第p个业务周期的起始时刻与传输第q个数据的第一时频资源的起始时刻的差值,或者,数据的第p个业务周期的起始时刻与传输第q个数据的第一时频资源的起始时刻的差值的绝对值。从而,以便于网络设备调整数据的第q个业务周期的起始时刻与第q次传输数据的第一时频资源的起始时刻的差值,降低终端设备与网络设备间的时间误差,网络设备为终端设备配置更准确的时频资源。其中,p和q为正整数。
第五方面,本申请实施例还提供了一种通信装置,有益效果可以参见第一方面的描述此处不再赘述。所述通信装置具有实现上述第一方面的方法实例中行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。在一个可能的设计中,所述通信装置包括:收发单元和处理单元。所述收发单元,用于发送第一指示信息,第一指示信息指示N个第一时频资源中的M个第一时频资源;所述收发单元,还用于以N个第一时频资源为周期,在N个第一时频资源中的M个第一时频资源上发送或接收数据。其中,M个第一时频资源中的每个第一时频资源用于传输数据,N和M均为正整数。这些单元可以执行上述第一方面方法示例中的相应功能,具体参见方法示例中的详细描述,此处不做赘述。
第六方面,本申请实施例还提供了一种通信装置,有益效果可以参见第二方面的描述此处不再赘述。所述通信装置具有实现上述第二方面的方法实例中行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。在一个可能的设计中,该通信装置包括:收发单元和处理单元。所述收发单元,用于接收到第一指示信息;所述收发单元,还用于以N个第一时频资源为周期,在N个第一时频资源中的M个第一时频资源上接收或发送数据。第一指示信息用于指示N个第一时频资源中的M个第一时频资源,M 个第一时频资源中的每个第一时频资源用于传输数据,其中,N和M均为正整数,N和M是根据第一起始时刻、第一周期、第二起始时刻和第二周期确定的,第一起始时刻为发送第一时频资源的起始时刻,第一周期为发送第一时频资源的周期,第二起始时刻为数据的业务周期的起始时刻,第二周期为数据的业务周期,第二周期大于第一周期。这些模块可以执行上述第二方面方法示例中的相应功能,具体参见方法示例中的详细描述,此处不做赘述。
第七方面,本申请实施例还提供了一种通信装置,有益效果可以参见第三方面的描述此处不再赘述。所述通信装置具有实现上述第三方面的方法实例中行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。在一个可能的设计中,该通信装置包括:收发单元和处理单元。所述收发单元,用于发送第一资源配置信息,第一资源配置信息包含第一周期,第一周期为发送第一时频资源的周期;所述处理单元,用于根据第一周期、第二周期、第i-1时刻和第j-1时刻确定第j时刻;所述收发单元,还用于在第j时刻的第一时频资源上发送或接收数据。第二周期为数据的业务周期,第二周期大于第一周期,第i-1时刻为数据的第i-1个业务周期的起始时刻,第j-1时刻为第i-1次传输数据的第一时频资源的起始时刻,第j时刻为第i次传输数据的第一时频资源的起始时刻,i和j均为正整数。这些模块可以执行上述第三方面方法示例中的相应功能,具体参见方法示例中的详细描述,此处不做赘述。
第八方面,本申请实施例还提供了一种通信装置,有益效果可以参见第四方面的描述此处不再赘述。所述通信装置具有实现上述第四方面的方法实例中行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。在一个可能的设计中,该通信装置包括:收发单元和处理单元。所述收发单元,用于接收第一资源配置信息,第一资源配置信息包含第一周期,第一周期为发送第一时频资源的周期;所述处理单元,用于根据第一周期、第二周期、第i-1时刻和第j-1时刻确定第j时刻;所述收发单元,还用于在第j时刻的第一时频资源上接收或发送数据。其中,第二周期为数据的业务周期,第二周期大于第一周期,第i-1时刻为数据的第i-1个业务周期的起始时刻,第j-1时刻为第i-1次传输数据的第一时频资源的起始时刻,第j时刻为第i次传输数据的第一时频资源的起始时刻,i和j均为正整数。这些模块可以执行上述第四方面方法示例中的相应功能,具体参见方法示例中的详细描述,此处不做赘述。
第九方面,提供了一种通信装置,该通信装置可以为上述方法实施例中的终端设备,或者为设置在终端设备中的芯片。该通信装置包括通信接口以及处理器,可选的,还包括存储器。其中,该存储器用于存储计算机程序或指令,处理器与存储器、通信接口耦合,当处理器执行所述计算机程序或指令时,使通信装置执行上述方法实施例中由终端设备所执行的方法。
第十方面,提供了一种通信装置,该通信装置可以为上述方法实施例中的网络设备,或者为设置在网络设备中的芯片。该通信装置包括通信接口以及处理器,可选的,还包括存储器。其中,该存储器用于存储计算机程序或指令,处理器与存储器、通信接口耦合,当处理器执行所述计算机程序或指令时,使通信装置执行上述方法实施例 中由网络设备所执行的方法。
第十一方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码并运行时,使得上述各方面中由终端设备执行的方法被执行。
第十二方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码被运行时,使得上述各方面中由网络设备执行的方法被执行。
第十三方面,本申请提供了一种芯片系统,该芯片系统包括处理器,用于实现上述各方面的方法中终端设备的功能。在一种可能的设计中,所述芯片系统还包括存储器,用于保存程序指令和/或数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
第十四方面,本申请提供了一种芯片系统,该芯片系统包括处理器,用于实现上述各方面的方法中网络设备的功能。在一种可能的设计中,所述芯片系统还包括存储器,用于保存程序指令和/或数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
第十五方面,本申请提供了一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序,当该计算机程序被运行时,实现上述各方面中由终端设备执行的方法。
第十六方面,本申请提供了一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序,当该计算机程序被运行时,实现上述各方面中由网络设备执行的方法。
本申请中,终端设备、网络设备和通信装置的名字对设备本身不构成限定,在实际实现中,这些设备可以以其他名称出现。只要各个设备的功能和本申请类似,属于本申请权利要求及其等同技术的范围之内。
附图说明
图1为一实施例提供的发送时间信息的示意图;
图2为一实施例提供的一种移动通信系统的架构示例图;
图3为一实施例提供的一种通信系统的架构示例图;
图4为一实施例提供的一种资源指示的方法的流程图;
图5为一实施例提供的一种资源指示的方法的流程图;
图6为一实施例提供的发送时间信息的示意图;
图7为一实施例提供的一种资源指示的方法的流程图;
图8为一实施例提供的发送时间信息的示意图;
图9为一实施例提供的一种资源指示的方法的流程图;
图10为一实施例提供的一种通信装置的组成示意图;
图11为一实施例提供的一种通信装置的组成示意图。
具体实施方式
本申请说明书和权利要求书及上述附图中的术语“第一”、“第二”和“第三”等是用于区别不同对象,而不是用于限定特定顺序。
在本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
移动通信技术已经深刻地改变了人们的生活,但人们对更高性能的移动通信技术的追求从未停止。为了应对未来爆炸性的移动数据流量增长、海量移动通信的设备连接、不断涌现的各类新业务和应用场景,5G移动通信系统应运而生。5G移动通信系统又称为新无线接入技术(new radio access technology,NR)系统。国际电信联盟(international telecommunication union,ITU)为5G以及未来的移动通信系统定义了三大类应用场景:增强型移动宽带(enhanced mobile broadband,eMBB)、URLLC、海量机器类通信(massive machine type communications,mMTC)、多媒体广播多播业务(Multimedia Broadcast Multicast Service,MBMS)和定位业务等。部署场景包括室内热点(Indoor hotspot)、密集城区(Dense Urban)、郊区、城区宏覆盖(Urban Macro)及高铁场景等。
典型的eMBB业务包括超高清视频、增强现实(augmented reality,AR)和虚拟现实(virtual reality,VR)等。这些业务的主要特点包括传输数据量大和传输速率很高。
典型的mMTC业务包括智能电网配电自动化和智慧城市等。这些业务的主要特点包括联网设备数量巨大、传输数据量较小和数据对传输时延不敏感。这些mMTC终端需要满足低成本和非常长的待机时间的需求。
典型的URLLC业务包括工业制造或生产流程中的无线控制、无人驾驶汽车和无人驾驶飞机的运动控制以及远程修理和远程手术等触觉交互类应用。这些业务的主要特点是要求超高可靠性、低延时、传输数据量较少和具有突发性。例如,车对外界的信息交换(vehicle to everything,V2X)需要的可靠性为99.999%,端到端时延为5毫秒(millisecond,ms);配电(power distribution)需要可靠性为99.9999%,端到端时延为5ms;工厂自动化(factory automation)可靠性为99.9999%,端到端时延为2ms。
在长期演进(long term evolution,LTE)系统中,最小的时间调度单元为一个1ms时间长度的传输时间间隔(transmission time interval,TTI)。5G既支持时间单元级别的时域调度粒度,也可以支持微时间单元的时域调度粒度,以及满足不同业务的时延需求。例如,时间单元主要用于eMBB业务,微时间单元主要用于URLLC业务。需要说明的是,上述时间单元和微时间单元是一般性的说法,具体的一个例子可以为,时间单元可以称为时隙,微时间单元可以称为微时隙、非时隙(non-slot-based)、迷你时隙(mini-slot)或符号(symbol);或者,时间单元可以称为子帧,微时间单元可以称为微子帧;其他类似的时域资源划分方式都不做限定。其中,一个时隙比如可以包括14个时域符号,一个迷你时隙包括的时域符号数小于14,比如2、3、4、5、6或7等等;或者,一个时隙比如可以包括7个时域符号,一个迷你时隙包括的时域符号数小于7,比如2或4等等,具体取值也不做限定。这里的时域符号可以是正交频分复用(orthogonal frequency division multiplexing,OFDM)符号。
目前,NR协议定义的配置资源的周期包括以下可能的取值范围(单位是符号 (symbols))。
对于子载波间隔为15千赫兹(kilohertz,kHz)的一个时间单元,配置资源的周期可以包括2个时域符号(时间长度为1/7ms)、7个时域符号(时间长度为0.5ms)和n*14个符号,n={1,2,4,5,8,10,16,20,32,40,64,80,128,160,320,640}。
对于子载波间隔为30kHz的一个时间单元,配置资源的周期可以包括2个时域符号、7个时域符号和n*14个符号,n={1,2,4,5,8,10,16,20,32,40,64,80,128,160,256,320,640,1280}。
对于子载波间隔为60kHz的一个普通循环前缀(normal cyclic prefix,NCP)的时间单元,配置资源的周期可以包括2个时域符号、7个时域符号和n*14个符号,n={1,2,4,5,8,10,16,20,32,40,64,80,128,160,256,320,512,640,1280,2560}。
对于子载波间隔为60kHz的一个扩展循环前缀(extended cyclic prefix,ECP)的时间单元,配置资源的周期可以包括2个时域符号、7个时域符号和n*14个符号,n={1,2,4,5,8,10,16,20,32,40,64,80,128,160,256,320,512,640,1280,2560}。
对于子载波间隔为120kHz的一个时间单元,配置资源的周期可以包括2个时域符号、7个时域符号和n*14个符号,n={1,2,4,5,8,10,16,20,32,40,64,80,128,160,256,320,512,640,1024,1280,2560,5120}。
网络设备和终端设备可以基于配置资源的周期和业务周期,在配置资源上周期性地交互时间信息。
所述配置资源可以是CG资源或SPS资源。
所述业务周期可以是指业务到达的周期,即需要传输的数据是周期生成的,所述业务周期可以是数据在高层(如应用层)产生的周期,也可以是数据从设备的高层交互到物理层的周期。在本申请中,业务可以理解为需要传输的数据。数据也可以描述为数据信息或时间信息(如:TSN信息,时效性网络信息)。
为了提高配置资源的利用率,本申请实施例提供了一种资源指示的方法,所述方法包括:网络设备通过发送第一指示信息,来指示N个第一时频资源中的M个第一时频资源,其中,N和M均为正整数。该M个第一时频资源中的每个第一时频资源用于传输数据。使得网络设备和终端设备可以以N个第一时频资源为周期,网络设备在N个第一时频资源中的M个第一时频资源上发送数据,终端设备在N个第一时频资源中的M个第一时频资源上接收数据,或者终端设备在N个第一时频资源中的M个第一时频资源上发送数据,网络设备在N个第一时频资源中的M个第一时频资源上接收数据。本申请实施例提供的资源指示的方法,通过指示发送数据的第一时频资源,使得网络设备和终端设备可以在指定的第一时频资源上接收或发送数据,从而,有效地提高了配置资源的利用率。
在本文中,数据可以是指时间信息。如:TSN信息。1个第一时频资源可以用于传输一个数据或多个数据或一个数据的多次重复。
下面将结合附图对本申请实施例的实施方式进行详细描述。
图2示出的是可以应用于本申请实施例的移动通信系统的架构示例图。如图2所示,该移动通信系统包括核心网设备201、网络设备202和至少一个终端设备(如图2中所示的终端设备203和终端设备204)。终端设备通过无线的方式与网络设备相连, 网络设备通过无线或有线方式与核心网设备连接。核心网设备与网络设备可以是独立的不同的物理设备,也可以是将核心网设备的功能与网络设备的逻辑功能集成在同一个物理设备上,还可以是一个物理设备上集成了部分核心网设备的功能和部分的网络设备的功能。终端设备可以是固定位置的,也可以是可移动的。图2只是示意图,该移动通信系统中还可以包括其它网络设备,如还可以包括无线中继设备和无线回传设备,在图2中未画出。本申请的实施例对该移动通信系统中包括的核心网设备、网络设备和终端设备的数量不做限定。
网络设备是终端设备通过无线方式接入到该移动通信系统中的接入设备,可以是基站(base station)、演进型基站(evolved NodeB,eNodeB)、发送接收点(transmission reception point,TRP)、5G移动通信系统中的下一代基站(next generation NodeB,gNB)、未来移动通信系统中的基站或WiFi系统中的接入节点等;也可以是完成基站部分功能的模块或单元,例如,可以是集中式单元(central unit,CU),也可以是分布式单元(distributed unit,DU)。本申请的实施例对无线接入网设备所采用的具体技术和具体设备形态不做限定。在本申请中,无线接入网设备简称网络设备,如果无特殊说明,网络设备均指无线接入网设备。
终端设备也可以称为终端Terminal、用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等。终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。本申请的实施例对终端设备所采用的具体技术和具体设备形态不做限定。
本申请主要应用于5G NR系统。本申请也可以应用于其它的通信系统,只要该通信系统中存在实体需要发送指示信息,另一个实体需要接收该指示信息,并根据该指示信息确定时间。示例的,图3为本申请实施例提供的一种通信系统示例图。如图3所示,基站和终端设备1~终端设备6组成一个通信系统。在该通信系统中,终端设备1~终端设备6可以发送上行数据给基站,基站接收终端设备1~终端设备6发送的上行数据。基站也可以向终端设备1~终端设备6发送下行数据,终端设备1~终端设备6接收下行数据。此外,终端设备4~终端设备6也可以组成一个通信系统。在该通信系统中,终端设备5可以接收终端设备4或终端设备6发送的上行信息,终端设备5向终端设备4或终端设备6发送的下行信息。
网络设备和终端设备可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、气球和人造卫星上。本申请的实施例对网络设备和终端设备的应用场景不做限定。
网络设备和终端设备之间可以通过授权频谱(licensed spectrum)进行通信,也可以通过免授权频谱(unlicensed spectrum)进行通信,也可以同时通过授权频谱和免授权频谱进行通信。网络设备和终端设备之间可以通过6千兆赫(gigahertz,GHz)以 下的频谱进行通信,也可以通过6GHz以上的频谱进行通信,还可以同时使用6GHz以下的频谱和6GHz以上的频谱进行通信。本申请的实施例对网络设备和终端设备之间所使用的频谱资源不做限定。
在本申请的实施例中,时域符号可以是OFDM符号,也可以是单载波频分复用(single carrier-frequency division multiplexing,SC-FDM)符号。如果没有特别说明,本申请实施例中的符号均指时域符号。
可以理解的是,本申请的实施例中的PDSCH和PUSCH只是作为下行数据信道、和上行数据信道一种举例,在不同的系统和不同的场景中,数据信道和控制信道可能有不同的名称,本申请的实施例对此并不做限定。
接下来,对资源指示的方法进行详细说明。在第一种可能的实现方式中,可以通过指示信息指示第一时频资源,网络设备或终端设备在指示的第一时频资源上接收或发送数据。图4为本申请实施例提供的一种资源指示的方法流程图。如图4所示,该方法可以包括:
S401、网络设备向终端设备发送第一指示信息,所述第一指示信息用于指示N个第一时频资源中的M个第一时频资源。
在一些实施例中,网络设备可以通过高层信令向终端设备发送第一指示信息。高层信令可以是指高层协议层发出的信令。高层协议层为物理层以上的至少一个协议层。高层协议层可以包括以下协议层中的至少一个:媒体接入控制(medium access control,MAC)层、无线链路控制(radio link control,RLC)层、分组数据会聚协议(packet data convergence protocol,PDCP)层、无线资源控制(radio resource control,RRC)层和非接入层(non access stratum,NAS)。
例如,网络设备可以通过RRC信令向终端设备发送第一指示信息。或者,可替换描述为:网络设备向终端设备发送RRC信令,该RRC信令包括第一指示信息。
在一些实施例中,网络设备可以通过物理层信令向终端设备发送第一指示信息。如下行控制信令(dynamic control indication,DCI)。
第一指示信息用于指示N个第一时频资源中的M个第一时频资源,其中,N和M均为正整数,M个第一时频资源中的每个第一时频资源用于传输数据。
在一种可能的设计中,第一指示信息可以是比特序列,通过比特序列指示N个第一时频资源中的M个第一时频资源。例如,第一指示信息可以是位图,该位图可以包括N个比特位。若N个比特位中的M个比特位的比特为1,可以表示M个比特位指示的第一时频资源中的每个第一时频资源用于传输数据,N个比特位中的N-M个比特位的比特为0,可以表示N-M个比特位指示的第一时频资源中的每个第一时频资源不用于传输数据。若N个比特位中的M个比特位的比特为0,可以表示M个比特位指示的第一时频资源中的每个第一时频资源用于传输数据,N个比特位中的N-M个比特位的比特为1,可以表示N-M个比特位指示的第一时频资源中的每个第一时频资源不用于传输数据。或者,在第一信息中还指示N的值。
可选的,不用于传输数据的第一时频资源可以传输其他业务信息或其他用户的业务信息,对此,本申请不予限定。
S402、所述终端设备接收所述网络设备发送的所述第一指示信息。
该第一指示信息用于指示N个第一时频资源中的M个第一时频资源,M个第一时频资源中的每个第一时频资源用于传输数据。关于第一指示信息的详细解释可以参考S401的阐述,不予赘述。
在一些实施例中,网络设备向终端设备发送数据时,可以在第一指示信息指示的第一时频资源上发送该数据,其中,所述数据可以是下行数据,第一时频资源可以是PDSCH。具体的,网络设备向终端设备发送数据的详细解释参考S403和S404的阐述。
S403、所述网络设备以所述N个第一时频资源为周期,在所述N个第一时频资源中的M个第一时频资源上向所述终端设备发送数据。
需要特别强调的是,本申请中,在N个第一时频资源中的M个第一时频资源上向终端设备发送的数据可以是M个数据。所述M个数据中的每个数据可以是1个数据传输块(transmit block,TB),也可以是1组数据传输块,所述1组数据传输块可以是一个传输块的多次重复,也可以是多个传输块,后续不再赘述。
在一些实施例中,从第一起始时刻开始,以N个第一时频资源为资源循环周期,在每个资源循环周期内的M个第一时频资源上发送数据。第一起始时刻为发送第一时频资源的起始时刻。在第一时频资源上发送的每个数据信息可以相同,也可以不同,不予限定。
S404、所述终端设备以所述N个第一时频资源为周期,在所述N个第一时频资源中的M个第一时频资源上接收所述网络设备发送的数据。
在一些实施例中,终端设备可以根据第一起始时刻和第一周期确定发送第一时频资源的时刻,第一起始时刻为发送第一时频资源的起始时刻,第一周期为发送第一时频资源的周期。在终端设备接收到第一指示信息后,从第一起始时刻开始,以N个第一时频资源为资源循环周期,在每个资源循环周期内的M个第一时频资源上接收数据。在第一时频资源上接收到的数据可以是M个数据,所述M个数据可以相同,也可不同。所述M个数据中的每个数据可以是1个TB,也可以是1组数据传输块,所述1组数据传输块可以是一个传输块的多次重复,也可以是多个传输块,后续不再赘述。
在另一些实施例中,终端设备向网络设备发送数据时,可以在第一指示信息指示的第一时频资源上发送该数据,其中,所述数据可以是上行数据,第一时频资源可以是PUSCH。具体的,终端设备向网络设备发送数据的详细解释参考S405和S406的阐述。
S405、所述终端设备以所述N个第一时频资源为周期,在所述N个第一时频资源中的M个第一时频资源上向所述网络设备发送数据。
在一些实施例中,在终端设备接收到第一指示信息后,从第一起始时刻开始,以N个第一时频资源为资源循环周期,在每个资源循环周期内的M个第一时频资源上发送数据。
S406、所述网络设备以所述N个第一时频资源为周期,在所述N个第一时频资源中的M个第一时频资源上接收所述终端设备发送的数据。
在一些实施例中,从第一起始时刻开始,以N个第一时频资源为资源循环周期,在每个资源循环周期内的M个第一时频资源上接收M个数据。
本申请实施例提供的资源指示的方法,通过指示发送数据的第一时频资源,使得 网络设备和终端设备可以在指定的第一时频资源上接收或发送数据,从而,有效地提高了配置资源的利用率。
另外,由于第一时频资源是半静态资源,接收端(网络设备或终端设备)可以对第一时频资源进行盲检测接收数据。如果接收端对配置的所有第一时频资源进行盲检测,有些第一时频资源上未承载数据,会导致浪费了接收端的功耗。本申请实施例提供资源指示的方法,接收端对第一指示信息指示的第一时频资源进行盲检测接收数据,避免了对配置的所有第一时频资源进行盲检测,不仅有效地提高了时频资源的利用率,还节省了接收端的功耗。本申请实施例提供如何确定资源分配的方法,在满足数据传输时延的前提下,选取最小的资源循环周期和最少的资源使用个数,从而降低了指示信息的开销,提高了系统资源利用率。并且,采用本申请实施例所提供的方法,能够使业务和资源周期更好的匹配,避免接收端和发送端对可用资源的理解产生偏差,从而保证业务的时延和可靠性。
在一些实施例中,N和M可以是网络设备根据第一起始时刻、第一周期、第二起始时刻和第二周期确定的。第二起始时刻为数据的业务周期的起始时刻。第二周期为数据的业务周期。由于在业务到达后,若业务到达的时刻与发送第一时频资源的时刻不同,则等到发送第一时频资源的时刻后发送数据。为了保证发送数据的时延,避免发生某次业务还没有发送,下一次业务已到达的情况,应设置第一周期小于第二周期。如图5所示,在发送第一指示信息,即S401之前,执行S501。
S501、所述网络设备根据第一起始时刻、第一周期、第二起始时刻和第二周期确定第一时频资源的个数N中的M个第一时频资源。
由于业务到达的时刻和第一时频资源的发送时刻均是周期性出现的,因而业务到达的时刻和第一时频资源的发送时刻之间的差值也呈现出周期规律。在一些实施例中,网络设备可以根据第一周期和第二周期确定N和M的具体数值。N和M满足如下公式(1)。
P_tr*M=P_re*N   (1)
其中,P_tr表示第二周期,P_re表示第一周期。
进一步的,在网络设备确定了N和M的具体数值后,确定N个第一时频资源中传输数据的M个第一时频资源。假设第二起始时刻为数据的业务周期的起始时刻,第二起始时刻与第一起始时刻相同,即第一次业务到达的时刻与第一次发送第一时频资源的时刻相同,可以将第一起始时刻对应的第一时频资源确定为传输数据的第一时频资源,然后,将与业务到达的时刻最近的第一时频资源的时刻对应的第一时频资源确定为传输数据的第一时频资源,以此类推,从而确定N第一时频资源中的M个第一时频资源。
可选的,可以预先为网络设备和终端设备配置第二周期。因此,网络设备无需从其他网元获取第二周期。或通过终端设备和网络设备之间的信息交互,在传输数据前获取第二周期。
下面以第二周期为0.833ms为例,对确定第一时频资源的个数N中的M个第一时频资源进行说明。为了保证发送数据的时延,则在小于0.833ms的第一时频资源中寻找合适的第一时频资源。例如,对于子载波间隔为15kHz的一个时隙,2个符号的时 间长度为1/7ms,7个符号的时间长度为0.5ms,14个符号的时间长度为1ms,因此,第一周期的取值可以是0.5ms或1/7ms。
当第一周期为0.5ms,且第二周期为0.833ms时,将0.5ms和0.833ms代入公式(1),即P_re=0.5ms=1/2ms,P_tr=0.833ms=5/6ms,选择5/6*M=1/2*N成立的最小的M和N,则M=3,N=5。M和N满足互质的关系。
当第一周期为1/7ms,且第二周期为0.833ms时,将1/7ms和0.833ms代入公式(1),即P_re=1/7ms,P_tr=0.833ms=5/6ms,选择5/6*M=1/7*N成立的最小的M和N,则M=6,N=35。M和N满足互质的关系。
从而,在保证数据传输时延的前提下,选择资源循环周期最短的M和N,或进一步考虑资源循环周期内配置资源数最少的M和N,则可以确定M=3,N=5,第一周期为0.5ms。如图6所示,发送数据的示意图。发送第一时频资源的时刻可以是0、0.5、1、1.5、2和2.5等。图中画“×”的时刻对应的第一时域资源上不会传输数据。
如表1所示,为发送数据的具体时刻。
表1
业务序号 业务到达(ms) 发送第一时域资源的时刻(ms) 时延(ms)
0 0 0 0
1 0.833333 1 0.166667
2 1.666667 2 0.333333
3 2.5 2.5 0
4 3.333333 3.5 0.166667
5 4.166667 4.5 0.333333
6 5 5 0
7 5.833333 6 0.166667
8 6.666667 7 0.333333
9 7.5 7.5 0
10 8.333333 8.5 0.166667
11 9.166667 9.5 0.333333
由图6和表1可知,业务序号0表示第1次数据到达,第1次数据到达的到达时刻为0ms,发送第一时域资源的时刻为0ms,第1次发送数据的时刻为0ms。业务序号1表示第2次数据到达,第2次数据到达的到达时刻为0.833333ms,发送第一时域资源的时刻为1ms,第2次传输数据的时刻为1ms。时延为0.166667。业务序号2表示第3次数据到达,第3次数据到达的到达时刻为1.666667ms,发送第一时域资源的时刻为2ms,第3次传输数据的时刻为2ms。时延为0.333333。在对应0.5ms的第一时频资源和1.5ms的第一时频资源上未发送数据,依次循环。
因此,每5个第一时频资源为一个资源循环周期。对于每个资源循环周期,在第一个第一时频资源、第三个第一时频资源和第五个第一时频资源上发送或接收数据, 第二个第一时频资源和第四个第一时频资源上不发送数据。
从而,第一指示信息可以指示5个第一时频资源中的3个第一时频资源。若第一指示信息是位图,该位图为10101。或在第一信息中还指示N的值。
示例的,假设第二周期为16.67ms=100/6ms,选择第一周期小于第二周期的值,如5ms、8ms或10ms,根据公式(1)可以得到如表2中所示的M和N的取值。最后可以确定选取最小的组合M=3,N=5
表2
第一周期 M N
10 3 5
8 12 25
5 3 10
从而,在保证数据传输时延的前提下,选择资源循环周期最短的M和N,或进一步考虑资源循环周期内配置资源数最少的M和N,则可以确定M=3,N=5,第一周期为10ms。第一指示信息可以指示5个第一时频资源中的3个第一时频资源。每5个第一时频资源为一个资源循环周期。对于每个资源循环周期,在第二个第一时频资源、第四个第一时频资源和第五个第一时频资源上发送或接收数据,第一个第一时频资源和第三个第一时频资源上不发送数据。若第一指示信息是位图,该位图为01011。或在第一信息中还指示N的值为5。
进一步的,在网络设备向终端设备发送第一指示信息之前,网络设备可以为终端设备配置第一时频资源,以便于终端设备在第一时频资源上接收或发送数据。如图5所示,在S501之前,执行S502~S503。
S502、所述网络设备向所述终端设备发送第一资源配置信息。
在一些实施例中,网络设备可以通过高层信令向终端设备发送第一资源配置信息。例如,网络设备可以通过RRC信令向终端设备发送第一资源配置信息。例如,RRC信令中的高层参数configuredGrantConfig,configuredGrantConfig包含了rrc-ConfiguredUplinkGrant。第一资源配置信息为rrc-ConfiguredUplinkGrant。第一资源配置信息包含第一起始时刻和第一周期。
S503、所述终端设备接收所述网络设备发送的所述第一资源配置信息。
在一些实施例中,终端设备接收到第一资源配置信息后,可以在周期配置的第一时频资源上发送或接收数据。在另一些实施例中,终端设备接收到第一资源配置信息后,再接收到下行控制信息(downlink control information,DCI)后,激活第一资源配置信息配置的第一时频资源,在周期配置的第一时频资源上发送或接收数据。第一资源配置信息包含第一起始时刻和第一周期。关于第一资源配置信息的具体解释可以参考S502的阐述,不用赘述。
在另一些实施例中,网络设备可以为终端设备配置多套时频资源,在多套时频资源上接收数据。如图7所示,所述方法还包括。
S701、网络设备向终端设备发送第二资源配置信息。
在一些实施例中,网络设备可以通过高层信令向终端设备发送第二资源配置信息。 例如,网络设备可以通过RRC信令向终端设备发送第二资源配置信息。例如,RRC信令中的高层参数configuredGrantConfig,configuredGrantConfig包含了第二资源配置信息(如rrc-ConfiguredUplinkGran)。第二资源配置信息包含第三起始时刻和第三周期,第三起始时刻为发送第二时频资源的起始时刻,第三周期为发送第二时频资源的周期。
S702、所述终端设备接收所述网络设备发送的所述第二资源配置信息。
在一些实施例中,终端设备接收到第二资源配置信息后,可以在周期配置的第二时频资源上发送或接收数据。在另一些实施例中,终端设备接收到第二资源配置信息后,在接收到DCI后,激活第二资源配置信息配置的第二时频资源,在周期配置的第二时频资源上发送或接收数据。第二资源配置信息包含第三起始时刻和第三周期。关于第二资源配置信息的具体解释可以参考S701的阐述,不用赘述。
需要说明的是,本申请实施例提供的资源指示的方法步骤的先后顺序可以进行适当调整。示例的,如S502和S701之间的前后顺序可以互换,即网络设备可以先向终端设备发送第二资源配置信息,再向终端设备发送第一资源配置信息,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化的方法,都应涵盖在本申请的保护范围之内,因此不再赘述。
在一些实施例中,网络设备还可以确定第二时频资源的个数K中的L个第二时频资源,即确定第二时频资源的资源循环周期。如图7所示,在发送第一指示信息,即S401之前,执行S703。
S703、所述网络设备根据第三起始时刻、第三周期、第二起始时刻和第二周期确定第二时频资源的个数K中的L个第二时频资源。
由于业务到达的时刻和第二时频资源的发送时刻均是周期性出现的,因而业务到达的时刻和第二时频资源的发送时刻之间的差值也呈现出周期规律。在一些实施例中,网络设备可以根据第三起始时刻、第三周期、第二起始时刻和第二周期确定K和L,其中,K和L均为正整数,K和L满足公式(1)。具体的可以参考S501的阐述,不予赘述。
从而,第一指示还用于指示K个第二时频资源中的L个第二时频资源。L个第二时频资源中的每个第二时频资源用于传输数据。
在一些实施例中,网络设备向终端设备发送数据时,可以在第一指示信息指示的第二时频资源上发送该数据,其中,所述数据可以是下行数据,第二时频资源可以是PDSCH。具体的,网络设备向终端设备发送数据的详细解释参考执行S704和S705阐述。
S704、所述网络设备以K个所述第二时频资源为周期,在所述K个第二时频资源中的L个所述第二时频资源上向所述终端设备发送数据。
在一些实施例中,从第三起始时刻开始,以K个第二时频资源为资源循环周期,在每个资源循环周期内的L个第二时频资源上发送数据。在第二时频资源上发送数据可以为一个或多个,多个数据中每个数据可以相同,也可以不同,不予限定。
S705、所述终端设备以所述K个第二时频资源为周期,在所述K个第二时频资源中的L个第二时频资源上接收网络设备发送的数据。
在一些实施例中,终端设备可以根据第三起始时刻和第三周期确定发送第二时频资源的时刻。在终端设备接收到第一指示信息后,从第三起始时刻开始,以K个第二时频资源为资源循环周期,在每个资源循环周期内的L个第二时频资源上接收M个数据。在第二时频资源上接收到的数据可以是一个或多个,多个数据中每个数据可以相同,也可以不同,不予限定。
在另一些实施例中,终端设备向网络设备发送数据时,可以在第一指示信息指示的第二时频资源上发送数据,其中,数据可以是上行数据,第二时频资源可以是PUSCH。具体的,终端设备向网络设备发送数据的详细解释参考执行S706和S707的阐述。
S706、所述终端设备以所述K个第二时频资源为周期,在所述K个第二时频资源中的L个第二时频资源上向网络设备发送数据。
在一些实施例中,在终端设备接收到第一指示信息后,从第三起始时刻开始,以K个第二时频资源为资源循环周期,在每个资源循环周期内的L个第二时频资源上发送L个数据。
S707、网络设备以K个第二时频资源为周期,在K个第二时频资源中的L个第二时频资源上接收终端设备发送的数据。
在一些实施例中,从第三起始时刻开始,以K个第二时频资源为资源循环周期,在每个资源循环周期内的L个第二时频资源上接收L个数据。
在一种可能的设计中,第一指示信息是位图,该位图包括N+K个比特位。N个比特位中的M个比特位的比特指示发送或接收数据的第一时频资源。K个比特位中的L个比特位的比特指示发送或接收数据的第二时频资源。或在第一信息中还指示N的值。
例如,若K个比特位中的L个比特位的比特为1,可以表示L个比特位指示的第二时频资源中的每个第二时频资源用于传输数据,K个比特位中的K-L个比特位的比特为0,可以表示K-L个比特位指示的第二时频资源中的每个第二时频资源不用于传输数据。若K个比特位中的L个比特位的比特为0,可以表示L个比特位指示的第二时频资源中的每个第二时频资源用于传输数据,K个比特位中的K-L个比特位的比特为1,可以表示K-L个比特位指示的第二时频资源中的每个第二时频资源不用于传输数据。
可理解,M+L个数据为业务循环周期。每个业务循环周期内,在M个第一时频资源上接收数据(例如M个数据),在L个第二时频资源上接收数据(例如L个数据)。
示例的,如图8所示,发送数据的示意图。第一起始时刻为0ms,第一周期为1ms,发送第一时频资源的时刻可以是整数毫秒,如:0、1、2和3等。第三起始时刻为0.5ms,第三周期为1ms,发送第二时频资源的时刻可以是半整数毫秒,如:0.5、1.5和2.5等。发送第一时频资源的时刻与发送第二时频资源的时刻相差0.5ms。第二周期为0.833ms。图中画“×”的时刻对应的第一时域资源上不会传输数据。
由图8和表1可知,业务序号0表示第1次数据到达,第1次数据到达的到达时刻为0ms,发送第一时域资源的时刻为0ms,第1次发送数据的时刻为0ms。
业务序号1表示第2次数据到达,第2次数据到达的到达时刻为0.833333ms,发送第一时域资源的时刻为1ms,第2次传输数据的时刻为1ms。时延为0.166667。
业务序号2表示第3次数据到达,第3次数据到达的到达时刻为1.666667ms,发 送第一时域资源的时刻为2ms,第3次传输数据的时刻为2ms。时延为0.333333。在对应3ms的第一时频资源和4ms的第一时频资源上未发送数据。
业务序号3表示第4次数据到达,第4次数据到达的到达时刻为2.5ms,发送第一时域资源的时刻为2.5ms,第4次发送数据的时刻为2.5ms。
业务序号4表示第5次数据到达,第5次数据到达的到达时刻为3.333333ms,发送第一时域资源的时刻为3.5ms,第5次传输数据的时刻为3.5ms。时延为0.166667。
业务序号5表示第6次数据到达,第6次数据到达的到达时刻为4.166667ms,发送第一时域资源的时刻为4.5ms,第6次传输数据的时刻为4.5ms。时延为0.333333。在对应0.5ms的第一时频资源和1.5ms的第一时频资源上未发送数据。依次循环。
因此,每5个第一时频资源为一个第一资源循环周期。对于每个第一资源循环周期,在第一个第一时频资源、第二个第一时频资源和第三个第一时频资源上发送或接收数据,第四个第一时频资源和第五个第一时频资源上不发送数据。每5个第二时频资源为一个第二资源循环周期。对于每个第二资源循环周期,在第三个第一时频资源、第四个第一时频资源和第五个第一时频资源上发送或接收数据,第一个第一时频资源和第二个第一时频资源上不发送数据。
从而,第一指示信息可以指示5个第一时频资源中的3个第一时频资源和5个第二时频资源中的3个第二时频资源。该位图为1110000111。或在第一信息中还指示N的值为10。
在另一种可能的设计中,第一指示信息包括传输M个数据的第一时频资源的标识和传输L个数据的第二时频资源的标识。
应理解,所述“传输”可以是指发送或接收。M+L个数据为业务循环周期。每个业务循环周期内,在M个第一时频资源上接收M个数据,在L个第二时频资源上接收L个数据。
假设第一时频资源的标识为1,第二时频资源的标识为2。由图8和表1可知,第一指示信息可以指示3个第一时频资源的标识和3个第二时频资源的标识,即1,1,1,2,2,2。
示例的,数据的第一个到达时刻为0ms,第一起始时刻为0ms,传输第1次数据采用第一时频资源,因此,连续传输3次数据,即传输第1、2和3次数据采用第一时频资源,第4次数据的到达时刻为2.5ms,在传输第3次数据的2ms之后,2.5ms是传输数据的第一个时机,因此,在第二时频资源上发送3次数据,即传输第4、5和6次数据采用第二时频资源。依次类推传输数据。
在第二种可能的实现方式中,在网络设备或终端设备发送或接收数据前,可以先自主确定发送或接收数据的第一时频资源。图9为本申请实施例提供的一种资源指示的方法流程图。如图9所示,该方法可以包括:
S901、网络设备向终端设备发送第一资源配置信息。第一资源配置信息包含第一周期。
第一周期为发送第一时频资源的周期。在一些实施例中,网络设备可以通过高层信令向终端设备发送第一资源配置信息。关于发送第一资源配置信息的具体解释可以参考S502的阐述,不予赘述。
S902、所述终端设备接收所述网络设备发送的所述第一资源配置信息。
第一资源配置信息包含第一周期,关于接收第一资源配置信息的具体解释可以参考S503的阐述,不用赘述。
在一些实施例中,网络设备向终端设备发送数据前,可以先确定发送数据的第一时频资源,其中,数据可以是下行数据,第一时频资源可以是PDSCH。执行S903和S906。
S903、所述网络设备根据所述第一周期、第二周期、第i-1时刻和第j-1时刻确定第j时刻。
第二周期为数据的业务周期,第二周期大于第一周期。第i-1时刻为数据的第i-1个业务周期的起始时刻,第j-1时刻为第i-1次传输数据的第一时频资源的起始时刻,第j时刻为第i次传输数据的第一时频资源的起始时刻,i和j均为正整数。
在一种可能的设计中,可以对每个第一时频资源进行检测,确定出可以发送数据的第一时频资源。在一些实施例中,网络设备可以先根据第i-1时刻和第j-1时刻确定第一数值,第一数值为第j-1时刻与第i-1时刻的差值,或者,第一数值为第j-1时刻和第i-1时刻的差值的绝对值。然后,根据第一周期、第一数值和第二周期确定n,n为正整数,n为第一周期的个数,第一周期的个数满足第一条件的最小值,第一条件为第一周期与第一数值之和大于第二周期。将n个第一周期与第一数值之和确定为第j时刻。第j时刻满足公式(2)。
T j=n*c 1+|t i-1-T i-1|>c 2   (2)
其中,T j表示第j时刻,c 1表示第一周期,n表示第一周期的个数,t i-1表示第i-1时刻,T i-1表示第i-1时刻,c 2表示第二周期。
在另一种可能的设计中,网络设备可以根据业务周期的起始时刻(或业务的到达时刻)确定发送数据的第一时频资源的时刻。
在一些实施例中,网络设备可以先根据第j-1时刻、第一周期和第i时刻确定n,n为正整数,n为第一周期的个数,第一周期的个数满足第一条件的最小值,第一条件为第一周期与第j-1时刻之和大于第i时刻,第i时刻为数据的第i个业务周期的起始时刻,第i-1时刻和第二周期之和等于第i时刻。然后,根据n个第一周期与第j-1时刻确定第j时刻,第j时刻为大于第i时刻的第一时频资源的起始时刻中的最小值。
第j时刻满足公式(3)。
T j=T j-1+n*c 1>t i   (3)
其中,T j表示第j时刻,c 1表示第一周期,n表示第一周期的个数,t i表示第i时刻,T j-1表示第j-1时刻。
S904、所述网络设备在所述第j时刻的第一时频资源上向所述终端设备发送数据。
从而,网络设备在确定的第一时频资源上发送数据,未发送数据的第一时频资源可以发送其他信息,有效地提高了配置资源的利用率。
S905、所述终端设备根据所述第一周期、所述第二周期、所述第i-1时刻和所述第j-1时刻确定第j时刻。
在一种可能的设计中,可以对每个第一时频资源进行检测,确定出可以发送数据的第一时频资源。在另一种可能的设计中,网络设备可以根据业务周期的起始时刻(或 业务的到达时刻)确定发送数据的第一时频资源的时刻。具体的参考S903的阐述,不予赘述。
S906、所述终端设备在所述第j时刻的所述第一时频资源上接收所述网络设备发送的数据。
从而,终端设备在确定的第一时频资源上接收数据,未接收数据的第一时频资源可以接收其他信息,有效地提高了配置资源的利用率。同时,避免了对配置的所有第一时频资源进行盲检测,对确定的第一时频资源进行盲检测,节省了终端设备的功耗。
在另一些实施例中,终端设备向网络设备发送数据前,可以先确定发送数据的第一时频资源,其中,数据可以是上行数据,第一时频资源可以是PUSCH。执行S907和S910。
S907、所述终端设备根据所述第一周期所述、第二周期、所述第i-1时刻和所述第j-1时刻确定第j时刻。
S908、所述终端设备在所述第j时刻的所述第一时频资源上向所述网络设备发送数据。
S909、所述网络设备根据所述第一周期、所述第二周期、所述第i-1时刻和所述第j-1时刻确定所述第j时刻。
S910、所述网络设备在所述第j时刻的所述第一时频资源上接收所述终端设备发送的数据。
S907和S910具体的解释可以参考S903和S906的阐述,不予赘述。
另外,若数据的第1个业务周期的起始时刻与第1次传输数据的第一时频资源的起始时刻存在偏差,可能导致传输数据可能存在误差,接收端无法准确地接收数据。如表3所示。
表3
业务序号 业务到达 发送时刻 时延 *业务到达 *发送时刻 *时延
0 0 0 0 -0.2 0 0.2
1 0.833333 1 0.166667 0.633333 1 0.366667
2 1.666667 2 0.333333 1.466667 1.5 0.033333
3 2.5 2.5 0 2.3 2.5 0.2
4 3.333333 3.5 0.166667 3.133333 3.5 0.366667
5 4.166667 4.5 0.333333 3.966667 4 0.033333
6 5 5 0 4.8 5 0.2
7 5.833333 6 0.166667 5.633333 6 0.366667
8 6.666667 7 0.333333 6.466667 6.5 0.033333
9 7.5 7.5 0 7.3 7.5 0.2
10 8.333333 8.5 0.166667 8.133333 8.5 0.366667
11 9.166667 9.5 0.333333 8.966667 9 0.033333
如表3所示,“发送时刻”表示根据本申请实施例所述的资源指示的方法确定的传输数据的时刻。“*业务到达”表示实际传输数据的时刻。
在一些实施例中,终端设备可以向网络设备发送第二数值,第二数值用于指示数据的第p个业务周期的起始时刻与传输第q个数据的第一时频资源的起始时刻的差值,或者,数据的第p个业务周期的起始时刻与传输第q个数据的第一时频资源的起始时刻的差值的绝对值。p和q为正整数,如p=1,q=1。
第1次传输数据的第一时频资源的起始时刻可以是第一起始时刻,第一起始时刻为发送第一时频资源的起始时刻。终端设备可以接收网络设备发送的第一资源配置信息获取第一起始时刻。
可以理解的是,为了实现上述实施例中功能,网络设备和终端设备包括了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本申请中所公开的实施例描述的各示例的单元及方法步骤,本申请能够以硬件或硬件和计算机软件相结合的形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用场景和设计约束条件。
图10和图11为本申请的实施例提供的可能的通信装置的结构示意图。这些通信装置可以用于实现上述方法实施例中终端设备或网络设备的功能,因此也能实现上述方法实施例所具备的有益效果。在本申请的实施例中,该通信装置可以是如图2所示的终端设备203或终端设备204,也可以是如图2所示的无线接入网设备202,还可以是应用于终端设备或网络设备的模块(如芯片)。
如图10所示,通信装置1000包括处理单元1010和收发单元1020。通信装置1000用于实现上述图4、图5、图7或图9中所示的方法实施例中终端设备或网络设备的功能。
当通信装置1000用于实现图4所示的方法实施例中终端设备的功能时:收发单元1020用于执行S402、S404和S405。
当通信装置1000用于实现图4所示的方法实施例中网络设备的功能时:收发单元1020用于S401、S403和S406。
当通信装置1000用于实现图5所示的方法实施例中终端设备的功能时:收发单元1020用于执行S402、S404、S405和S503。
当通信装置1000用于实现图5所示的方法实施例中网络设备的功能时:收发单元1020用于S401、S403、S406和S502,处理单元1010用于S501。
当通信装置1000用于实现图7所示的方法实施例中终端设备的功能时:收发单元1020用于执行S402、S404、S405、S503、S702、S705和S706。
当通信装置1000用于实现图7所示的方法实施例中网络设备的功能时:收发单元1020用于S401、S403、S406、S502、S701、S704和S707,处理单元1010用于S501和S703。
当通信装置1000用于实现图9所示的方法实施例中终端设备的功能时:收发单元1020用于执行S902、S906和S908,处理单元1010用于S905和S907。
当通信装置1000用于实现图9所示的方法实施例中网络设备的功能时:收发单元1020用于执行S901、S904和S910,处理单元1010用于S903和S909。
有关上述处理单元1010和收发单元1020更详细的描述可以直接参考图4、图5、图7或图9所示的方法实施例中相关描述直接得到,这里不加赘述。
如图11所示,通信装置1100包括处理器1110和接口电路1120。处理器1110和接口电路1120之间相互耦合。可以理解的是,接口电路1120可以为收发器或输入输出接口。可选的,通信装置1100还可以包括存储器1130,用于存储处理器1110执行的指令或存储处理器1110运行指令所需要的输入数据或存储处理器1110运行指令后产生的数据。
当通信装置1100用于实现图4、图5、图7或图9所示的方法时,处理器1110用于执行上述处理单元1010的功能,接口电路1120用于执行上述收发单元1020的功能。
当上述通信装置为应用于终端设备的芯片时,该终端设备芯片实现上述方法实施例中终端设备的功能。该终端设备芯片从终端设备中的其它模块(如射频模块或天线)接收信息,该信息是网络设备发送给终端设备的;或者,该终端设备芯片向终端设备中的其它模块(如射频模块或天线)发送信息,该信息是终端设备发送给网络设备的。
当上述通信装置为应用于网络设备的芯片时,该网络设备芯片实现上述方法实施例中网络设备的功能。该网络设备芯片从网络设备中的其它模块(如射频模块或天线)接收信息,该信息是终端设备发送给网络设备的;或者,该网络设备芯片向网络设备中的其它模块(如射频模块或天线)发送信息,该信息是网络设备发送给终端设备的。
可以理解的是,本申请的实施例中的处理器可以是中央处理单元(Central Processing Unit,CPU),还可以是其它通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其它可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。通用处理器可以是微处理器,也可以是任何常规的处理器。
本申请的实施例中的方法步骤可以通过硬件的方式来实现,也可以由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器(Random Access Memory,RAM)、闪存、只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于网络设备或终端设备中。当然,处理器和存储介质也可以作为分立组件存在于网络设备或终端设备中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序或指令。在计算机上加载和执行所述计算机程序或指令时,全部或部分地执行本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、用户设备或者其它可编程装置。所述计算机程序或指令可以存储在计算机可读存储介质中,或者从一个计算机可读存 储介质向另一个计算机可读存储介质传输,例如,所述计算机程序或指令可以从一个网站站点、计算机、服务器或数据中心通过有线或无线方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是集成一个或多个可用介质的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,例如,软盘、硬盘、磁带;也可以是光介质,例如,数字视频光盘(digital video disc,DVD);还可以是半导体介质,例如,固态硬盘(solid state drive,SSD)。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。在本申请的文字描述中,字符“/”,一般表示前后关联对象是一种“或”的关系;在本申请的公式中,字符“/”,表示前后关联对象是一种“相除”的关系。
可以理解的是,在本申请的实施例中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请的实施例的范围。上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定。

Claims (19)

  1. 一种资源指示的方法,其特征在于,包括:
    发送第一指示信息,所述第一指示信息用于指示N个第一时频资源中的M个第一时频资源,所述M个第一时频资源中的每个所述第一时频资源用于传输数据,其中,所述N和M均为正整数;
    以所述N个第一时频资源为周期,在所述N个第一时频资源中的M个第一时频资源上发送或接收所述数据。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    根据第一起始时刻、第一周期、第二起始时刻和第二周期确定所述第一时频资源的个数N中的M个第一时频资源,所述第一起始时刻为发送所述第一时频资源的起始时刻,所述第一周期为发送所述第一时频资源的周期,所述第二起始时刻为所述数据的业务周期的起始时刻,所述第二周期为所述数据的业务周期,所述第二周期大于所述第一周期。
  3. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    发送第一资源配置信息,所述第一资源配置信息包含第一起始时刻和第一周期。
  4. 根据权利要求3所述的方法,其特征在于,所述方法还包括:
    发送第二资源配置信息,所述第二资源配置信息包含第三起始时刻和第三周期,所述第三起始时刻为发送第二时频资源的起始时刻,所述第三周期为发送所述第二时频资源的周期;
    根据所述第三起始时刻、所述第三周期、第二起始时刻和第二周期确定所述第二时频资源的个数K中的L个第二时频资源,所述第二周期大于所述第三周期,K和L均为正整数,所述第一指示还用于指示K个第二时频资源中的L个第二时频资源;
    以所述K个第二时频资源为周期,在所述K个第二时频资源中的L个第二时频资源上发送或接收所述数据。
  5. 根据权利要求4所述的方法,其特征在于,所述第一指示信息包括传输所述数据的第一时频资源的标识和传输所述数据的第二时频资源的标识。
  6. 一种资源指示的方法,其特征在于,包括:
    接收第一指示信息,所述第一指示信息用于指示N个第一时频资源中的M个第一时频资源,所述M个第一时频资源中的每个所述第一时频资源用于传输数据,其中,所述N和M均为正整数;
    以所述N个第一时频资源为周期,在所述N个第一时频资源中的M个第一时频资源上接收或发送所述数据。
  7. 根据权利要求6所述的方法,其特征在于,所述N和M是根据第一起始时刻、第一周期、第二起始时刻和第二周期确定的,所述第一起始时刻为发送所述第一时频资源的起始时刻,所述第一周期为发送所述第一时频资源的周期,所述第二起始时刻为所述数据的业务周期的起始时刻,所述第二周期为所述数据的业务周期,所述第二周期大于所述第一周期。
  8. 根据权利要求6或7所述的方法,其特征在于,所述方法还包括:
    接收第一资源配置信息,所述第一资源配置信息包含第一起始时刻和第一周期。
  9. 根据权利要求8所述的方法,其特征在于,所述方法还包括:
    接收第二资源配置信息,所述第二资源配置信息包含第三起始时刻和第三周期,所述第三起始时刻为发送第二时频资源的起始时刻,所述第三周期为发送所述第二时频资源的周期,所述第一指示还用于指示K个第二时频资源中的L个第二时频资源,所述K和L是根据所述第三周期和第二周期确定的,所述第二周期大于所述第三周期,所述K和L均为正整数;
    以所述K个第二时频资源为周期,在所述K个第二时频资源中的L个第二时频资源上接收或发送所述数据。
  10. 根据权利要求9所述的方法,其特征在于,所述第一指示信息包括传输所述数据的第一时频资源的标识和传输所述数据的第二时频资源的标识。
  11. 一种资源指示的方法,其特征在于,包括:
    发送第一资源配置信息,所述第一资源配置信息包含第一周期,所述第一周期为发送第一时频资源的周期;
    根据所述第一周期、第二周期、第i-1时刻和第j-1时刻确定第j时刻,所述第二周期为数据的业务周期,所述第二周期大于所述第一周期,所述第i-1时刻为所述数据的第i-1个业务周期的起始时刻,所述第j-1时刻为第i-1次传输所述数据的第一时频资源的起始时刻,所述第j时刻为第i次传输所述数据的第一时频资源的起始时刻,其中,所述i和j均为正整数;
    在所述第j时刻的第一时频资源上发送或接收所述数据。
  12. 一种资源指示的方法,其特征在于,包括:
    接收第一资源配置信息,所述第一资源配置信息包含第一周期,所述第一周期为发送第一时频资源的周期;
    根据所述第一周期、第二周期、第i-1时刻和第j-1时刻确定第j时刻,所述第二周期为数据的业务周期,所述第二周期大于所述第一周期,所述第i-1时刻为所述数据的第i-1个业务周期的起始时刻,所述第j-1时刻为第i-1次传输所述数据的第一时频资源的起始时刻,所述第j时刻为第i次传输所述数据的第一时频资源的起始时刻,其中,所述i和j均为正整数;
    在所述第j时刻的第一时频资源上接收或发送所述数据。
  13. 根据权利要求11或12所述的方法,其特征在于,所述根据所述第一周期、第二周期、第i-1时刻和第j-1时刻确定第j时刻,包括:
    根据所述第i-1时刻和所述第j-1时刻确定第一数值,所述第一数值为所述第j-1时刻与所述第i-1时刻的差值,或者,所述第一数值为所述第j-1时刻和所述第i-1时刻的差值的绝对值;
    根据所述第一周期、所述第一数值和所述第二周期确定n,所述n为正整数,所述n为所述第一周期的个数,所述第一周期的个数满足第一条件的最小值,所述第一条件为所述第一周期与所述第一数值之和大于所述第二周期;
    确定n个所述第一周期与所述第一数值之和为所述第j时刻。
  14. 根据权利要求11或12所述的方法,其特征在于,所述根据所述第一周期、第二周期、第i-1时刻和第j-1时刻确定第j时刻,包括:
    根据所述第j-1时刻、所述第一周期和第i时刻确定n,所述n为正整数,所述n为所述第一周期的个数,所述第一周期的个数满足第一条件的最小值,所述第一条件为所述第一周期与所述第j-1时刻之和大于所述第i时刻,所述第i时刻为所述数据的第i个业务周期的起始时刻,所述第i-1时刻和所述第二周期之和等于所述第i时刻;
    根据n个所述第一周期与所述第j-1时刻确定所述第j时刻,所述第j时刻为大于第i时刻的所述第一时频资源的起始时刻中的最小值。
  15. 根据权利要求12-14中任一项所述的方法,其特征在于,所述方法还包括:
    发送第二数值,所述第二数值用于指示所述数据的第p个业务周期的起始时刻与传输第q个数据的第一时频资源的起始时刻的差值,或者,所述数据的第p个业务周期的起始时刻与传输所述第q个数据的第一时频资源的起始时刻的差值的绝对值,p和q为正整数。
  16. 一种通信装置,其特征在于,包括:至少一个处理器、存储器和总线,其中,所述存储器用于存储计算机程序,使得所述计算机程序被所述至少一个处理器执行时实现如权利要求1-5中任一项所述的资源指示的方法、或者实现如权利要求11、13-15中任一项所述的资源指示的方法。
  17. 一种通信装置,其特征在于,包括:至少一个处理器、存储器和总线,其中,所述存储器用于存储计算机程序,使得所述计算机程序被所述至少一个处理器执行时实现如权利要求6-10中任一项所述的资源指示的方法、或者实现如权利要求12-15中任一项所述的资源指示的方法。
  18. 一种计算机可读存储介质,其特征在于,包括:计算机软件指令;
    当所述计算机软件指令在通信装置或内置在通信装置的芯片中运行时,使得所述通信装置执行如权利要求1-5中任一项所述的资源指示的方法、或者实现如权利要求11、13-15中任一项所述的资源指示的方法。
  19. 一种计算机可读存储介质,其特征在于,包括:计算机软件指令;
    当所述计算机软件指令在通信装置或内置在通信装置的芯片中运行时,使得所述通信装置执行如权利要求6-10中任一项所述的资源指示的方法、或者实现如权利要求12-15中任一项所述的资源指示的方法。
PCT/CN2019/116885 2019-11-08 2019-11-08 一种资源指示的方法及装置 WO2021088085A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/116885 WO2021088085A1 (zh) 2019-11-08 2019-11-08 一种资源指示的方法及装置
CN201980101684.5A CN114600516B (zh) 2019-11-08 2019-11-08 一种资源指示的方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/116885 WO2021088085A1 (zh) 2019-11-08 2019-11-08 一种资源指示的方法及装置

Publications (1)

Publication Number Publication Date
WO2021088085A1 true WO2021088085A1 (zh) 2021-05-14

Family

ID=75848691

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/116885 WO2021088085A1 (zh) 2019-11-08 2019-11-08 一种资源指示的方法及装置

Country Status (2)

Country Link
CN (1) CN114600516B (zh)
WO (1) WO2021088085A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023088045A1 (zh) * 2021-11-17 2023-05-25 华为技术有限公司 一种资源配置方法、装置及相关设备
WO2024066811A1 (zh) * 2022-09-27 2024-04-04 荣耀终端有限公司 配置资源的方法及装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108347763A (zh) * 2017-01-24 2018-07-31 华为技术有限公司 授时的方法、终端设备和网络设备
US20190200106A1 (en) * 2015-11-24 2019-06-27 Telefonaktiebolaget Lm Ericsson (Publ) Switching data signals of at least two types for transmission over a transport network providing both backhaul and fronthaul (xhaul)connectivity

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108242989B (zh) * 2016-12-27 2022-07-15 中兴通讯股份有限公司 数据传输方法、数据解调方法、装置及终端
CN108633041B (zh) * 2017-03-24 2021-02-23 华为技术有限公司 接收信息的方法及其装置和发送信息的方法及其装置
CN109462892B (zh) * 2017-06-30 2019-11-19 华为技术有限公司 控制信息传输方法和设备
CN109309961B (zh) * 2017-07-28 2023-06-02 华为技术有限公司 一种配置随机接入的方法、网络设备及终端设备
CN109963335B (zh) * 2017-12-23 2022-12-02 华为技术有限公司 通信方法和装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190200106A1 (en) * 2015-11-24 2019-06-27 Telefonaktiebolaget Lm Ericsson (Publ) Switching data signals of at least two types for transmission over a transport network providing both backhaul and fronthaul (xhaul)connectivity
CN108347763A (zh) * 2017-01-24 2018-07-31 华为技术有限公司 授时的方法、终端设备和网络设备

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "On SPS/CG issues for IIoT", 3GPP DRAFT; R1-1906285 ON SPS CG ISSUES FOR IIOT, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, Nevada, USA; 20190513 - 20190517, 13 May 2019 (2019-05-13), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051727737 *
ERICSSON: "On support of non-integer multiple of CG/SPS periodicities", 3GPP DRAFT; R2-1906841 ON SUPPORT OF NON-INTEGER MULTIPLE OF CGSPS PERIODICITIES, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Reno, US; 20190513 - 20190517, 13 May 2019 (2019-05-13), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051730293 *
HUAWEI, HISILICON: "Solutions to mitigate the periodicity misalignment between TSC traffic and CG/SPS", 3GPP DRAFT; R2-1907233 SOLUTIONS TO MITIGATE THE PERIODICITY MISALIGNMENT BETWEEN TSC TRAFFIC AND CG SPS, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Reno, USA; 20190513 - 20190517, 13 May 2019 (2019-05-13), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051730675 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023088045A1 (zh) * 2021-11-17 2023-05-25 华为技术有限公司 一种资源配置方法、装置及相关设备
WO2024066811A1 (zh) * 2022-09-27 2024-04-04 荣耀终端有限公司 配置资源的方法及装置

Also Published As

Publication number Publication date
CN114600516B (zh) 2023-11-10
CN114600516A (zh) 2022-06-07

Similar Documents

Publication Publication Date Title
WO2019129012A1 (zh) 控制信息的传输方法
WO2018040779A1 (zh) 一种下行传输方法及装置
US20200163097A1 (en) Communication method, network device, and relay device
CN104936133A (zh) 机器类型通信的方法、基站以及终端
CN104936132A (zh) 机器类型通信的方法、终端以及基站
WO2017025066A1 (zh) 一种数据传输方法及装置
KR20180111793A (ko) 서비스 전송 방법 및 장치
WO2019154090A1 (zh) 信号传输的方法和装置
WO2016123772A1 (zh) 一种传输业务数据的方法和装置
WO2021057829A1 (zh) 时域资源确定方法、装置、设备及存储介质
WO2018228537A1 (zh) 信息发送、接收方法及装置
JP2023512950A (ja) サイドリンク通信のための方法およびデバイス
WO2020108524A1 (zh) 传输方法和装置
WO2021088085A1 (zh) 一种资源指示的方法及装置
WO2019029463A1 (zh) 一种接收控制信息、发送控制信息的方法及设备
WO2021062818A1 (zh) 一种发送混合自动反馈重传确认/否认信息的方法及装置
WO2019192515A1 (zh) 一种反馈信息的传输方法和装置
WO2020087528A1 (zh) 无线通信方法、终端设备和网络设备
CN107370703B (zh) 信息的收发方法、装置及系统
WO2019041261A1 (zh) 一种通信方法及设备
WO2021027904A1 (zh) 无线通信的方法和装置以及通信设备
WO2020088517A1 (zh) 数据传输方法和设备
WO2020088455A1 (zh) 通信方法和通信装置
WO2021035440A1 (zh) 收发控制信息的方法、装置和系统
WO2019001523A1 (zh) 控制信息传输方法和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19951835

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19951835

Country of ref document: EP

Kind code of ref document: A1