WO2018040779A1 - 一种下行传输方法及装置 - Google Patents

一种下行传输方法及装置 Download PDF

Info

Publication number
WO2018040779A1
WO2018040779A1 PCT/CN2017/093749 CN2017093749W WO2018040779A1 WO 2018040779 A1 WO2018040779 A1 WO 2018040779A1 CN 2017093749 W CN2017093749 W CN 2017093749W WO 2018040779 A1 WO2018040779 A1 WO 2018040779A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource
downlink transmission
network side
time
side device
Prior art date
Application number
PCT/CN2017/093749
Other languages
English (en)
French (fr)
Inventor
刘亚林
李赛楠
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP17845082.1A priority Critical patent/EP3493440A4/en
Publication of WO2018040779A1 publication Critical patent/WO2018040779A1/zh
Priority to US16/286,931 priority patent/US11197149B2/en
Priority to US17/513,603 priority patent/US11736935B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities
    • H04W8/24Transfer of terminal data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W68/00User notification, e.g. alerting and paging, for incoming communication, change of service or the like
    • H04W68/005Transmission of information for alerting of incoming communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1273Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/51Allocation or scheduling criteria for wireless resources based on terminal or device properties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK

Definitions

  • the embodiments of the present invention relate to the field of communications technologies, and in particular, to a downlink transmission method and apparatus.
  • the amount of data transmitted by a single sensor is extremely low, but the overall system
  • the number of connections is very high; for example, three dimensional (3D) holographic images require xGbps (1000 megabits per second) bandwidth.
  • the general demand is: reliable transmission, but not sensitive to delay; or, low latency, high reliability transmission.
  • V2V vehicle to vehicle
  • a grant-free scheme is proposed in the prior art to reduce the transmission delay.
  • the specific implementation scheme is: the network device pre-allocates and informs the terminal device of multiple transmission resources; when the terminal device has an uplink data transmission requirement, selects at least one transmission resource from multiple transmission resources pre-allocated by the network device, without requiring the terminal device to The allocation of uplink transmission resources is performed by signaling, thereby saving signaling overhead and reducing transmission delay.
  • uplink reliable transmission can have multiple schemes, including multiple transmissions in time domain, frequency domain, airspace, and the like. Its main purpose is to ensure the reliable transmission of air.
  • the downlink data scheduling is mainly performed by the Physical Downlink Control Channel (PDCCH), but currently it is generally scheduled once, and an error occurs for retransmission, for ultra-reliable low-latency communication (Ultra) -Reliable and Low Latency Communications, URLLC) transmission, which will cause the delay to not meet the requirements.
  • PDCCH Physical Downlink Control Channel
  • the embodiments of the present invention provide a downlink transmission method and device, which are used to solve the problem that the downlink transmission mode in the prior art cannot meet the requirement of ultra-reliable low-latency communication delay.
  • the first aspect provides a downlink transmission method, including: the network side device sends a signaling indication to the terminal device UE, where the signaling indication carries the allocation information, where the allocation information is used to indicate multiple downlinks of the transmission data block. Transfer resources.
  • the method disclosed in the embodiment of the present invention specifies a plurality of transmission resources to simultaneously transmit data blocks during downlink data transmission, where the multiple transmission resources are indicated to the terminal device by signaling, and the terminal device is specified in multiple according to the signaling indication.
  • the transmission resource receives the data block, and after receiving the data block, the signal gain combining can be performed, the transmission error performance is improved, and the requirement of reliable transmission and extremely low delay is ensured.
  • the method before the network side device sends the signaling indication to the terminal device UE, the method further includes: acquiring the transmission capability information of the UE, where the transmission capability information is used to indicate whether the UE is Supporting ultra-reliable low-latency communication URLLC transmission; the network side device determines whether to send the signaling indication to the UE according to the transmission capability information.
  • the acquiring the transmission capability information of the UE includes: acquiring, by the network side device, the transmission capability information of the UE in a message sent by the UE random access procedure; or The network side device acquires the transmission capability information of the UE in the RRC signaling.
  • the network side device sends a signaling indication to the terminal device UE, where the network side device performs one of downlink physical control channel PDCCH, paging signaling, or RRC signaling through downlink signaling.
  • the signaling indication is sent to the UE in a combination of multiples.
  • the allocation information includes a time-frequency interval of the multiple downlink transmission resources, a number of resource blocks corresponding to the multiple downlink transmission resources, and a time of a reference resource block in the resource block. Frequency position.
  • the allocation information includes a time-frequency location of the multiple downlink transmission resources.
  • the allocation information includes a time-frequency location of a reference resource block in a resource block corresponding to the multiple downlink transmission resources, and the corresponding UE is configured according to a time-frequency location of the reference resource block.
  • the time-frequency interval and the number of resource blocks of the downlink transmission resource that are pre-configured determine the downlink transmission resource.
  • the method before the network side device sends the signaling indication to the terminal device UE, the method further includes: the network side device and the UE predefining a time-frequency interval of the downlink transmission resource by using a protocol The number of resource blocks; or determining the time-frequency interval and the number of resource blocks of the downlink transmission resource when the terminal device accesses.
  • the data blocks transmitted on multiple resource blocks are completely consistent.
  • multiple resource blocks are used to transmit different redundancy versions of the same data block.
  • the size of each resource block in the multiple resource blocks is different.
  • a coded modulation scheme of each resource block in the multiple resource blocks is different.
  • a second aspect provides a downlink data receiving method, including: receiving, by a terminal device, a network side device, a signaling indication, where the signaling indication carries information, where the allocation information is used to indicate multiple transmission data blocks. a downlink transmission resource; the UE performs data block reception on the multiple downlink transmission resources according to the allocation information.
  • the method before the terminal device UE receives the network side device to send the signaling indication, the method further includes: the UE sends its own transmission capability information to the network side device, so that the network side device according to the The transmission capability information determines whether to send the signaling indication to the UE; wherein the transmission capability information is used to indicate whether the UE supports ultra-reliable low-latency communication URLLC transmission.
  • the sending, by the UE, the transmission capability information of the UE to the network side device includes: the UE carrying the transmission capability information in a message sent by a random access procedure; or the UE is The transmission capability information is carried in the RRC signaling.
  • the receiving, by the UE, the network side device to send the signaling indication includes:
  • the UE receives the signaling indication by using a downlink signaling physical control channel PDCCH, paging signaling, or RRC signaling.
  • PDCCH physical control channel
  • paging signaling paging signaling
  • RRC Radio Resource Control
  • the allocation information includes a time-frequency interval of the multiple downlink transmission resources, a number of resource blocks corresponding to the multiple downlink transmission resources, and a time of a reference resource block in the resource block. Frequency position.
  • the allocation information includes a time-frequency location of the multiple downlink transmission resources.
  • the allocation information includes a time-frequency location of a reference resource block in a resource block corresponding to the multiple downlink transmission resources, and the UE transmits the multiple downlinks according to the allocation information.
  • the method further includes: determining, by the UE, the multiple downlink transmission resources according to a time-frequency location of the reference resource block, a pre-configured time-frequency interval of the downlink transmission resource, and a number of resource blocks. .
  • the method before the terminal device UE receives the signaling indication by the network side device, the method further includes: the UE and the network side device predefining a time-frequency interval of the downlink transmission resource by using a protocol The number of resource blocks; or the time-frequency interval and the number of resource blocks of the downlink transmission resource are determined when the network side device is connected.
  • the data blocks transmitted on multiple resource blocks are completely consistent.
  • multiple resource blocks are used to transmit different redundancy versions of the same data block.
  • the size of each resource block in the multiple resource blocks is different.
  • a coded modulation scheme of each resource block in the multiple resource blocks is different.
  • the third aspect provides a network side device, including: a processor, configured to generate a signaling indication, where the signaling indication carries the allocation information, where the allocation information is used to indicate multiple downlink transmission resources of the transmission data block. a transceiver for transmitting a signaling indication to the terminal device UE.
  • the processor is further configured to acquire transmission capability information of the UE, and determine, according to the transmission capability information, whether to send the signaling indication to the UE, where the transmission capability The information is used to indicate whether the UE supports ultra-reliable low-latency communication URLLC transmission.
  • the processor is specifically configured to acquire, according to a message sent by the UE, a transmission capability information of the UE, or obtain, in RRC signaling, a transmission capability of the UE. information.
  • the transceiver is configured to send the signaling indication to the UE by using a combination of one or more of a downlink signaling physical control channel PDCCH, paging signaling, or RRC signaling. .
  • the processor is configured to use a time-frequency interval of the multiple downlink transmission resources, a number of resource blocks corresponding to the multiple downlink transmission resources, and a reference resource block in the resource block.
  • the time-frequency location is added to the signaling indication as the allocation information.
  • the processor is configured to add a time-frequency location of the multiple downlink transmission resources as the allocation information to the signaling indication.
  • the processor is configured to add a time-frequency position of a reference resource block in a resource block corresponding to the multiple downlink transmission resources to the signaling indication as the allocation information;
  • the UE determines the downlink transmission resource according to a time-frequency location of the reference resource block and a pre-configured time-frequency interval of the downlink transmission resource and a number of resource blocks.
  • the processor is further configured to pre-define a time-frequency interval of the downlink transmission resource and a number of resource blocks by using the protocol, or determine when the terminal device accesses The time-frequency interval of the downlink transmission resource and the number of resource blocks.
  • the data blocks transmitted on multiple resource blocks are completely consistent.
  • multiple resource blocks are used to transmit different redundancy versions of the same data block.
  • the size of each resource block in the multiple resource blocks is different.
  • a coded modulation scheme of each resource block in the multiple resource blocks is different.
  • a fourth aspect provides a terminal device, including: a receiver, configured to receive a signaling indication sent by a network side device, where the signaling indication carries carrying information, where the allocation information is used to indicate multiple transmission data blocks. And a downlink transmission resource, where the processor is configured to determine the multiple downlink transmission resources according to the allocation information, and control the receiver to perform data block reception on the multiple downlink transmission resources.
  • the terminal device further includes: a transmitter, configured to send its own transmission capability information to the network side device, so that the network side device determines whether to send the location according to the transmission capability information.
  • the signaling indicates to the UE; wherein the transmission capability information is used to indicate whether the UE supports ultra-reliable low-latency communication URLLC transmission.
  • the transmitter is specifically configured to carry the transmission capability information in a message sent by a random access procedure, or carry the transmission capability information in RRC signaling.
  • the receiver is specifically configured to receive the signaling indication by using a downlink signaling physical control channel PDCCH, paging signaling, or RRC signaling.
  • PDCCH physical control channel
  • paging signaling paging signaling
  • RRC Radio Resource Control
  • the processor is specifically configured to: according to the time-frequency interval of the multiple downlink transmission resources in the allocation information, the number of resource blocks corresponding to the multiple downlink transmission resources, and The time-frequency locations of the reference resource blocks in the resource blocks determine the plurality of downlink transmission resources.
  • the processor is specifically configured to determine the multiple downlink transmission resources according to time-frequency positions of the multiple downlink transmission resources in the allocation information.
  • the processor is specifically configured to: according to the time-frequency position of the reference resource block in the resource block corresponding to the multiple downlink transmission resources in the allocation information, and the pre-configured downlink The time-frequency interval of the transmission resource and the number of resource blocks determine the plurality of downlink transmission resources.
  • the processor is further configured to pre-define a time-frequency interval of the downlink transmission resource and a number of resource blocks by using the network side device by using a protocol, or connect with the network side device.
  • the time-frequency interval and the number of resource blocks of the downlink transmission resource are determined.
  • the data blocks transmitted on multiple resource blocks are completely consistent.
  • multiple resource blocks are used to transmit different redundancy versions of the same data block.
  • the size of each resource block in the multiple resource blocks is different.
  • a coded modulation scheme of each resource block in the multiple resource blocks is different.
  • a computer readable storage medium comprising instructions, when executed on a computer, causing the computer to perform the method as described in any one of the first aspect and the second aspect.
  • the embodiment of the invention provides a downlink transmission method and device, which specifies a plurality of transmission resources to simultaneously transmit data blocks during downlink data transmission, and the plurality of transmission resources may be time-division, frequency-divided or spatial-divided.
  • the plurality of transmission resources are indicated to the terminal device by signaling, and the terminal device receives the data block in the specified multiple transmission resources according to the indication of the signaling, and after the data block is received, the signal gain combining may be performed to improve the transmission error performance. .
  • FIG. 1 is a schematic flowchart of a downlink transmission method according to an embodiment of the present disclosure
  • FIG. 2 is a schematic flowchart of a method for transmitting transmission capability information of a UE according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of relative relationships of resource blocks in an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of locations of multiple resource blocks for transmitting data on a PDSCH in the prior art
  • FIG. 5 is a schematic structural diagram of a network side device according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a terminal device according to an embodiment of the present invention.
  • the embodiment of the invention provides a downlink transmission method, which specifies multiple transmission resources to simultaneously transmit data blocks during downlink data transmission, and the multiple transmission resources may be time-division, frequency-divided or spatial-divided.
  • the plurality of transmission resources are indicated to the terminal device by signaling, and the terminal device receives the data block in the specified multiple transmission resources according to the indication of the signaling, and after the data block is received, the signal gain combining may be performed to improve the transmission error performance.
  • an embodiment of the present invention provides a downlink transmission method, where the method specifically includes the following steps:
  • Step 101 The network side device sends a signaling indication to the terminal equipment (User Equipment, UE).
  • the signaling indication carries the allocation information, where the allocation information is used to indicate multiple downlink transmission resources of the transmission data block.
  • the plurality of downlink transmission resources correspond to a plurality of resource blocks formed by multiple time divisions, frequency divisions, or air separations.
  • the data blocks transmitted on multiple resource blocks may be completely identical. They may also be different redundancy versions after channel coding of the same data block. The version numbers of these different versions may be notified in real time or may be predetermined. Among them, different redundancy versions do not need to have exactly the same content. On the contrary, different redundancy versions will be a collection of different coded bits, and each set of coded bits represents information bits of the same data set.
  • each resource block in the plurality of resource blocks may be different.
  • different modulation and coding schemes English name: Modulation and Coding Scheme, MCS
  • MCS Modulation and Coding Scheme
  • one or more MCSs may be included in the signaling indication according to the MCS corresponding to the resource block.
  • the UE and the network side device may pre-define several exclusive MCSs of the URLLC transmission and number them.
  • the exclusive MCS of the URLLC a lower bit rate and a lower order modulation are adopted, and the purpose is For a more reliable transmission.
  • Step 102 The terminal device UE receives the signaling indication sent by the network side device, and performs data block reception on the multiple downlink transmission resources according to the allocation information.
  • the network side device determines whether to send the signaling indication to the UE based on whether the terminal device supports URLLC transmission.
  • the manner in which the network side device interacts with the terminal to determine whether the terminal supports the URLLC may be (as shown in FIG. 2):
  • Step 201 The UE sends its own transmission capability information to the network side device, where the transmission capability information is used to indicate whether the UE supports URLLC transmission.
  • the UE may also send the service information of the UE, the channel state information of the UE, the mobility of the UE, etc., while transmitting the transmission capability information;
  • Step 202 The network side device acquires the transmission capability information of the UE, and the network side device determines, according to the transmission capability information, whether to send the signaling indication to the UE.
  • the network side device determines whether to adopt the downlink transmission mode of the URLLC according to the capability of the UE, the current service, and the current state of the UE, and selects one or more MCSs from the dedicated MCS of the URLLC, performs MCS reconfiguration on the UE, and The number of the MCS is sent to the UE, and the MCS is used to transmit the current service.
  • the interaction between the UE and the terminal device may be performed in the following manner, which may be:
  • the UE carries the transmission capability information in Radio Resource Control (RRC) signaling.
  • RRC Radio Resource Control
  • the allocation of the downlink transmission resource includes a time-frequency location of the one or more resource blocks that are invoked, and the allocation of the resource block may also be determined by a correspondence between the resource blocks, for example, specifying between the resource blocks.
  • the relative time-frequency position that is, the positional deviation between the resource blocks in the time domain and the frequency domain, and the number of the scheduled resource blocks, the resource location deviation and the number of resource blocks may be preset, such as The RRC performs pre-configuration, and the network device and the UE keep the configuration information at the same time, and may also be a real-time notification of the dynamic scheduling to the user, or may be defined by the protocol by default, or may be determined when the UE accesses the network device.
  • the PDCCH, paging signaling used for bearer scheduling and other downlink control information (transmission format, resource allocation, uplink scheduling grant, power control, and uplink retransmission information, etc.) in the downlink signaling or used to process the UE and the eNodeB may be used.
  • the RRC signaling of the third layer information of the inter-control plane carries the signaling indication.
  • the method provided in the embodiment of the present invention is not limited to carrying the signaling indication by using only the foregoing signaling.
  • all the information for determining the downlink transmission resource is included in the allocation information sent by the PDCCH, and the specific implementation may be:
  • the allocation information includes a time-frequency interval of the plurality of downlink transmission resources, a number of resource blocks corresponding to the plurality of downlink transmission resources, and a time-frequency position of the reference resource block in the resource block.
  • the allocation information includes a time-frequency location of the plurality of downlink transmission resources.
  • the allocation information includes determining a part of the downlink transmission resource, and the allocation information needs to be combined with the preset information to determine an accurate downlink transmission resource location.
  • the preset information may be: the terminal device and the network side.
  • the device is predefined by a protocol; or, when the terminal device is accessed. The specific implementation is described in further detail in the manner agreed upon by the agreement, including:
  • the protocol pre-defines a plurality of resource location deviations and resource block numbers, and numbers the multiple configurations, for example, a table as defined in Table 1:
  • the allocation information includes a configured number and a time-frequency location of the reference resource block in the resource block corresponding to the multiple downlink transmission resources;
  • the downlink transmission resource corresponds to three resource blocks.
  • the positions of the other two resource blocks in the three resource blocks are as shown in FIG. 3, and the second resource block is offset in the time domain and frequency of the reference resource block.
  • the displacement of one resource block unit of each domain, and the third resource block is shifted by one resource block unit in the time domain and the frequency domain in the second resource block offset.
  • the resource configuration parameter table of other modes may also be defined, and is not limited to the embodiment of Table 1.
  • the allocation information includes a time-frequency position of the reference resource block, a protocol pre-defined resource block position deviation, and a number of resource blocks (ie, a fixed resource position deviation and a number of resource blocks);
  • the allocation information includes a time-frequency location of the reference resource block and the number of resource blocks, and the protocol pre-defined resource location deviation;
  • the allocation information includes a time-frequency position of the reference resource block and a position deviation of the resource block, and the number of the predefined resource blocks;
  • the protocol pre-defines the number of each resource block and the number of each resource block group. For example, if there are 10 available resource blocks as shown in FIG. 3 in the system bandwidth, the number is 0-9, ⁇ 0, 1 ⁇ resource block group number is 10, ⁇ 0, 2 ⁇ resource block group number is 11, ..., ⁇ 0, 2, 4 ⁇ resource block group number is n (n is a positive integer)... and so on;
  • the information includes the number of the resource block group.
  • Manner 2 Part of the resource configuration information may also be pre-configured by RRC signaling, as follows:
  • the protocol pre-defines a plurality of resource location deviations and the number of resource blocks, and numbers the multiple configurations, so that the network side device (which may be a base station) transmits resources to the user through RRC signaling according to the definition of the protocol.
  • the configuration information includes the configured number, and the network side device notifies the user that the resource allocation information through the PDCCH includes only the reference resource location;
  • the resource pre-configuration information sent by the network side device to the user through the RRC signaling includes the resource location deviation and the number of resource blocks (that is, the fixed resource position deviation and the number of resource blocks), and the network device notifies the user through the PDCCH.
  • the resource allocation information only includes the resource location of the reference;
  • the resource pre-configuration information sent by the network side device to the user through the RRC signaling includes the resource location deviation, and the network device notifies the user that the resource allocation information includes the reference resource location and the number of resource blocks by using the PDCCH;
  • the resource pre-configuration information sent by the network side device to the user by using the RRC signaling includes the number of resource blocks;
  • the resource allocation information notified by the network device by the PDCCH includes the resource location of the user reference and the resource location deviation;
  • the protocol pre-defines the number of each resource block and the number of each resource block group.
  • the resource pre-configuration information sent by the network-side device to the user through the RRC signaling includes the number of the resource block group, so that the user's resource does not need to be sent to the user. Minute With information.
  • the allocation information of the URLLC can be sent to the terminal device through paging.
  • the LTE usually configures the downlink control channel to occupy the first three OFDM symbols in one subframe, and occupies the entire system bandwidth, and the remaining OFDM symbols of the subframe are carried with user data.
  • a Physical Downlink Shared Channel (PDSCH) and a reference signal are occupied.
  • the PDSCH carries downlink data transmission.
  • the multiple resource blocks of the transmitted data may be frequency divisions in (a) of FIG. 4 on the PDSCH.
  • the relationship may also be the time-division relationship in (b) of FIG. 4, or may be a different time-frequency resource block in (c) of FIG. 4, or may be (d) in FIG. 4 or in FIG.
  • a plurality of resource blocks are scheduled in different subframes.
  • the scheduling signaling may be indicated in the first subframe, and scheduling signaling may not be needed in subsequent subframes.
  • multiple transmission resources may also be in a space division relationship, that is, different transmission antenna ports are used.
  • the plurality of transmission resources are indicated to the terminal by signaling, and the terminal receives data in the specified multiple pieces of resources according to the indication of the signaling, and performs signal gain combining to achieve improved transmission error performance.
  • an embodiment of the present invention provides a network side device, including:
  • the processor 501 is configured to generate a signaling indication, where the signaling indication carries the allocation information, where the allocation information is used to indicate multiple downlink transmission resources of the transmission data block;
  • the transceiver 502 is configured to send a signaling indication to the terminal device UE, so that the UE performs data reception on the specified multiple downlink transmission resources according to the signaling indication.
  • the processor 501 is further configured to acquire transmission capability information of the UE, and determine, according to the transmission capability information, whether to send the signaling indication to the UE, where the transmission capability information is used to indicate Whether the UE supports ultra-reliable low-latency communication URLLC transmission.
  • the processor 501 is configured to acquire the transmission capability information of the UE in a message sent by the UE, and obtain the transmission capability information of the UE in the RRC signaling.
  • the processor 501 is configured to use a time division resource, a frequency division resource, or a space division resource as the downlink transmission resource.
  • the transceiver 502 is configured to send the signaling indication to the UE by using a combination of one or more of a downlink signaling physical control channel PDCCH, paging signaling, or RRC signaling.
  • PDCCH physical control channel
  • paging signaling paging signaling
  • RRC Radio Resource Control
  • the processor 501 is configured to: use a time-frequency interval of the multiple downlink transmission resources, a number of resource blocks corresponding to the multiple downlink transmission resources, and a time-frequency location of the reference resource block in the resource block.
  • the allocation information is added to the signaling indication.
  • the processor 501 is configured to add a time-frequency location of the multiple downlink transmission resources as the allocation information to the signaling indication.
  • the processor 501 is configured to add, to the signaling indication, a time-frequency location of a reference resource block in a resource block corresponding to the multiple downlink transmission resources, where the corresponding UE is The downlink transmission resource is determined according to a time-frequency location of the reference resource block and a pre-configured time-frequency interval of the downlink transmission resource and a number of resource blocks.
  • the processor 501 is further configured to: pre-define a time-frequency interval of the downlink transmission resource and a number of resource blocks by using the protocol, or determine the downlink transmission resource when the terminal device accesses The time-frequency interval and the number of resource blocks.
  • the plurality of downlink transmission resources correspond to a plurality of resource blocks formed by multiple time divisions, frequency divisions, or air separations.
  • the data blocks transmitted on the resource blocks may be completely identical. They may also be different redundancy versions of the same data block after channel coding. The version numbers of these different versions may be notified in real time or may be determined in advance. Among them, different redundancy versions do not need to have exactly the same content. On the contrary, different redundancy versions will be a collection of different coded bits, and each set of coded bits represents information bits of the same set.
  • the transceiver 502 is further configured to use the multiple resource blocks to send different redundancy of the same data block to the UE. Version, where the size of multiple resource blocks may be different, and the corresponding MCS may also be different.
  • the embodiment of the present invention further provides a terminal device, including:
  • the receiver 601 is configured to receive, by the network side device, a signaling indication, where the signaling indication carries the allocation information, where the allocation information is used to indicate multiple downlink transmission resources of the transmission data block;
  • the processor 602 is configured to determine the multiple downlink transmission resources according to the allocation information, and control the receiver to perform data block reception on the multiple downlink transmission resources.
  • the terminal device further includes:
  • a transmitter configured to send its own transmission capability information to the network side device, so that the network side device determines, according to the transmission capability information, whether to send the signaling indication to the UE, where the transmission capability information It is used to indicate whether the UE supports ultra-reliable low-latency communication URLLC transmission.
  • the transmitter is configured to carry the transmission capability information in a message sent by the random access procedure, or carry the transmission capability information in the RRC signaling.
  • the receiver 601 performs data block reception on multiple downlink transmission resources consisting of time division resources, frequency division resources, or space division resources.
  • the receiver 601 is specifically configured to receive the signaling indication by using a downlink signaling physical control channel PDCCH, paging signaling, or RRC signaling.
  • PDCCH physical control channel
  • paging signaling paging signaling
  • RRC Radio Resource Control
  • the processor 602 is specifically configured to: according to the time-frequency interval of the multiple downlink transmission resources in the allocation information, the number of resource blocks corresponding to the multiple downlink transmission resources, and a reference in the resource block.
  • the time-frequency location of the resource block determines the plurality of downlink transmission resources.
  • the processor 602 is specifically configured to determine, according to the time-frequency positions of the multiple downlink transmission resources in the allocation information, the multiple downlink transmission resources.
  • the processor 602 is specifically configured to: according to the time-frequency position of the reference resource block in the resource block corresponding to the multiple downlink transmission resources in the allocation information, and the pre-configured time-frequency of the downlink transmission resource The number of intervals and resource blocks determines the plurality of downlink transmission resources.
  • the processor 602 is further configured to pre-define a time-frequency interval of the downlink transmission resource and a number of resource blocks by using the network side device by using a protocol, or determine the downlink when the network side device is connected to the network side device.
  • the time-frequency interval of the transmission resource and the number of resource blocks are further configured to pre-define a time-frequency interval of the downlink transmission resource and a number of resource blocks by using the network side device by using a protocol, or determine the downlink when the network side device is connected to the network side device.
  • the receiver 601 is further configured to receive, by using a plurality of resource blocks, different redundancy versions of the same data block sent by the network side device after channel coding, where the version numbers of the different versions may be notified in real time or Predetermined.
  • the size of multiple resource blocks may be different, and the corresponding MCS may also be different.
  • the embodiment of the invention provides a downlink transmission method and device, and specifies multiple transmission resources during downlink data transmission.
  • the data block is transmitted, and the multiple transmission resources may be time-division, frequency-divided or spatial-divided.
  • the plurality of transmission resources are indicated to the terminal device by signaling, and the terminal device receives the data block in the specified multiple transmission resources according to the indication of the signaling, and after the data block is received, the signal gain combining may be performed to improve the transmission error performance. .
  • embodiments of the present application can be provided as a method, system, or computer program product.
  • the present application can take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment in combination of software and hardware.
  • the application can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.
  • the computer program instructions corresponding to the downlink transmission method in the embodiment of the present invention may be stored on a storage medium such as an optical disk, a hard disk, a U disk, or the like, and a computer program corresponding to an information processing method in the storage medium.
  • a storage medium such as an optical disk, a hard disk, a U disk, or the like
  • a computer program corresponding to an information processing method in the storage medium When the instruction is read or executed by an electronic device, the following steps are included:
  • the network side device sends a signaling indication to the terminal device UE, so that the UE performs data reception on the specified multiple downlink transmission resources according to the signaling indication; wherein the signaling indication carries the allocation information, and the allocation information A plurality of downlink transmission resources used to indicate the transmission of data blocks.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开一种下行传输方法及装置,该方法包括:网络侧设备发送信令指示到终端设备UE;其中,所述信令指示携带分配信息,所述分配信息用于指示传输数据块的多个下行传输资源。本发明公开的方法及装置解决现有技术中的下行传输方式不能满足超可靠低延迟通信时延要求的问题。

Description

一种下行传输方法及装置
本申请要求于2016年08月29日提交中国专利局、申请号为201610750612.1、发明名称为“一种下行传输方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明实施例涉及通信技术领域,尤其涉及一种下行传输方法及装置。
背景技术
随着移动终端的增加以及用户业务种类的多样化,移动数据流量将出现爆炸式增长,未来全球移动通信网络连接的设备总量将达到千亿规模,预计到2020年,全球移动终端(不含物联网设备)数量将超过100亿,其中中国将超过20亿。全球物联网设备连接数也将快速,全球物联网设备连接数将接近1千亿,其中中国超过200亿。由于各业务种类千差万别,对网络需求存在很大差异,比如车联网业务,要求端到端低至1ms的时延;而物联网的多连接场景,单传感器传送数据量极低,但对系统整体连接数要求很高;又比如三维(three dimensional,3D)全息影像要求xGbps(每秒1000兆位)的带宽。大致需求为:可靠传输,但对时延不敏感;或者,低延迟,高可靠传输。
针对可靠传输但时延不敏感的业务,较容易处理。但是,对低延迟、高可靠传输类的业务,不仅要求传输时延短,而且要求可靠,比如车与车(Vehicle to Vehicle,V2V)业务。如果传输不可靠,会导致重传而造成传输时延过大,不能满足要求。由于大量连接的存在,使得未来的无线通信系统和现有的通信系统存在很大差异。大量的连接需要消耗更多的资源接入终端设备以及需要消耗更多的资源用于终端设备的数据传输相关的调度信令的传输。
为了解决上述问题,现有技术中提出了免授权传输(grant-free)方案,用来降低传输时延。具体实现方案为:网络设备预先分配并告知终端设备多个传输资源;终端设备有上行数据传输需求时,从网络设备预先分配的多个传输资源中选择至少一个传输资源,而不需要终端设备每次都通过信令进行上行传输资源的分配,从而节省了信令开销,并降低的传输时延。
在grant-free传输中,上行可靠传输可以有多种方案,包括时域、频域、空域等的多重(duplicate)传输。其主要目的是保证空口的可靠传输。而对于grant-free下行传输,下行数据到达时,一般是通过寻呼(paging)来进行用户通知,然后用户在指定的位置接收数据。而对连接态的传输,则主要通过物理下行控制信道(Physical Downlink Control Channel,PDCCH)来进行下行数据调度,但是目前一般是调度一次,出现错误则进行重传,对超可靠低延迟通信(Ultra-Reliable and Low Latency Communications,URLLC)传输,则会导致时延不能满足要求。
发明内容
本发明实施例提供一种下行传输方法及装置,用以解决现有技术中的下行传输方式不能满足超可靠低延迟通信时延要求的问题。
第一方面,提供一种下行传输方法,包括:网络侧设备发送信令指示到终端设备UE;其中,所述信令指示携带分配信息,所述分配信息用于指示传输数据块的多个下行传输资源。
本发明实施例公开的方法在下行数据传输时指定多个传输资源同时对数据块进行传输,该多个传输资源通过信令指示给终端设备,终端设备则根据信令的指示在指定的多个传输资源接收数据块,接收到数据块之后可以进行信号增益合并,达到传输误码性能的提高,并保证可靠传输和极低时延的要求。
在一种可能的实现方式中,网络侧设备发送信令指示到终端设备UE之前,该方法还包括:获取所述UE的传输能力信息;其中,所述传输能力信息用于指示所述UE是否支持超可靠低延迟通信URLLC传输;所述网络侧设备根据所述传输能力信息确定是否发送所述信令指示到所述UE。
在一种可能的实现方式中,所述获取所述UE的传输能力信息包括:所述网络侧设备在所述UE随机接入过程发送的消息中获取所述UE的传输能力信息;或所述网络侧设备在RRC信令中获取所述UE的传输能力信息。
在一种可能的实现方式中,所述网络侧设备发送信令指示到终端设备UE包括:所述网络侧设备通过下行信令下行物理控制信道PDCCH、paging信令或者RRC信令中的一种或多种的组合发送所述信令指示到所述UE。
在一种可能的实现方式中,所述分配信息包括所述多个下行传输资源的时频间隔、所述多个下行传输资源所对应资源块的数目和所述资源块中基准资源块的时频位置。
在一种可能的实现方式中,所述分配信息包括所述多个下行传输资源的时频位置。
在一种可能的实现方式中,所述分配信息包括所述多个下行传输资源所对应资源块中基准资源块的时频位置;对应的所述UE根据所述基准资源块的时频位置和预先配置的所述下行传输资源的时频间隔和资源块的数目确定所述下行传输资源。
在一种可能的实现方式中,所述网络侧设备发送信令指示到终端设备UE之前,进一步包括:所述网络侧设备与所述UE通过协议预定义所述下行传输资源的时频间隔和资源块的数目;或在所述终端设备接入的时候确定所述下行传输资源的时频间隔和资源块的数目。
在一种可能的实现方式中,多个资源块上传输的数据块完全一致。
在一种可能的实现方式中,多个资源块用于传输同一数据块的不同冗余版本。
在一种可能的实现方式中,所述多个资源块中各资源块的大小不相同。
在一种可能的实现方式中,所述多个资源块中各资源块的编码调制方案不同。
第二方面,提供一种下行数据接收方法,包括:终端设备UE接收网络侧设备发送信令指示;其中,所述信令指示携带分配信息,所述分配信息用于指示传输数据块的多个下行传输资源;所述UE根据所述分配信息在所述多个下行传输资源上进行数据块接收。
在一种可能的实现方式中,终端设备UE接收网络侧设备发送信令指示之前,该方法还包括:UE发送自身的传输能力信息到所述网络侧设备,使得所述网络侧设备根据所述传输能力信息确定是否发送所述信令指示到所述UE;其中,所述传输能力信息用于指示所述UE是否支持超可靠低延迟通信URLLC传输。
在一种可能的实现方式中,所述UE发送自身的传输能力信息到所述网络侧设备包括:所述UE在随机接入过程发送的消息中携带所述传输能力信息;或所述UE在RRC信令中携带所述传输能力信息。
在一种可能的实现方式中,所述UE接收网络侧设备发送信令指示包括:
所述UE通过下行信令下行物理控制信道PDCCH、paging信令或者RRC信令中接收所述信令指示。
在一种可能的实现方式中,所述分配信息包括所述多个下行传输资源的时频间隔、所述多个下行传输资源所对应资源块的数目和所述资源块中基准资源块的时频位置。
在一种可能的实现方式中,所述分配信息包括所述多个下行传输资源的时频位置。
在一种可能的实现方式中,所述分配信息包括所述多个下行传输资源所对应资源块中基准资源块的时频位置;则所述UE根据所述分配信息在所述多个下行传输资源上进行数据块接收之前,还包括:所述UE根据所述基准资源块的时频位置和预先配置的所述下行传输资源的时频间隔和资源块的数目确定所述多个下行传输资源。
在一种可能的实现方式中,所述终端设备UE接收网络侧设备发送信令指示之前,进一步包括:所述UE与所述网络侧设备通过协议预定义所述下行传输资源的时频间隔和资源块的数目;或与所述网络侧设备连接的时候确定所述下行传输资源的时频间隔和资源块的数目。
在一种可能的实现方式中,多个资源块上传输的数据块完全一致。
在一种可能的实现方式中,多个资源块用于传输同一数据块的不同冗余版本。
在一种可能的实现方式中,所述多个资源块中各资源块的大小不相同。
在一种可能的实现方式中,所述多个资源块中各资源块的编码调制方案不同。
第三方面,提供一种网络侧设备,包括:处理器,用于生成信令指示;其中,所述信令指示携带分配信息,所述分配信息用于指示传输数据块的多个下行传输资源;收发器,用于发送信令指示到终端设备UE。
在一种可能的实现方式中,所述处理器还用于获取所述UE的传输能力信息;根据所述传输能力信息确定是否发送所述信令指示到所述UE;其中,所述传输能力信息用于指示所述UE是否支持超可靠低延迟通信URLLC传输。
在一种可能的实现方式中,所述处理器具体用于在所述UE随机接入过程发送的消息中获取所述UE的传输能力信息;或在RRC信令中获取所述UE的传输能力信息。
在一种可能的实现方式中,所述收发器用于通过下行信令下行物理控制信道PDCCH、paging信令或者RRC信令中的一种或多种的组合发送所述信令指示到所述UE。
在一种可能的实现方式中,所述处理器用于将所述多个下行传输资源的时频间隔、所述多个下行传输资源所对应资源块的数目和所述资源块中基准资源块的时频位置作为所述分配信息添加到所述信令指示中。
在一种可能的实现方式中,所述处理器用于将所述多个下行传输资源的时频位置作为所述分配信息添加到所述信令指示中。
在一种可能的实现方式中,所述处理器用于将所述多个下行传输资源所对应资源块中基准资源块的时频位置作为所述分配信息添加到所述信令指示中;则对应的所述UE根据所述基准资源块的时频位置和预先配置的所述下行传输资源的时频间隔以及资源块的数目确定所述下行传输资源。
在一种可能的实现方式中,所述处理器还用于与所述UE通过协议预定义所述下行传输资源的时频间隔和资源块的数目;或在所述终端设备接入的时候确定所述下行传输资源的时频间隔和资源块的数目。
在一种可能的实现方式中,多个资源块上传输的数据块完全一致。
在一种可能的实现方式中,多个资源块用于传输同一数据块的不同冗余版本。
在一种可能的实现方式中,所述多个资源块中各资源块的大小不相同。
在一种可能的实现方式中,所述多个资源块中各资源块的编码调制方案不同。
第四方面,提供一种终端设备,包括:接收器,用于接收网络侧设备发送信令指示;其中,所述信令指示携带分配信息,所述分配信息用于指示传输数据块的多个下行传输资源;处理器,用于根据所述分配信息确定所述多个下行传输资源,并控制所述接收器在所述多个下行传输资源上进行数据块接收。
在一种可能的实现方式中,所述终端设备还包括:发送器,用于发送自身的传输能力信息到所述网络侧设备,使得所述网络侧设备根据所述传输能力信息确定是否发送所述信令指示到所述UE;其中,所述传输能力信息用于指示所述UE是否支持超可靠低延迟通信URLLC传输。
在一种可能的实现方式中,所述发送器具体用于在随机接入过程发送的消息中携带所述传输能力信息;或在RRC信令中携带所述传输能力信息。
在一种可能的实现方式中,所述接收器具体用于通过下行信令下行物理控制信道PDCCH、paging信令或者RRC信令中接收所述信令指示。
在一种可能的实现方式中,所述处理器具体用于根据所述分配信息中的所述多个下行传输资源的时频间隔、所述多个下行传输资源所对应资源块的数目和所述资源块中基准资源块的时频位置确定所述多个下行传输资源。
在一种可能的实现方式中,所述处理器具体用于根据所述分配信息中的所述多个下行传输资源的时频位置确定所述多个下行传输资源。
在一种可能的实现方式中,所述处理器具体用于根据所述分配信息中的所述多个下行传输资源所对应资源块中基准资源块的时频位置、以及预先配置的所述下行传输资源的时频间隔和资源块的数目确定所述多个下行传输资源。
在一种可能的实现方式中,所述处理器还用于与所述网络侧设备通过协议预定义所述下行传输资源的时频间隔和资源块的数目;或与所述网络侧设备连接的时候确定所述下行传输资源的时频间隔和资源块的数目。
在一种可能的实现方式中,多个资源块上传输的数据块完全一致。
在一种可能的实现方式中,多个资源块用于传输同一数据块的不同冗余版本。
在一种可能的实现方式中,所述多个资源块中各资源块的大小不相同。
在一种可能的实现方式中,所述多个资源块中各资源块的编码调制方案不同。
第五方面,提供一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行如第一方面和第二方面中任意一种可能的实现方式所述的方法。
本发明实施例提供一种下行传输方法及装置,在下行数据传输时指定多个传输资源同时对数据块进行传输,多个传输资源可以是时分,频分或者空分的关系。该多个传输资源通过信令指示给终端设备,终端设备则根据信令的指示在指定的多个传输资源接收数据块,接收到数据块之后可以进行信号增益合并,达到传输误码性能的提高。
附图说明
图1为本发明实施例提供的一种下行传输方法的流程示意图;
图2为本发明实施例提供的UE传输能力信息的传输方法流程示意图;
图3为本发明实施例中各资源块的相对关系示意图;
图4为现有技术中传输数据的多个资源块在PDSCH上的位置示意图;
图5为本发明实施例中一种网络侧设备的结构示意图;
图6为本发明实施例中一种终端设备的结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例提出了一种下行传输方法,在下行数据传输时指定多个传输资源同时对数据块进行传输,多个传输资源可以是时分,频分或者空分的关系。该多个传输资源通过信令指示给终端设备,终端设备则根据信令的指示在指定的多个传输资源接收数据块,接收到数据块之后可以进行信号增益合并,达到传输误码性能的提高。以下结合具体的实施方式对本发明实施例所提供的方案做进一步详细的描述:
实施例一
如图1所示,本发明实施例提供一种下行传输方法,方法具体包括以下步骤:
步骤101,网络侧设备发送信令指示到终端设备(User Equipment,UE);其中,所述信令指示携带分配信息,所述分配信息用于指示传输数据块的多个下行传输资源;
在该实施例中,多个下行传输资源对应多个时分、频分或空分形成的多个资源块。多个资源块上传输的数据块可以完全一致;也可以是同一个数据块进行信道编码后的不同冗余版本,这些不同版本的版本号既可以实时通知,也可以预先确定。其中,不同的冗余版本并不需要带有完全相同的内容,相反,不同的冗余版本将会是不同编码比特的集合,每个编码比特的集合都代表同一数据集合的信息比特。因为同一个数据块的一个冗余版本可能包含了其它冗余版本没有包含的额外校验比特,则在该实施例中当多个资源块用于传输同一数据块的不同冗余版本时,所述多个资源块中各资源块的大小可以不相同。相应地,多个传输资源块中也可以采用不同的调制编码方案(英文全称:Modulation and Coding Scheme,MCS)。
可选的,根据资源块所对应的MCS,该信令指示中还可以包括一个或多个MCS。在该实施例中,UE与网络侧设备之间可以协议预定义URLLC传输的几种专属MCS并进行编号,该URLLC的专属MCS中,采用较低码率,较低阶调制的方式,目的是为了更可靠的传输。
步骤102,终端设备UE接收网络侧设备发送信令指示,并根据所述分配信息在所述多个下行传输资源上进行数据块接收。
在本发明实施例中,网络侧设备基于终端设备是否支持URLLC传输,从而确定是否给UE发送该信令指示。网络侧设备与终端交互确定终端是否支持URLLC的方式可以是(如图2所示):
步骤201,UE发送自身的传输能力信息到所述网络侧设备;其中,所述传输能力信息用于指示所述UE是否支持URLLC传输;
UE发送该传输能力信息的同时还可以发送UE的业务信息,UE的信道状态信息,UE的移动性等等;
步骤202,网络侧设备获取所述UE的传输能力信息;所述网络侧设备根据所述传输能力信息确定是否发送所述信令指示到所述UE。
网络侧设备根据UE的能力,当前的业务以及UE当前的状态确定是否采用URLLC的下行传输方式,并从URLLC的专属MCS中选择一种或多种MCS,对UE进行MCS重配置,并将该MCS的编号发送给UE,采用该MCS进行当前业务的传输。
在该实施例中,UE与终端设备之间可以通过以下方式进行传输能力信息的交互,具体可以是:
UE在随机接入过程发送的消息中携带所述传输能力信息;或
UE在无线资源控制(Radio Resource Control,RRC)信令中携带所述传输能力信息。
可选的,下行传输资源的分配包括调用的一个或多个资源块的时频位置,该资源块的分配也可以通过各资源块之间的对应关系确定,例如,指定各个资源块之间的相对时频位置,即各个资源块之间在时域和在频域上的位置偏差,以及调度的资源块的个数,该资源位置偏差及资源块的个数可以是预设的,如通过RRC进行预先配置,网络设备和UE同时保持该配置信息一致,也可以是动态调度的实时通知给用户,还可以是协议默认定义的,还可以是UE接入网络设备的时候确定的。具体可以通过下行信令中用于承载调度以及其他下行控制信息(传输格式、资源分配、上行调度许可、功率控制以及上行重传信息等)的PDCCH、paging信令或者用于处理UE和eNodeB之间控制平面的第三层信息的RRC信令携带所述信令指示。这里仅仅是举例,本发明实施例所提供的方法中并不限定只能通过上述几种信令携带该信令指示。
方式一、如果使用PDCCH进行资源块的配置,则具体调度方案,可以有如下几种情况:
情况一,PDCCH发送的分配信息中所包括确定下行传输资源的所有信息,具体实现可以是:
(1)分配信息中包括多个下行传输资源的时频间隔、所述多个下行传输资源所对应资源块的数目和所述资源块中基准资源块的时频位置。
(2)所述分配信息包括所述多个下行传输资源的时频位置。
情况二,分配信息包括确定下行传输资源的一部分信息,分配信息需要与预先设定的信息进行结合才能确定准确的下行传输资源位置;其中,预先设定信息的方式可以是:终端设备与网络侧设备通过协议预定义;或者,在所述终端设备接入的时候确定。下面以采用协议预定的方式对具体实现作进一步详细的说明,包括:
(1)协议预定义多种资源位置偏差及资源块个数,并对该多种配置进行编号,例如定义如表1所示的表格:
Figure PCTCN2017093749-appb-000001
表1
分配信息中包括配置的编号和多个下行传输资源所对应资源块中基准资源块的时频位置;
结合表1所示的具体数值,选择表1中的方式1进行说明:
下行传输资源对应3个资源块,当确定了基准资源块位置,则3个资源块中另外两个资源块的位置如图3所示,第二资源块在基准资源块偏移时域及频域各一个资源块单位的位移,第三资源块则在第二资源块偏移时域及频域各一个资源块单位的位移。当然,也可以定义其它方式的资源配置参数表格,不限于表1的实施方式。
(2)分配信息中包括基准资源块的时频位置,协议预定义资源块位置偏差及资源块的个数(即配置固定的资源位置偏差及资源块的个数);
(3)分配信息中包括基准资源块的时频位置及资源块的个数,协议预定义资源位置偏差;
(4)分配信息中包括基准资源块的时频位置及资源块的位置偏差,预定义资源块的个数;
(5)协议预定义各个资源块的编号及各个资源块组的编号,例如系统带宽中总共有10个如图3所示的可用资源块,则将其编号为0-9,{0,1}资源块组编号为10,{0,2}资源块组编号为11,…,{0,2,4}资源块组编号为n(n为正整数)……依次类推;则对应的分配信息中则包括资源块组的编号。
方式二、当部分资源配置信息也可以由RRC信令进行预配置,具体如下所述:
(1)协议预定义多种资源位置偏差及资源块个数,并对该多种配置进行编号,这样根据协议的定义;网络侧设备(可以是基站)通过RRC信令发送给用户的资源预配置信息包括配置的编号,网络侧设备通过PDCCH通知用户的资源分配信息只包括基准的资源位置;
(2)网络侧设备通过RRC信令发送给用户的资源预配置信息包括资源位置偏差及资源块的个数(即配置固定的资源位置偏差及资源块的个数),网络设备通过PDCCH通知用户的资源分配信息只包括基准的资源位置;
(3)网络侧设备通过RRC信令发送给用户的资源预配置信息包括资源位置偏差,网络设备通过PDCCH通知用户的资源分配信息包括基准的资源位置及资源块的个数;
(4)网络侧设备通过RRC信令发送给用户的资源预配置信息包括资源块的个数;网络设备通过PDCCH通知用户的资源分配信息包括用户基准的资源位置及资源位置偏差;
(5)协议预定义各个资源块的编号及各个资源块组的编号,网络侧设备通过RRC信令发送给用户的资源预配置信息包括资源块组的编号,从而不需要向用户发送用户的资源分 配信息。
当终端设备处于空闲(idle)状态时,URLLC的分配信息可以通过paging发送到终端设备。
在现有下行传输的一个子帧中,LTE中通常配置下行链路控制信道占用一个子帧中OFDM符号的前3个,并占用整个系统带宽,该子帧的其余OFDM符号被承载用户数据的物理下行共享信道(Physical Downlink Shared Channel,PDSCH)以及参考信号等占用,PDSCH承载下行数据的传输,传输数据的多个资源块在PDSCH上可以是如图4中的(a)中的频分的关系,也可以如图4中的(b)中时分的关系,也可以是图4中的(c)中不同的时频资源块,也可以是图4中的(d)或图4中的(e)中在不同的子帧中调度多个资源块;在本发明实施例中,调度信令可在第一个子帧中指示,后续的子帧中可不需要调度信令。另外多个传输资源也可以是空分的关系,即使用不同的传输天线端口。该多个传输资源通过信令指示给终端,终端则根据信令的指示在指定的多片资源接收数据,并进行信号增益合并,达到传输误码性能的提高。
实施例二
如图5所示,本发明实施例提供一种网络侧设备,包括:
处理器501,用于生成信令指示;其中,所述信令指示携带分配信息,所述分配信息用于指示传输数据块的多个下行传输资源;
收发器502,用于发送信令指示到终端设备UE;使得所述UE根据所述信令指示在指定的多个下行传输资源上进行数据接收。
可选的,该处理器501还用于获取所述UE的传输能力信息;根据所述传输能力信息确定是否发送所述信令指示到所述UE;其中,所述传输能力信息用于指示所述UE是否支持超可靠低延迟通信URLLC传输。
可选的,该处理器501具体用于在所述UE随机接入过程发送的消息中获取所述UE的传输能力信息;或在RRC信令中获取所述UE的传输能力信息。
可选的,该处理器501用于将时分资源、频分资源或空分资源作为所述下行传输资源。
可选的,该收发器502用于通过下行信令下行物理控制信道PDCCH、paging信令或者RRC信令中的一种或多种的组合发送所述信令指示到所述UE。
可选的,该处理器501用于将所述多个下行传输资源的时频间隔、所述多个下行传输资源所对应资源块的数目和所述资源块中基准资源块的时频位置作为所述分配信息添加到所述信令指示中。
可选的,该处理器501用于将所述多个下行传输资源的时频位置作为所述分配信息添加到所述信令指示中。
可选的,该处理器501用于将所述多个下行传输资源所对应资源块中基准资源块的时频位置作为所述分配信息添加到所述信令指示中;则对应的所述UE根据所述基准资源块的时频位置和预先配置的所述下行传输资源的时频间隔以及资源块的数目确定所述下行传输资源。
可选的,该处理器501还用于与所述UE通过协议预定义所述下行传输资源的时频间隔和资源块的数目;或在所述终端设备接入的时候确定所述下行传输资源的时频间隔和资源块的数目。
在该实施例中,多个下行传输资源对应多个时分、频分或空分形成的多个资源块。多 个资源块上传输的数据块可以完全一致;也可以是同一个数据块经过信道编码后的不同冗余版本,这些不同版本的版本号既可以实时通知,也可以预先确定。其中,不同的冗余版本并不需要带有完全相同的内容,相反,不同的冗余版本将会是不同编码比特的集合,每个编码比特的集合都代表同一集合的信息比特。因为同一个数据块的一个冗余版本可能包含了其它冗余版本没有包含的额外校验比特,所以该收发器502还用于使用多个资源块向所述UE发送同一数据块的不同冗余版本,其中多个资源块的大小可以不相同,其对应的MCS也可以不同。
实施例三
如图6所示,本发明实施例还提供一种终端设备,包括:
接收器601,用于接收网络侧设备发送信令指示;其中,所述信令指示携带分配信息,所述分配信息用于指示传输数据块的多个下行传输资源;
处理器602,用于根据所述分配信息确定所述多个下行传输资源,并控制所述接收器在所述多个下行传输资源上进行数据块接收。
可选的,该终端设备还包括:
发送器,用于发送自身的传输能力信息到所述网络侧设备,使得所述网络侧设备根据所述传输能力信息确定是否发送所述信令指示到所述UE;其中,所述传输能力信息用于指示所述UE是否支持超可靠低延迟通信URLLC传输。
可选的,该发送器具体用于在随机接入过程发送的消息中携带所述传输能力信息;或在RRC信令中携带所述传输能力信息。
可选的,该接收器601在时分资源、频分资源或空分资源所组成的多个下行传输资源上进行数据块接收。
可选的,该接收器601具体用于通过下行信令下行物理控制信道PDCCH、paging信令或者RRC信令中接收所述信令指示。
可选的,该处理器602具体用于根据所述分配信息中的所述多个下行传输资源的时频间隔、所述多个下行传输资源所对应资源块的数目和所述资源块中基准资源块的时频位置确定所述多个下行传输资源。
可选的,该处理器602具体用于根据所述分配信息中的所述多个下行传输资源的时频位置确定所述多个下行传输资源。
可选的,该处理器602具体用于根据所述分配信息中的所述多个下行传输资源所对应资源块中基准资源块的时频位置、以及预先配置的所述下行传输资源的时频间隔和资源块的数目确定所述多个下行传输资源。
可选的,该处理器602还用于与所述网络侧设备通过协议预定义所述下行传输资源的时频间隔和资源块的数目;或与所述网络侧设备连接的时候确定所述下行传输资源的时频间隔和资源块的数目。
可选的,该接收器601还用于在多个资源块接收所述网络侧设备发送的同一数据块经过信道编码后的不同冗余版本,这些不同版本的版本号既可以实时通知,也可以预先确定。其中多个资源块的大小可以不同,其对应的MCS也可以不同。
上述本申请实施例中的技术方案,至少具有如下的技术效果或优点:
本发明实施例提出了一种下行传输方法及装置,在下行数据传输时指定多个传输资源 同时对数据块进行传输,多个传输资源可以是时分,频分或者空分的关系。该多个传输资源通过信令指示给终端设备,终端设备则根据信令的指示在指定的多个传输资源接收数据块,接收到数据块之后可以进行信号增益合并,达到传输误码性能的提高。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
具体来讲,本发明实施例中的一种下行传输方法对应的计算机程序指令可以被存储在光盘、硬盘、U盘等存储介质上,当存储介质中的与一种信息处理方法对应的计算机程序指令被一电子设备读取或被执行时,包括如下步骤:
网络侧设备发送信令指示到终端设备UE;使得所述UE根据所述信令指示在指定的多个下行传输资源上进行数据接收;其中,所述信令指示携带分配信息,所述分配信息用于指示传输数据块的多个下行传输资源。
尽管已描述了本申请的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本申请范围的所有变更和修改。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (37)

  1. 一种下行传输方法,其特征在于,包括:
    网络侧设备发送信令指示到终端设备UE;其中,所述信令指示携带分配信息,所述分配信息用于指示传输数据块的多个下行传输资源。
  2. 如权利要求1所述的方法,其特征在于,网络侧设备发送信令指示到终端设备UE之前,该方法还包括:
    获取所述UE的传输能力信息;其中,所述传输能力信息用于指示所述UE是否支持超可靠低延迟通信URLLC传输;
    所述网络侧设备根据所述传输能力信息确定是否发送所述信令指示到所述UE。
  3. 如权利要求2所述的方法,其特征在于,所述获取所述UE的传输能力信息包括:
    所述网络侧设备在所述UE随机接入过程发送的消息中获取所述UE的传输能力信息;或
    所述网络侧设备在无线资源控制RRC信令中获取所述UE的传输能力信息。
  4. 如权利要求1~3任一所述的方法,其特征在于,所述网络侧设备发送信令指示到终端设备UE包括:
    所述网络侧设备通过下行信令下行物理控制信道PDCCH、paging信令或者RRC信令中的一种或多种的组合发送所述信令指示到所述UE。
  5. 如权利要求1~4任一所述的方法,其特征在于,所述分配信息包括所述多个下行传输资源的时频间隔、所述多个下行传输资源所对应资源块的数目和所述资源块中基准资源块的时频位置。
  6. 如权利要求1~4任一所述的方法,其特征在于,所述分配信息包括所述多个下行传输资源的时频位置。
  7. 如权利要求1~4任一所述的方法,其特征在于,所述分配信息包括所述多个下行传输资源所对应资源块中基准资源块的时频位置;
    对应的所述UE根据所述基准资源块的时频位置和预先配置的所述下行传输资源的时频间隔和资源块的数目确定所述下行传输资源。
  8. 如权利要求7所述的方法,其特征在于,所述网络侧设备发送信令指示到终端设备UE之前,进一步包括:
    所述网络侧设备与所述UE通过协议预定义所述下行传输资源的时频间隔和资源块的数目;
    或在所述终端设备接入的时候确定所述下行传输资源的时频间隔和资源块的数目。
  9. 如权利要求5~8任一所述的方法,其特征在于,所述多个资源块上传输的数据块完全一致;或者
    所述多个资源块用于传输同一数据块的不同冗余版本;或者
    所述多个资源块中各资源块的大小不相同;或者
    所述多个资源块中各资源块的编码调制方案不同。
  10. 一种下行数据接收方法,其特征在于,包括:
    终端设备UE接收网络侧设备发送信令指示;其中,所述信令指示携带分配信息,所述分配信息用于指示传输数据块的多个下行传输资源;
    所述UE根据所述分配信息在所述多个下行传输资源上进行数据块接收。
  11. 如权利要求10所述的方法,其特征在于,终端设备UE接收网络侧设备发送信令指示之前,该方法还包括:
    UE发送自身的传输能力信息到所述网络侧设备,使得所述网络侧设备根据所述传输能力信息确定是否发送所述信令指示到所述UE;其中,所述传输能力信息用于指示所述UE是否支持超可靠低延迟通信URLLC传输。
  12. 如权利要求11所述的方法,其特征在于,所述UE发送自身的传输能力信息到所述网络侧设备包括:
    所述UE在随机接入过程发送的消息中携带所述传输能力信息;或
    所述UE在RRC信令中携带所述传输能力信息。
  13. 如权利要求10~12任一所述的方法,其特征在于,所述UE接收网络侧设备发送信令指示包括:
    所述UE通过下行信令下行物理控制信道PDCCH、paging信令或者RRC信令中接收所述信令指示。
  14. 如权利要求10~13任一所述的方法,其特征在于,所述分配信息包括所述多个下行传输资源的时频间隔、所述多个下行传输资源所对应资源块的数目和所述资源块中基准资源块的时频位置。
  15. 如权利要求10~13任一所述的方法,其特征在于,所述分配信息包括所述多个下行传输资源的时频位置。
  16. 如权利要求10~13任一所述的方法,其特征在于,所述分配信息包括所述多个下行传输资源所对应资源块中基准资源块的时频位置;
    则所述UE根据所述分配信息在所述多个下行传输资源上进行数据块接收之前,还包括:
    所述UE根据所述基准资源块的时频位置和预先配置的所述下行传输资源的时频间隔和资源块的数目确定所述多个下行传输资源。
  17. 如权利要求16所述的方法,其特征在于,所述终端设备UE接收网络侧设备发送信令指示之前,进一步包括:
    所述UE与所述网络侧设备通过协议预定义所述下行传输资源的时频间隔和资源块的数目;
    或与所述网络侧设备连接的时候确定所述下行传输资源的时频间隔和资源块的数目。
  18. 如权利要求14~17任一所述的方法,其特征在于,所述多个资源块上传输的数据块完全一致;或者
    所述多个资源块用于传输同一数据块的不同冗余版本;或者
    所述多个资源块中各资源块的大小不相同;或者
    所述多个资源块中各资源块的编码调制方案不同。
  19. 一种网络侧设备,其特征在于,包括:
    处理器,用于生成信令指示;其中,所述信令指示携带分配信息,所述分配信息用于指示传输数据块的多个下行传输资源;
    收发器,用于发送信令指示到终端设备UE。
  20. 如权利要求19所述的网络侧设备,其特征在于,所述处理器还用于获取所述UE的传输能力信息;根据所述传输能力信息确定是否发送所述信令指示到所述UE;其中,所述传输能力信息用于指示所述UE是否支持超可靠低延迟通信URLLC传输。
  21. 如权利要求20所述的网络侧设备,其特征在于,所述处理器具体用于在所述UE随机接入过程发送的消息中获取所述UE的传输能力信息;或在无线资源控制RRC信令中获取所述UE的传输能力信息。
  22. 如权利要求19~21任一所述的网络侧设备,其特征在于,所述收发器用于通过下行信令下行物理控制信道PDCCH、paging信令或者RRC信令中的一种或多种的组合发送所述信令指示到所述UE。
  23. 如权利要求19~22任一所述的网络侧设备,其特征在于,所述处理器用于将所述多个下行传输资源的时频间隔、所述多个下行传输资源所对应资源块的数目和所述资源块中基准资源块的时频位置作为所述分配信息添加到所述信令指示中。
  24. 如权利要求19~22任一所述的网络侧设备,其特征在于,所述处理器用于将所述多个下行传输资源的时频位置作为所述分配信息添加到所述信令指示中。
  25. 如权利要求19~22任一所述的网络侧设备,其特征在于,所述处理器用于将所述多个下行传输资源所对应资源块中基准资源块的时频位置作为所述分配信息添加到所述信令指示中;则对应的所述UE根据所述基准资源块的时频位置和预先配置的所述下行传输资源的时频间隔以及资源块的数目确定所述下行传输资源。
  26. 如权利要求25所述的网络侧设备,其特征在于,所述处理器还用于与所述UE通过协议预定义所述下行传输资源的时频间隔和资源块的数目;或在所述终端设备接入的时候确定所述下行传输资源的时频间隔和资源块的数目。
  27. 如权利要求23~26任一所述的网络侧设备,其特征在于,所述收发器还用于在多个资源块上传输的数据块完全一致;或者
    多个资源块用于传输同一数据块的不同冗余版本;或者
    所述多个资源块中各资源块的大小不相同;或者
    所述多个资源块中各资源块的编码调制方案不同。
  28. 一种终端设备,其特征在于,包括:
    接收器,用于接收网络侧设备发送信令指示;其中,所述信令指示携带分配信息,所述分配信息用于指示传输数据块的多个下行传输资源;
    处理器,用于根据所述分配信息确定所述多个下行传输资源,并控制所述接收器在所述多个下行传输资源上进行数据块接收。
  29. 如权利要求28所述的终端设备,其特征在于,所述终端设备还包括:
    发送器,用于发送自身的传输能力信息到所述网络侧设备,使得所述网络侧设备根据所述传输能力信息确定是否发送所述信令指示到所述UE;其中,所述传输能力信息用于指示所述UE是否支持超可靠低延迟通信URLLC传输。
  30. 如权利要求29所述的终端设备,其特征在于,所述发送器具体用于在随机接入过程发送的消息中携带所述传输能力信息;或在无线资源控制RRC信令中携带所述传输能力信息。
  31. 如权利要求28~30任一所述的终端设备,其特征在于,所述接收器具体用于通过下行信令下行物理控制信道PDCCH、paging信令或者RRC信令中接收所述信令指示。
  32. 如权利要求28~31任一所述的终端设备,其特征在于,所述处理器具体用于根据所述分配信息中的所述多个下行传输资源的时频间隔、所述多个下行传输资源所对应资源块的数目和所述资源块中基准资源块的时频位置确定所述多个下行传输资源。
  33. 如权利要求28~31任一所述的终端设备,其特征在于,所述处理器具体用于根据所述分配信息中的所述多个下行传输资源的时频位置确定所述多个下行传输资源。
  34. 如权利要求28~31任一所述的终端设备,其特征在于,所述处理器具体用于根据所述分配信息中的所述多个下行传输资源所对应资源块中基准资源块的时频位置、以及预先配置的所述下行传输资源的时频间隔和资源块的数目确定所述多个下行传输资源。
  35. 如权利要求34所述的终端设备,其特征在于,所述处理器还用于与所述网络侧设备通过协议预定义所述下行传输资源的时频间隔和资源块的数目;或与所述网络侧设备连接的时候确定所述下行传输资源的时频间隔和资源块的数目。
  36. 如权利要求32~35任一所述的终端设备,其特征在于,所述接收器还用于在多个资源块上传输的数据块完全一致;或者
    多个资源块用于传输同一数据块的不同冗余版本;或者
    所述多个资源块中各资源块的大小不相同;或者
    所述多个资源块中各资源块的编码调制方案不同。
  37. 一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行如权利要求1-18中任意一项所述的方法。
PCT/CN2017/093749 2016-08-29 2017-07-20 一种下行传输方法及装置 WO2018040779A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP17845082.1A EP3493440A4 (en) 2016-08-29 2017-07-20 METHOD AND DEVICE FOR DOWNLINK TRANSMISSION
US16/286,931 US11197149B2 (en) 2016-08-29 2019-02-27 Downlink transmission method and apparatus
US17/513,603 US11736935B2 (en) 2016-08-29 2021-10-28 Downlink transmission method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610750612.1A CN107801243B (zh) 2016-08-29 2016-08-29 一种下行传输方法及装置
CN201610750612.1 2016-08-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/286,931 Continuation US11197149B2 (en) 2016-08-29 2019-02-27 Downlink transmission method and apparatus

Publications (1)

Publication Number Publication Date
WO2018040779A1 true WO2018040779A1 (zh) 2018-03-08

Family

ID=61300011

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/093749 WO2018040779A1 (zh) 2016-08-29 2017-07-20 一种下行传输方法及装置

Country Status (4)

Country Link
US (2) US11197149B2 (zh)
EP (1) EP3493440A4 (zh)
CN (2) CN107801243B (zh)
WO (1) WO2018040779A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020191702A1 (en) * 2019-03-28 2020-10-01 Panasonic Intellectual Property Corporation Of America Mobile station, base station, reception method, and transmission method

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2997527A1 (en) * 2015-11-13 2017-05-18 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method of allocating radio resource and device utilizing the same
CN107801243B (zh) * 2016-08-29 2021-01-29 华为技术有限公司 一种下行传输方法及装置
CN111432485A (zh) * 2017-05-05 2020-07-17 华为技术有限公司 资源调度方法及设备
WO2019191966A1 (zh) * 2018-04-04 2019-10-10 Oppo广东移动通信有限公司 可靠性传输方法及相关产品
US11910383B2 (en) 2018-07-27 2024-02-20 Beijing Xiaomi Mobile Software Co., Ltd. Data transmission method, device, equipment, system and storage medium
CN110972318B (zh) * 2018-09-28 2023-06-16 北京紫光展锐通信技术有限公司 免调度资源的激活、去激活方法及装置、存储介质、基站、用户设备
US11962536B2 (en) * 2018-11-08 2024-04-16 Lenovo (Beijing) Limited Data block transmissions
BR112021003333A2 (pt) 2018-11-28 2021-07-27 Guangdong Oppo Mobile Telecommunications Corp., Ltd. método de transmissão de dados, aparelho de transmissão de dados, terminal, chip, e mídia de armazenamento legível por computador
WO2020107294A1 (zh) * 2018-11-28 2020-06-04 Oppo广东移动通信有限公司 一种数据传输方法及装置、终端
CN112188620B (zh) * 2019-07-01 2022-04-05 华为技术有限公司 一种通信方法及装置
CN112399595A (zh) * 2019-08-16 2021-02-23 华为技术有限公司 一种通信方法及装置
CN113383596A (zh) * 2020-01-10 2021-09-10 北京小米移动软件有限公司 网络分配向量的确定方法、装置及存储介质
CN113708901A (zh) * 2020-05-22 2021-11-26 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN111901892A (zh) * 2020-06-12 2020-11-06 中兴通讯股份有限公司 数据传输方法、装置、发射机、接收机及存储介质
US11695530B2 (en) * 2021-01-15 2023-07-04 Qualcomm Incorporated DMRS design for DFT-s-OFDM with increased subcarrier spacing
CN115696609B (zh) * 2022-10-13 2024-01-26 佰路威科技(北京)有限公司 资源分配方法及相关设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101729268A (zh) * 2008-11-03 2010-06-09 展讯通信(上海)有限公司 演进多媒体广播组播业务的资源分配方法及其系统
CN102067661A (zh) * 2008-06-20 2011-05-18 日本电气株式会社 资源分配方法、识别方法、基站、移动站以及程序
CN102625456A (zh) * 2011-02-01 2012-08-01 中兴通讯股份有限公司 下行控制信息的发送、接收和传输方法及相关装置
CN103684677A (zh) * 2012-09-26 2014-03-26 中兴通讯股份有限公司 数据的调度方法及装置
WO2014061998A1 (en) * 2012-10-16 2014-04-24 Samsung Electronics Co., Ltd. Method and apparatus for performing hybrid automatic repeat request operation in an asymmetric multicarrier communication network environment
US20160143008A1 (en) * 2014-11-14 2016-05-19 Electronics And Telecommunications Research Institute Method and apparatus for transmitting information in low latency mobile communication system

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102160319A (zh) 2008-08-11 2011-08-17 诺基亚公司 用于提供捆绑式传输的方法和设备
US8830884B2 (en) 2008-08-18 2014-09-09 Qualcomm Incorporated TTI bundling in a random access procedure
CN102035632B (zh) * 2009-09-25 2013-12-11 中兴通讯股份有限公司 一种无线中继场景下的数据传输方法和系统
EP2306665A1 (en) 2009-10-02 2011-04-06 Panasonic Corporation Relay backhaul uplink HARQ protocol
US9130748B2 (en) * 2012-02-25 2015-09-08 Telefonaktiebolaget L M Ericsson (Publ) Hybrid automatic repeat request with feedback dependent BIT selection
CN103298117B (zh) * 2012-02-29 2016-03-23 电信科学技术研究院 一种时频资源的指示及确认方法和装置
EP2947802B1 (en) * 2013-02-07 2020-11-11 Huawei Technologies Co., Ltd. Data transmission method and device
US20140241262A1 (en) * 2013-02-28 2014-08-28 Research In Motion Limited Medium access control signalling for direct device to device communications
CN104104467B (zh) * 2013-04-03 2019-06-25 中兴通讯股份有限公司 下行数据的传输、传输处理方法及装置
CN104243108B (zh) * 2013-06-08 2019-06-14 中兴通讯股份有限公司 上行混合自动重传请求反馈方法、装置和系统
KR20150020018A (ko) * 2013-08-14 2015-02-25 삼성전자주식회사 이동 통신 시스템에서 복수의 캐리어를 이용하는 데이터 송수신 방법 및 장치
GB2534828A (en) 2013-12-11 2016-08-03 Zte Wistron Telecom Ab CSI-RS based cell discovery signal
EP3253160B1 (en) * 2015-01-28 2020-07-29 Sharp Kabushiki Kaisha Terminal device and method
US10461915B2 (en) * 2015-07-20 2019-10-29 Lg Electronics Inc. Method and apparatus for handling TDD frame for short TTI in wireless communication system
US10455611B2 (en) * 2015-09-16 2019-10-22 Lg Electronics Inc. Method for transceiving data in wireless communication system and apparatus for same
KR102364679B1 (ko) * 2016-01-13 2022-02-18 엘지전자 주식회사 상향링크 데이터 전송 방법 및 사용자기기와, 상향링크 데이터 수신 방법 및 기지국
WO2017123276A1 (en) * 2016-01-15 2017-07-20 Intel IP Corporation 5g fdd low latency transmission subframe structure system and method of use
SG11201808145VA (en) * 2016-03-25 2018-10-30 Panasonic Ip Corp America Improved allocation of radio resources for vehicular communication
WO2017194816A1 (en) * 2016-05-10 2017-11-16 Nokia Technologies Oy Reliable or low latency network management
CN107801243B (zh) * 2016-08-29 2021-01-29 华为技术有限公司 一种下行传输方法及装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102067661A (zh) * 2008-06-20 2011-05-18 日本电气株式会社 资源分配方法、识别方法、基站、移动站以及程序
CN101729268A (zh) * 2008-11-03 2010-06-09 展讯通信(上海)有限公司 演进多媒体广播组播业务的资源分配方法及其系统
CN102625456A (zh) * 2011-02-01 2012-08-01 中兴通讯股份有限公司 下行控制信息的发送、接收和传输方法及相关装置
CN103684677A (zh) * 2012-09-26 2014-03-26 中兴通讯股份有限公司 数据的调度方法及装置
WO2014061998A1 (en) * 2012-10-16 2014-04-24 Samsung Electronics Co., Ltd. Method and apparatus for performing hybrid automatic repeat request operation in an asymmetric multicarrier communication network environment
US20160143008A1 (en) * 2014-11-14 2016-05-19 Electronics And Telecommunications Research Institute Method and apparatus for transmitting information in low latency mobile communication system

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DEUTSCHE TELEKOM: ",Discussion on User Plane Latency Requirements", 3GPPTSG RAN#71 RP-160245, 10 March 2016 (2016-03-10), XP051076203 *
ERICSSON: "Characteristics for URLLC", 3GPP TSG-RAN WG3 #92- R3-161289, 27 May 2016 (2016-05-27), XP051106089 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020191702A1 (en) * 2019-03-28 2020-10-01 Panasonic Intellectual Property Corporation Of America Mobile station, base station, reception method, and transmission method

Also Published As

Publication number Publication date
US20220174475A1 (en) 2022-06-02
EP3493440A4 (en) 2019-08-14
US11736935B2 (en) 2023-08-22
CN112911712B (zh) 2023-03-28
EP3493440A1 (en) 2019-06-05
CN107801243B (zh) 2021-01-29
CN112911712A (zh) 2021-06-04
US11197149B2 (en) 2021-12-07
CN107801243A (zh) 2018-03-13
US20190200214A1 (en) 2019-06-27

Similar Documents

Publication Publication Date Title
WO2018040779A1 (zh) 一种下行传输方法及装置
EP3225060B1 (en) Methods, base station and user equipment
WO2018059210A1 (zh) 一种用于数据传输的方法和装置
WO2018137577A1 (zh) 通信方法及装置
WO2017132995A1 (zh) 业务传输的方法和装置
CN108811074B (zh) 信息传输方法及装置
WO2020169063A1 (zh) 一种数据传输方法及通信装置
WO2020216130A1 (zh) 一种通信方法及装置
CN111049626A (zh) 无线通信的方法和装置
US11026237B2 (en) Methods and devices for communication of a signal based on an allocated resource block
WO2018228537A1 (zh) 信息发送、接收方法及装置
WO2018081989A1 (zh) 传输上行控制信息的方法、终端设备和网络设备
WO2018202193A1 (zh) 一种数据传输方法、装置和系统
CN115066937A (zh) 接收装置、发送装置、接收方法以及发送方法
WO2019029463A1 (zh) 一种接收控制信息、发送控制信息的方法及设备
WO2018228177A1 (zh) 一种调度请求的传输方法及相关设备
WO2021000937A1 (zh) 多时间单元传输方法及相关装置
WO2016169479A1 (zh) 一种数据传输方法及设备
US10512100B2 (en) User device-requested downlink pilots
WO2019192515A1 (zh) 一种反馈信息的传输方法和装置
WO2021147214A1 (zh) 通信方法和通信装置
JP2023514076A (ja) 予約されたリソースを利用する通信装置および通信方法
WO2019120090A1 (zh) 参考信号传输方法和通信装置
CN116261844A (zh) 一种侧行链路通信方法及装置
WO2019200507A1 (en) Control of d2d duplication

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17845082

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017845082

Country of ref document: EP

Effective date: 20190227