WO2019191966A1 - 可靠性传输方法及相关产品 - Google Patents

可靠性传输方法及相关产品 Download PDF

Info

Publication number
WO2019191966A1
WO2019191966A1 PCT/CN2018/082004 CN2018082004W WO2019191966A1 WO 2019191966 A1 WO2019191966 A1 WO 2019191966A1 CN 2018082004 W CN2018082004 W CN 2018082004W WO 2019191966 A1 WO2019191966 A1 WO 2019191966A1
Authority
WO
WIPO (PCT)
Prior art keywords
configuration information
transmission
network device
resource
transmission resource
Prior art date
Application number
PCT/CN2018/082004
Other languages
English (en)
French (fr)
Inventor
唐海
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2018/082004 priority Critical patent/WO2019191966A1/zh
Priority to CN201880077181.4A priority patent/CN111418177B/zh
Priority to CN202111527162.7A priority patent/CN114244473A/zh
Priority to TW108111981A priority patent/TW201943247A/zh
Publication of WO2019191966A1 publication Critical patent/WO2019191966A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0028Formatting
    • H04L1/0029Reduction of the amount of signalling, e.g. retention of useful signalling or differential signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a reliability transmission method and related products.
  • the fifth-generation mobile communication technology (5th-Generation, 5G) new radio (NR) system introduces Ultra-Reliable Low latency Communications Link (URLLC), which is characterized by extremes. Ultra-reliable (eg, 99.999%) transmission is achieved within the time delay (eg, 1 ms).
  • the data transmission process usually includes two steps of control signaling transmission and data transmission. Therefore, in order to achieve high reliability transmission, not only the reliability of data is required, but also the control signaling transmission is highly reliable.
  • Embodiments of the present application provide a reliability transmission method and related products, which can improve transmission reliability of control information in a 5G NR system.
  • an embodiment of the present application provides a reliability transmission method, including:
  • the network device configures N transmission resources, where N is a positive integer
  • the network device determines a transmission resource and dynamically indicates to the terminal.
  • the embodiment of the present application provides a reliability transmission method, including:
  • the terminal receives first configuration information of each of the N transmission resources from the network device, where the N transmission resources are pre-configured by the network device, where N is a positive integer;
  • the terminal receives a dynamic indication of the network device, where the dynamic indication is used to indicate a transmission resource determined by the network device.
  • an embodiment of the present application provides a network device, where the network device has a function of implementing behavior of a network device in the foregoing method design.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the network device includes a processor configured to support the network device to perform corresponding functions in the methods described above. Further, the network device may further include a transceiver for supporting communication between the network device and the terminal. Further, the network device can also include a memory for coupling with the processor that holds program instructions and data necessary for the network device.
  • an embodiment of the present application provides a terminal, where the terminal has a function of implementing a behavior of a terminal in the foregoing method design.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the terminal includes a processor configured to support the terminal in performing the corresponding functions of the above methods.
  • the terminal may further include a transceiver for supporting communication between the terminal and the network device.
  • the terminal may further include a memory for coupling with the processor, which stores program instructions and data necessary for the terminal.
  • an embodiment of the present application provides a network device, including a processor, a memory, a communication interface, and one or more programs, where the one or more programs are stored in the memory, and are configured by The processor executes, the program comprising instructions for performing the steps in any of the methods of the first aspect of the embodiments of the present application.
  • an embodiment of the present application provides a terminal, including a processor, a memory, a communication interface, and one or more programs, where the one or more programs are stored in the memory, and configured by the The processor executes, the program comprising instructions for performing the steps in any of the methods of the second aspect of the embodiments of the present application.
  • the embodiment of the present application provides a computer readable storage medium, wherein the computer readable storage medium stores a computer program for electronic data exchange, wherein the computer program causes the computer to execute as implemented in the present application.
  • the embodiment of the present application provides a computer readable storage medium, wherein the computer readable storage medium stores a computer program for electronic data exchange, wherein the computer program causes the computer to execute as implemented in the present application.
  • the embodiment of the present application provides a computer program product, where the computer program product includes a non-transitory computer readable storage medium storing a computer program, the computer program being operative to cause the computer to execute Applying some or all of the steps described in the first aspect or the method of any of the second aspects.
  • the computer program product can be a software installation package.
  • the network device first configures N transmission resources, and secondly, sends the first configuration information of each transmission resource to the terminal, and finally, determines a transmission resource, and dynamically indicates to the terminal. It can be seen that the network device can pre-configure the transmission resources in the upper layer and dynamically select the scheduling mechanism at the physical layer, which can reduce the dynamic signaling overhead, improve the reliability of the scheduling signaling, and effectively solve the problem of signaling reliability and signaling congestion. Especially the problem of edge user signaling reliability. Combining business models of specific services, such as URLLC services, and semi-statically configuring resources, it is also possible to reasonably allocate resources and meet service transmission requirements. Moreover, the technology and dynamic scheduling complement each other, and can complement each other to achieve efficient and reliable transmission.
  • FIG. 1 is a network architecture diagram of a possible communication system provided by an embodiment of the present application.
  • FIG. 2 is a schematic flowchart of a reliability transmission method according to an embodiment of the present application.
  • FIG. 3 is a schematic flowchart of a reliability transmission method according to an embodiment of the present application.
  • FIG. 4 is a schematic flowchart of a reliability transmission method according to an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a network device according to an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a terminal according to an embodiment of the present disclosure.
  • FIG. 7 is a structural block diagram of a functional unit of a network device according to an embodiment of the present disclosure.
  • FIG. 8 is a structural block diagram of a functional unit of a terminal according to an embodiment of the present application.
  • FIG. 1 illustrates a wireless communication system to which the present application relates.
  • the wireless communication system 100 can operate in a high frequency band, is not limited to a Long Term Evolution (LTE) system, and can be a 5th generation (5G) system and a new air interface (NR) in the future.
  • System machine to machine (Machine to Machine, M2M) system.
  • the wireless communication system 100 can include one or more network devices 101, one or more terminals 103, and a core network device 105.
  • the network device 101 can be a base station, and the base station can be used for communicating with one or more terminals, and can also be used for communicating with one or more base stations having partial terminal functions (such as a macro base station and a micro base station).
  • the base station may be a Base Transceiver Station (BTS) in a Time Division Synchronous Code Division Multiple Access (TD-SCDMA) system, or may be an evolved base station in an LTE system (Evolutional Node B). , eNB), and base stations in 5G systems, new air interface (NR) systems.
  • the base station may also be an Access Point (AP), a TransNode (Trans TRP), a Central Unit (CU), or other network entity, and may include some or all of the functions of the above network entities.
  • the core network device 105 includes an Access and Mobility Management Function (AMF) entity, a User Plane Function (UPF) entity, and a Session Management Function (SMF). .
  • AMF Access and Mobility Management Function
  • UPF User Plane Function
  • SMF Session Management Function
  • Terminals 103 may be distributed throughout wireless communication system 100, either stationary or mobile.
  • the terminal 103 may be a mobile device (such as a smart phone), a mobile station, a mobile unit, an M2M terminal, a wireless unit, a remote unit, a user agent, and a mobile client. and many more.
  • the wireless communication system 100 shown in FIG. 1 is only for the purpose of more clearly explaining the technical solutions of the present application, and does not constitute a limitation of the present application.
  • Those skilled in the art may know that with the evolution of the network architecture and new services, The appearance of the scenario, the technical solution provided by the present application is equally applicable to similar technical problems.
  • compression control signaling is currently considered, such as reducing or reducing certain domains in control signaling, but the compressible space is limited, so control signaling reliability is limited. .
  • FIG. 2 is a schematic diagram of a reliability transmission method according to an embodiment of the present application, which is applied to a network device in the foregoing example communication system, where the method includes:
  • the network device configures N transmission resources, where N is a positive integer
  • the N is configured by the protocol or configured by the network device.
  • the N transmission resources and the N can be configured through the high layer signaling at the same time.
  • the network device sends first configuration information of each transmission resource to the terminal;
  • the first configuration information is pre-configured by the network device.
  • the network device determines a transmission resource and dynamically indicates to the terminal.
  • the network device first configures N transmission resources, and secondly, sends the first configuration information of each transmission resource to the terminal, and finally, determines a transmission resource, and dynamically indicates to the terminal. It can be seen that the network device can pre-configure the transmission resources in the upper layer and dynamically select the scheduling mechanism at the physical layer, which can reduce the dynamic signaling overhead, improve the reliability of the scheduling signaling, and effectively solve the problem of signaling reliability and signaling congestion. Especially the problem of edge user signaling reliability. Combining business models of specific services, such as URLLC services, and semi-statically configuring resources, it is also possible to reasonably allocate resources and meet service transmission requirements. Moreover, the technology and dynamic scheduling complement each other, and can complement each other to achieve efficient and reliable transmission.
  • the network device sends the first configuration information of each transmission resource to the terminal, where the network device sends the first configuration information of each transmission resource to the terminal by using the high layer signaling.
  • the high layer signaling may be, for example, radio resource control information RRC, media access control layer control unit MAC CE, and the like.
  • the network device dynamically indicates to the terminal, including: the network device dynamically indicating to the terminal by user-specific signaling or by user group-specific signaling.
  • the user-specific signaling may be, for example, user-specific downlink control information UE specific DCI
  • the user group-specific signaling may be, for example, user group downlink control information Group common DCI.
  • the radio network temporary identifier RNTI check code of the user-specific signaling is the same as the RNTI check code of other user-specific signaling, where the RNTI check code includes a cell radio network temporary identifier C-RNTI check code. ;or,
  • the RNTI check code of the user-specific signaling is a specific RNTI check code, where the specific RNTI check code includes a resource indication Resource indication-RNTI check code;
  • the specific RNTI check code is the same or shorter than the C-RNTI check code.
  • the network device dynamically indicates to the terminal, including: the network device dynamically indicating a number of the first configuration information of the determined transmission resource to the terminal.
  • the number of the first configuration information is used to indicate the first configuration information.
  • the first configuration information includes at least one of the following information: a frequency domain resource, a time domain resource, a reference signal configuration, a modulation and coding policy, an MCS level configuration, a transport block size, and a physical uplink shared channel downlink control.
  • the base station is configured with 16 transmission resources, as shown in Table 1.
  • the base station dynamically instructs transmission resource 2 (0010) to the terminal.
  • the dynamic signaling overhead is reduced and the reliability of the scheduling signaling is improved. Effectively solve the problem of signaling reliability and signaling congestion, especially the reliability of edge user signaling.
  • the method further includes: the network device dynamically indicating the second configuration information corresponding to the determined transmission resource To the terminal.
  • the first configuration information includes at least one of the following: a frequency domain resource corresponding to a transmission resource, a time domain resource, a reference signal configuration, an MCS level configuration, a transport block size, and a transmission resource number;
  • the second configuration information includes at least one of the following: a process ID corresponding to the transmission resource, RV, a new transmission/retransmission, a downlink allocation indicator DAI, a physical uplink control channel PUCCH resource, and a physical downlink shared channel determination response timing PDSCH-ACK. Timing.
  • the base station is configured with 16 transmission resources, as shown in Table 2.
  • the transmission resource 0 (0000) is indicated, and the terminal is indicated together with the process number, the RV version, the new transmission/retransmission, the DAI, the PUCCH resource, and the PDSCH-ACK Timing.
  • the dynamic indication is used for some flexible configurations, such as the process ID, and the scheduling flexibility is improved without greatly improving the signaling overhead.
  • the first configuration information includes at least one of the following: a frequency domain resource corresponding to a transmission resource, a time domain resource, and a transmission resource number;
  • the second configuration information includes at least one of the following: a reference signal configuration corresponding to a transmission resource, an MCS level configuration, a transport block size, a process number, a redundancy version RV, a new transmission/retransmission, a DAI, a PUCCH resource, and a PDSCH-ACK. Timing.
  • the first configuration information includes at least one of the following: a frequency domain resource corresponding to a transmission resource, and a transmission resource number;
  • the second configuration information includes at least one of the following: a time domain resource corresponding to the transmission resource, a reference signal configuration, an MCS level configuration, a transport block size, a process number, a redundancy version RV, a new transmission/retransmission, a DAI, and a PUCCH resource. , PDSCH-ACK Timing.
  • the method further includes: obtaining, by the network device, the determined transmission resource corresponding by using a protocol agreement or an implicit manner. Second configuration information.
  • the first configuration information includes at least one of the following: a frequency domain resource corresponding to a transmission resource, a time domain resource, a reference signal configuration, an MCS level configuration, a transport block size, an RV, and a transmission resource number;
  • the second configuration information includes at least one of the following: a process number corresponding to the transmission resource, a new transmission/retransmission, a DAI, a PUCCH resource, and a PDSCH-ACK Timing.
  • the process ID is determined by the time domain resource, the new transmission/retransmission is determined by the RV, the ADI is configured with a specific value by a high layer, or most typically, the HARQ-ACK Multiplexing is not supported for the URLLC.
  • the DAI has no physical meaning, or the DAI defaults to 1.
  • the PUCCH resource is obtained by a high-level configuration or control resource unit CCE, and the PDSCH-ACK Timing is obtained by a high-level configuration.
  • the base station is configured with 16 transmission resources, as shown in Table 2.
  • the terminal can obtain the process number based on the time domain location calculation, and determine the new transmission/retransmission based on the RV version, for example, the new transmission corresponds to RV0, retransmits the corresponding RV3, and obtains the PUCCH based on the high layer configuration or the CCE calculation.
  • Some flexible configurations in this embodiment are obtained in an implicit manner or in other ways.
  • the scheduling flexibility is improved without greatly improving the signaling overhead, and the flexibility of the compression signaling is maintained.
  • the method further includes: the network device dynamically indicating the second configuration information corresponding to the determined transmission resource And the third device that obtains the third configuration information corresponding to the determined transmission resource by using a protocol or an implicit manner.
  • the first configuration information includes at least one of the following: a frequency domain resource corresponding to the determined transmission resource, a time domain resource, a reference signal configuration, an MCS level configuration, a transport block size, and a transmission resource number. ;
  • the second configuration information includes at least one of the following: an RV, a DAI, a PUCCH resource, and a PDSCH-ACK Timing corresponding to the determined transmission resource;
  • the third configuration information includes at least one of the following: a process number corresponding to the determined transmission resource, and a new transmission/retransmission;
  • any two types of configuration information of the first configuration information, the second configuration information, and the third configuration information do not include the same configuration information.
  • FIG. 3 is another reliability transmission method provided by the embodiment of the present application, which is applied to the terminal in the foregoing example communication system, and the method includes:
  • the terminal receives first configuration information of each of the N transmission resources from the network device, where the N transmission resources are pre-configured by the network device, where N is a positive integer;
  • the terminal receives a dynamic indication of the network device, where the dynamic indication is used to indicate a transmission resource determined by the network device.
  • the network device first configures N transmission resources, and secondly, sends the first configuration information of each transmission resource to the terminal, and finally, determines a transmission resource, and dynamically indicates to the terminal. It can be seen that the network device can pre-configure the transmission resources in the upper layer and dynamically select the scheduling mechanism at the physical layer, which can reduce the dynamic signaling overhead, improve the reliability of the scheduling signaling, and effectively solve the problem of signaling reliability and signaling congestion. Especially the problem of edge user signaling reliability. Combining business models of specific services, such as URLLC services, and semi-statically configuring resources, it is also possible to reasonably allocate resources and meet service transmission requirements. Moreover, the technology and dynamic scheduling complement each other, and can complement each other to achieve efficient and reliable transmission.
  • the terminal receives first configuration information of each of the N transmission resources from the network device, including:
  • the terminal receives first configuration information of each of the N transmission resources sent by the network device through the high layer signaling.
  • the terminal receives a dynamic indication of the network device, including:
  • the terminal receives a dynamic indication that the network device sends through user-specific signaling or through user group-specific signaling.
  • the terminal receives a dynamic indication of the network device, including:
  • the terminal receives a number of the first configuration information of the transmission resource determined by the network device.
  • the first configuration information includes at least one of the following information:
  • Frequency domain resources Frequency domain resources, time domain resources, reference signal configuration, modulation and coding strategy MCS level configuration, transport block size, physical uplink shared channel downlink control information UCI on PUSCH mode, repetition number, process number, redundancy version RV, new transmission / Retransmission, transmission resource number.
  • the method further includes:
  • the terminal receives second configuration information corresponding to the determined transmission resource from the network device.
  • the first configuration information includes at least one of the following: a frequency domain resource corresponding to a transmission resource, a time domain resource, a reference signal configuration, an MCS level configuration, a transport block size, and a transmission resource number;
  • the second configuration information includes at least one of the following: a process ID corresponding to the transmission resource, RV, a new transmission/retransmission, a downlink allocation indicator DAI, a physical uplink control channel PUCCH resource, and a physical downlink shared channel determination response timing PDSCH-ACK. Timing.
  • the first configuration information includes at least one of the following: a frequency domain resource corresponding to a transmission resource, a time domain resource, and a transmission resource number;
  • the second configuration information includes at least one of the following: a reference signal configuration corresponding to a transmission resource, an MCS level configuration, a transport block size, a process number, a redundancy version RV, a new transmission/retransmission, a DAI, a PUCCH resource, and a PDSCH-ACK. Timing.
  • the first configuration information includes at least one of the following: a frequency domain resource corresponding to a transmission resource, and a transmission resource number;
  • the second configuration information includes at least one of the following: a time domain resource corresponding to the transmission resource, a reference signal configuration, an MCS level configuration, a transport block size, a process number, a redundancy version RV, a new transmission/retransmission, a DAI, and a PUCCH resource. , PDSCH-ACK Timing.
  • the method further includes:
  • the terminal acquires second configuration information corresponding to the determined transmission resource by using a protocol agreement or an implicit manner.
  • the first configuration information includes at least one of the following: a frequency domain resource corresponding to a transmission resource, a time domain resource, a reference signal configuration, an MCS level configuration, a transport block size, an RV, and a transmission resource number;
  • the second configuration information includes at least one of the following: a process number corresponding to the transmission resource, a new transmission/retransmission, a DAI, a PUCCH resource, and a PDSCH-ACK Timing.
  • the method further includes:
  • the terminal acquires second configuration information corresponding to the determined transmission resource by using a protocol agreement or an implicit manner.
  • the first configuration information includes at least one of the following: a frequency domain resource corresponding to the determined transmission resource, a time domain resource, a reference signal configuration, an MCS level configuration, a transport block size, and a transmission resource number. ;
  • the second configuration information includes at least one of the following: an RV, a DAI, a PUCCH resource, and a PDSCH-ACK Timing corresponding to the determined transmission resource;
  • the third configuration information includes at least one of the following: a process number corresponding to the determined transmission resource, and a new transmission/retransmission;
  • any two types of configuration information of the first configuration information, the second configuration information, and the third configuration information do not include the same configuration information.
  • FIG. 4 is a reliability transmission method provided by the embodiment of the present application, which is applied to the network device and the terminal in the foregoing example communication system, and the method includes:
  • the network device configures N transmission resources, where N is a positive integer
  • the network device sends first configuration information of each transmission resource to the terminal;
  • the terminal receives first configuration information of each of the N transmission resources from the network device, where the N transmission resources are pre-configured by the network device, where N is a positive integer;
  • the network device determines a transmission resource and dynamically indicates to the terminal.
  • the terminal receives a dynamic indication of the network device, where the dynamic indication is used to indicate a transmission resource determined by the network device.
  • the network device first configures N transmission resources, and secondly, sends the first configuration information of each transmission resource to the terminal, and finally, determines a transmission resource, and dynamically indicates to the terminal. It can be seen that the network device can pre-configure the transmission resources in the upper layer and dynamically select the scheduling mechanism at the physical layer, which can reduce the dynamic signaling overhead, improve the reliability of the scheduling signaling, and effectively solve the problem of signaling reliability and signaling congestion. Especially the problem of edge user signaling reliability. Combining business models of specific services, such as URLLC services, and semi-statically configuring resources, it is also possible to reasonably allocate resources and meet service transmission requirements. Moreover, the technology and dynamic scheduling complement each other, and can complement each other to achieve efficient and reliable transmission.
  • FIG. 5 is a schematic structural diagram of a network device according to an embodiment of the present disclosure.
  • the network device includes a processor, a memory, a communication interface, and one or more.
  • a program wherein the one or more programs are stored in the memory and configured to be executed by the processor, the program comprising instructions for performing the following steps;
  • N is a positive integer
  • a transmission resource is determined and dynamically indicated to the terminal.
  • the network device first configures N transmission resources, and secondly, sends the first configuration information of each transmission resource to the terminal, and finally, determines a transmission resource, and dynamically indicates to the terminal. It can be seen that the network device can pre-configure the transmission resources in the upper layer and dynamically select the scheduling mechanism at the physical layer, which can reduce the dynamic signaling overhead, improve the reliability of the scheduling signaling, and effectively solve the problem of signaling reliability and signaling congestion. Especially the problem of edge user signaling reliability. Combining business models of specific services, such as URLLC services, and semi-statically configuring resources, it is also possible to reasonably allocate resources and meet service transmission requirements. Moreover, the technology and dynamic scheduling complement each other, and can complement each other to achieve efficient and reliable transmission.
  • the instruction in the program is specifically configured to: send each transmission resource to the terminal by using high layer signaling.
  • a configuration message is specifically configured to: send each transmission resource to the terminal by using high layer signaling.
  • the instructions in the program are specifically configured to perform the following operations: dynamically indicating by user-specific signaling or by user group-specific signaling. terminal.
  • the instructions in the program are specifically configured to: dynamically indicate, to the terminal.
  • the first configuration information includes at least one of the following information:
  • Frequency domain resources Frequency domain resources, time domain resources, reference signal configuration, modulation and coding strategy MCS level configuration, transport block size, physical uplink shared channel downlink control information UCI on PUSCH mode, repetition number, process number, redundancy version RV, new transmission / Retransmission, transmission resource number.
  • the program further includes instructions for: performing second communication information corresponding to the determined transmission resource after the determining one transmission resource and dynamically indicating to the terminal Dynamically indicated to the terminal.
  • the first configuration information includes at least one of the following: a frequency domain resource corresponding to a transmission resource, a time domain resource, a reference signal configuration, an MCS level configuration, a transport block size, and a transmission resource number;
  • the second configuration information includes at least one of the following: a process ID corresponding to the transmission resource, RV, a new transmission/retransmission, a downlink allocation indicator DAI, a physical uplink control channel PUCCH resource, and a physical downlink shared channel determination response timing PDSCH-ACK. Timing.
  • the first configuration information includes at least one of the following: a frequency domain resource corresponding to a transmission resource, a time domain resource, and a transmission resource number;
  • the second configuration information includes at least one of the following: a reference signal configuration corresponding to a transmission resource, an MCS level configuration, a transport block size, a process number, a redundancy version RV, a new transmission/retransmission, a DAI, a PUCCH resource, and a PDSCH-ACK. Timing.
  • the first configuration information includes at least one of the following: a frequency domain resource corresponding to a transmission resource, and a transmission resource number;
  • the second configuration information includes at least one of the following: a time domain resource corresponding to the transmission resource, a reference signal configuration, an MCS level configuration, a transport block size, a process number, a redundancy version RV, a new transmission/retransmission, a DAI, and a PUCCH resource. , PDSCH-ACK Timing.
  • the program further includes instructions for: obtaining the determined transmission by protocol agreement or implicitly after determining a transmission resource and dynamically indicating to the terminal The second configuration information corresponding to the resource.
  • the first configuration information includes at least one of the following: a frequency domain resource corresponding to a transmission resource, a time domain resource, a reference signal configuration, an MCS level configuration, a transport block size, an RV, and a transmission resource number;
  • the second configuration information includes at least one of the following: a process number corresponding to the transmission resource, a new transmission/retransmission, a DAI, a PUCCH resource, and a PDSCH-ACK Timing.
  • the program further includes instructions for: performing second communication information corresponding to the determined transmission resource after the determining one transmission resource and dynamically indicating to the terminal Dynamically indicating to the terminal; and acquiring third configuration information corresponding to the determined transmission resource by using a protocol agreement or an implicit manner.
  • the first configuration information includes at least one of the following: a frequency domain resource corresponding to the determined transmission resource, a time domain resource, a reference signal configuration, an MCS level configuration, a transport block size, and a transmission resource number. ;
  • the second configuration information includes at least one of the following: an RV, a DAI, a PUCCH resource, and a PDSCH-ACK Timing corresponding to the determined transmission resource;
  • the third configuration information includes at least one of the following: a process number corresponding to the determined transmission resource, and a new transmission/retransmission;
  • any two types of configuration information of the first configuration information, the second configuration information, and the third configuration information do not include the same configuration information.
  • FIG. 6 is a schematic structural diagram of a terminal according to an embodiment of the present disclosure.
  • the terminal includes a processor, a memory, a communication interface, and one or more programs.
  • the one or more programs are stored in the memory and configured to be executed by the processor, the program comprising instructions for performing the following steps;
  • the dynamic indication being used to indicate a transmission resource determined by the network device.
  • the network device first configures N transmission resources, and secondly, sends the first configuration information of each transmission resource to the terminal, and finally, determines a transmission resource, and dynamically indicates to the terminal. It can be seen that the network device can pre-configure the transmission resources in the upper layer and dynamically select the scheduling mechanism at the physical layer, which can reduce the dynamic signaling overhead, improve the reliability of the scheduling signaling, and effectively solve the problem of signaling reliability and signaling congestion. Especially the problem of edge user signaling reliability. Combining business models of specific services, such as URLLC services, and semi-statically configuring resources, it is also possible to reasonably allocate resources and meet service transmission requirements. Moreover, the technology and dynamic scheduling complement each other, and can complement each other to achieve efficient and reliable transmission.
  • the instructions in the program are specifically configured to: receive the network device from the upper layer First configuration information of each of the N transmission resources that are signaled.
  • the instructions in the program are specifically configured to: receive the network device by user-specific signaling or by user group-specific Dynamic indication of signaling.
  • the instruction in the program is specifically configured to: receive the first configuration information of the transmission resource determined by the network device Numbering.
  • the first configuration information includes at least one of the following information:
  • Frequency domain resources Frequency domain resources, time domain resources, reference signal configuration, modulation and coding strategy MCS level configuration, transport block size, physical uplink shared channel downlink control information UCI on PUSCH mode, repetition number, process number, redundancy version RV, new transmission / Retransmission, transmission resource number.
  • the program further includes instructions for: after receiving the dynamic indication of the network device, receiving a second corresponding to the determined transmission resource from the network device Configuration information.
  • the first configuration information includes at least one of the following: a frequency domain resource corresponding to a transmission resource, a time domain resource, a reference signal configuration, an MCS level configuration, a transport block size, and a transmission resource number;
  • the second configuration information includes at least one of the following: a process ID corresponding to the transmission resource, RV, a new transmission/retransmission, a downlink allocation indicator DAI, a physical uplink control channel PUCCH resource, and a physical downlink shared channel determination response timing PDSCH-ACK. Timing.
  • the first configuration information includes at least one of the following: a frequency domain resource corresponding to a transmission resource, a time domain resource, and a transmission resource number;
  • the second configuration information includes at least one of the following: a reference signal configuration corresponding to a transmission resource, an MCS level configuration, a transport block size, a process number, a redundancy version RV, a new transmission/retransmission, a DAI, a PUCCH resource, and a PDSCH-ACK. Timing.
  • the first configuration information includes at least one of the following: a frequency domain resource corresponding to a transmission resource, and a transmission resource number;
  • the second configuration information includes at least one of the following: a time domain resource corresponding to the transmission resource, a reference signal configuration, an MCS level configuration, a transport block size, a process number, a redundancy version RV, a new transmission/retransmission, a DAI, and a PUCCH resource. , PDSCH-ACK Timing.
  • the program further includes instructions for: acquiring, after the receiving the dynamic indication of the network device, a corresponding one of the determined transmission resources by a protocol agreement or an implicit manner Two configuration information.
  • the first configuration information includes at least one of the following: a frequency domain resource corresponding to a transmission resource, a time domain resource, a reference signal configuration, an MCS level configuration, a transport block size, an RV, and a transmission resource number;
  • the second configuration information includes at least one of the following: a process number corresponding to the transmission resource, a new transmission/retransmission, a DAI, a PUCCH resource, and a PDSCH-ACK Timing.
  • the program further includes instructions for: after receiving the dynamic indication of the network device, receiving a second corresponding to the determined transmission resource from the network device And the second configuration information corresponding to the determined transmission resource is obtained by using a protocol agreement or an implicit manner.
  • the first configuration information includes at least one of the following: a frequency domain resource corresponding to the determined transmission resource, a time domain resource, a reference signal configuration, an MCS level configuration, a transport block size, and a transmission resource number. ;
  • the second configuration information includes at least one of the following: an RV, a DAI, a PUCCH resource, and a PDSCH-ACK Timing corresponding to the determined transmission resource;
  • the third configuration information includes at least one of the following: a process number corresponding to the determined transmission resource, and a new transmission/retransmission;
  • any two types of configuration information of the first configuration information, the second configuration information, and the third configuration information do not include the same configuration information.
  • the terminal and the network device include corresponding hardware structures and/or software modules for performing the respective functions in order to implement the above functions.
  • the present application can be implemented in a combination of hardware or hardware and computer software in combination with the elements and algorithm steps of the various examples described in the embodiments disclosed herein. Whether a function is implemented in hardware or computer software to drive hardware depends on the specific application and design constraints of the solution. A person skilled in the art can use different methods for each particular application to implement the described functionality, but such implementation should not be considered to be beyond the scope of the application.
  • the embodiments of the present application may perform the division of functional units on the terminal and the network device according to the foregoing method.
  • each functional unit may be divided according to each function, or two or more functions may be integrated into one processing unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software program module. It should be noted that the division of the unit in the embodiment of the present application is schematic, and is only a logical function division. In actual implementation, there may be another division manner.
  • FIG. 7 shows a block diagram of one possible functional unit configuration of the network device involved in the above embodiment.
  • the network device 700 includes a processing unit 702 and a communication unit 703.
  • the processing unit 702 is configured to perform control management on the actions of the network device.
  • the processing unit 702 is configured to support the network device to perform steps 201, 202, and 203 in FIG. 2, steps 401, 402, and 404 in FIG. 4, and/or Other processes of the techniques described herein.
  • the communication unit 703 is used to support communication between the network device and other devices, such as communication with the terminal.
  • the network device may further include a storage unit 701 for storing program codes and data of the network device.
  • the processing unit 702 can be a processor or a controller, and can be, for example, a central processing unit (CPU), a general-purpose processor, a digital signal processor (DSP), and an application-specific integrated circuit (Application-Specific). Integrated Circuit (ASIC), Field Programmable Gate Array (FPGA) or other programmable logic device, transistor logic device, hardware component, or any combination thereof. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor may also be a combination of computing functions, for example, including one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
  • the communication unit 703 may be a transceiver, a transceiver circuit, or the like, and the storage unit 701 may be a memory.
  • the processing unit 702 is configured to configure N transmission resources, where N is a positive integer; and send, by the communication unit, first configuration information of each transmission resource to the terminal; and determine a transmission resource, and pass the communication
  • the unit is dynamically indicated to the terminal.
  • the network device first configures N transmission resources, and secondly, sends the first configuration information of each transmission resource to the terminal, and finally, determines a transmission resource, and dynamically indicates to the terminal.
  • the network device can pre-configure the transmission resources in the upper layer and dynamically select the scheduling mechanism at the physical layer, which can reduce the dynamic signaling overhead, improve the reliability of the scheduling signaling, and effectively solve the problem of signaling reliability and signaling congestion. Especially the problem of edge user signaling reliability.
  • Combining business models of specific services, such as URLLC services, and semi-statically configuring resources it is also possible to reasonably allocate resources and meet service transmission requirements.
  • the technology and dynamic scheduling complement each other, and can complement each other to achieve efficient and reliable transmission.
  • the configuration information of each transmission resource is sent to the terminal, and the processing unit 702 is specifically configured to: send, by using the high layer signaling, the transmission resource to the terminal by using the communication unit 703. First configuration information.
  • the processing unit 702 is specifically configured to dynamically indicate to the terminal by user-specific signaling or by user group-specific signaling.
  • the processing unit 702 is specifically configured to dynamically indicate, by the communication unit 703, the number of the first configuration information of the determined transmission resource to the terminal.
  • the terminal is specifically configured to dynamically indicate, by the communication unit 703, the number of the first configuration information of the determined transmission resource to the terminal. The terminal.
  • the first configuration information includes at least one of the following information:
  • Frequency domain resources Frequency domain resources, time domain resources, reference signal configuration, modulation and coding strategy MCS level configuration, transport block size, physical uplink shared channel downlink control information UCI on PUSCH mode, repetition number, process number, redundancy version RV, new transmission / Retransmission, transmission resource number.
  • the processing unit 702 dynamically indicates, by the communication unit 703, the second configuration information corresponding to the determined transmission resource after the determining one transmission resource and dynamically indicating to the terminal. To the terminal.
  • the first configuration information includes at least one of the following: a frequency domain resource corresponding to a transmission resource, a time domain resource, a reference signal configuration, an MCS level configuration, a transport block size, and a transmission resource number;
  • the second configuration information includes at least one of the following: a process ID corresponding to the transmission resource, RV, a new transmission/retransmission, a downlink allocation indicator DAI, a physical uplink control channel PUCCH resource, and a physical downlink shared channel determination response timing PDSCH-ACK. Timing.
  • the first configuration information includes at least one of the following: a frequency domain resource corresponding to a transmission resource, a time domain resource, and a transmission resource number;
  • the second configuration information includes at least one of the following: a reference signal configuration corresponding to a transmission resource, an MCS level configuration, a transport block size, a process number, a redundancy version RV, a new transmission/retransmission, a DAI, a PUCCH resource, and a PDSCH-ACK. Timing.
  • the first configuration information includes at least one of the following: a frequency domain resource corresponding to a transmission resource, and a transmission resource number;
  • the second configuration information includes at least one of the following: a time domain resource corresponding to the transmission resource, a reference signal configuration, an MCS level configuration, a transport block size, a process number, a redundancy version RV, a new transmission/retransmission, a DAI, and a PUCCH resource. , PDSCH-ACK Timing.
  • the processing unit 702 is further configured to: acquire, by using a protocol agreement or an implicit manner, a second configuration corresponding to the determined transmission resource. information.
  • the first configuration information includes at least one of the following: a frequency domain resource corresponding to a transmission resource, a time domain resource, a reference signal configuration, an MCS level configuration, a transport block size, an RV, and a transmission resource number;
  • the second configuration information includes at least one of the following: a process number corresponding to the transmission resource, a new transmission/retransmission, a DAI, a PUCCH resource, and a PDSCH-ACK Timing.
  • the processing unit 702 determines a transmission resource, and after being dynamically indicated to the terminal, is further configured to: dynamically send the second configuration information corresponding to the determined transmission resource by using the communication unit 703. And the third configuration information corresponding to the determined transmission resource is obtained by using a protocol agreement or an implicit manner.
  • the first configuration information includes at least one of the following: a frequency domain resource corresponding to the determined transmission resource, a time domain resource, a reference signal configuration, an MCS level configuration, a transport block size, and a transmission resource number. ;
  • the second configuration information includes at least one of the following: an RV, a DAI, a PUCCH resource, and a PDSCH-ACK Timing corresponding to the determined transmission resource;
  • the third configuration information includes at least one of the following: a process number corresponding to the determined transmission resource, and a new transmission/retransmission;
  • any two types of configuration information of the first configuration information, the second configuration information, and the third configuration information do not include the same configuration information.
  • the terminal involved in the embodiment of the present application may be the terminal shown in FIG. 5.
  • Fig. 8 shows a block diagram of a possible functional unit configuration of the network device involved in the above embodiment.
  • the network device 800 includes a processing unit 802 and a communication unit 803.
  • the processing unit 802 is configured to perform control management on the actions of the network device.
  • the processing unit 802 is configured to support the network device to perform steps 301 and 302 in FIG. 3, steps 401 and 405 in FIG. 4, and/or used in the description herein. Other processes of technology.
  • the communication unit 803 is used to support communication between the network device and other devices, such as communication with the terminal.
  • the network device may further include a storage unit 801 for storing program codes and data of the network device.
  • the processing unit 802 can be a processor or a controller, and can be, for example, a central processing unit (CPU), a general-purpose processor, a digital signal processor (DSP), and an application-specific integrated circuit (Application-Specific). Integrated Circuit (ASIC), Field Programmable Gate Array (FPGA) or other programmable logic device, transistor logic device, hardware component, or any combination thereof. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor may also be a combination of computing functions, for example, including one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
  • the communication unit 803 may be a transceiver, a transceiver circuit, or the like, and the storage unit 801 may be a memory.
  • the processing unit 802 is configured to receive, by using the communication unit 803, first configuration information of each of the N transmission resources from the network device, where the N transmission resources are pre-configured by the network device, where a positive integer; and receiving, by the communication unit, a dynamic indication of the network device, the dynamic indication being used to indicate a transmission resource determined by the network device.
  • the network device first configures N transmission resources, and secondly, sends the first configuration information of each transmission resource to the terminal, and finally, determines a transmission resource, and dynamically indicates to the terminal.
  • the network device can pre-configure the transmission resources in the upper layer and dynamically select the scheduling mechanism at the physical layer, which can reduce the dynamic signaling overhead, improve the reliability of the scheduling signaling, and effectively solve the problem of signaling reliability and signaling congestion. Especially the problem of edge user signaling reliability.
  • Combining business models of specific services, such as URLLC services, and semi-statically configuring resources it is also possible to reasonably allocate resources and meet service transmission requirements.
  • the technology and dynamic scheduling complement each other, and can complement each other to achieve efficient and reliable transmission.
  • the processing unit 802 in the receiving the first configuration information of each of the N transmission resources from the network device, is specifically configured to: receive, by the communication unit 803, the network device First configuration information of each of the N transmission resources transmitted by the higher layer signaling.
  • the processing unit 802 in the receiving the first configuration information of each of the N transmission resources from the network device, is specifically configured to: receive the network by using the communication unit 803. A dynamic indication that the device sends through user-specific signaling or through user-group-specific signaling.
  • the processing unit 802 is specifically configured to: receive, by using the communication unit 803, a first configuration of the transmission resource determined by the network device The number of the information.
  • the first configuration information includes at least one of the following information:
  • Frequency domain resources Frequency domain resources, time domain resources, reference signal configuration, modulation and coding strategy MCS level configuration, transport block size, physical uplink shared channel downlink control information UCI on PUSCH mode, repetition number, process number, redundancy version RV, new transmission / Retransmission, transmission resource number.
  • the processing unit 802 is further configured to: receive, by the communication unit 803, a second corresponding to the determined transmission resource from the network device. Configuration information.
  • the first configuration information includes at least one of the following: a frequency domain resource corresponding to a transmission resource, a time domain resource, a reference signal configuration, an MCS level configuration, a transport block size, and a transmission resource number;
  • the second configuration information includes at least one of the following: a process ID corresponding to the transmission resource, RV, a new transmission/retransmission, a downlink allocation indicator DAI, a physical uplink control channel PUCCH resource, and a physical downlink shared channel determination response timing PDSCH-ACK. Timing.
  • the first configuration information includes at least one of the following: a frequency domain resource corresponding to a transmission resource, a time domain resource, and a transmission resource number;
  • the second configuration information includes at least one of the following: a reference signal configuration corresponding to a transmission resource, an MCS level configuration, a transport block size, a process number, a redundancy version RV, a new transmission/retransmission, a DAI, a PUCCH resource, and a PDSCH-ACK. Timing.
  • the first configuration information includes at least one of the following: a frequency domain resource corresponding to a transmission resource, and a transmission resource number;
  • the second configuration information includes at least one of the following: a time domain resource corresponding to the transmission resource, a reference signal configuration, an MCS level configuration, a transport block size, a process number, a redundancy version RV, a new transmission/retransmission, a DAI, and a PUCCH resource. , PDSCH-ACK Timing.
  • the processing unit 802 is further configured to: obtain the determined transmission resource corresponding by using a protocol agreement or an implicit manner. Second configuration information.
  • the first configuration information includes at least one of the following: a frequency domain resource corresponding to a transmission resource, a time domain resource, a reference signal configuration, an MCS level configuration, a transport block size, an RV, and a transmission resource number;
  • the second configuration information includes at least one of the following: a process number corresponding to the transmission resource, a new transmission/retransmission, a DAI, a PUCCH resource, and a PDSCH-ACK Timing.
  • the processing unit 802 is further configured to: receive, by the communication unit 803, the identifier from the network device The second configuration information corresponding to the determined transmission resource; and the second configuration information corresponding to the determined transmission resource is obtained by using a protocol agreement or an implicit manner.
  • the first configuration information includes at least one of the following: a frequency domain resource corresponding to the determined transmission resource, a time domain resource, a reference signal configuration, an MCS level configuration, a transport block size, and a transmission resource number. ;
  • the second configuration information includes at least one of the following: an RV, a DAI, a PUCCH resource, and a PDSCH-ACK Timing corresponding to the determined transmission resource;
  • the third configuration information includes at least one of the following: a process number corresponding to the determined transmission resource, and a new transmission/retransmission;
  • any two types of configuration information of the first configuration information, the second configuration information, and the third configuration information do not include the same configuration information.
  • the terminal involved in the embodiment of the present application may be the terminal shown in FIG. 6.
  • the embodiment of the present application further provides a computer readable storage medium, wherein the computer readable storage medium stores a computer program for electronic data exchange, wherein the computer program causes the computer to execute a terminal as in the above method embodiment Some or all of the steps described.
  • the embodiment of the present application further provides a computer readable storage medium, wherein the computer readable storage medium stores a computer program for electronic data exchange, wherein the computer program causes the computer to execute a network in the method embodiment as described above Some or all of the steps described by the device.
  • the embodiment of the present application further provides a computer program product, wherein the computer program product comprises a non-transitory computer readable storage medium storing a computer program, the computer program being operative to cause a computer to perform the method embodiment as described above Some or all of the steps described in the terminal.
  • the computer program product can be a software installation package.
  • the embodiment of the present application further provides a computer program product, wherein the computer program product comprises a non-transitory computer readable storage medium storing a computer program, the computer program being operative to cause a computer to perform a network as in the above method Some or all of the steps described by the device.
  • the computer program product can be a software installation package.
  • the steps of the method or algorithm described in the embodiments of the present application may be implemented in a hardware manner, or may be implemented by a processor executing software instructions.
  • the software instructions may be composed of corresponding software modules, which may be stored in a random access memory (RAM), a flash memory, a read only memory (ROM), an erasable programmable read only memory ( Erasable Programmable ROM (EPROM), electrically erasable programmable read only memory (EEPROM), registers, hard disk, removable hard disk, compact disk read only (CD-ROM) or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor to enable the processor to read information from, and write information to, the storage medium.
  • the storage medium can also be an integral part of the processor.
  • the processor and the storage medium can be located in an ASIC. Additionally, the ASIC can be located in an access network device, a target network device, or a core network device. Of course, the processor and the storage medium may also exist as discrete components in the access network device, the target network device, or the core network device.
  • the functions described in the embodiments of the present application may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the processes or functions described in accordance with embodiments of the present application are generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transmission to another website site, computer, server, or data center by wire (eg, coaxial cable, fiber optic, Digital Subscriber Line (DSL)) or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a digital video disc (DVD)), or a semiconductor medium (for example, a solid state disk (SSD)). )Wait.
  • a magnetic medium for example, a floppy disk, a hard disk, a magnetic tape
  • an optical medium for example, a digital video disc (DVD)
  • DVD digital video disc
  • SSD solid state disk

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了可靠性传输方法及相关产品,包括:网络设备配置N个传输资源,N由协议约定或者由网络设备预配置,N为正整数;网络设备向终端发送每个传输资源的第一配置信息;网络设备确定一个传输资源,并动态指示给终端。本申请实施例能够提高5G NR系统中的控制信息的传输可靠性。

Description

可靠性传输方法及相关产品 技术领域
本申请涉及通信技术领域,尤其涉及一种可靠性传输方法及相关产品。
背景技术
第五代移动通信技术(5th-Generation,5G)新空口(new radio,NR)系统引入了超高可靠超低时延通信(Ultra-Reliable Low latency CommunicationsLink,URLLC),该业务的特征是在极端的时延内(例如,1ms)实现超高可靠性(例如,99.999%)的传输。目前,数据传输过程通常包括控制信令传输和数据传输两个步骤。因此,为了实现高可靠性传输,不仅要求数据的可靠性高,控制信令传输也要高可靠性。
发明内容
本申请的实施例提供一种可靠性传输方法及相关产品,能够提高5G NR系统中的控制信息的传输可靠性。
第一方面,本申请实施例提供一种可靠性传输方法,包括:
网络设备配置N个传输资源,N为正整数;
所述网络设备向终端发送每个传输资源的第一配置信息;
所述网络设备确定一个传输资源,并动态指示给所述终端。
第二方面,本申请实施例提供一种可靠性传输方法,包括:
终端接收来自网络设备的N个传输资源中每个传输资源的第一配置信息,所述N个传输资源由所述网络设备预配置,N为正整数;
所述终端接收所述网络设备的动态指示,所述动态指示用于指示所述网络设备所确定的一个传输资源。
第三方面,本申请实施例提供一种网络设备,该网络设备具有实现上述方法设计中网络设备的行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。在一个可能的设计中,网络设备包括处理器,所述处理器被配置为支持网络设备执行上述方法中相应的功能。进一步的,网络设备还可以包括收发器,所述收发器用于支持网络设备与终端之间的通信。进一步的,网络设备还可以包括存储器,所述存储器用于与处理器耦合,其保存网络设备必要的程序指令和数据。
第四方面,本申请实施例提供一种终端,该终端具有实现上述方法设计中终端的行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。在一个可能的设计中,终端包括处理器,所述处理器被配置为支持终端执行上述方法中相应的功能。进一步的,终端还可以包括收发器,所述收发器用于支持终端与网络设备之间的通信。进一步的,终端还可以包括存储器,所述存储器用于与处理器耦合,其保存终端必要的程序指令和数据。
第五方面,本申请实施例提供一种网络设备,包括处理器、存储器、通信接口以及一个或多个程序,其中,所述一个或多个程序被存储在所述存储器中,并且被配置由所述处理器执行,所述程序包括用于执行本申请实施例第一方面任一方法中的步骤的指令。
第六方面,本申请实施例提供一种终端,包括处理器、存储器、通信接口以及一个或 多个程序,其中,所述一个或多个程序被存储在所述存储器中,并且被配置由所述处理器执行,所述程序包括用于执行本申请实施例第二方面任一方法中的步骤的指令。
第七方面,本申请实施例提供了一种计算机可读存储介质,其中,所述计算机可读存储介质存储用于电子数据交换的计算机程序,其中,所述计算机程序使得计算机执行如本申请实施例第一方面任一方法中所描述的部分或全部步骤。
第八方面,本申请实施例提供了一种计算机可读存储介质,其中,所述计算机可读存储介质存储用于电子数据交换的计算机程序,其中,所述计算机程序使得计算机执行如本申请实施例第二方面任一方法中所描述的部分或全部步骤。
第九方面,本申请实施例提供了一种计算机程序产品,其中,所述计算机程序产品包括存储了计算机程序的非瞬时性计算机可读存储介质,所述计算机程序可操作来使计算机执行如本申请实施例第一方面或第二方面任一方法中所描述的部分或全部步骤。该计算机程序产品可以为一个软件安装包。
可以看出,本申请实施例,网络设备首先配置N个传输资源,其次,向终端发送每个传输资源的第一配置信息,最后,确定一个传输资源,并动态指示给终端。可见,网络设备能够预先在高层预配置传输资源,在物理层动态选择调度机制,如此可以减少动态信令开销,提高调度信令的可靠性,有效解决信令可靠性及信令拥塞的问题,尤其是边缘用户信令可靠性的问题。结合特定业务的业务模型,例如URLLC业务,半静态配置资源,也能够合理分配资源且满足业务传输需求。而且该技术与动态调度相辅相成,可以互补利弊,达到高效高可靠的传输。
附图说明
下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍。
图1是本申请实施例提供的一种可能的通信系统的网络架构图;
图2是本申请实施例提供的一种可靠性传输方法的流程示意图;
图3是本申请实施例提供的一种可靠性传输方法的流程示意图;
图4是本申请实施例提供的一种可靠性传输方法的流程示意图;
图5是本申请实施例提供的一种网络设备的结构示意图;
图6是本申请实施例提供的一种终端的结构示意图;
图7是本申请实施例提供的一种网络设备的功能单元组成框图;
图8是本申请实施例提供的一种终端的功能单元组成框图。
具体实施方式
下面将结合附图对本申请实施例中的技术方案进行描述。
示例的,图1示出了本申请涉及的无线通信系统。该无线通信系统100可以工作在高频频段上,不限于长期演进(Long Term Evolution,LTE)系统,还可以是未来演进的第五代移动通信(the 5th Generation,5G)系统、新空口(NR)系统,机器与机器通信(Machine to Machine,M2M)系统等。该无线通信系统100可包括:一个或多个网络设备101,一个或多个终端103,以及核心网设备105。其中:网络设备101可以为基站,基站可以用于与一个或多个终端进行通信,也可以用于与一个或多个具有部分终端功能的基站进行通信(比如宏基站与微基站)。基站可以是时分同步码分多址(Time Division Synchronous Code Division Multiple Access,TD-SCDMA)系统中的基站收发台(Base Transceiver Station,BTS),也可以是LTE系统中的演进型基站(Evolutional Node B,eNB),以及5G系统、新空口(NR)系统中的基站。另外,基站也可以为接入点(Access Point,AP)、传输节点(Trans TRP)、 中心单元(Central Unit,CU)或其他网络实体,并且可以包括以上网络实体的功能中的一些或所有功能。核心网设备105包括接入和移动管理功能(Access and Mobility Management Function,AMF)实体,用户面功能(User Plane Function,UPF)实体和会话管理功能(Session Management Function,SMF)等核心网侧的设备。终端103可以分布在整个无线通信系统100中,可以是静止的,也可以是移动的。在本申请的一些实施例中,终端103可以是移动设备(如智能手机)、移动台(mobile station)、移动单元(mobile unit)、M2M终端、无线单元,远程单元、用户代理、移动客户端等等。
需要说明的,图1示出的无线通信系统100仅仅是为了更加清楚的说明本申请的技术方案,并不构成对本申请的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请提供的技术方案对于类似的技术问题,同样适用。
下面对本申请涉及的相关技术进行介绍。
为了实现控制信令的高可靠性,目前都在考虑压缩控制信令的方式,譬如减少或缩小控制信令中的某些域,但可压缩的空间有限,所以,控制信令可靠性提升有限。
针对上述问题,本申请实施例提出以下实施例,下面结合附图进行详细描述。
请参阅图2,图2是本申请实施例提供的一种可靠性传输方法,应用于上述示例通信系统中的网络设备,该方法包括:
在201部分,所述网络设备配置N个传输资源,N为正整数;
其中,N由协议约定或者由所述网络设备配置,例如,所述N个传输资源和N可以同时通过高层信令配置下去。
在202部分,所述网络设备向终端发送每个传输资源的第一配置信息;
其中,所述第一配置信息由网络设备预先配置。
在203部分,所述网络设备确定一个传输资源,并动态指示给所述终端。
可以看出,本申请实施例中,网络设备首先配置N个传输资源,其次,向终端发送每个传输资源的第一配置信息,最后,确定一个传输资源,并动态指示给终端。可见,网络设备能够预先在高层预配置传输资源,在物理层动态选择调度机制,如此可以减少动态信令开销,提高调度信令的可靠性,有效解决信令可靠性及信令拥塞的问题,尤其是边缘用户信令可靠性的问题。结合特定业务的业务模型,例如URLLC业务,半静态配置资源,也能够合理分配资源且满足业务传输需求。而且该技术与动态调度相辅相成,可以互补利弊,达到高效高可靠的传输。
在一个可能的示例中,所述网络设备向终端发送每个传输资源的第一配置信息,包括:所述网络设备通过高层信令向所述终端发送每个传输资源的第一配置信息。
其中,所述高层信令例如可以是无线资源控制信息RRC,媒体接入控制层控制单元MAC CE等。
在一个可能的示例中,所述网络设备动态指示给所述终端,包括:所述网络设备通过用户专有信令或者通过用户组专有信令动态指示给所述终端。
其中,所述用户专有信令例如可以是用户专有下行控制信息UE specific DCI,所述用户组专有信令例如可以是用户组下行控制信息Group common DCI。
其中,所述用户专有信令的无线网络临时标识RNTI校验码与其他用户专有信令的RNTI校验码相同,所述RNTI校验码包括小区无线网络临时标识C-RNTI校验码;或者,
所述用户专有信令的RNTI校验码为特定的RNTI校验码,所述特定的RNTI校验码包括资源指示Resource indication-RNTI校验码;
所述特定的RNTI校验码较C-RNTI校验码相同或更短。
在一个可能的示例中,所述网络设备动态指示给所述终端,包括:所述网络设备将所 述确定的传输资源的第一配置信息的编号动态指示给所述终端。
其中,所述第一配置信息的编号用于指示第一配置信息。
在本可能的示例中,所述第一配置信息包括以下至少一种信息:频域资源,时域资源,参考信号配置,调制与编码策略MCS等级配置,传输块大小,物理上行共享信道下行控制信息UCI on PUSCH方式,重复次数,进程号,冗余版本RV,新传输/重传,传输资源号。
例如,假设基站配置了16个传输资源,如表1所示。
表1.传输资源的配置信息表
Figure PCTCN2018082004-appb-000001
当传输数据所需要的资源和调制与编码策略MCS等级与表1中的一个配置接近时,例如一个数据根据业务量和信道条件,确定需要采用50个PRB,2个符号,且MCS=0,则基站动态指示传输资源2(0010)给终端。
又例如,一个数据根据业务量和信道条件,需要采用8个PRB,2个符号,且采用MCS=4,则基站动态指示传输资源12(1100)给终端。
又例如,一个数据根据业务量和信道条件,需要采用5个PRB,2个符号,且采用MCS=4,则基站采用动态调度的方式为终端配置特定的资源。
本实施例较现有动态调度方式,动态信令开销减少,提高了调度信令的可靠性。有效解决信令可靠性及信令拥塞的问题,尤其是边缘用户信令可靠性的问题。
在一个可能的示例中,所述网络设备确定一个传输资源,并动态指示给所述终端之后,所述方法还包括:所述网络设备将所述确定的传输资源对应的第二配置信息动态指示给所述终端。
在本可能的示例中,所述第一配置信息包括以下至少一种:传输资源对应的频域资源, 时域资源,参考信号配置,MCS等级配置,传输块大小,传输资源号;
所述第二配置信息包括以下至少一种:传输资源对应的进程号,RV,新传输/重传,下行分配指示符DAI,物理上行控制信道PUCCH资源,物理下行共享信道确定应答时序PDSCH-ACK Timing。
例如,假设基站配置了16个传输资源,如表2所示。
表2.传输资源的配置信息表
Figure PCTCN2018082004-appb-000002
当传输数据所需要的资源和MCS等级与上述表2中的一个配置接近时,例如一个数据根据业务量和信道条件,需要采用50个PRB,2个符号,且采用MCS=0,则基站动态指示传输资源0(0000),同时连同进程号,RV版本,新传输/重传,DAI,PUCCH资源,PDSCH-ACK Timing等信息指示给终端。
又例如,一个数据根据业务量和信道条件,需要采用8个PRB,2个符号,且采用MCS=4,则基站动态指示传输资源12(1100),同时连同进程号,RV版本,新传输/重传,DAI,PUCCH资源,PDSCH-ACK Timing等信息指示给终端。
又例如,一个数据根据业务量和信道条件,需要采用2个PRB,2个符号,且采用MCS=4,则基站采用动态调度的方式为终端配置特定的资源。
本实施例既将一些灵活性大的配置,例如进程号等信息采用动态指示,在没有大幅提高信令开销的情况下,提高了调度的灵活性。
在本可能的示例中,所述第一配置信息包括以下至少一种:传输资源对应的频域资源,时域资源,传输资源号;
所述第二配置信息包括以下至少一种:传输资源对应的参考信号配置,MCS等级配置,传输块大小,进程号,冗余版本RV,新传输/重传,DAI,PUCCH资源,PDSCH-ACK Timing。
在本可能的示例中,所述第一配置信息包括以下至少一种:传输资源对应的频域资源,传输资源号;
所述第二配置信息包括以下至少一种:传输资源对应的时域资源,参考信号配置, MCS等级配置,传输块大小,进程号,冗余版本RV,新传输/重传,DAI,PUCCH资源,PDSCH-ACK Timing。
在一个可能的示例中,所述网络设备确定一个传输资源,并动态指示给所述终端之后,所述方法还包括:所述网络设备通过协议约定或隐性方式获取所述确定的传输资源对应的第二配置信息。
在本可能的示例中,所述第一配置信息包括以下至少一种:传输资源对应的频域资源,时域资源,参考信号配置,MCS等级配置,传输块大小,RV,传输资源号;
所述第二配置信息包括以下至少一种:传输资源对应的进程号,新传输/重传,DAI,PUCCH资源,PDSCH-ACK Timing。
其中,所述进程号由所述时域资源确定,所述新传输/重传由所述RV确定,所述ADI由高层配置特定值,或者最典型的,对URLLC不支持HARQ–ACK Multiplexing,DAI无物理意义,或者DAI默认为1,所述PUCCH资源由高层配置或控制资源单元CCE计算获得、所述PDSCH-ACK Timing由高层配置获得。
例如,假设基站配置了16个传输资源,如表2所示。
表3.传输资源的配置信息表
Figure PCTCN2018082004-appb-000003
当传输数据所需要的资源和MCS等级与上述表3中的一个配置接近时,例如一个数据根据业务量和信道条件,需要采用50个PRB,2个符号,且采用MCS=0,则基站动态指示传输资源0(0000),同时,终端能够基于时域位置计算获得进程号,基于RV版本判定新传输/重传,例如新传对应RV0,重传对应RV3,基于高层配置或CCE计算获得PUCCH资源,基于高层配置获得PDSCH-ACK Timing。
又例如,一个数据根据业务量和信道条件,需要采用2个PRB,2个符号,且采用MCS=4,则基站采用动态调度的方式为终端配置特定的资源。
本实施例一些灵活性大的配置通过隐性方式或其他途径获得,在没有大幅提高信令开销的情况下,提高了调度的灵活性,且压缩信令的灵活性依然保持。
在一个可能的示例中,所述网络设备确定一个传输资源,并动态指示给所述终端之后,所述方法还包括:所述网络设备将所述确定的传输资源对应的第二配置信息动态指示给所述终端;所述网络设备通过协议约定或隐性方式获取所述确定的传输资源对应的第三配置信息。
在本可能的示例中,所述第一配置信息包括以下至少一种:所述确定的传输资源对应的频域资源,时域资源,参考信号配置,MCS等级配置,传输块大小,传输资源号;
所述第二配置信息包括以下至少一种:所述确定的传输资源对应的RV,DAI,PUCCH资源,PDSCH-ACK Timing;
所述第三配置信息包括以下至少一种:所述确定的传输资源对应的进程号,新传输/重传;
且所述第一配置信息、所述第二配置信息、所述第三配置信息中任意两类配置信息不包含相同的配置信息。
与图2所示实施例一致的,请参阅图3,图3是本申请实施例提供的另一种可靠性传输方法,应用于上述示例通信系统中的终端,该方法包括:
在301部分,所述终端接收来自网络设备的N个传输资源中每个传输资源的第一配置信息,所述N个传输资源由所述网络设备预配置,N为正整数;
在302部分,所述终端接收所述网络设备的动态指示,所述动态指示用于指示所述网络设备所确定的一个传输资源。
可以看出,本申请实施例中,网络设备首先配置N个传输资源,其次,向终端发送每个传输资源的第一配置信息,最后,确定一个传输资源,并动态指示给终端。可见,网络设备能够预先在高层预配置传输资源,在物理层动态选择调度机制,如此可以减少动态信令开销,提高调度信令的可靠性,有效解决信令可靠性及信令拥塞的问题,尤其是边缘用户信令可靠性的问题。结合特定业务的业务模型,例如URLLC业务,半静态配置资源,也能够合理分配资源且满足业务传输需求。而且该技术与动态调度相辅相成,可以互补利弊,达到高效高可靠的传输。
在一个可能的示例中,所述终端接收来自网络设备的N个传输资源中每个传输资源的第一配置信息,包括:
所述终端接收来自网络设备通过高层信令发送的N个传输资源中每个传输资源的第一配置信息。
在一个可能的示例中,所述终端接收所述网络设备的动态指示,包括:
所述终端接收所述网络设备通过用户专有信令或者通过用户组专有信令发送的动态指示。
在一个可能的示例中,所述终端接收所述网络设备的动态指示,包括:
所述终端接收所述网络设备确定的所述传输资源的第一配置信息的编号。
在本可能的示例中,所述第一配置信息包括以下至少一种信息:
频域资源,时域资源,参考信号配置,调制与编码策略MCS等级配置,传输块大小,物理上行共享信道下行控制信息UCI on PUSCH方式,重复次数,进程号,冗余版本RV,新传输/重传,传输资源号。
在一个可能的示例中,所述终端接收所述网络设备的动态指示之后,所述方法还包括:
所述终端接收来自所述网络设备的所述确定的传输资源对应的第二配置信息。
在本可能的示例中,所述第一配置信息包括以下至少一种:传输资源对应的频域资源,时域资源,参考信号配置,MCS等级配置,传输块大小,传输资源号;
所述第二配置信息包括以下至少一种:传输资源对应的进程号,RV,新传输/重传,下行分配指示符DAI,物理上行控制信道PUCCH资源,物理下行共享信道确定应答时序PDSCH-ACK Timing。
在一个可能的示例中,所述第一配置信息包括以下至少一种:传输资源对应的频域资源,时域资源,传输资源号;
所述第二配置信息包括以下至少一种:传输资源对应的参考信号配置,MCS等级配置,传输块大小,进程号,冗余版本RV,新传输/重传,DAI,PUCCH资源,PDSCH-ACK Timing。
在一个可能的示例中,所述第一配置信息包括以下至少一种:传输资源对应的频域资源,传输资源号;
所述第二配置信息包括以下至少一种:传输资源对应的时域资源,参考信号配置,MCS等级配置,传输块大小,进程号,冗余版本RV,新传输/重传,DAI,PUCCH资源,PDSCH-ACK Timing。
在一个可能的示例中,所述终端接收所述网络设备的动态指示之后,所述方法还包括:
所述终端通过协议约定或隐性方式获取所述确定的传输资源对应的第二配置信息。
在本可能的示例中,所述第一配置信息包括以下至少一种:传输资源对应的频域资源,时域资源,参考信号配置,MCS等级配置,传输块大小,RV,传输资源号;
所述第二配置信息包括以下至少一种:传输资源对应的进程号,新传输/重传,DAI,PUCCH资源,PDSCH-ACK Timing。
在一个可能的示例中,所述终端接收所述网络设备的动态指示之后,所述方法还包括:
所述终端接收来自所述网络设备的所述确定的传输资源对应的第二配置信息;
所述终端通过协议约定或隐性方式获取所述确定的传输资源对应的第二配置信息。
在本可能的示例中,所述第一配置信息包括以下至少一种:所述确定的传输资源对应的频域资源,时域资源,参考信号配置,MCS等级配置,传输块大小,传输资源号;
所述第二配置信息包括以下至少一种:所述确定的传输资源对应的RV,DAI,PUCCH资源,PDSCH-ACK Timing;
所述第三配置信息包括以下至少一种:所述确定的传输资源对应的进程号,新传输/重传;
且所述第一配置信息、所述第二配置信息、所述第三配置信息中任意两类配置信息不包含相同的配置信息。
与图2和图3实施例一致的,请参阅图4,图4是本申请实施例提供的一种可靠性传输方法,应用于上述示例通信系统中的网络设备和终端,该方法包括:
在401部分,所述网络设备配置N个传输资源,N为正整数;
在402部分,所述网络设备向终端发送每个传输资源的第一配置信息;
在403部分,终端接收来自网络设备的N个传输资源中每个传输资源的第一配置信息,所述N个传输资源由所述网络设备预配置,N为正整数;
在404部分,所述网络设备确定一个传输资源,并动态指示给所述终端。
在405部分,所述终端接收所述网络设备的动态指示,所述动态指示用于指示所述网络设备所确定的一个传输资源。
可以看出,本申请实施例中,网络设备首先配置N个传输资源,其次,向终端发送每个传输资源的第一配置信息,最后,确定一个传输资源,并动态指示给终端。可见,网络设备能够预先在高层预配置传输资源,在物理层动态选择调度机制,如此可以减少动态信令开销,提高调度信令的可靠性,有效解决信令可靠性及信令拥塞的问题,尤其是边缘用 户信令可靠性的问题。结合特定业务的业务模型,例如URLLC业务,半静态配置资源,也能够合理分配资源且满足业务传输需求。而且该技术与动态调度相辅相成,可以互补利弊,达到高效高可靠的传输。
与上述实施例一致的,请参阅图5,图5是本申请实施例提供的一种网络设备的结构示意图,如图所示,该网络设备包括处理器、存储器、通信接口以及一个或多个程序,其中,所述一个或多个程序被存储在所述存储器中,并且被配置由所述处理器执行,所述程序包括用于执行以下步骤的指令;
配置N个传输资源,N为正整数;
向终端发送每个传输资源的第一配置信息;
确定一个传输资源,并动态指示给所述终端。
可以看出,本申请实施例中,网络设备首先配置N个传输资源,其次,向终端发送每个传输资源的第一配置信息,最后,确定一个传输资源,并动态指示给终端。可见,网络设备能够预先在高层预配置传输资源,在物理层动态选择调度机制,如此可以减少动态信令开销,提高调度信令的可靠性,有效解决信令可靠性及信令拥塞的问题,尤其是边缘用户信令可靠性的问题。结合特定业务的业务模型,例如URLLC业务,半静态配置资源,也能够合理分配资源且满足业务传输需求。而且该技术与动态调度相辅相成,可以互补利弊,达到高效高可靠的传输。
在一个可能的示例中,在所述向终端发送每个传输资源的配置信息方面,所述程序中的指令具体用于执行以下操作:通过高层信令向所述终端发送每个传输资源的第一配置信息。
在一个可能的示例中,在所述动态指示给所述终端方面,所述程序中的指令具体用于执行以下操作:通过用户专有信令或者通过用户组专有信令动态指示给所述终端。
在一个可能的示例中,在所述动态指示给所述终端方面,所述程序中的指令具体用于执行以下操作:将所述确定的传输资源的第一配置信息的编号动态指示给所述终端。
在本可能的示例中,所述第一配置信息包括以下至少一种信息:
频域资源,时域资源,参考信号配置,调制与编码策略MCS等级配置,传输块大小,物理上行共享信道下行控制信息UCI on PUSCH方式,重复次数,进程号,冗余版本RV,新传输/重传,传输资源号。
在一个可能的示例中,所述程序还包括用于执行以下操作的指令:在所述确定一个传输资源,并动态指示给所述终端之后,将所述确定的传输资源对应的第二配置信息动态指示给所述终端。
在本可能的示例中,所述第一配置信息包括以下至少一种:传输资源对应的频域资源,时域资源,参考信号配置,MCS等级配置,传输块大小,传输资源号;
所述第二配置信息包括以下至少一种:传输资源对应的进程号,RV,新传输/重传,下行分配指示符DAI,物理上行控制信道PUCCH资源,物理下行共享信道确定应答时序PDSCH-ACK Timing。
在本可能的示例中,所述第一配置信息包括以下至少一种:传输资源对应的频域资源,时域资源,传输资源号;
所述第二配置信息包括以下至少一种:传输资源对应的参考信号配置,MCS等级配置,传输块大小,进程号,冗余版本RV,新传输/重传,DAI,PUCCH资源,PDSCH-ACK Timing。
在本可能的示例中,所述第一配置信息包括以下至少一种:传输资源对应的频域资源,传输资源号;
所述第二配置信息包括以下至少一种:传输资源对应的时域资源,参考信号配置,MCS等级配置,传输块大小,进程号,冗余版本RV,新传输/重传,DAI,PUCCH资源,PDSCH-ACK Timing。
在一个可能的示例中,所述程序还包括用于执行以下操作的指令:在所述确定一个传输资源,并动态指示给所述终端之后,通过协议约定或隐性方式获取所述确定的传输资源对应的第二配置信息。
在本可能的示例中,所述第一配置信息包括以下至少一种:传输资源对应的频域资源,时域资源,参考信号配置,MCS等级配置,传输块大小,RV,传输资源号;
所述第二配置信息包括以下至少一种:传输资源对应的进程号,新传输/重传,DAI,PUCCH资源,PDSCH-ACK Timing。
在一个可能的示例中,所述程序还包括用于执行以下操作的指令:在所述确定一个传输资源,并动态指示给所述终端之后,将所述确定的传输资源对应的第二配置信息动态指示给所述终端;以及通过协议约定或隐性方式获取所述确定的传输资源对应的第三配置信息。
在本可能的示例中,所述第一配置信息包括以下至少一种:所述确定的传输资源对应的频域资源,时域资源,参考信号配置,MCS等级配置,传输块大小,传输资源号;
所述第二配置信息包括以下至少一种:所述确定的传输资源对应的RV,DAI,PUCCH资源,PDSCH-ACK Timing;
所述第三配置信息包括以下至少一种:所述确定的传输资源对应的进程号,新传输/重传;
且所述第一配置信息、所述第二配置信息、所述第三配置信息中任意两类配置信息不包含相同的配置信息。
与上述实施例一致的,请参阅图6,图6是本申请实施例提供的一种终端的结构示意图,如图所示,该终端包括处理器、存储器、通信接口以及一个或多个程序,其中,所述一个或多个程序被存储在所述存储器中,并且被配置由所述处理器执行,所述程序包括用于执行以下步骤的指令;
接收来自网络设备的N个传输资源中每个传输资源的第一配置信息,所述N个传输资源由所述网络设备预配置,N为正整数;
接收所述网络设备的动态指示,所述动态指示用于指示所述网络设备所确定的一个传输资源。
可以看出,本申请实施例中,网络设备首先配置N个传输资源,其次,向终端发送每个传输资源的第一配置信息,最后,确定一个传输资源,并动态指示给终端。可见,网络设备能够预先在高层预配置传输资源,在物理层动态选择调度机制,如此可以减少动态信令开销,提高调度信令的可靠性,有效解决信令可靠性及信令拥塞的问题,尤其是边缘用户信令可靠性的问题。结合特定业务的业务模型,例如URLLC业务,半静态配置资源,也能够合理分配资源且满足业务传输需求。而且该技术与动态调度相辅相成,可以互补利弊,达到高效高可靠的传输。
在一个可能的示例中,在所述接收来自网络设备的N个传输资源中每个传输资源的第一配置信息方面,所述程序中的指令具体用于执行以下操作:接收来自网络设备通过高层信令发送的N个传输资源中每个传输资源的第一配置信息。
在一个可能的示例中,在所述接收所述网络设备的动态指示方面,所述程序中的指令具体用于执行以下操作:接收所述网络设备通过用户专有信令或者通过用户组专有信令发 送的动态指示。
在一个可能的示例中,在所述接收所述网络设备的动态指示方面,所述程序中的指令具体用于执行以下操作:接收所述网络设备确定的所述传输资源的第一配置信息的编号。
在本可能的示例中,所述第一配置信息包括以下至少一种信息:
频域资源,时域资源,参考信号配置,调制与编码策略MCS等级配置,传输块大小,物理上行共享信道下行控制信息UCI on PUSCH方式,重复次数,进程号,冗余版本RV,新传输/重传,传输资源号。
在一个可能的示例中,所述程序还包括用于执行以下操作的指令:在所述接收所述网络设备的动态指示之后,接收来自所述网络设备的所述确定的传输资源对应的第二配置信息。
在本可能的示例中,所述第一配置信息包括以下至少一种:传输资源对应的频域资源,时域资源,参考信号配置,MCS等级配置,传输块大小,传输资源号;
所述第二配置信息包括以下至少一种:传输资源对应的进程号,RV,新传输/重传,下行分配指示符DAI,物理上行控制信道PUCCH资源,物理下行共享信道确定应答时序PDSCH-ACK Timing。
在本可能的示例中,所述第一配置信息包括以下至少一种:传输资源对应的频域资源,时域资源,传输资源号;
所述第二配置信息包括以下至少一种:传输资源对应的参考信号配置,MCS等级配置,传输块大小,进程号,冗余版本RV,新传输/重传,DAI,PUCCH资源,PDSCH-ACK Timing。
在本可能的示例中,所述第一配置信息包括以下至少一种:传输资源对应的频域资源,传输资源号;
所述第二配置信息包括以下至少一种:传输资源对应的时域资源,参考信号配置,MCS等级配置,传输块大小,进程号,冗余版本RV,新传输/重传,DAI,PUCCH资源,PDSCH-ACK Timing。
在一个可能的示例中,所述程序还包括用于执行以下操作的指令:在所述接收所述网络设备的动态指示之后,通过协议约定或隐性方式获取所述确定的传输资源对应的第二配置信息。
在本可能的示例中,所述第一配置信息包括以下至少一种:传输资源对应的频域资源,时域资源,参考信号配置,MCS等级配置,传输块大小,RV,传输资源号;
所述第二配置信息包括以下至少一种:传输资源对应的进程号,新传输/重传,DAI,PUCCH资源,PDSCH-ACK Timing。
在一个可能的示例中,所述程序还包括用于执行以下操作的指令:在所述接收所述网络设备的动态指示之后,接收来自所述网络设备的所述确定的传输资源对应的第二配置信息;以及用于通过协议约定或隐性方式获取所述确定的传输资源对应的第二配置信息。
在本可能的示例中,所述第一配置信息包括以下至少一种:所述确定的传输资源对应的频域资源,时域资源,参考信号配置,MCS等级配置,传输块大小,传输资源号;
所述第二配置信息包括以下至少一种:所述确定的传输资源对应的RV,DAI,PUCCH资源,PDSCH-ACK Timing;
所述第三配置信息包括以下至少一种:所述确定的传输资源对应的进程号,新传输/重传;
且所述第一配置信息、所述第二配置信息、所述第三配置信息中任意两类配置信息不包含相同的配置信息。
上述主要从各个网元之间交互的角度对本申请实施例的方案进行了介绍。可以理解的是,终端和网络设备为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对终端和网络设备进行功能单元的划分,例如,可以对应各个功能划分各个功能单元,也可以将两个或两个以上的功能集成在一个处理单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件程序模块的形式实现。需要说明的是,本申请实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
在采用集成的单元的情况下,图7示出了上述实施例中所涉及的网络设备的一种可能的功能单元组成框图。网络设备700包括:处理单元702和通信单元703。处理单元702用于对网络设备的动作进行控制管理,例如,处理单元702用于支持网络设备执行图2中的步骤201、202、203,图4中的步骤401、402和404和/或用于本文所描述的技术的其它过程。通信单元703用于支持网络设备与其他设备的通信,例如与终端之间的通信。网络设备还可以包括存储单元701,用于存储网络设备的程序代码和数据。
其中,处理单元702可以是处理器或控制器,例如可以是中央处理器(Central Processing Unit,CPU),通用处理器,数字信号处理器(Digital Signal Processor,DSP),专用集成电路(Application-Specific Integrated Circuit,ASIC),现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。通信单元703可以是收发器、收发电路等,存储单元701可以是存储器。
其中,所述处理单元702用于配置N个传输资源,N为正整数;以及通过所述通信单元向终端发送每个传输资源的第一配置信息;以及确定一个传输资源,并通过所述通信单元动态指示给所述终端。
可以看出,本发明实施例中,网络设备首先配置N个传输资源,其次,向终端发送每个传输资源的第一配置信息,最后,确定一个传输资源,并动态指示给终端。可见,网络设备能够预先在高层预配置传输资源,在物理层动态选择调度机制,如此可以减少动态信令开销,提高调度信令的可靠性,有效解决信令可靠性及信令拥塞的问题,尤其是边缘用户信令可靠性的问题。结合特定业务的业务模型,例如URLLC业务,半静态配置资源,也能够合理分配资源且满足业务传输需求。而且该技术与动态调度相辅相成,可以互补利弊,达到高效高可靠的传输。
在一个可能的示例中,在所述向终端发送每个传输资源的配置信息,所述处理单元702具体用于:通过高层信令通过所述通信单元703向所述终端发送每个传输资源的第一配置信息。
在一个可能的示例中,在所述动态指示给所述终端方面,所述处理单元702具体用于:通过用户专有信令或者通过用户组专有信令动态指示给所述终端。
在一个可能的示例中,在所述动态指示给所述终端方面,所述处理单元702具体用于:将所述确定的传输资源的第一配置信息的编号通过所述通信单元703动态指示给所述终端。
在本可能的示例中,所述第一配置信息包括以下至少一种信息:
频域资源,时域资源,参考信号配置,调制与编码策略MCS等级配置,传输块大小,物理上行共享信道下行控制信息UCI on PUSCH方式,重复次数,进程号,冗余版本RV,新传输/重传,传输资源号。
在一个可能的示例中,所述处理单元702在所述确定一个传输资源,并动态指示给所述终端之后,将所述确定的传输资源对应的第二配置信息通过所述通信单元703动态指示给所述终端。
在本可能的示例中,所述第一配置信息包括以下至少一种:传输资源对应的频域资源,时域资源,参考信号配置,MCS等级配置,传输块大小,传输资源号;
所述第二配置信息包括以下至少一种:传输资源对应的进程号,RV,新传输/重传,下行分配指示符DAI,物理上行控制信道PUCCH资源,物理下行共享信道确定应答时序PDSCH-ACK Timing。
在本可能的示例中,所述第一配置信息包括以下至少一种:传输资源对应的频域资源,时域资源,传输资源号;
所述第二配置信息包括以下至少一种:传输资源对应的参考信号配置,MCS等级配置,传输块大小,进程号,冗余版本RV,新传输/重传,DAI,PUCCH资源,PDSCH-ACK Timing。
在本可能的示例中,所述第一配置信息包括以下至少一种:传输资源对应的频域资源,传输资源号;
所述第二配置信息包括以下至少一种:传输资源对应的时域资源,参考信号配置,MCS等级配置,传输块大小,进程号,冗余版本RV,新传输/重传,DAI,PUCCH资源,PDSCH-ACK Timing。
在一个可能的示例中,所述处理单元702在确定一个传输资源,并动态指示给所述终端之后,还用于:通过协议约定或隐性方式获取所述确定的传输资源对应的第二配置信息。
在本可能的示例中,所述第一配置信息包括以下至少一种:传输资源对应的频域资源,时域资源,参考信号配置,MCS等级配置,传输块大小,RV,传输资源号;
所述第二配置信息包括以下至少一种:传输资源对应的进程号,新传输/重传,DAI,PUCCH资源,PDSCH-ACK Timing。
在一个可能的示例中,所述处理单元702确定一个传输资源,并动态指示给所述终端之后,还用于:将所述确定的传输资源对应的第二配置信息通过所述通信单元703动态指示给所述终端;以及用于通过协议约定或隐性方式获取所述确定的传输资源对应的第三配置信息。
在本可能的示例中,所述第一配置信息包括以下至少一种:所述确定的传输资源对应的频域资源,时域资源,参考信号配置,MCS等级配置,传输块大小,传输资源号;
所述第二配置信息包括以下至少一种:所述确定的传输资源对应的RV,DAI,PUCCH资源,PDSCH-ACK Timing;
所述第三配置信息包括以下至少一种:所述确定的传输资源对应的进程号,新传输/重传;
且所述第一配置信息、所述第二配置信息、所述第三配置信息中任意两类配置信息不包含相同的配置信息。
当处理单元702为处理器,通信单元703为通信接口,存储单元701为存储器时,本申请实施例所涉及的终端可以为图5所示的终端。
在采用集成的单元的情况下,图8示出了上述实施例中所涉及的网络设备的一种可能 的功能单元组成框图。网络设备800包括:处理单元802和通信单元803。处理单元802用于对网络设备的动作进行控制管理,例如,处理单元802用于支持网络设备执行图3中的步骤301、302,图4中的步骤401、405和/或用于本文所描述的技术的其它过程。通信单元803用于支持网络设备与其他设备的通信,例如与终端之间的通信。网络设备还可以包括存储单元801,用于存储网络设备的程序代码和数据。
其中,处理单元802可以是处理器或控制器,例如可以是中央处理器(Central Processing Unit,CPU),通用处理器,数字信号处理器(Digital Signal Processor,DSP),专用集成电路(Application-Specific Integrated Circuit,ASIC),现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。通信单元803可以是收发器、收发电路等,存储单元801可以是存储器。
其中,所述处理单元802用于通过所述通信单元803接收来自网络设备的N个传输资源中每个传输资源的第一配置信息,所述N个传输资源由所述网络设备预配置,N为正整数;以及通过所述通信单元接收所述网络设备的动态指示,所述动态指示用于指示所述网络设备所确定的一个传输资源。
可以看出,本发明实施例中,网络设备首先配置N个传输资源,其次,向终端发送每个传输资源的第一配置信息,最后,确定一个传输资源,并动态指示给终端。可见,网络设备能够预先在高层预配置传输资源,在物理层动态选择调度机制,如此可以减少动态信令开销,提高调度信令的可靠性,有效解决信令可靠性及信令拥塞的问题,尤其是边缘用户信令可靠性的问题。结合特定业务的业务模型,例如URLLC业务,半静态配置资源,也能够合理分配资源且满足业务传输需求。而且该技术与动态调度相辅相成,可以互补利弊,达到高效高可靠的传输。
在一个可能的示例中,在所述接收来自网络设备的N个传输资源中每个传输资源的第一配置信息方面,所述处理单元802具体用于:通过所述通信单元803接收来自网络设备通过高层信令发送的N个传输资源中每个传输资源的第一配置信息。
在一个可能的示例中,在所述接收来自网络设备的N个传输资源中每个传输资源的第一配置信息方面,所述处理单元802具体用于:通过所述通信单元803接收所述网络设备通过用户专有信令或者通过用户组专有信令发送的动态指示。
在一个可能的示例中,在所述接收所述网络设备的动态指示方面,所述处理单元802具体用于:通过所述通信单元803接收所述网络设备确定的所述传输资源的第一配置信息的编号。
在本可能的示例中,所述第一配置信息包括以下至少一种信息:
频域资源,时域资源,参考信号配置,调制与编码策略MCS等级配置,传输块大小,物理上行共享信道下行控制信息UCI on PUSCH方式,重复次数,进程号,冗余版本RV,新传输/重传,传输资源号。
在一个可能的示例中,所述处理单元802在接收所述网络设备的动态指示之后,还用于:通过所述通信单元803接收来自所述网络设备的所述确定的传输资源对应的第二配置信息。
在本可能的示例中,所述第一配置信息包括以下至少一种:传输资源对应的频域资源,时域资源,参考信号配置,MCS等级配置,传输块大小,传输资源号;
所述第二配置信息包括以下至少一种:传输资源对应的进程号,RV,新传输/重传, 下行分配指示符DAI,物理上行控制信道PUCCH资源,物理下行共享信道确定应答时序PDSCH-ACK Timing。
在本可能的示例中,所述第一配置信息包括以下至少一种:传输资源对应的频域资源,时域资源,传输资源号;
所述第二配置信息包括以下至少一种:传输资源对应的参考信号配置,MCS等级配置,传输块大小,进程号,冗余版本RV,新传输/重传,DAI,PUCCH资源,PDSCH-ACK Timing。
在本可能的示例中,所述第一配置信息包括以下至少一种:传输资源对应的频域资源,传输资源号;
所述第二配置信息包括以下至少一种:传输资源对应的时域资源,参考信号配置,MCS等级配置,传输块大小,进程号,冗余版本RV,新传输/重传,DAI,PUCCH资源,PDSCH-ACK Timing。
在一个可能的示例中,所述处理单元802在所述通过所述通信单元803接收所述网络设备的动态指示之后,还用于:通过协议约定或隐性方式获取所述确定的传输资源对应的第二配置信息。
在本可能的示例中,所述第一配置信息包括以下至少一种:传输资源对应的频域资源,时域资源,参考信号配置,MCS等级配置,传输块大小,RV,传输资源号;
所述第二配置信息包括以下至少一种:传输资源对应的进程号,新传输/重传,DAI,PUCCH资源,PDSCH-ACK Timing。
在一个可能的示例中,所述处理单元802在所述通过所述通信单元803接收所述网络设备的动态指示之后,还用于:通过所述通信单元803接收来自所述网络设备的所述确定的传输资源对应的第二配置信息;以及用于通过协议约定或隐性方式获取所述确定的传输资源对应的第二配置信息。
在本可能的示例中,所述第一配置信息包括以下至少一种:所述确定的传输资源对应的频域资源,时域资源,参考信号配置,MCS等级配置,传输块大小,传输资源号;
所述第二配置信息包括以下至少一种:所述确定的传输资源对应的RV,DAI,PUCCH资源,PDSCH-ACK Timing;
所述第三配置信息包括以下至少一种:所述确定的传输资源对应的进程号,新传输/重传;
且所述第一配置信息、所述第二配置信息、所述第三配置信息中任意两类配置信息不包含相同的配置信息。
当处理单元802为处理器,通信单元803为通信接口,存储单元801为存储器时,本申请实施例所涉及的终端可以为图6所示的终端。
本申请实施例还提供了一种计算机可读存储介质,其中,所述计算机可读存储介质存储用于电子数据交换的计算机程序,其中,所述计算机程序使得计算机执行如上述方法实施例中终端所描述的部分或全部步骤。
本申请实施例还提供了一种计算机可读存储介质,其中,所述计算机可读存储介质存储用于电子数据交换的计算机程序,其中,所述计算机程序使得计算机执行如上述方法实施例中网络设备所描述的部分或全部步骤。
本申请实施例还提供了一种计算机程序产品,其中,所述计算机程序产品包括存储了计算机程序的非瞬时性计算机可读存储介质,所述计算机程序可操作来使计算机执行如上述方法实施例中终端所描述的部分或全部步骤。该计算机程序产品可以为一个软件安装包。
本申请实施例还提供了一种计算机程序产品,其中,所述计算机程序产品包括存储了计算机程序的非瞬时性计算机可读存储介质,所述计算机程序可操作来使计算机执行如上 述方法中网络设备所描述的部分或全部步骤。该计算机程序产品可以为一个软件安装包。
本申请实施例所描述的方法或者算法的步骤可以以硬件的方式来实现,也可以是由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器(Random Access Memory,RAM)、闪存、只读存储器(Read Only Memory,ROM)、可擦除可编程只读存储器(Erasable Programmable ROM,EPROM)、电可擦可编程只读存储器(Electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、只读光盘(CD-ROM)或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于接入网设备、目标网络设备或核心网设备中。当然,处理器和存储介质也可以作为分立组件存在于接入网设备、目标网络设备或核心网设备中。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本申请实施例所描述的功能可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(Digital Subscriber Line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,数字视频光盘(Digital Video Disc,DVD))、或者半导体介质(例如,固态硬盘(Solid State Disk,SSD))等。
以上所述的具体实施方式,对本申请实施例的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本申请实施例的具体实施方式而已,并不用于限定本申请实施例的保护范围,凡在本申请实施例的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本申请实施例的保护范围之内。

Claims (31)

  1. 一种可靠性传输方法,其特征在于,包括:
    网络设备配置N个传输资源,N为正整数;
    所述网络设备向终端发送每个传输资源的第一配置信息;
    所述网络设备确定一个传输资源,并动态指示给所述终端。
  2. 根据权利要求1所述的方法,其特征在于,所述网络设备向终端发送每个传输资源的第一配置信息,包括:
    所述网络设备通过高层信令向所述终端发送每个传输资源的第一配置信息。
  3. 根据权利要求1或2所述的方法,其特征在于,所述网络设备动态指示给所述终端,包括:
    所述网络设备通过用户专有信令或者通过用户组专有信令动态指示给所述终端。
  4. 根据权利要求1或2所述的方法,其特征在于,所述网络设备动态指示给所述终端,包括:
    所述网络设备将所述确定的传输资源的第一配置信息的编号动态指示给所述终端。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述第一配置信息包括以下至少一种信息:
    频域资源,时域资源,参考信号配置,调制与编码策略MCS等级配置,传输块大小,物理上行共享信道下行控制信息UCI on PUSCH方式,重复次数,进程号,冗余版本RV,新传输/重传,传输资源号。
  6. 根据权利要求1-4任一项所述的方法,其特征在于,所述网络设备确定一个传输资源,并动态指示给所述终端之后,所述方法还包括:
    所述网络设备将所述确定的传输资源对应的第二配置信息动态指示给所述终端。
  7. 根据权利要求6所述的方法,其特征在于,所述第一配置信息包括以下至少一种:传输资源对应的频域资源,时域资源,参考信号配置,MCS等级配置,传输块大小,传输资源号;
    所述第二配置信息包括以下至少一种:传输资源对应的进程号,RV,新传输/重传,下行分配指示符DAI,物理上行控制信道PUCCH资源,物理下行共享信道确定应答时序PDSCH-ACK Timing。
  8. 根据权利要求6所述的方法,其特征在于,所述第一配置信息包括以下至少一种:传输资源对应的频域资源,时域资源,传输资源号;
    所述第二配置信息包括以下至少一种:传输资源对应的参考信号配置,MCS等级配置,传输块大小,进程号,冗余版本RV,新传输/重传,DAI,PUCCH资源,PDSCH-ACK Timing。
  9. 根据权利要求6所述的方法,其特征在于,所述第一配置信息包括以下至少一种:传输资源对应的频域资源,传输资源号;
    所述第二配置信息包括以下至少一种:传输资源对应的时域资源,参考信号配置,MCS等级配置,传输块大小,进程号,冗余版本RV,新传输/重传,DAI,PUCCH资源,PDSCH-ACK Timing。
  10. 根据权利要求1-4任一项所述的方法,其特征在于,所述网络设备确定一个传输资源,并动态指示给所述终端之后,所述方法还包括:
    所述网络设备通过协议约定或隐性方式获取所述确定的传输资源对应的第二配置信息。
  11. 根据权利要求10所述的方法,其特征在于,所述第一配置信息包括以下至少一种:传输资源对应的频域资源,时域资源,参考信号配置,MCS等级配置,传输块大小,RV, 传输资源号;
    所述第二配置信息包括以下至少一种:传输资源对应的进程号,新传输/重传,DAI,PUCCH资源,PDSCH-ACK Timing。
  12. 根据权利要求1-4任一项所述的方法,其特征在于,所述网络设备确定一个传输资源,并动态指示给所述终端之后,所述方法还包括:
    所述网络设备将所述确定的传输资源对应的第二配置信息动态指示给所述终端;
    所述网络设备通过协议约定或隐性方式获取所述确定的传输资源对应的第三配置信息。
  13. 根据权利要求12所述的方法,其特征在于,所述第一配置信息包括以下至少一种:所述确定的传输资源对应的频域资源,时域资源,参考信号配置,MCS等级配置,传输块大小,传输资源号;
    所述第二配置信息包括以下至少一种:所述确定的传输资源对应的RV,DAI,PUCCH资源,PDSCH-ACK Timing;
    所述第三配置信息包括以下至少一种:所述确定的传输资源对应的进程号,新传输/重传;
    且所述第一配置信息、所述第二配置信息、所述第三配置信息中任意两类配置信息不包含相同的配置信息。
  14. 一种可靠性传输方法,其特征在于,包括:
    终端接收来自网络设备的N个传输资源中每个传输资源的第一配置信息,所述N个传输资源由所述网络设备预配置,N为正整数;
    所述终端接收所述网络设备的动态指示,所述动态指示用于指示所述网络设备所确定的一个传输资源。
  15. 根据权利要求14所述的方法,其特征在于,所述终端接收来自网络设备的N个传输资源中每个传输资源的第一配置信息,包括:
    所述终端接收来自网络设备通过高层信令发送的N个传输资源中每个传输资源的第一配置信息。
  16. 根据权利要求13或14所述的方法,其特征在于,所述终端接收所述网络设备的动态指示,包括:
    所述终端接收所述网络设备通过用户专有信令或者通过用户组专有信令发送的动态指示。
  17. 根据权利要求13或14所述的方法,其特征在于,所述终端接收所述网络设备的动态指示,包括:
    所述终端接收所述网络设备确定的所述传输资源的第一配置信息的编号。
  18. 根据权利要求14-17任一项所述的方法,其特征在于,所述第一配置信息包括以下至少一种信息:
    频域资源,时域资源,参考信号配置,调制与编码策略MCS等级配置,传输块大小,物理上行共享信道下行控制信息UCI on PUSCH方式,重复次数,进程号,冗余版本RV,新传输/重传,传输资源号。
  19. 根据权利要求14-18任一项所述的方法,其特征在于,所述终端接收所述网络设备的动态指示之后,所述方法还包括:
    所述终端接收来自所述网络设备的所述确定的传输资源对应的第二配置信息。
  20. 根据权利要求19所述的方法,其特征在于,所述第一配置信息包括以下至少一种: 传输资源对应的频域资源,时域资源,参考信号配置,MCS等级配置,传输块大小,传输资源号;
    所述第二配置信息包括以下至少一种:传输资源对应的进程号,RV,新传输/重传,下行分配指示符DAI,物理上行控制信道PUCCH资源,物理下行共享信道确定应答时序PDSCH-ACK Timing。
  21. 根据权利要求19所述的方法,其特征在于,所述第一配置信息包括以下至少一种:传输资源对应的频域资源,时域资源,传输资源号;
    所述第二配置信息包括以下至少一种:传输资源对应的参考信号配置,MCS等级配置,传输块大小,进程号,冗余版本RV,新传输/重传,DAI,PUCCH资源,PDSCH-ACK Timing。
  22. 根据权利要求19所述的方法,其特征在于,所述第一配置信息包括以下至少一种:传输资源对应的频域资源,传输资源号;
    所述第二配置信息包括以下至少一种:传输资源对应的时域资源,参考信号配置,MCS等级配置,传输块大小,进程号,冗余版本RV,新传输/重传,DAI,PUCCH资源,PDSCH-ACK Timing。
  23. 根据权利要求14-18任一项所述的方法,其特征在于,所述终端接收所述网络设备的动态指示之后,所述方法还包括:
    所述终端通过协议约定或隐性方式获取所述确定的传输资源对应的第二配置信息。
  24. 根据权利要求23所述的方法,其特征在于,所述第一配置信息包括以下至少一种:传输资源对应的频域资源,时域资源,参考信号配置,MCS等级配置,传输块大小,RV,传输资源号;
    所述第二配置信息包括以下至少一种:传输资源对应的进程号,新传输/重传,DAI,PUCCH资源,PDSCH-ACK Timing。
  25. 根据权利要求14-18任一项所述的方法,其特征在于,所述终端接收所述网络设备的动态指示之后,所述方法还包括:
    所述终端接收来自所述网络设备的所述确定的传输资源对应的第二配置信息;
    所述终端通过协议约定或隐性方式获取所述确定的传输资源对应的第二配置信息。
  26. 根据权利要求25所述的方法,其特征在于,所述第一配置信息包括以下至少一种:所述确定的传输资源对应的频域资源,时域资源,参考信号配置,MCS等级配置,传输块大小,传输资源号;
    所述第二配置信息包括以下至少一种:所述确定的传输资源对应的RV,DAI,PUCCH资源,PDSCH-ACK Timing;
    所述第三配置信息包括以下至少一种:所述确定的传输资源对应的进程号,新传输/重传;
    且所述第一配置信息、所述第二配置信息、所述第三配置信息中任意两类配置信息不包含相同的配置信息。
  27. 一种网络设备,其特征在于,包括处理单元和通信单元,
    所述处理单元,用于配置N个传输资源,N为正整数;以及通过所述通信单元向终端发送每个传输资源的第一配置信息;以及确定一个传输资源,并通过所述通信单元动态指示给所述终端。
  28. 一种终端,其特征在于,包括处理单元和通信单元,
    所述处理单元,用于通过所述通信单元接收来自网络设备的N个传输资源中每个传输资源的第一配置信息,所述N个传输资源由所述网络设备预配置,N为正整数;以及通过所 述通信单元接收所述网络设备的动态指示,所述动态指示用于指示所述网络设备所确定的一个传输资源。
  29. 一种网络设备,其特征在于,包括处理器、存储器、通信接口,以及一个或多个程序,所述一个或多个程序被存储在所述存储器中,并且被配置由所述处理器执行,所述程序包括用于执行如权利要求1-13任一项所述的方法中的步骤的指令。
  30. 一种终端,其特征在于,包括处理器、存储器、通信接口,以及一个或多个程序,所述一个或多个程序被存储在所述存储器中,并且被配置由所述处理器执行,所述程序包括用于执行如权利要求14-26任一项所述的方法中的步骤的指令。
  31. 一种计算机可读存储介质,其特征在于,其存储用于电子数据交换的计算机程序,其中,所述计算机程序使得计算机执行如权利要求1-26任一项所述的方法。
PCT/CN2018/082004 2018-04-04 2018-04-04 可靠性传输方法及相关产品 WO2019191966A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2018/082004 WO2019191966A1 (zh) 2018-04-04 2018-04-04 可靠性传输方法及相关产品
CN201880077181.4A CN111418177B (zh) 2018-04-04 2018-04-04 可靠性传输方法及相关产品
CN202111527162.7A CN114244473A (zh) 2018-04-04 2018-04-04 可靠性传输方法及相关产品
TW108111981A TW201943247A (zh) 2018-04-04 2019-04-03 可靠性傳輸方法及相關產品

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/082004 WO2019191966A1 (zh) 2018-04-04 2018-04-04 可靠性传输方法及相关产品

Publications (1)

Publication Number Publication Date
WO2019191966A1 true WO2019191966A1 (zh) 2019-10-10

Family

ID=68100073

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/082004 WO2019191966A1 (zh) 2018-04-04 2018-04-04 可靠性传输方法及相关产品

Country Status (3)

Country Link
CN (2) CN111418177B (zh)
TW (1) TW201943247A (zh)
WO (1) WO2019191966A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112654086A (zh) * 2019-10-11 2021-04-13 维沃移动通信有限公司 资源分配方法和终端设备
CN113785619A (zh) * 2020-04-29 2021-12-10 华为技术有限公司 接入方法和装置以及通信系统

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024055180A1 (zh) * 2022-09-14 2024-03-21 华为技术有限公司 数据传输的方法以及通信装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102281645A (zh) * 2010-06-10 2011-12-14 宏达国际电子股份有限公司 处理半持续性调度传输的方法及相关通讯装置
CN104184540A (zh) * 2013-05-23 2014-12-03 电信科学技术研究院 D2d通信中的数据传输方法和设备
CN104754748A (zh) * 2013-12-27 2015-07-01 电信科学技术研究院 一种d2d资源分配方法、数据传输方法及装置
CN105991249A (zh) * 2015-01-30 2016-10-05 上海贝尔股份有限公司 一种在增强载波聚合系统中用于反馈uci的方法
US20170289353A1 (en) * 2015-08-14 2017-10-05 T-Mobile Usa, Inc. Dynamic Throttling and Real-Time Scheduling of Notifications Using a Campaign Management System

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102238531B (zh) * 2010-04-29 2015-01-14 电信科学技术研究院 基于竞争的上行传输指示方法、数据传输方法及装置
WO2012092721A1 (zh) * 2011-01-07 2012-07-12 富士通株式会社 探测参考信号的发送方法、基站和用户设备
CN103314631A (zh) * 2011-01-07 2013-09-18 富士通株式会社 探测参考信号的发送方法、基站和用户设备
US20150223232A1 (en) * 2012-08-27 2015-08-06 Telefonaktiebolaget L M Ericsson (Publ) Methods and Arrangements for Resource Allocation
WO2014085964A1 (zh) * 2012-12-03 2014-06-12 富士通株式会社 信息发送方法、检测方法及其装置、系统
CN107027188A (zh) * 2016-01-29 2017-08-08 中兴通讯股份有限公司 一种资源配置方法、网络侧设备和终端
US10356761B2 (en) * 2016-03-30 2019-07-16 Qualcomm Incorporated Techniques for configuring uplink control channel transmissions in a shared radio frequency spectrum band
WO2017218794A1 (en) * 2016-06-15 2017-12-21 Convida Wireless, Llc Upload control signaling for new radio
CN107734653B (zh) * 2016-08-10 2021-10-26 中国移动通信有限公司研究院 一种信息反馈方法、基站及用户设备
CN107801243B (zh) * 2016-08-29 2021-01-29 华为技术有限公司 一种下行传输方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102281645A (zh) * 2010-06-10 2011-12-14 宏达国际电子股份有限公司 处理半持续性调度传输的方法及相关通讯装置
CN104184540A (zh) * 2013-05-23 2014-12-03 电信科学技术研究院 D2d通信中的数据传输方法和设备
CN104754748A (zh) * 2013-12-27 2015-07-01 电信科学技术研究院 一种d2d资源分配方法、数据传输方法及装置
CN105991249A (zh) * 2015-01-30 2016-10-05 上海贝尔股份有限公司 一种在增强载波聚合系统中用于反馈uci的方法
US20170289353A1 (en) * 2015-08-14 2017-10-05 T-Mobile Usa, Inc. Dynamic Throttling and Real-Time Scheduling of Notifications Using a Campaign Management System

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112654086A (zh) * 2019-10-11 2021-04-13 维沃移动通信有限公司 资源分配方法和终端设备
CN112654086B (zh) * 2019-10-11 2023-07-25 维沃移动通信有限公司 资源分配方法和终端设备
CN113785619A (zh) * 2020-04-29 2021-12-10 华为技术有限公司 接入方法和装置以及通信系统
CN113785619B (zh) * 2020-04-29 2022-12-27 华为技术有限公司 接入方法和装置以及通信系统

Also Published As

Publication number Publication date
CN114244473A (zh) 2022-03-25
CN111418177B (zh) 2021-12-28
CN111418177A (zh) 2020-07-14
TW201943247A (zh) 2019-11-01

Similar Documents

Publication Publication Date Title
CN110495114B (zh) 用于码块分组的方法和设备
JP6159672B2 (ja) 基地局、送信方法、移動局及び再送制御方法
WO2019174486A1 (zh) 资源指示、确定方法及装置
US20240032037A1 (en) Information transmission method, terminal device, and network device
CN108702595B (zh) 用于执行上行链路传输的方法和设备
WO2020094025A1 (zh) 一种上行控制信息的传输方法及装置
WO2019095271A1 (zh) 资源确定方法、装置、网元及系统
WO2017076197A1 (zh) 一种发送和接收反馈的方法及设备
WO2018126839A1 (zh) 传输数据的方法、终端设备和网络设备
WO2021012996A1 (zh) 信息传输方法及装置
EP3709686A1 (en) Data transmission control method and related product
WO2019191966A1 (zh) 可靠性传输方法及相关产品
US11304202B2 (en) Method for transmitting uplink control information, and related product
WO2018141281A1 (zh) 数据传输的方法和装置
WO2021159497A1 (zh) 载波调度的方法及装置
WO2022151963A1 (zh) Pucch重传确定、配置方法及装置、存储介质、用户设备、网络侧设备
WO2021155604A1 (zh) 信息处理方法及设备
JP5969124B2 (ja) ユーザ装置の半永続スケジューリングのためのアップリンク制御チャネルリソース割り当て
US11968683B2 (en) Apparatus, method and computer program
WO2021184223A1 (zh) 通信方法、装置、设备及可读存储介质
WO2020206605A1 (zh) 下行控制信令传输方法及相关产品
WO2021088047A1 (zh) 反馈信息生成方法、装置、终端和网络设备
JP2024504095A (ja) アップリンク制御チャネルの電力制御方法、及び装置
WO2021262071A1 (en) Enhanced hybrid arq (harq) for a wireless network
CN114651503A (zh) 参数确定方法及相关装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18913799

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18913799

Country of ref document: EP

Kind code of ref document: A1