WO2020108524A1 - 传输方法和装置 - Google Patents

传输方法和装置 Download PDF

Info

Publication number
WO2020108524A1
WO2020108524A1 PCT/CN2019/121241 CN2019121241W WO2020108524A1 WO 2020108524 A1 WO2020108524 A1 WO 2020108524A1 CN 2019121241 W CN2019121241 W CN 2019121241W WO 2020108524 A1 WO2020108524 A1 WO 2020108524A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
time unit
time
data
slot
Prior art date
Application number
PCT/CN2019/121241
Other languages
English (en)
French (fr)
Inventor
彭金磷
刘哲
唐浩
唐臻飞
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19888506.3A priority Critical patent/EP3869887A4/en
Publication of WO2020108524A1 publication Critical patent/WO2020108524A1/zh
Priority to US17/330,838 priority patent/US20210282172A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • H04L27/26136Pilot sequence conveying additional information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26025Numerology, i.e. varying one or more of symbol duration, subcarrier spacing, Fourier transform size, sampling rate or down-clocking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present application relates to the communication field, and in particular to a transmission method and device in the communication field.
  • a terminal and a base station perform wireless communication based on a radio communication technology
  • an uplink (uplink, UL) carrier is used to carry uplink communication between the terminal and the base station
  • a downlink (downlink, DL) carrier is used to carry the terminal Downlink communication with the base station.
  • the present application provides a transmission method and device, which is beneficial to improve the reliability of data transmission.
  • a transmission method including: a first device sends a reference signal to a second device on a first time unit, and the first device transmits or receives data to a second device on a second time unit and/or Or control signaling.
  • the reference signal and the data are respectively transmitted through different time periods, so that the data can be transmitted in a concentrated period of time, which is beneficial to improve the reliability of data transmission.
  • the foregoing reference signal may be used by the second device to acquire or send the foregoing data.
  • the terminal taking communication between a terminal and a base station as an example, when the reference signal is used for uplink transmission, the terminal can send data to the base station; when the reference signal is used for downlink transmission, the base station can send data to the terminal.
  • the first terminal taking the communication between the first terminal and the second terminal as an example, the first terminal may send data to the second terminal based on the reference signal or receive data from the second terminal.
  • the first time unit and the second time unit do not overlap in the time domain.
  • non-overlap may be understood as that the first time unit and the second time unit respectively contain several different symbols, or that the same symbol does not exist in the first time unit and the second time unit.
  • the first time unit and the second time unit may contain different symbols of one time slot.
  • the first time unit and the second time unit may be located in different time slots.
  • the first time unit and the second time unit may be associated with a cyclic time (CT).
  • CT cyclic time
  • the first time unit and the second time unit may be located in the same CT or in different CTs.
  • the cycle time includes a first time unit and a second time unit, and the first time unit is located before the second time unit, the reference signal is transmitted in the first time unit, and the data is transmitted in the second time unit.
  • the cycle time is 2 CTs
  • the first CT includes a first time unit
  • the second CT includes a second time unit.
  • the first time unit is located before the second time unit.
  • the reference signal is transmitted in the first time unit, and the data of the downlink service and/or the data of the uplink service are transmitted in the second time unit.
  • the second time unit may include scheduling resources of a control channel and a shared channel, or the second time unit may be mapped with the scheduling resources.
  • the data scheduling resource can be understood as a resource allocated to the sending end, and the sending end sends data to the receiving end through the above scheduling resource.
  • the above scheduling resources may be transmitted through air interface resources.
  • the air interface resources may include at least one of time domain resources, frequency domain resources, and code domain resources, such as a physical downlink control channel (physical downlink control channel (PDCCH), Physical downlink shared channel (physical downlink shared channel, PDSCH) or physical uplink shared channel (physical uplink shared channel, PUSCH) resources.
  • a physical downlink control channel physical downlink control channel (PDCCH)
  • Physical downlink shared channel Physical downlink shared channel, PDSCH
  • PUSCH physical uplink shared channel
  • the above scheduling resources may be transmitted through sidelink resources.
  • the sidelink resources may include at least one of time domain resources, frequency domain resources, and code domain resources, such as a physical sidelink shared channel (physical sidelink shared channel). Shared channel (PSSCH), physical sidelink control channel (PSCCH) resources.
  • PSSCH physical sidelink shared channel
  • PSCCH physical sidelink control channel
  • the first device sends reference signal information to the second device, where the reference signal information indicates that the reference signal is located at the reference position of the first time unit.
  • the above reference signal includes at least one of the following: demodulation reference signal (demodulation reference signal, DMRS), sounding reference signal (sounding reference signal, SRS), physical random access channel (physical random access channel, PRACH) signal, synchronization Signals, phase-tracking reference signals (PTRS), or channel state information reference signals (channel state information-reference signals, CSI-RS).
  • demodulation reference signal demodulation reference signal
  • SRS sounding reference signal
  • PRACH physical random access channel
  • PTRS phase-tracking reference signals
  • channel state information reference signals channel state information-reference signals
  • the first device can send the reference signal to the second device with at least one slot or mini-slot as a cycle, and the above-mentioned reference signal and data can be realized
  • the decoupling of transmission based on the characteristics of the business model and the characteristics of the channel environment, achieves a compromise between channel estimation and reference signal overhead, which can maximize the utilization of resources.
  • the above method can be applied not only to eMBB transmission, but also to URLLC transmission.
  • the reference signal information includes the starting position of the first time unit; or the reference signal information includes the starting position of the first time unit and an offset value, the offset The value is the length of time relative to the starting position.
  • the first device may use radio resource control (radio resource control (RRC) signaling, media access control unit (media access control control element, MAC CE) signaling)
  • RRC radio resource control
  • media access control unit media access control control element
  • MAC CE media access control control element
  • the first device sends a radio resource control RRC message to the second device, and the RRC message includes reference signal information.
  • the first device sends a downlink control indication DCI to the second device, and the DCI is used to indicate that the reference signal is located at the reference position of the first time unit.
  • the embodiment of the present invention does not restrict the format of the DCI and each field in the DCI.
  • the DCI format can reuse the existing DCI format or a newly designed DCI format.
  • the first device sends the first downlink control indication DCI to the second device on multiple symbols
  • the time domain reference starting point position of the reference signal is any one of the following: the starting position of the time slot carrying the DCI, The starting symbol of the above symbols, or the ending symbol of the above symbols.
  • the first device sends indication information to the second device, instructing the second device to disable the reference signal in the scheduling resource.
  • disabling the reference signal enables data to be transmitted in a concentrated period of time without the need to transmit a reference signal or a small number of reference signals. As much as possible, increase the transmission resources for scheduling the above data during the real-time service period, which is beneficial to Improve the reliability of data transmission.
  • the scheduling resource may be a scheduling resource corresponding to the second time unit.
  • the above indication information may instruct the second device to ignore or discard the reference signal in a certain control channel and/or shared channel, or after receiving the indication information, the second device ignores or discards the reference signal by itself.
  • the first device sends reference signal information to the second device, where the reference signal information is used to indicate reference signal information required by the PDSCH for channel estimation, and the reference signal
  • the information may include the time length and/or (start) position information of the first time unit occupied by the reference signal.
  • the above reference signal is any one of CSI-RS, TRS, PTRS, DRS and SRS, it has at least one of the following same parameters as the control channel and/or shared channel: precoding matrix, QCL and antenna port.
  • the receiver can thus perform channel estimation based on the same parameters described above, improving the reliability of data transmission.
  • the frame structure parameters of the first time unit and the second time unit may be the same or different.
  • the second device supports receiving reference signals on the first time unit and the second time unit with the same frame structure parameter, but does not support receiving reference signals on the first time unit and the second time unit with different frame structure parameters at the same time.
  • the second device supports receiving the reference signal on the first time unit and the second time unit.
  • a transmission method including: a second device receives a reference signal from a first device on a first time unit, and receives or sends a reference signal from the first device to the first device on a second time unit The device sends data.
  • the reference signal and the data are respectively transmitted through different time periods, so that the data can be transmitted in a concentrated period of time, which is beneficial to improve the reliability of data transmission.
  • the foregoing reference signal may be used by the second device to acquire or send the foregoing data.
  • the second device receives or sends data to the first device on the second time unit based on the reference signal from the first device.
  • the first time unit and the second time unit may be associated with a cyclic time (CT).
  • CT cyclic time
  • the first time unit and the second time unit may be located in the same CT or different CTs.
  • the second time unit includes scheduling resources of the control channel and/or shared channel, or the second time unit may be mapped with the scheduling resources.
  • the first time unit and the second time unit do not overlap in the time domain.
  • the data transmission and the reference signal transmission can be completely separated in the time domain, which avoids the interference of the reference signal on the data and improves the reliability of data transmission.
  • the second device receives reference signal information from the first device, where the reference signal information indicates that the reference signal is located in the first time unit Reference location.
  • the reference signal information includes the starting position of the first time unit; or the reference signal information includes the starting position and offset of the first time unit Shift value, the offset value is a length of time relative to the starting position.
  • the second device determines that the reference signal is located at the reference position of the first time unit according to the reference signal information.
  • the second device receives a radio resource control RRC message from the first device, where the RRC message includes the reference signal information.
  • the second device receives a downlink control indication DCI from the second device, where the DCI is used to indicate that the reference signal is located at the reference position of the first time unit.
  • the second device when the first time unit is multiple symbols of a time slot, the second device receives a downlink control indication DCI from the first device based on the multiple symbols .
  • the reference position is any one of the following: the start position of the time slot; the start symbol of the multiple symbols; or the end symbol of the multiple symbols.
  • the second device determines that the reference signal is located at the reference position of the first time unit according to the reference signal information.
  • the second device receives the indication information sent by the first device, and the second device disables the reference signal in the scheduling resource according to the indication information.
  • disabling the reference signal enables data to be transmitted in a concentrated period of time without the need to transmit a reference signal or a small number of reference signals.
  • increase the transmission resources for scheduling the above data during the real-time service period which is beneficial Improve the reliability of data transmission.
  • the second device receives reference signal information sent by the first device, and the reference signal information is used to instruct the reference signal information required by the PDSCH for channel estimation.
  • the signal information may include the time length and/or (start) position information of the first time unit occupied by the reference signal.
  • the frame structure parameters of the first time unit and the second time unit may be the same or different.
  • transmission in the embodiments of the present application should be flexibly understood, that is, “transmission” sometimes has the meaning of “sending” and sometimes has the meaning of “receiving”.
  • an apparatus for performing the method in the first aspect or any possible implementation manner of the first aspect; or for performing the method in the second aspect or any possible implementation manner of the second aspect.
  • the apparatus includes a unit for performing the method in the first aspect or any possible implementation manner of the first aspect, or for performing the second aspect or any possible implementation of the second aspect The unit of the method in the way.
  • an apparatus includes: a transceiver, a memory, and a processor.
  • the transceiver, the memory and the processor communicate with each other through an internal connection path
  • the memory is used to store instructions
  • the processor is used to execute the instructions stored in the memory to control the receiver to receive signals, and control the transmitter to send signals
  • the execution causes the processor to execute the method in the first aspect or any possible implementation manner of the first aspect, or the execution causes the processor to execute the above The method in the second aspect or any possible implementation manner of the second aspect.
  • a computer program product comprising: computer program code, when the computer program code is executed by a computing device, causing the computing device to perform the first aspect or the first aspect The method in any possible implementation manner, or causing the computing device to perform the method in the second aspect or any possible implementation manner of the second aspect.
  • a computer-readable medium for storing a computer program, the computer program including instructions for executing the method in the first aspect or any possible implementation manner of the first aspect, or including Instructions for performing the method in the second aspect or any possible implementation manner of the second aspect.
  • a chip including: a processor, for calling and running a computer program from a memory, so that the device installed with the chip executes the first aspect or any possible implementation of the first aspect The method in the method or the method in the second aspect or any possible implementation manner of the second aspect.
  • FIG. 1 shows a schematic diagram of a communication system according to an embodiment of the present application
  • FIG. 2 shows a schematic diagram of another communication system according to an embodiment of the present application.
  • 3a-3b show a schematic diagram of the configuration of BWP in the carrier bandwidth according to an embodiment of the present application
  • FIG. 5 shows a schematic block diagram of an apparatus according to an embodiment of the present application.
  • FIG. 6 shows a schematic block diagram of another device according to an embodiment of the present application.
  • FIG. 7 shows a schematic block diagram of another device according to an embodiment of the present application.
  • GSM global mobile communication
  • CDMA code division multiple access
  • WCDMA broadband code division multiple access
  • general packet radio service general packet radio service, GPRS
  • LTE long term evolution
  • LTE frequency division duplex FDD
  • TDD time division duplex
  • UMTS universal mobile communication system
  • WiMAX worldwide interoperability for microwave access
  • FIG. 1 shows one of the communication systems 100 applied in the embodiments of the present application.
  • the communication system 100 may include at least one network device 110.
  • the network device 110 may be a device that communicates with a terminal device, such as a base station or a base station controller.
  • Each network device 110 can provide communication coverage for a specific geographic area, and can communicate with terminal devices located within the coverage area (cell).
  • the network device 110 may be a global mobile communications (global system for mobile communications, GSM) system or a base station (base transceiver station (BTS) in code division multiple access (CDMA), or broadband code division multiple access Address (wideband code division multiple access (WCDMA) system base station (NodeB, NB), it can also be an evolved base station (evolved NodeB, eNB or eNodeB) in LTE system, or a cloud wireless access network (cloud radio) wireless controller in the scenario of access network (CRAN), or the network device may be a relay station, an access point, a vehicle-mounted device, a wearable device, and a network device in a future 5G network, for example, in new radio (NR)
  • the base station (gNodeB or gNB) or the transmission/receiving point/transmission reception point (TRP), or the network device 110 may also be a network device in the future public land mobile network (PLMN) network, etc.
  • GSM global system for mobile communications
  • the communication system 100 also includes one or more terminal devices 120 located within the coverage of the network device 110.
  • the terminal device 120 may be mobile or fixed.
  • the terminal device 120 may refer to an access terminal, user equipment (UE), user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user Agent or user device.
  • UE user equipment
  • Access terminals can be cellular phones, cordless phones, session initiation protocol (SIP) phones, wireless local loop (WLL) stations, personal digital processing (personal digital assistant (PDA), wireless communication Functional handheld devices, computing devices, or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminal devices in future 5G networks, or terminals in future evolved public land mobile networks (PLMN)
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital processing
  • wireless communication Functional handheld devices computing devices, or other processing devices connected to wireless modems
  • in-vehicle devices wearable devices
  • terminal devices in future 5G networks or terminals in future evolved public land mobile networks (PLMN)
  • PLMN public land mobile networks
  • FIG. 1 exemplarily shows one network device and two terminal devices.
  • the communication system 100 may include multiple network devices and one network device may include other numbers of terminal devices within the coverage area. This application is implemented Examples do not limit this.
  • FIG. 2 shows the second communication system applied in the embodiment of the present application.
  • the communication system may include the network device 101 and the second device 1021, the second terminal device 1022 may perform data transmission through an air interface resource, and the air interface resource may include at least one of a time domain resource, a frequency domain resource, and a code domain resource.
  • the network device and the terminal device perform data transmission, the network device can send control information to the terminal through a control channel, such as a physical downlink control channel (physical downlink control channel, PDCCH), thereby allocating data channels for the terminal, such as physical downlink Shared channel (physical downlink shared channel, PDSCH) or physical uplink shared channel (physical uplink shared channel, PUSCH) resources.
  • a control channel such as a physical downlink control channel (physical downlink control channel, PDCCH)
  • PDCCH physical downlink control channel
  • PDSCH physical downlink shared channel
  • PUSCH physical uplink shared channel
  • control information may indicate the symbol and/or RB to which the data channel is mapped, and the network device and the terminal device perform data transmission through the data channel at the allocated time-frequency resource.
  • the above data transmission may include downlink data transmission and/or uplink data transmission
  • downlink data (such as data carried by PDSCH) transmission may refer to the network device sending data to the terminal device
  • uplink data such as data carried by PUSCH
  • the terminal device sends data to the network device.
  • the data can be generalized data, such as user data, system information, broadcast information, or other information.
  • data can also be transmitted between the second device 1021 and the second terminal device 1022 through sidelink resources.
  • the sidelink resources can also include time domain resources and frequency. At least one of a domain resource and a code domain resource.
  • the physical channels for data transmission by the second device and the second terminal device may include a physical sidelink shared channel (physical sidelink shared channel, PSSCH) and/or a physical sidelink control channel (physical sidelink control channel, PSCCH ).
  • PSSCH is used to transmit data
  • PSCCH is used to transmit control information, such as scheduling assignment (SA) information.
  • SA scheduling assignment
  • BWP In the 5G NR system, in order to adapt the bandwidth capability of the terminal equipment, it can be within the bandwidth supported by one carrier (may be called carrier bandwidth, the specific value can be 10MHz, 15MHz, 20MHz, 50MHz, 100MHz or 400MHz, etc.) BWP is configured for the terminal device, and multiple BWPs can be configured on one carrier, for example, 4 BWPs can be configured on one carrier. BWP may also be called carrier bandwidth (part), subband (narrowband) bandwidth, narrowband (narrowband) bandwidth, or other names. This application does not limit the name. For ease of description, the name is BWP For example.
  • a BWP contains K (K>0) subcarriers; or, a BWP is a frequency domain resource where N non-overlapping RBs are located, and the subcarrier spacing of the RB may be 15KHz, 30KHz, 60KHz, 120KHz, 240KHz, 480KHz Or other values; or, one BWP is the frequency domain resource where M non-overlapping resource block groups (RBGs) are located.
  • RBG includes P (P>0) consecutive RBs, and the children of the RB
  • the carrier spacing (SCS) may be 15KHz, 30KHz, 60KHz, 120KHz, 240KHz, 480KHz or other values, for example, an integer multiple of 2.
  • FIGS. 3a-3c the configuration of the three BWPs provided in the embodiments of the present application in the carrier bandwidth.
  • FIG. 3a shows the case of configuring a BWP in the carrier bandwidth.
  • the network device may first allocate the BWP within the terminal bandwidth capability range to the terminal device.
  • the terminal device may further allocate some or all of the BWP resources for communication.
  • the network device can configure different BWP conditions for the terminal device according to the actual scenario. For example, in order to save power consumption of the terminal device, the network device may allocate BWP to the terminal device according to the traffic of the terminal device.
  • a small BWP can be allocated to the terminal device for receiving control information and a small amount of data information, as shown in BWP1 in Figure 3b; when the terminal device has a large amount of service data When transmission is required, a larger BWP can be allocated to the terminal device, as shown in BWP2 in FIG. 3b.
  • the network device can allocate corresponding BWP to the terminal device according to the different service types of the terminal device, such as As shown in FIG. 3c, a BWP can correspond to a service type.
  • the BWP can be configured with frame structure parameters (numerology) that can meet the service requirements.
  • number of BWPs can occupy partially overlapping frequency domain resources.
  • different BWPs can also occupy completely different frequency domain resources and use different numerology.
  • the numerology corresponding to different BWPs may be the same or different, and this application is not limited. It can be understood that, only one or two BWPs are configured in one carrier as an example in FIGS. 3a to 3c. In actual applications, multiple BWPs may be configured in the carrier, which is not limited in this application.
  • Frame structure parameter refers to the parameters used by the communication system. For example, it may refer to a series of physical layer parameters in the air interface.
  • a BWP can correspond to a numerology. Among them, the NR system can support multiple numerology, multiple numerology can be used simultaneously.
  • the numerology may include one or more of the following parameter information: subcarrier interval, cyclic prefix (CP) information, time unit information, bandwidth, etc.
  • the CP information may include CP length and/or CP type.
  • the CP may be a normal CP (normal CP, NCP), or an extended CP (extended CP, ECP).
  • the time unit information is used to represent the time unit in the time domain, and may be, for example, sampling points, symbols, mini-slots, slots, subframes, or radio frames.
  • the time unit information may also include the type, length, or structure of the time unit.
  • numerology may include subcarrier spacing and CP, as shown in Table 1. Table 1 shows the numerology defined by the subcarrier spacing and CP currently supported in the NR system:
  • Subcarrier spacing 2 ⁇ ⁇ 15 (kHz) CP type 0 15 Normal 1 30 conventional 2 60 Regular or extended 3 120 conventional 4 240 conventional
  • the network device may allocate a BWP with a subcarrier spacing of 15KHz and a BWP with a subcarrier spacing of 30KHz, according to different scenarios and services. On demand, you can switch to different BWP to transmit signals.
  • the numerology corresponding to different BWPs may be the same or different.
  • the subcarrier spacing may be an integer greater than or equal to 0. For example, it can be 15KHz, 30KHz, 60KHz, 120KHz, 240KHz, 480KHz and so on.
  • Subcarrier spacing is the spacing between the center or peak positions of two adjacent subcarriers in the frequency domain in an orthogonal frequency division multiplexing (OFDM) system.
  • OFDM orthogonal frequency division multiplexing
  • the subcarrier spacing in the LTE system is 15KHz
  • the subcarrier spacing in the NR system may be 15kHz, or 30kHz, or 60kHz, or 120kHz.
  • the terminal device or the network device includes a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • the hardware layer includes central processing unit (CPU), memory management unit (memory management unit, MMU), and memory (also called main memory) and other hardware.
  • the operating system may be any one or more computer operating systems that implement business processes through processes, for example, a Linux operating system, a Unix operating system, an Android operating system, an iOS operating system, or a windows operating system.
  • the application layer includes browser, address book, word processing software, instant messaging software and other applications.
  • the embodiment of the present application does not specifically limit the specific structure of the execution body of the method provided in the embodiment of the present application, as long as it can run the program that records the code of the method provided by the embodiment of the present application to provide according to the embodiment of the present application
  • the method may be used for communication.
  • the execution body of the method provided in the embodiments of the present application may be a terminal device or a network device, or a functional module in the terminal device or network device that can call a program and execute the program.
  • the term "article of manufacture” as used in this application encompasses a computer program accessible from any computer-readable device, carrier, or medium.
  • the computer-readable medium may include, but is not limited to: magnetic storage devices (for example, hard disks, floppy disks, or magnetic tapes, etc.), optical disks (for example, compact discs (CDs), digital universal discs (digital discs, DVDs)) Etc.), smart cards and flash memory devices (for example, erasable programmable read-only memory (EPROM), cards, sticks or key drives, etc.).
  • various storage media described herein may represent one or more devices and/or other machine-readable media for storing information.
  • machine-readable medium may include, but is not limited to, wireless channels and various other media capable of storing, containing, and/or carrying instructions and/or data.
  • the wireless communication system shown in FIG. 1 or FIG. 2 may further include other network entities such as a network controller, a mobility management entity, etc.
  • network entities such as a network controller, a mobility management entity, etc.
  • the embodiments of the present application are not limited thereto.
  • CT cycle time
  • One of the typical business models in the Industrial Internet is periodic and deterministic services, such as motion control services.
  • the business model arrives at the CT cycle, and the business is a real-time business, which has high reliability and low latency requirements.
  • the cycle time can also be understood as a transmission period or a cycle period.
  • the value of CT is generally 0.25m, 0.5ms, 1ms, 2ms, etc. These values are usually integer multiples of 60kHz slot duration (60kHz slot duration is 0.25ms).
  • a closed-loop control needs to be completed in the CT, that is, the controller needs to successfully transmit the control instruction to the actuator in the CT, and the sensor must sense the new data after the actuator executes the instruction in the CT ( For example, the new position information after movement) is fed back to the controller, so that the controller processes the fed back new data in the CT and generates a control command for the next CT.
  • the controller will generate a data packet (control command) and send it to the actuator.
  • the controller should ensure that the control command is successfully received by the actuator through one or more transmissions, and ensure that the controller successfully receives the new data fed back by the sensor through one or more transmissions.
  • the controller can also be called a programmable logic controller (programmable logic controller, PLC) or a master device (master), and actuators and sensors can be collectively called a slave device or a controlled device (slave).
  • the actuator and the sensor may be located in one physical entity, or may be located in different physical entities. From this, it can be found that the CT can include the real-time business period between the controller and the actuator, and the data-inactive period. Specifically, the data-free period may be the time for the actuator to process data or perform actions, or the time for the actuator to sense and process data, or the time for the controller to generate commands.
  • the duration of the data-free time period may be the length of time when there is no data interaction between the controller and the actuator, or the length of time for the controller and the actuator to work on its own, such as processing data or generating commands. Further, the actuator senses the data, such as the information acquired for its own position change, and sends it to the controller during the no-data period.
  • One implementation method based on CT is that the controller sends commands to the executor.
  • the executor executes the commands received in the current CT and executes new data.
  • the current CT feeds back the new data to the controller.
  • the above actions can be within 1 CT carry out.
  • the executor executes the command received in the current CT and senses the new data, and feeds back the new data to the controller in the next CT. The above actions can be completed in different CTs.
  • the foregoing controller may be the first device in the embodiment of the present invention, and the actuator and/or the sensor may be the second device in the embodiment of the present invention.
  • the aforementioned industrial Internet is only an example.
  • the embodiments of the present invention can also be applied to various vertical industry scenarios, such as: cellular communications, relay communications, broadcast multicast communications, sidelink communications, Internet of Vehicles scenarios, autonomous driving scenarios, smart grids, industrial Internet, and so on.
  • FIG. 4 shows a schematic flowchart of a transmission method according to an embodiment of the present application. This method can be applied to the communication system shown in FIG. 1 or FIG. 2, and can also be applied to various other vertical industry scenarios, which are not limited in the embodiments of the present application.
  • the first device sends a reference signal to the second device on the first time unit
  • the first device transmits or receives data and/or control signaling to the second device on the second time unit.
  • data is used as an example for description, and the data may be understood as control signaling; or, the data may include control signaling.
  • the above-mentioned first device may be a network device in the communication system, or may be a terminal device in the above-mentioned communication system, or may be another node with a transmission function.
  • the above-mentioned second device may be a terminal device in a communication system, which is not limited in this embodiment of the present application.
  • the reference signal and the data are respectively transmitted through different time periods, so that the data can be transmitted in a concentrated period of time, which is beneficial to improve the reliability of data transmission.
  • more time domain resources can be used to transmit data, which is helpful to reduce the data transmission time, thereby reducing the transmission delay, and is beneficial to reduce the time required for data retransmission. More retransmission times, thereby improving the reliability of data transmission.
  • the Industrial Internet it is possible to further increase the transmission resources for scheduling the above data during the real-time business period.
  • the above reference signal may be used by the second device to acquire or send the above data.
  • the terminal can send data to the base station; when the reference signal is used for downlink transmission, the base station can send data to the terminal.
  • the first terminal may send data to the second terminal based on the reference signal or receive data from the second terminal.
  • the first time unit and the second time unit do not overlap in the time domain.
  • non-overlap may be understood as that the first time unit and the second time unit respectively include several different symbols, or that the same symbol does not exist in the first time unit and the second time unit.
  • the first time unit and the second time unit may be located at different positions in a time slot.
  • the first time unit and the second time unit may be located in different time slots.
  • the data transmission and the reference signal transmission can be completely separated in the time domain, which avoids the interference of the reference signal on the data and improves the reliability of data transmission.
  • the first time unit where the reference signal is located is in the data inactive time of the CT
  • the second time unit where the data is located is in the CT real-time service transmission period, so that more time-frequency resources are used for data transmission.
  • CT needs a part of resources for reference signal transmission in the real-time service transmission period, resulting in fewer resources for data transmission.
  • the first time unit and the second time unit may be associated with a cyclic time (CT).
  • CT cyclic time
  • the cycle time includes a first time unit and a second time unit, and the first time unit is located before the second time unit, the reference signal is transmitted in the first time unit, and the data is transmitted in the second time unit .
  • the data here includes uplink data and/or downlink data. It can be understood that the data can also be understood as control signaling or contains control signaling, which will not be repeated here.
  • the cycle time is 1 CT
  • the data applicable to the downlink service and/or the data of the uplink service arrives at the beginning of the CT
  • the uplink data and/or downlink data of the service lasts for a period of time of the CT.
  • the length of the later period in the CT is a no-service period, and is used to transmit the reference signal in the embodiment of the present application.
  • the length of time in the CT is the upstream data and/or downstream data of the service. Therefore, the intra-CT duration for transmitting the reference signal may correspond to the first time unit, and the intra-CT duration for the subsequent transmission data may correspond to the second time unit.
  • the first CT includes a first time unit
  • the second CT includes a second time unit.
  • the first time unit is located before the second time unit.
  • the reference signal is transmitted in the first time unit, and the data of the downlink service and/or the data of the uplink service are transmitted in the second time unit.
  • the above data is transmitted in the second time unit, which may refer to that in the above cycle time, the data is transmitted only in the second time unit. It can be understood that the embodiments of the present application do not limit the transmission behavior of the above-mentioned data outside the above-mentioned cycle time, that is, the data can be transmitted on a time unit outside the above-mentioned cycle time. In other words, for one or more cycle times in the time domain, the above data is transmitted in the second time unit of the one or more cycle times, and for time units other than the one or more cycle times The above data may be transmitted on the other time unit, or may not be transmitted on the other time unit, which is not limited in this embodiment of the present application.
  • the above reference signal is transmitted in the first time unit, which may refer to that in the above cycle time, the data is transmitted only in the first time unit. It can be understood that the embodiment of the present application does not limit the transmission behavior of the reference signal outside the above-mentioned cycle time, that is, the reference signal may be transmitted on a time unit outside the above-mentioned cycle time. In other words, for one or more cycle times in the time domain, the above reference signal is transmitted in the first time unit of the one or more cycle times, and for other times than the one or more cycle times Unit, the above reference number may be transmitted on the other time unit, or may not be transmitted on the other time unit, which is not limited in the embodiment of the present application.
  • the above data can be services with certain characteristics or requirements, for example, enhanced mobile broadband (eMBB) services, ultra-reliable and low-latency communications (URLLC) services, or massive machine-type communications (massive machine type of communication, mMTC) business.
  • eMBB enhanced mobile broadband
  • URLLC ultra-reliable and low-latency communications
  • mMTC massive machine-type communications
  • the second time unit may include scheduling resources of a control channel and a shared channel.
  • the second time unit may be mapped with the scheduling resource.
  • the length of one frame may be defined as 10 ms, and one frame may include 10 subframes, and the length of one subframe may be defined as 1 ms.
  • a subframe may include several slots, and one slot may include 14 symbols (may be called slots) or 12 symbols.
  • a time slot containing 12 symbols may be called a mini-slot or a non-slot.
  • the network device may send control signaling to the terminal based on the control channel of the time slot or symbol, or schedule the terminal device to send and receive data based on the shared channel of the time slot or symbol.
  • the network device may also define and configure parameters such as reference signals, time slot format, and subcarrier spacing based on time slots or symbols.
  • the number of symbols occupied by different PDSCHs in the time domain may be different.
  • the data carried on the PDSCH is based on non-slot scheduling, and the minimum number of scheduling symbols for one data transmission can be 2, 4, or 7.
  • the number of symbols occupied by the PDSCH in the time domain is 2, 4, or 7.
  • the data carried on the PDSCH is based on time slot scheduling, and the minimum number of scheduling symbols for one data transmission can be 14. In this way, the number of symbols occupied by PDSCH in the time domain is 14.
  • the number of symbols occupied by the PDSCH in the time domain is only for illustration, and the embodiment of the present application does not limit the specific number of symbols occupied by the PDSCH in the time domain.
  • control channels such as PDCCH and PSCCH
  • other shared channels such as PUSCH and PSSCH can occupy different numbers of symbols in the time domain, which is not limited in the present invention.
  • the data scheduling resource may be understood as a resource allocated to the sending end, and the sending end sends data to the receiving end through the above scheduling resource.
  • the following is an example based on PDCCH and PDSCH.
  • the situation is similar for PDCCH and PUSCH, or PSSCH and PSCCH, except that the time-domain reference position of the reference signal of each channel and/or the relative position of the reference signal of each channel relative to the time-domain reference position are different. Repeat again.
  • the data sent by the sending end to the receiving end may be referred to as downlink data.
  • the downlink scheduling such as downlink control information (downlink control information, DCI)
  • DCI downlink control information
  • PDCCH physical downlink control channel
  • End send Specifically, if the sending end sends DCI to the receiving end through the PDCCH in time unit n, the physical downlink shared channel (physical downlink shared channel,
  • the time unit corresponding to the data scheduled by the DCI is n+K0.
  • K0 can be understood as the time relationship between downlink scheduling and corresponding downlink data transmission (Timing between DL assignment and corresponding DL data transmission).
  • the time unit related to K0 is collectively referred to as a time slot in the following, but the time unit described in each implementation of the present invention is not limited to the time slot.
  • the sender can configure a time domain resource allocation table or called PDSCH-symbolAllocation table (as shown in Table 2), each row in the time domain resource allocation table can include a K0, time domain resource allocation information, scheduling One or more of the types (or PDSCH mapping types).
  • the time domain resource allocation information may indicate time domain resources, for example, indicating the starting symbol and the number of symbols occupied by the scheduled data, or indicating the time unit occupied by the downlink data.
  • the time domain resource allocation information may be uniformly encoded as a start length indication value (start length indication value, SLIV).
  • scheduling type A represents slot transmission
  • scheduling type B represents non-slot or mini-slot transmission.
  • the reference information of the time-domain position of the general reference signal has the following two cases:
  • mapping mode A Also called mapping mode under slot scheduling, DMRS can be located in the second or third symbol of the slot transmitted by PDSCH or other symbols.
  • the reference position of the time domain position of the reference signal such as the reference start point, is the start symbol of the slot where the PDSCH transmission is located.
  • mapping mode B Also known as the mapping mode under mini-slot scheduling, the DMRS can be located at the 0th symbol of the scheduled PDSCH resource.
  • the reference position of the time domain position of the reference signal such as the reference starting point, is the assigned PDSCH Start symbol of the transmission time domain resource. For example, if the scheduling resources allocated by the base station to the terminal are located at the 7th to 8th symbols of a certain slot, then the 7th symbol of the slot is the reference starting point of the time domain position of the DMRS.
  • the sending end can instruct the receiving end to indicate which row of the time domain resource table the time domain resource allocated for the above data transmission corresponds to through the DCI, so that the receiving end can learn the value of K0 and the time of the transmission data allocated by the sending end Domain resources.
  • the base station may send the time-domain resource allocation table to the terminal through radio resource control (RRC) signaling.
  • RRC radio resource control
  • PDCCH It can also be called PDCCH monitoring opportunity (monitor), which is used to transmit control signaling.
  • the base station needs to inform the terminal how to monitor the PDCCH, for example, the location information of the PDCCH.
  • the base station can configure the PDCCH monitoring period, the PDCCH monitoring offset (offset), and the PDCCH monitoring pattern (or monitoring symbol) within 1 slot for the terminal through RRC signaling.
  • the monitoring period configured by the base station for the terminal is 4 timeslots
  • the monitoring offset is 2 timeslots
  • the pattern is the symbols 0 to 1.
  • the terminal will use slot 2 as the offset, and monitor every 4 timeslots to confirm whether there is a PDCCH. It is learned that the position of the PDCCH is slot 2, slot 6, slot 10, slot 14,... slot 2+4n, n is an integer, and the symbols 0 to 1 can be monitored in the above slot.
  • PDSCH It can also be called PDSCH occasion (PDSCH occasion), which is used to transmit downlink data.
  • PDSCH occasion PDSCH occasion
  • Table 3 taking the value of K0 in the time domain resource allocation table as an example, it represents that PDSCH and PDCCH are in the same time slot.
  • the terminal learns that in one time slot, the PDSCH can be used by the base station to send downlink data to the terminal There are 4 positions, specifically symbols 0 to 1; symbols 4 to 5; symbols 8 to 9; symbols 12 to 13.
  • the above method further includes: the first device sends reference signal information to the second device, and the reference signal information indicates that the reference signal is located at the reference position of the first time unit.
  • the reference signal may be a data demodulation reference signal (DMRS), that is, a reference signal used for data demodulation for channel estimation.
  • DMRS data demodulation reference signal
  • other reference signals may also have a relative position relationship with a time unit.
  • the reference signal includes at least one of the following: demodulation reference signal (demodulation reference signal, DMRS), sounding reference signal (sounding reference signal, SRS), physical random access channel (physical random access channel, PRACH) carries signals, synchronization signals, phase-tracking reference signals (PTRS), or channel state information reference signals (channel-state information-reference signals (CSI-RS).
  • demodulation reference signal demodulation reference signal
  • SRS sounding reference signal
  • PRACH physical random access channel
  • PTRS phase-tracking reference signals
  • CSI-RS channel state information reference signals
  • the signals included in the above physical signals may be DMRS, SRS, signals carried on PRACH, synchronization signals, PTRS, and CSI-RS.
  • the reference signal is transmitted on the first time unit, and the second time unit is used to transmit data, so that time-domain resources for transmitting data can be increased.
  • the second time unit is used to transmit data and part of the DMRS used for data demodulation, and can also increase time-domain resources for transmitting data.
  • the signals carried on the SRS, PRACH, synchronization signals, PTRS or CSI-RS are transmitted on the second time unit, and all DMRSs used for data demodulation are transmitted on the first time unit, which can better Ensure the demodulation performance of service data in the second time unit.
  • the uplink symbols in the first time unit may be used to transmit signals carried on the uplink DMRS, SRS, uplink PTRS, and PRACH, and the downlink symbols in the first time unit may be used to transmit the downlink DMRS, synchronization signal, downlink PTRS, CSI-RS, etc.
  • the uplink DMRS can be used to demodulate the uplink data in one or more pre-defined or pre-configured cycle times.
  • the second time unit of the current cycle time can be configured in a pre-defined or pre-configured manner
  • the upstream DMRS can be used for the cycle time corresponding to the demodulated upstream data.
  • the uplink DMRS can be used for demodulation of uplink data within the current cycle time.
  • the uplink DMRS may be used for demodulation of uplink data in the previous cycle time.
  • the uplink DMRS can be used for demodulation of uplink data in the next cycle time.
  • the uplink DMRS can be used for demodulation of the uplink data and the next cycle time in the current cycle time. Demodulation of upstream data within a cycle time.
  • the downlink DMRS can be used for the demodulation of downlink data in one or more pre-defined or pre-configured cycle times.
  • the second time unit of the current cycle time can be configured in a pre-defined or pre-configured manner
  • the downlink DMRS in can be used for the cycle time corresponding to the demodulated downlink data.
  • the case of downlink DMRS is similar to the case of uplink DMRS, and will not be repeated here.
  • At least one of time domain resources, frequency domain resources, code domain resources, and air domain resources occupied by DMRS received by different second devices is different.
  • the Multiple first devices may use the same DMRS.
  • the first node may send a group-level specific DMRS for the multiple second nodes to demodulate the received data.
  • the above group-level specific DMRS may be transmitted on the first time unit, or a part of the DMRS may be transmitted on the first time unit, and another part of the DMRS may be transmitted on the second time unit. Examples do not limit this.
  • the above-mentioned same DMRS means the same DMRS (ie group-specific DMRS), and it can also be understood that the same resources are used for sending the DMRS. One.
  • the correlation of the above channels can be understood as a similar channel state. For example, when the distance between two first nodes is less than a threshold, the channels between the two first nodes and the second node can be considered to be correlated and can be used The same DMRS.
  • the threshold may be predefined or pre-configured. It should be understood that the channel correlation may also be embodied as other features, which are not limited in the embodiments of the present application.
  • the position of the DMRS in the first time unit may depend on the relative position of the first time unit and the second time unit Positional relationship.
  • the first device may configure the position of the DMRS in the first time unit according to the relative positional relationship between the first time unit and the second time unit.
  • the DMRS can be configured at the beginning of the first time unit; if the first time unit is after the second time unit, the DMRS can be configured at the first time The end of the unit; if the second time unit is between two first time units, the DMRS can be configured at the end of the next first time unit. In this way, the second device can acquire the DMRS more quickly, use the DMRS to demodulate data, and improve data transmission efficiency.
  • the reference signal information includes reference information of the time domain position of the reference signal.
  • the mapping mode A and the mapping mode B described above limit the tight coupling of the position information of the reference signal and the PDSCH, that is, the reference signal and the PDSCH are in the same slot, the same mini-slot, or the same scheduling resource.
  • the reference signal information may be used to indicate the reference starting point information of the time domain position of the reference signal. For example, taking the Industrial Internet as an example, the reference information indicating the time domain position of the reference signal can make full use of the service characteristics of CT.
  • the reference signal information includes the starting position of the first time unit; or the reference signal information includes the starting position of the first time unit and an offset value, and the offset value is a length of time relative to the starting position.
  • the reference signal information may be period sum or offset value information.
  • the reference signal information can be a period (such as a period of 4 slots) and an offset value (such as an offset value of 1 slot and 2 symbols), then the reference starting point of the time domain position of the reference signal is a slot The second symbol of 1, or the second symbol of slot 1+4; or the second symbol of slot 1+4+4..., and so on.
  • the time domain position of the reference signal is the 3rd symbol position relative to the time reference start point of the reference signal
  • its DMRS is located on the 5th symbol of slot 1 (the time domain of the reference signal
  • the reference starting point of the position is the second symbol of slot 1, plus 3 symbol values relative to the starting point).
  • PDSCH and DMRS may not be decoupled.
  • slot 1 includes a no-data period (free time or data inactive)
  • the PDSCH will not be scheduled in this no-data period;
  • slot 1 has a real-time business period, then slot 1 may include PDSCH and DMRS, that is The PDSCH on this slot 1 can be scheduled using the DMRS also located on this slot 1.
  • the starting position is the first slot in the first time unit or the first symbol in the first slot. If the starting position is the first slot, the offset value is the length of time between the first slot and the number of slots in the first time unit. If the starting position is the first symbol, the above-mentioned offset value is the length of time in the first time unit from the first symbol that is separated by several symbols.
  • the first device may use radio resource control (radio resource control (RRC) signaling, media access control unit (media access control control element, MAC) CE signaling, downlink control information (downlink control information, DCI), etc.
  • RRC radio resource control
  • media access control unit media access control control element
  • MAC media access control control element
  • DCI downlink control information
  • the above method further includes: the first device sends a radio resource control RRC message to the second device, where the RRC message includes reference signal information.
  • the RRC message may include a reference period and offset (ReferencePeriodicityAndOffset) parameter for configuring the period. Further, this parameter can also be used to configure an offset value (offset).
  • the reference signal information can be a period (such as a period of 8 slots) and an offset value (such as an offset value of 2 slots, 0 symbols), then the reference starting point of the time domain position of the reference signal is a slot The 0th symbol of 2, or the 0th symbol of slot 2+8; or the 0th symbol of slot 2+8+8..., and so on.
  • the communication device can know the time domain position of the reference signal by combining the information of "the relative position of the time domain reference starting point relative to the reference signal".
  • the communication device can know that the time-domain position of the reference signal is the second symbol of slot 2 or the second symbol of slot 2+8; Or the second symbol of slot 2+8+8.
  • the communication device can optionally perform channel estimation based on the most recent DMRS.
  • the DMRS of the second symbol of slot 2 can be used for channel estimation.
  • PDSCH can also use DMRS located on the same slot for channel estimation.
  • the parameter configures the reference position of the reference signal with every several slots as the period in the CT.
  • the offset can then determine a certain symbol or a certain slot in the several slots as a reference position. For example, when the offset is 0, the number of slots in the CT is the period, and the starting positions of the slots are used as the reference positions.
  • the above method further includes: the first device sends a downlink control indication DCI to the second device, and the DCI is used to indicate that the reference signal is located at the reference position of the first time unit.
  • the DCI format can reuse the existing DCI format or a newly designed DCI format. It may be a DCI format for scheduling data transmission (e.g., DCI formats 1_0, 1_1,0_0, 0_1 in 5G NR system are used for scheduling PDSCH/PUSCH as an example), or a DCI format indicating DMRS transmission.
  • the NR system has DCI formats 1_0; 1_1; 0_0; 0_1 for scheduling PDSCH and/or PUSCH; DCI format 2 is used to transmit slot format information, preemption indication information, power control information, etc. ;
  • DCI format 1_0 For sidelink communication, there can be other DCI formats.
  • a certain field in DCI format 1_0 (such as a resource allocation field) is used as time-domain reference information indicating a reference signal, and other fields are filled with default 0 or 1,
  • the size of DCI is the same as that of DCI 1_0, which can avoid the overhead of increasing blind DCI of users.
  • a new DCI format is designed to indicate DMRS transmission (time-domain reference information of a reference signal), in which there is a dedicated field indicating the time-domain reference information of the reference signal, and then by adding 0 or 1 Ensure that the number of bits is aligned with one of the above formats, so as to ensure that no new DCI size is introduced, and the overhead of blindly detecting DCI for users can be avoided.
  • the first device sends the first DCI to the second device, and the above reference position may be indicated in an explicit manner or an implicit manner.
  • the first device sends the downlink control indication DCI to the second device first on multiple symbols
  • the time-domain reference starting point position of the reference signal is any one of the following:
  • the starting position of the time slot carrying the DCI the starting symbol of the above-mentioned symbols, or the ending symbol of the above-mentioned symbols.
  • the first device may send the first DCI to the second device through the foregoing multiple symbols, or the second device may receive the first DCI sent by the first device through the foregoing multiple symbols.
  • the second device may learn that the reference position is the start position of the time slot, the start position or the end position of the multiple symbols.
  • the first time unit is multiple time slots
  • the second device may learn that the reference position is the starting position of a certain time slot in the time slots, and the starting positions of the multiple symbols Or end position.
  • the content included in the DCI in this application will be specifically described below.
  • the first DCI may include a first indication field.
  • the first indication field is used to indicate that the reference signal is located at the reference position of the first time unit.
  • the second device may determine the reference position according to the first indication field. It should be noted that there may be multiple ways for the second device to determine the reference position according to the first DCI, and here is only one possible determination method.
  • the frequency domain position corresponding to the DMRS may be predefined in the entire BWP or resource pool (RP), or may be configured in the BWP or RP through high-level signaling, or may be signaled by the physical layer Indication, the invention is not limited.
  • the embodiment of the present invention does not limit the information of "the relative position of the time-domain reference starting point of the relative reference signal", which may be a pre-defined or signaling indication, and the value may be 0, 2, 3, 8 symbols, etc.
  • the first indication field can be used to indicate the location of the BWP or RP.
  • the second device may receive the pilot signal sent by the first device on the first time unit according to the reference position corresponding to the BWP or RP indicated by the first indication field.
  • the correspondence between the reference position and the BWP/RP may be preset, or the correspondence may be configured in advance by the first device and sent to the second device.
  • the second device can obtain the first indication field by parsing, and then determine the reference position corresponding to the BWP or RP according to the above correspondence.
  • Table 4 defines the relative position value of the DMRS relative to the time domain reference starting point under the number of symbols occupied by different PDSCH. Note: Table 4 is just an illustration of the “relative position value of the time-domain reference starting point of the relative reference signal”. The value in Table 4 can be modified during specific implementation, and can also be embodied as different configuration values.
  • PDSCH It can also be called PDSCH occasion. As shown in Table 4, taking one slot including 12 symbols (for example for extended CP configuration) or 14 symbols (for example for normal CP configuration) as an example, based on scheduling type A or scheduling type B, within one slot One or more PDSCHs can be scheduled. In Table 4, for scheduling type A, the variable l 0 is equal to 2 or 3; for scheduling type B, the variable l 0 is equal to 0.
  • the reference starting point of the time domain of the reference signal is the start symbol of the slot where the PDSCH is transmitted
  • the number of PDSCH symbols is 14 (that is, the symbols 0 to 13 on slot 2)
  • the PDSCH scheduling type is A
  • l 0 2
  • the configuration parameter is 1
  • lookup table 4 can The relative position value of the DMRS relative to the time domain reference starting point is 2 and 8, so the absolute time domain position of the DMRS is finally the symbol 2 and symbol 8 on slot 2, that is, the DMRS is on the symbol 2 and symbol 8 of slot 2. transmission.
  • the time reference starting point information of the reference signal is the 0th symbol of the slot where the first DCI format is located
  • the first device sends reference signal information to the second device, and the reference signal information includes time-domain reference starting point information of the reference signal.
  • the reference starting point information of the reference signal sent by the first device to the second device is a predefined method, for example, predefined as the symbol 0 of the slot where the data is transmitted, or the first one that allocates time domain resources for data transmission The symbol, or symbol 0 for the slot where mapping type A is, and the first symbol for allocating data transmission time domain resources for mapping type B.
  • the first device sends reference signal information to the second device, where the reference signal information includes relative position information of the time-domain reference starting point with respect to the reference signal.
  • the relative position information may no longer be the value in Table 4 above, and may be a negative value, such as a negative 1 slot. If the PDSCH is transmitted on slot 3, the corresponding reference signal is on slot 2.
  • the relative position information may be the reference information closest to the PDSCH start symbol and before the PDSCH start symbol. For example, if the reference signal has a period of 4 slots, an offset of 0 slots, and 0 symbols, if the slot is 3 When transmitting PDSCH, the corresponding reference signal is transmitted on symbol 0 of slot 0.
  • the first device can send the DMRS to the second device with one or more slots or mini-slots as a cycle, and can realize Decoupling, based on the characteristics of the business model and the characteristics of the channel environment, achieves a compromise between channel estimation and DMRS overhead, which can ensure the maximization of resource utilization, and can be applied to eMBB transmission and URLLC transmission.
  • the method of the embodiment of the present invention further includes: the first device sends indication information to the second device, instructing the second device to disable the reference signal in the scheduling resource.
  • the first device sends a reference signal to the second device on the first time unit; the first device transmits or receives data to the second device on the second time unit; and One device sends instruction information to the second device, instructing the second device to disable the reference signal in the scheduling resource; there is no necessary sequence in terms of timing or logic.
  • the indication information sent by the first device may be located before or after the first device sends the reference signal and/or the first device transmits or receives data; the first device sends the reference signal before or after the first device transmits or receives data .
  • the scheduling resource may be a scheduling resource corresponding to the second time unit.
  • the first device instructs the second device to disable DMRS in the PDSCH.
  • the above-mentioned indication information may be implemented by a NewTypeTrans parameter in a high-level message. It can be understood that the above disabling action is also applicable to other channels such as PDCCH, PUSCH, PSSCH, PSCCH, or DMRS corresponding to the channel.
  • the above indication information may instruct the second device to ignore or discard the reference signal in a certain control channel and/or shared channel, or after receiving the indication information, the second device ignores or discards the reference signal by itself.
  • the reference signal is disabled, so that the data can be transmitted in a concentrated period of time, and no reference signal needs to be transmitted or transmitted in a small amount.
  • increase the transmission resources for scheduling the above data in the real-time business period which is beneficial to improve the data transmission. reliability.
  • more time domain resources can be used to transmit data, which is helpful to reduce the data transmission time, thereby reducing the transmission delay, and is beneficial to reduce the time required for data retransmission. More retransmission times, thereby improving the reliability of data transmission.
  • the first device sends indication information to the second device instructing the second device to disable at least one reference signal in the scheduling resource, and the second device disables one of the scheduling resources according to the instruction , Multiple or all reference signals, wherein the indication information may include an identification of at least one reference signal.
  • the reference signals in the scheduling resources include different types of reference signals. If the above indication includes the identifier of the uplink DMRS, the second device simultaneously disables all uplink DMRS. Or, if the above indication includes the identifier of the downlink DMRS, the second device simultaneously disables all downlink DRMS.
  • the identifier of the reference signal included in the indication information may be the index of the reference signal in the scheduling resource.
  • the reference signal in the scheduling resource includes the uplink DMRS and the downlink DMRS, which can be represented by 1 bit
  • the index of the DMRS for example, "0" indicates the index of the uplink DMRS, and "1" indicates the index of the downlink DRMS. In this way, the number of bits carried in the indication information can be simplified and the transmission burden can be reduced.
  • the time reference start point of the reference signal is the start symbol of the slot where the PDSCH transmission is allocated
  • the relative position value of the reference signal relative to the time domain reference start point is Table 4.
  • the first device sends indication information to the second device (such as the first RRC signaling instruction to disable DMRS transmission)
  • the above method further includes: the first device sends reference signal information to the second device, the reference signal information It is used to instruct the PDSCH to perform reference signal information required for channel estimation.
  • the reference signal information may include time length and/or (start) position information of the first time unit occupied by the reference signal.
  • the reference signal information may include the type of reference signal.
  • the position of the reference signal is the symbol 3 of slot 0; the value of slot 4 Symbol 3, symbol 8 of slot 8, and so on.
  • the information may indicate that the reference signal is transmitted through several symbols in the slot; taking the first time unit as multiple slots as an example, the reference signal information may indicate that the reference signal is transmitted through several slots or several symbols.
  • the reference signal information may also indicate a slot or symbol that the reference signal does not occupy, thereby avoiding the reference signal from occupying each slot, and improving the reliability and stability of data transmission.
  • the reference signal type may be DMRS, CSI-RS, TRS, PTRS, DRS, SRS, or a new reference signal type (referred to as a first reference signal type).
  • the receiving node performs channel estimation according to the CSI-RS or SRS sent on the first time unit to obtain a channel estimation result, and the channel measurement result can be used in a predefined or pre-configured cycle Data transmission within time or data transmission scheduled by DCI/SCI (sidelink control information).
  • the channel estimation result may be used for data transmission within the current cycle time, or may be used for data transmission within n cycle times after the current cycle time, where n is an integer greater than or equal to 1.
  • the first device sends reference signal information to the second device, where the reference signal information includes time length or position information of the first time unit occupied by the reference signal.
  • the above reference signal is any one of CSI-RS, TRS, PTRS, DRS and SRS, it has at least one of the following same parameters as the control channel and/or shared channel: precoding matrix, QCL and antenna port.
  • the receiver can thus perform channel estimation based on the same parameters described above, improving the reliability of data transmission. Or, there is a quasi-co-located (QCL) relationship between the two antenna ports, which means that the large-scale channel parameters of one antenna port can be inferred from the large-scale channel parameters obtained by the other antenna port. (infer).
  • QCL quasi-co-located
  • Large-scale parameters can include average gain, average delay, delay spread, Doppler shift, Doppler spread, and spatial parameters.
  • the spatial parameters may include the launch angle (Angle of Arrival, AOA), the main launch angle (Dominant) of Arrival, dominant AoA, the average angle of arrival (Average Angle of Arrival, average, AoA), the departure angle (Angle of departure, AOD ), channel correlation matrix, power angle spread spectrum of arrival angle, average departure angle (Average Angle of departure, average, AoD), power angle spread spectrum of departure angle, transmit channel correlation, receive channel correlation, transmit beamforming, receive One or more of beamforming, spatial channel correlation, spatial filter, or, spatial filtering parameters, or, spatial receiving parameters, etc.
  • the device can adjust the weight of the antenna array to spatially aggregate the transmitted and received signals, that is, spatially filter the signals.
  • beamforming technology including digital beamforming technology, such as precoding.
  • the adjustment of the weight of the antenna array can be performed by adjusting the phase of the phase shifter and adjusting the weight of the digital precoding.
  • the formed weight array may also be called spatial filtering parameters.
  • Antenna ports include channels for uplink data transmission (referred to as uplink data channels), such as the physical uplink shared channel PUSCH, antenna ports; reference signals for demodulation (referred to as demodulation reference signals), such as demodulation reference signals (demodulation reference signals) antenna port for reference (DMRS); reference signal for channel sounding (referred to as channel sounding reference signal), such as at least one of the antenna port for sounding reference signal (SRS); For carrying specific physical channels, and/or antenna ports of physical signals.
  • uplink data channels such as the physical uplink shared channel PUSCH, antenna ports
  • reference signals for demodulation referred to as demodulation reference signals
  • demodulation reference signals antenna port for reference
  • DMRS demodulation reference signals
  • channel sounding reference signal such as at least one of the antenna port for sounding reference signal (SRS)
  • SRS sounding reference signal
  • the channels corresponding to the paths they experience in spatial transmission can be regarded as the same or related (such as large-scale channel characteristics, such as channels (The matrix is the same), that is to say, the signal sent at the same antenna port can be considered as the same or related by the receiver when demodulating.
  • Antenna port is a logical meaning.
  • the signal receiving end recognizes signals with different transmission channels through the antenna port.
  • the frame structure parameters of the first time unit and the second time unit may be the same or different. Therefore, taking the second device supporting receiving the reference signal on the first time unit and the second time unit as an example, including two types situation:
  • the second device supports receiving the reference signal on the first time unit and the second time unit with the same frame structure parameter, but does not support receiving the reference signal on the first time unit and the second time unit with different frame structure parameters at the same time .
  • the second device supports receiving the reference signal on the first time unit and the second time unit.
  • the second device may also be pre-defined that the second device has support for receiving the reference signal on the first time unit and the second time unit with the same frame structure parameter.
  • the second device may also report indication information to the first device to indicate whether the second device supports receiving the reference signal on the first time unit and the second time unit. If the above indication information indicates that the second device does not support receiving the reference signal on the first time unit and the second time unit, there may be multiple possible implementations, and the specific implementation manner in this case is not limited in the embodiments of the present application. If the indication information indicates that the second device supports receiving the reference signal on the first time unit and the second time unit, the first device may configure the scheduling resource of the reference signal according to the foregoing implementation manner.
  • the first device may configure the scheduling resource of the reference signal in the above manner, and further consider the first time unit and the second time unit in the scheduling resource of the reference signal Frame structure parameters, for example, the first time unit and the second time unit in the scheduling resources of the reference signal can be configured to be the same, so as to ensure that the second device can be in the first time unit and the second time in the scheduling resources of the reference signal at the same time
  • the reference signal is received on the time unit.
  • the first device may also configure the frame structure parameters of the first time unit and the second time unit to be different.
  • the first device may configure the priority of the frame structure parameters of the first time unit and the second time unit, and The priority of the configured frame structure parameter is sent to the second device. It can be understood that the priority of the frame structure parameter may also be pre-agreed by the protocol, which is not specifically limited in the present invention. If the first device determines that the second device belongs to scenario 2 according to the indication information, it can configure the scheduling resource of the reference signal in the above manner without considering the frame structure parameters of the first time unit and the second time unit in the scheduling resource of the reference signal.
  • FIG. 5 shows an apparatus 500 provided by an embodiment of the present application.
  • the device corresponds to the second device in the above embodiment.
  • the device 500 may be a terminal device or a chip in the terminal device.
  • the device 500 includes: a transceiver unit 520.
  • the transceiver unit 520 is configured to receive the reference signal from the first device on the first time unit; and receive or send data from the first device to the first device on the second time unit.
  • the device receives reference signals and sends and receives data based on the first time unit and the second time unit, respectively, so as to reduce the interference of the reference signal on the data as much as possible, which is beneficial to improve the reliability of data transmission.
  • the transceiver unit 520 receives or sends data from the first device to the first device on the second time unit based on the reference signal.
  • the second time unit includes scheduling resources of the control channel and/or shared channel.
  • the first time unit and the second time unit do not overlap in the time domain.
  • the transceiving unit 520 is further configured to receive reference signal information from the first device, where the reference signal information indicates that the reference signal is located at a reference position of the first time unit.
  • the device further includes a processing unit 510, configured to determine that the reference signal is located at the reference position of the first time unit according to the reference signal information.
  • a processing unit 510 configured to determine that the reference signal is located at the reference position of the first time unit according to the reference signal information.
  • the reference signal information includes a starting position of the first time unit; or the reference signal information includes a starting position and an offset value of the first time unit, and the offset value is relative The length of time at the starting position.
  • the transceiver unit 520 is further configured to receive a radio resource control RRC message from the first device, where the RRC message includes the reference signal information.
  • the transceiver unit 520 is further configured to: receive a downlink control indication DCI from the second device, where the DCI is used to indicate that the reference signal is located at the reference position of the first time unit.
  • the second device receives a downlink control indication DCI from the first device based on the multiple symbols, and the reference position is any one of the following:
  • the starting position of the time slot The starting position of the time slot; the starting symbol of the multiple symbols; or the ending symbol of the multiple symbols.
  • the physical signal includes at least one of the following signals: demodulation reference signal DMRS, sounding reference signal SRS, signal carried on the physical random access channel PRACH, synchronization signal, phase tracking reference signal PTRS, or channel status Information reference signal CSI-RS.
  • the reference signal is used for the data transmission.
  • the transceiving unit 520 is further configured to receive indication information sent by the first device, and the processing unit is further configured to disable reference signals in scheduling resources according to the indication information.
  • the transceiver unit 520 is further configured to receive reference signal information sent by the first device, where the reference signal information is used to instruct the PDSCH to perform reference signal information required for channel estimation, and the reference signal information may include a reference signal The length and/or location of the first time unit occupied.
  • the CSI-RS has the same parameters as the control channel and the shared channel: a precoding matrix, a QCL, and an antenna port;
  • the SRS When the reference signal information indicates an SRS, the SRS has the same parameters as the control channel and the shared channel: a precoding matrix, QCL, and an antenna port.
  • the device 500 here is embodied in the form of a functional unit.
  • the term "unit” here may refer to an application-specific integrated circuit (application specific integrated circuit, ASIC), an electronic circuit, a processor (such as a shared processor, a proprietary processor or a group) for executing one or more software or firmware programs Processor, etc.) and memory, merge logic, and/or other suitable components that support the described functions.
  • ASIC application specific integrated circuit
  • processor such as a shared processor, a proprietary processor or a group
  • memory merge logic, and/or other suitable components that support the described functions.
  • the apparatus 500 may specifically be the first device in the foregoing embodiment, and the apparatus 500 may be used to execute various processes and/or corresponding to the first device in the foregoing method embodiment Steps, to avoid repetition, will not repeat them here.
  • the apparatus 500 of each of the above solutions has a function of implementing the corresponding steps performed by the second device in the above method; the function may be implemented by hardware, or may be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions; for example, the sending unit may be replaced by a transmitter, the receiving unit may be replaced by a receiver, and other units, such as a determination unit, etc. may be replaced by processors, which are respectively executed The sending and receiving operations and related processing operations in each method embodiment.
  • the device in FIG. 5 may also be a chip or a chip system, for example, a system on chip (SoC).
  • the receiving unit and the sending unit may be the transceiver circuit of the chip, which is not limited herein.
  • FIG. 6 shows an apparatus 600 provided by an embodiment of the present application.
  • the device corresponds to the first device in the foregoing embodiment.
  • the device 600 may be a base station device or a terminal device, or may be a chip in the base station device or a terminal device.
  • the device 600 includes: a transceiver unit 620.
  • the transceiver unit 620 is configured to send a reference signal to the second device on the first time unit; and transmit or receive data to the second device on the second time unit.
  • the device of the embodiment of the present application divides the cycle time into a first time unit and a second time unit to transmit the reference signal and send and receive data respectively, so as to reduce the interference of the reference signal on the data as much as possible, which is beneficial to improve the reliability of data transmission.
  • the transceiver unit 620 transmits or receives data to the second device on the second time unit based on the reference signal.
  • the second time unit includes scheduling resources of the control channel and/or shared channel.
  • the first time unit and the second time unit do not overlap in the time domain.
  • the device further includes a processing unit 610, configured to determine a cycle time, the cycle time including a first time unit and a second time unit.
  • a processing unit 610 configured to determine a cycle time, the cycle time including a first time unit and a second time unit.
  • the transceiver unit 620 is further configured to send reference signal information to the second device, where the reference signal information indicates that the reference signal is located at the reference position of the first time unit.
  • the reference signal information includes the starting position of the first time unit, or the reference signal information includes the starting position and the offset value of the first time unit, and the offset value is The length of time relative to the starting position.
  • the transceiver unit 620 is further configured to send a radio resource control RRC message to the second device, where the RRC message includes the reference signal information.
  • the transceiver unit 620 is further configured to send a downlink control indication DCI to the second device, where the DCI is used to indicate that the reference signal is located at the reference position of the first time unit.
  • the first device when the first time unit is multiple symbols of a time slot, the first device sends a downlink control indication DCI to the second device on the multiple symbols, and the reference position is any one of the following:
  • the starting position of the time slot The starting position of the time slot; the starting symbol of the multiple symbols; or the ending symbol of the multiple symbols.
  • the physical signal includes at least one of the following signals: demodulation reference signal DMRS, sounding reference signal SRS, signal carried on the physical random access channel PRACH, synchronization signal, phase tracking reference signal PTRS, or channel status Information reference signal CSI-RS.
  • the reference signal is used for the data transmission.
  • the transceiver unit 620 is further configured to send indication information to the second device to instruct the second device to disable the reference signal in the scheduling resource.
  • the transceiver unit 620 is further configured to send reference signal information to the second device, where the reference signal information is used to instruct the PDSCH to perform reference signal information required for channel estimation, and the reference signal information may include the reference signal information.
  • the CSI-RS has the same parameters as the control channel and the shared channel: a precoding matrix, a QCL, and an antenna port;
  • the SRS When the reference signal information indicates an SRS, the SRS has the same parameters as the control channel and the shared channel: a precoding matrix, QCL, and an antenna port.
  • the device 600 here is embodied in the form of a functional unit.
  • the term "unit” here may refer to an application-specific integrated circuit (application specific integrated circuit, ASIC), an electronic circuit, a processor (such as a shared processor, a proprietary processor or a group) for executing one or more software or firmware programs Processor, etc.) and memory, merge logic, and/or other suitable components that support the described functions.
  • ASIC application specific integrated circuit
  • processor such as a shared processor, a proprietary processor or a group
  • memory merge logic, and/or other suitable components that support the described functions.
  • the apparatus 600 may specifically be the first device in the foregoing embodiment, and the apparatus 600 may be used to execute various processes and/or corresponding to the first device in the foregoing method embodiment Steps, to avoid repetition, will not repeat them here.
  • the apparatus 600 of each of the above solutions has a function of implementing the corresponding steps performed by the first device in the above method; the function may be implemented by hardware, or may be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions; for example, the sending unit may be replaced by a transmitter, the receiving unit may be replaced by a receiver, and other units, such as a determination unit, etc. may be replaced by processors, which are respectively executed The sending and receiving operations and related processing operations in each method embodiment.
  • the device in FIG. 6 may also be a chip or a chip system, for example, a system on chip (SoC).
  • the receiving unit and the sending unit may be the transceiver circuit of the chip, which is not limited herein.
  • FIG. 7 shows another device 700 provided by an embodiment of the present application.
  • the device 700 includes a processor 710.
  • the apparatus 700 may further include a communication interface 720 and/or a memory 730.
  • the number of the aforementioned processors, memories, or communication interfaces may be one or more.
  • the processor 710, the communication interface 720, and the memory 730 may communicate with each other through an internal connection path.
  • the memory 730 is used to store instructions
  • the processor 710 is used to execute instructions stored in the memory 730.
  • the processor 710 may include instructions (sometimes may also be referred to as codes or programs), and the instructions may be executed on the processor, so that the communication apparatus 700 executes the foregoing embodiment The method described in.
  • the communication device 700 may also include a circuit, which may implement the method steps in the foregoing embodiments of the present invention.
  • the communication device 700 may include one or more memories 730 on which instructions are stored, and the instructions may be executed on the processor 710, so that the communication device 700 executes the method described in the above method embodiment.
  • the apparatus 700 may specifically be the first device or the second device in the foregoing embodiments, and may be used to execute various steps and/or processes corresponding to the first device or the second device in the foregoing method embodiments.
  • the memory 730 may include a read-only memory and a random access memory, and provide instructions and data to the processor 710.
  • a portion of the memory 710 may also include non-volatile random access memory.
  • the memory 710 may also store device type information.
  • the processor 710 may be used to execute the instructions stored in the memory, and when the processor 710 executes the instructions stored in the memory, the processor 710 is used to perform the method embodiment corresponding to the first device or the second device described above Various steps and/or processes.
  • the communication interface 720 is used to receive or send information, signals, and data required for communication.
  • the above-mentioned communication interface 720 may be an element having a transceiver function, such as a transmitter (transmitter), a receiver (receiver), a transceiver, and so on.
  • the above communication interface may implement communication with other devices through the above-mentioned elements having a transceiver function.
  • the above-mentioned elements with a transceiver function can be realized by an antenna and/or a radio frequency device.
  • the processor of the above device may be a central processing unit (CPU), and the processor may also be other general-purpose processors, digital signal processors (DSPs), and application-specific integrated circuits (ASIC), field programmable gate array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • the general-purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the foregoing memory 730 may be included in the processor 710.
  • the processor 710 itself can execute the function of storing instructions in the memory 730, which is not limited in the embodiment of the present application.
  • the memory 730 may be coupled with the processor 710, for example, the memory 730 may exist independently and be connected to the processor 710 through a communication bus.
  • the memory 730 may also be integrated with the processor 710.
  • the memory 730 may be used to store application program codes that execute the technical solutions provided by the embodiments of the present application, and the processor 710 controls the execution.
  • the processor 710 is used to execute the application program code stored in the memory 730, so as to implement the technical solution provided by the embodiments of the present application.
  • the communication device 700 may further include an antenna 740, and the communication interface 720 may implement the transceiver function of the device 700 through the antenna 740.
  • the apparatus 700 may further include an output device and an input device.
  • the output device communicates with the processor 710 and can display information in a variety of ways.
  • the output device may be a liquid crystal display (LCD), a light emitting diode (LED) display device, a cathode ray tube (CRT) display device, or a projector, etc.
  • the input device communicates with the processor 710 and can receive user input in a variety of ways.
  • the input device may be a mouse, keyboard, touch screen device, or sensor device.
  • each step of the above method may be completed by an integrated logic circuit of hardware in the processor or instructions in the form of software.
  • the steps of the method disclosed in conjunction with the embodiments of the present application may be directly embodied and executed by a hardware processor, or may be executed and completed by a combination of hardware and software units in the processor.
  • the software unit may be located in a mature storage medium in the art, such as a random access memory, a flash memory, a read-only memory, a programmable read-only memory, an electrically erasable programmable memory, and a register.
  • the storage medium is located in the memory, and the processor executes the instructions in the memory and completes the steps of the above method in combination with its hardware. In order to avoid repetition, they will not be described in detail here.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the units is only a division of logical functions.
  • there may be other divisions for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the displayed or discussed mutual couplings or direct couplings or communication connections may be indirect couplings or communication connections through some interfaces, devices, or units, and may also be electrical, mechanical, or other forms of connection.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments of the present application.
  • the functional units in the embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units are integrated into one unit.
  • the above integrated unit may be implemented in the form of hardware or software functional unit.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it may be stored in a computer-readable storage medium.
  • the technical solution of the present application essentially or part of the contribution to the existing technology, or all or part of the technical solution can be embodied in the form of a software product
  • the computer software product is stored in a storage medium
  • several instructions are included to enable a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in the embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM), random access memory (random access memory, RAM), magnetic disk or optical disk and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种数据传输方法和装置,该方法包括:第一设备在第一时间单元上向第二设备发送参考信号;所述第一设备基于所述参考信号,在第二时间单元上向所述第二设备传输或接收所述数据;其中,所述第二时间单元包括控制信道和共享信道的调度资源,所述第一时间单元和所述第二时间单元在时域上不重叠。本申请实施例的传输方法和装置,有利于提高数据传输的可靠性。

Description

传输方法和装置
本申请要求于2018年11月29日提交中国国家知识产权局、申请号为201811447788.5、申请名称为“传输方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,特别涉及通信领域中的传输方法和装置。
背景技术
无线通信系统中,终端和基站基于无线电通信技术进行无线通信,上行链路(uplink,UL)载波用于承载终端和基站之间的上行通信,下行链路(downlink,DL)载波用于承载终端和基站之间的下行通信。
随着无线多媒体业务不断增多,传统的业务提供方式已无法满足海量用户在不同环境下的业务需求,工业互联网、设备到设备(比如,车对车(vehicle-to-vehicle)、车对基础设施(vehicle-to-infrastructure)、车对用户(vehicle-to-pedestrians))通信技术应运而生,旁链路(sidelink,SL)载波用于承载设备到设备通信。
因此,基于当前通信环境,例如涉及到上述工业互联网、设备到设备或其他通信技术的实现,存在一些业务对数据传输的可靠性要求较高,如何提高数据传输的可靠性或吞吐量,成为一项亟待解决的技术问题。
发明内容
本申请提供一种传输方法和装置,有利于提高数据传输的可靠性。
第一方面,提供了一种传输方法,包括:第一设备在第一时间单元上向第二设备发送参考信号,和第一设备在第二时间单元上向第二设备传输或接收数据和/或控制信令。
本申请实施例的传输方法,将参考信号与数据分别通过不同时间段进行发送,使得数据能够集中在一段时间内传输,有利于提高数据传输的可靠性。
结合第一方面,在第一方面的某些实现方式中,上述参考信号可以用于第二设备获取或发送上述数据。例如,以终端和基站通信为例,当参考信号用于上行传输时,终端可以向基站发送数据;当参考信号用于下行传输时,基站可以向终端发送数据。又如,以第一终端和第二终端通信为例,第一终端可以基于参考信号向第二终端发送数据,或自第二终端接收数据。
结合第一方面,在第一方面的某些实现方式中,第一时间单元与第二时间单元在时域上不重叠。例如,不重叠可以理解成,第一时间单元和第二时间单元分别包含若干个不同的符号,或者第一时间单元和第二时间单元内不存在相同符号。或者,第一时间单元和第二时间单元可以包含一个时隙的不同符号。或者,第一时间单元和第二时间单元可以位于 不同时隙。此时,数据的传输和参考信号的传输可以在时域上完全分离,避免了参考信号对数据的干扰,提高了数据传输的可靠性。
结合第一方面,在第一方面的某些实现方式中,第一时间单元与第二时间单元可以与循环时间(cyclic time,CT)关联。具体的,所述第一时间单元和所述第二时间单元可以位于同一个CT内或位于不同CT内。例如,循环时间包括第一时间单元和第二时间单元,且第一时间单元位于第二时间单元之前,参考信号在第一时间单元传输,数据在第二时间单元传输。又如,若循环时间为2个CT,第一个CT包括第一时间单元,第二个CT包括第二时间单元。第一时间单元位于第二时间单元之前,此时,参考信号在第一时间单元传输,下行业务的数据和/或上行业务的数据在第二时间单元传输。
结合第一方面,在第一方面的某些实现方式中,第二时间单元可以包括控制信道和共享信道的调度资源,或者,第二时间单元可以与调度资源相映射。例如,数据的调度资源可以理解为分配给发送端的资源,发送端通过上述调度资源向接收端发送数据。
本申请实施例中上述调度资源可以通过空口资源进行传输,空口资源可以包括时域资源、频域资源,码域资源中的至少一种,如物理下行控制信道(physical downlink control channel,PDCCH),物理下行共享信道(physical downlink shared channel,PDSCH)或物理上行共享信道(physical uplink shared channel,PUSCH)的资源。
本申请实施例中上述调度资源可以通过旁链路资源进行传输,旁链路资源可以包括时域资源、频域资源,码域资源中的至少一种,如物理旁链路共享信道(physical sidelink shared channel,PSSCH)、物理旁链路控制信道(physical sidelink control channel,PSCCH)的资源。
结合第一方面,在第一方面的某些实现方式中,第一设备向第二设备发送参考信号信息,参考信号信息指示参考信号位于第一时间单元的参考位置。
上述参考信号包括以下至少一个:解调参考信号(demodulation reference signal,DMRS)、探测参考信号(sounding reference signal,SRS)、物理随机接入信道(physical random access channel,PRACH)上承载的信号、同步信号、相位跟踪参考信号(phase-tracking reference signals,PTRS),或者信道状态信息参考信号(channel state information-reference signal,CSI-RS)。
本发明实施例中,通过灵活配置上述参考信号的时域参考起始点信息,第一设备可以以至少一个slot或mini-slot为周期向第二设备发送参考信号,而且可以实现上述参考信号和数据传输的解耦,根据业务模型特征、根据信道环境特征,实现信道估计、参考信号开销的折中,可以保证资源利用率的最大化。上述方式,不但可以适用于eMBB传输,同样也适用于URLLC传输。
结合第一方面,在第一方面的某些实现方式中,参考信号信息包括第一时间单元的起始位置;或参考信号信息包括第一时间单元的起始位置和偏移值,该偏移值为相对于该起始位置的时间长度。
结合第一方面,在第一方面的某些实现方式中,第一设备可以通过无线资源控制(radio resource control,RRC)信令、媒体访问控制单元(media access control control element,MAC CE)信令、下行控制信息(downlink control information,DCI)等信令中的至少一个指示上述参考信号信息。
本发明实施例中,例如,第一设备向第二设备发送无线资源控制RRC消息,该RRC消息包括参考信号信息。又如,第一设备向第二设备发送下行控制指示DCI,DCI用于指示参考信号位于第一时间单元的参考位置。本发明实施例对DCI的格式和DCI中各域不做约束,比如DCI格式可以复用现有的DCI格式,也可以为新设计的DCI格式。
可选的,第一设备在多个符号上向第二设备第一发送下行控制指示DCI,参考信号的时域参考起始点位置为以下任意一个:承载所述DCI的时隙的起始位置,上述多个符号的起始符号,或,上述多个符号的末尾符号。
结合第一方面,在第一方面的某些实现方式中,第一设备向第二设备发送指示信息,指示第二设备去使能调度资源中的参考信号。
本发明实施例中,去使能参考信号使得数据能够集中在一段时间内传输,不需要传输参考信号或者少量传输参考信号,尽可能地增加在实时业务时段内调度上述数据的传输资源,有利于提高数据传输的可靠性。
可选的,该调度资源可以为第二时间单元对应的调度资源。例如,上述指示信息可以指示第二设备忽略或丢弃在某个控制信道和/或共享信道中的参考信号,或者第二设备接收到该指示信息后,自行忽略或丢弃上述参考信号。
结合第一方面,在第一方面的某些实现方式中,第一设备向第二设备发送参考信号信息,该参考信号信息用于指示PDSCH做信道估计所需要的参考信号信息,所述参考信号信息可以包括参考信号所占用第一时间单元的时间长度和/或(起始)位置信息。
例如,当上述参考信号为CSI-RS,TRS,PTRS,DRS与SRS中的任意一个时,其与控制信道和/或共享信道具有以下至少一种相同参数:预编码矩阵,QCL和天线端口。接收方从而可以基于上述相同参数进行信道估计,提升数据传输可靠性。
结合第一方面,在第一方面的某些实现方式中,第一时间单元和第二时间单元的帧结构参数可能相同,也可能不同。
例如,第二设备支持在帧结构参数相同的第一时间单元和第二时间单元上接收参考信号,而不支持同时在帧结构参数不同的第一时间单元和第二时间单元上接收参考信号。又如,无论第一时间单元和第二时间单元的帧结构参数是否相同,第二设备均支持在第一时间单元和第二时间单元上接收参考信号。
第二方面,提供了一种传输方法,包括:第二设备在第一时间单元上从第一设备接收参考信号,和在第二时间单元上从所述第一设备接收或向所述第一设备发送数据。
本申请实施例的传输方法,将参考信号与数据分别通过不同时间段进行发送,使得数据能够集中在一段时间内传输,有利于提高数据传输的可靠性。
结合第二方面,在第二方面的某些实现方式中,上述参考信号可以用于第二设备获取或发送上述数据。
结合第二方面,在第二方面的某些实现方式中,第二设备基于所述参考信号,在第二时间单元上从所述第一设备接收或向所述第一设备发送数据。
结合第二方面,在第二方面的某些实现方式中,第一时间单元与第二时间单元可以与循环时间(cyclic time,CT)关联。例如,第一时间单元与第二时间单元可以位于同一个CT或不同CT内。
结合第二方面,在第二方面的某些实现方式中,第二时间单元包括控制信道和/或共享 信道的调度资源,或者,第二时间单元可以与调度资源相映射。
结合第二方面,在第二方面的某些实现方式中,第一时间单元和所述第二时间单元在时域上不重叠。数据的传输和参考信号的传输可以在时域上完全分离,避免了参考信号对数据的干扰,提高了数据传输的可靠性。
结合第二方面,在第二方面的某些实现方式中,所述第二设备从所述第一设备接收参考信号信息,所述参考信号信息指示所述参考信号位于所述第一时间单元的参考位置。
结合第二方面,在第二方面的某些实现方式中,参考信号信息包括所述第一时间单元的起始位置;或所述参考信号信息包括所述第一时间单元的起始位置和偏移值,所述偏移值为相对于所述起始位置的时间长度。
结合第二方面,在第二方面的某些实现方式中,第二设备根据所述参考信号信息确定所述参考信号位于所述第一时间单元的参考位置。
结合第二方面,在第二方面的某些实现方式中,第二设备从第一设备接收无线资源控制RRC消息,所述RRC消息包括所述参考信号信息。
结合第二方面,在第二方面的某些实现方式中,第二设备从第二设备接收下行控制指示DCI,所述DCI用于指示参考信号位于所述第一时间单元的参考位置。
结合第二方面,在第二方面的某些实现方式中,当所述第一时间单元为时隙的多个符号时,第二设备基于所述多个符号从第一设备接收下行控制指示DCI,所述参考位置为以下任意一个:所述时隙的起始位置;所述多个符号的起始符号;或所述多个符号的末尾符号。
结合第二方面,在第二方面的某些实现方式中,所述第二设备根据所述参考信号信息确定所述参考信号位于所述第一时间单元的参考位置。
结合第二方面,在第二方面的某些实现方式中,第二设备接收第一设备发送的指示信息,第二设备根据该指示信息去使能调度资源中的参考信号。
本发明实施例中,去使能参考信号使得数据能够集中在一段时间内传输,不需要传输参考信号或者少量传输参考信号,尽可能地增加在实时业务时段内调度上述数据的传输资源,有利于提高数据传输的可靠性。
结合第二方面,在第二方面的某些实现方式中,第二设备接收第一设备发送的参考信号信息,该参考信号信息用于指示PDSCH做信道估计所需要的参考信号信息,所述参考信号信息可以包括参考信号所占用第一时间单元的时间长度和/或(起始)位置信息。
结合第二方面,在第二方面的某些实现方式中,第一时间单元和第二时间单元的帧结构参数可能相同,也可能不同。
应理解,本申请实施例中的“传输”应当被灵活地理解,即“传输”有时具有“发送”的含义,有时具有“接收”的含义。
第三方面,提供了一种装置,用于执行第一方面或第一方面任意可能的实现方式中的方法;或者用于执行第二方面或第二方面任意可能的实现方式中的方法。具体地,该装置包括用于执行上述第一方面或第一方面的任一种可能的实现方式中的方法的单元,或用于执行上述第二方面或第二方面的任一种可能的实现方式中的方法的单元。
第四方面,提供了一种装置,该装置包括:收发器、存储器和处理器。其中,该收发器、该存储器和该处理器通过内部连接通路互相通信,该存储器用于存储指令,该处理器 用于执行该存储器存储的指令,以控制接收器接收信号,并控制发送器发送信号,并且当该处理器执行该存储器存储的指令时,该执行使得该处理器执行上述第一方面或第一方面的任一种可能的实现方式中的方法,或者该执行使得该处理器执行上述第二方面或第二方面的任一种可能的实现方式中的方法。
第五方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码被计算设备运行时,使得所述计算设备执行上述第一方面或第一方面的任一种可能实现方式中的方法,或使得所述计算设备执行上述第二方面或第二方面的任一种可能实现方式中的方法。
第六方面,提供了一种计算机可读介质,用于存储计算机程序,该计算机程序包括用于执行上述第一方面或第一方面的任一种可能的实现方式中的方法的指令,或包括用于执行上述第二方面或第二方面的任一种可能的实现方式中的方法的指令。
第七方面,提供了一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的装置执行上述第一方面或第一方面的任一种可能的实现方式中的方法,或执行上述第二方面或第二方面的任一种可能的实现方式中的方法。
附图说明
图1示出了本申请实施例的通信系统的示意图;
图2示出了本申请实施例的又一通信系统的示意图;
图3a-3b示出了本申请实施例的BWP在载波带宽中的配置示意图;
图4示出了本申请实施例的传输方法的示意性流程图;
图5示出了本申请实施例的装置的示意性框图;
图6示出了本申请实施例的另一装置的示意性框图;
图7示出了本申请实施例的另一装置的示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通信(global system for mobile communications,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、未来的第五代(5th generation,5G)系统或新无线(new radio,NR)等。
图1示出了本申请实施例应用的通信系统100之一。该通信系统100可以包括至少一个网络设备110。网络设备110可以是与终端设备通信的设备,如基站或基站控制器等。每个网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域(小区)内的终端设备进行通信。该网络设备110可以是全球移动通信(global system for mobile communications,GSM)系统或码分多址(code division multiple access,CDMA)中的基 站(base transceiver station,BTS),也可以是宽带码分多址(wideband code division multiple access,WCDMA)系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(evolved NodeB,eNB或eNodeB),还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器,或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备以及未来5G网络中的网络设备,例如,新无线(new radio,NR)中的基站(gNodeB或gNB)或收发点(transmission receiving point/transmission reception point,TRP),或者网络设备110还可以是未来演进的公共陆地移动网络(public land mobile network,PLMN)网络中的网络设备等,本申请实施例并不限定。
该通信系统100还包括位于网络设备110覆盖范围内的一个或多个终端设备120。该终端设备120可以是移动的或固定的。该终端设备120可以指接入终端、用户设备(user equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、未来5G网络中的终端设备或者未来演进的公共陆地移动网络(public land mobile network,PLMN)中的终端设备等,本申请实施例对此并不限定。
图1示例性地示出了一个网络设备和两个终端设备,可选地,该通信系统100可以包括多个网络设备并且一个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
图2示出了本申请实施例应用的通信系统之二。该通信系统可以包括网络设备101与第二设备1021、第二终端设备1022可以通过空口资源进行数据传输,空口资源可以包括时域资源、频域资源,码域资源中的至少一种。具体来说,网络设备和终端设备进行数据传输时,网络设备可以通过控制信道,如物理下行控制信道(physical downlink control channel,PDCCH)向终端发送控制信息,从而为终端分配数据信道,如物理下行共享信道(physical downlink shared channel,PDSCH)或物理上行共享信道(physical uplink shared channel,PUSCH)的资源。比如该控制信息可以指示数据信道所映射至的符号和/或RB,网络设备和终端设备在该分配的时频资源通过数据信道进行数据传输。其中,上述数据传输可以包括下行数据传输和/或上行数据传输,下行数据(如PDSCH携带的数据)传输可以指网络设备向终端设备发送数据,上行数据(如PUSCH携带的数据)传输可以是指终端设备向网络设备发送数据。数据可以是广义的数据,比如可以用户数据,也可以是系统信息,广播信息,或其他的信息等。
在图2所示的通信系统中,第二设备1021和第二终端设备1022之间也可以通过旁链路资源进行数据传输,与空口资源类似,旁链路资源也可以包括时域资源、频域资源、码域资源中的至少一个。具体来说,第二设备和第二终端设备进行数据传输的物理信道可以包括物理旁链路共享信道(physical sidelink shared channel,PSSCH)和/或物理旁链路控制信道(physical sidelink control channel,PSCCH)。其中,PSSCH用于传输数据,PSCCH用于传输控制信息,比如调度分配(scheduling assignment,SA)信息。
以下对本发明实施例的术语进行简单描述。
BWP:在5G NR系统中,为适配终端设备的带宽能力,可以在一个载波支持的带宽(可称为载波带宽,具体取值可以为10MHz、15MHz、20MHz、50MHz、100MHz或400MHz等)内为终端设备配置BWP,一个载波中可配置多个BWP,例如一个载波可以配置4个BWP。BWP有时也可称为载波带宽部分(carrier bandwidth part)、子带(subband)带宽、窄带(narrowband)带宽,或者其他的名称,本申请对名称并不做限定,为了便于描述,以名称是BWP为例说明。例如,一个BWP包含K(K>0)个子载波;或者,一个BWP为N个不重叠的RB所在的频域资源,该RB的子载波间隔可以为15KHz、30KHz、60KHz、120KHz、240KHz、480KHz或其他值;或者,一个BWP为M个不重叠的资源块组(resource block group,RBG)所在的频域资源,例如,一个RBG包括P(P>0)个连续的RB,该RB的子载波间隔(subcarrier spacing,SCS)可以为15KHz、30KHz、60KHz、120KHz、240KHz、480KHz或其他值,例如为2的整数倍。
如图3a-图3c所示,为本申请实施例提供的三种BWP在载波带宽中的配置情况。图3a为在载波带宽中配置一个BWP的情况,网络设备可先为终端设备分配在终端带宽能力范围内的BWP,当然还可以进一步为终端设备分配该BWP中的部分或全部资源用于通信。网络设备可根据实际场景为终端设备配置不同的BWP情况。例如,为了节省终端设备的功耗,网络设备可以根据终端设备的业务量为终端设备分配BWP。当终端设备没有业务数据传输或只有少量业务数据传输时,可以为终端设备分配较小的BWP用于接收控制信息和少量的数据信息,如图3b所示的BWP1;当终端设备有大量业务数据需要传输时,可以为终端设备分配较大的BWP,如图3b所示的BWP2。又例如,由于5G中可以支持多种业务类型、通信场景,针对不同的业务类型、通信场景,可以配置不同的参数,网络设备可以根据终端设备不同的业务类型为终端设备分配相应的BWP,如图3c所示,一个BWP可以对应一种业务类型,为了满足该业务类型的业务需求,可以将该BWP配置能够满足业务需求的帧结构参数(numerology)。其中,由图3b可知,不同的BWP可以占用部分重叠的频域资源。由图3c可知,不同的BWP也可以占用完全不同的频域资源以及使用不同的numerology。在本申请实施例中,不同BWP对应的numerology可以相同也可以不同,本申请不作限制。可以理解的是,图3a-图3c中仅以在一个载波中配置一个或两个BWP为例说明,实际应用中可在载波中配置多个BWP,本申请不做限定。
帧结构参数(numerology):是指通信系统所采用的参数。例如可以是指空口中的一系列物理层参数。一个BWP可以对应一个numerology。其中,NR系统可支持多种numerology,多个numerology可以同时使用。numerology可以包括以下参数信息中的一个或多个:子载波间隔,循环前缀(cyclic prefix,CP)的信息,时间单元信息,带宽等。CP的信息可以包括CP长度和/或者CP类型。例如,CP可以为常规CP(normal CP,NCP),或者扩展CP(extended CP,ECP)。时间单元信息用于表示时域内的时间单元,例如可以为采样点、符号、微时隙(mini-slot)、时隙(slot)、子帧(subframe)或者无线帧等等。时间单元信息也可以包括时间单元的类型、长度或者结构等。例如,numerology可以包括子载波间隔和CP,如表1所示,表1给出了NR系统中目前可以支持的、由子载波间隔和CP定义的numerology:
μ 子载波间隔=2 μ·15(kHz) CP类型
0 15 常规(normal)
1 30 常规
2 60 常规或扩展(extended)
3 120 常规
4 240 常规
表1
其中,μ用于确定子载波间隔,例如,μ=0时,子载波间隔为15kHz,μ=1时,子载波间隔为30kHz。以子载波间隔为例,若终端支持子载波间隔15kHz和30kHz,则网络设备可以为终端分配一个子载波间隔为15KHz的BWP,和一个子载波间隔为30KHz的BWP,终端根据不同的场景和业务需求,可以切换到不同的BWP上传输信号。当终端支持多个BWP时,其中不同的BWP对应的numerology可以相同也可以不同。
其中,子载波间隔可以为大于等于0的整数。例如可以为15KHz、30KHz、60KHz、120KHz、240KHz、480KHz等。子载波间隔,是正交频分复用(orthogonal frequency division multiplexing,OFDM)系统中,频域上相邻的两个子载波的中心位置或峰值位置之间的间隔值。例如,LTE系统中的子载波间隔为15KHz,NR系统的子载波间隔可以是15kHz,或30kHz,或60kHz,或120kHz等。
在本申请实施例中,终端设备或网络设备包括硬件层、运行在硬件层之上的操作系统层,以及运行在操作系统层上的应用层。该硬件层包括中央处理器(central processing unit,CPU)、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。该操作系统可以是任意一种或多种通过进程(process)实现业务处理的计算机操作系统,例如,Linux操作系统、Unix操作系统、Android操作系统、iOS操作系统或windows操作系统等。该应用层包含浏览器、通讯录、文字处理软件、即时通信软件等应用。并且,本申请实施例并未对本申请实施例提供的方法的执行主体的具体结构特别限定,只要能够通过运行记录有本申请实施例的提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可,例如,本申请实施例提供的方法的执行主体可以是终端设备或网络设备,或者,是终端设备或网络设备中能够调用程序并执行程序的功能模块。
另外,本申请的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本申请中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(compact disc,CD)、数字通用盘(digital versatile disc,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(erasable programmable read-only memory,EPROM)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
可选地,上述图1或图2示出的无线通信系统还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例不限于此。
以工业互联网为例,周期性可以通过循环时间(cycle time,CT)体现。工业互联网 中典型的业务模型之一为周期性、确定性的业务,比如运动控制(motion control)类业务。所述业务模型以CT为周期到达,且该业务为实时业务,具有高可靠低时延需求。该循环时间也可以理解为传输周期或循环周期。CT取值一般为0.25m,0.5ms,1ms,2ms等,这些值通常也为60kHz slot时长的整数倍(60kHz slot时长为0.25ms)。例如对于CT为2ms的业务,则基于每2ms、每8个60kHz slot、每4个30kHz slot、每2个15kHz slot中的至少一种可能,控制器会产生一个数据包(控制指令)并发送给执行器。此外,对于闭环控制类应用,需在CT内完成一次闭环控制,即控制器需要在CT内成功将控制指令传送给执行器,并且传感器要在该CT内感知执行器执行指令后的新数据(比如移动后的新位置信息)反馈给控制器,以便控制器在该CT内处理反馈的新数据并生成下一个CT的控制指令。例如,假设CT为2ms的闭环控制应用,在0ms时刻,控制器会产生一个数据包(控制指令)并发送给执行器。在0~2ms时间内控制器要通过1次或者多次传输确保控制指令被执行器成功接收,而且通过1次或者多次传输确保控制器成功接收到传感器反馈的新数据。由于在第2ms时刻,控制器需要产生下一个CT的控制指令发送给执行器,假设控制器的处理时间为X ms(用于分析处理反馈的数据并计算得到下一个控制指令的时间),则执行器至少要在2-Xms或之前成功接收到控制指令,而且控制器至少要在2-Xms或之前成功接收到传感器反馈的新数据,因此2-X ms~2ms时间应该是无控制类数据传输的时段(因为即使传输了数据该CT也没时间处理或者下个CT开始前也不能完成处理)。以上过程以CT=2ms连续重复。
在工业互联网中控制器又可以称作程序逻辑控制器(programmable logic controller,PLC)或者主导设备(master),执行器和传感器又可以统称作从动设备或受控设备(slave)。执行器和传感器可以位于一个物理实体,也可能位于不同物理实体。由此可发现CT内可以包括控制器和执行器之间的实时业务时段,和无数据时段(data inactive time)。具体而言,该无数据时段可以为执行器处理数据或执行动作的时间,或为执行器感知数据和处理数据的时间,或为控制器生成命令的时间。可以理解,上述无数据时间段的时长可以为控制器和执行器之间无数据交互的时间长度,或者为控制器和执行器自行工作如处理数据或生成命令的时间长度。进一步的,执行器感知数据,例如为其自身位置变化而获取的信息,并在无数据时段发送给控制器。
基于CT的一种实现方式为,控制器发送命令给执行器,执行器执行当前CT内收到的命令并执行新数据,在当前CT反馈新数据给控制器,以上动作可以在1个CT内完成。另一种实现方式为,执行器执行当前CT内收到的命令并感知新数据,在下一个CT反馈新数据给控制器,以上动作可以在不同CT内完成。
上述控制器可以为本发明实施例中的第一设备,执行器和/或传感器为本发明实施例中的第二设备。
要强调的是,上述工业互联网仅仅是举例。本发明实施例同样可以应用于各种垂直行业场景,如:蜂窝通信,中继通信,广播组播通信,sidelink通信,车联网场景,自动驾驶场景,智能电网,工业互联网等。
图4示出了本申请实施例的传输方法的示意性流程图。该方法可以应用于图1或图2所示的通信系统,同样可以应用于其他各种垂直行业场景,本申请实施例对此不做限定。
S410,第一设备在第一时间单元上向第二设备发送参考信号;
S420,第一设备在第二时间单元上向第二设备传输或接收数据和/或控制信令。
以下实施例,以数据为例进行描述,该数据可以理解为控制信令;或者,该数据可以包含控制信令。上述第一设备可以是通信系统中的网络设备,也可以是上述通信系统中的终端设备,还可以是其他具有传输功能的节点。同样,上述第二设备可以是通信系统中的终端设备,本申请实施例对此不作限定。
本申请实施例的传输方法,将参考信号与数据分别通过不同时间段进行发送,使得数据能够集中在一段时间内传输,有利于提高数据传输的可靠性。例如,在第二时间单元中,有更多的时域资源可以用于传输数据,有利于降低数据的传输时间,从而降低传输时延,并且,有利于降低数据重传所需要的时间,获取更多的重传次数,从而提升数据传输的可靠性。以工业互联网为例,可以进一步增加在实时业务时段内调度上述数据的传输资源。
在本发明实施中,上述参考信号可以用于第二设备获取或发送上述数据。例如,以终端和基站通信为例,当参考信号用于上行传输时,终端可以向基站发送数据;当参考信号用于下行传输时,基站可以向终端发送数据。又如,以第一终端和第二终端通信为例,第一终端可以基于参考信号向第二终端发送数据,或自第二终端接收数据。
可选地,第一时间单元与第二时间单元在时域上不重叠。举例而言,不重叠可以理解成,第一时间单元和第二时间单元分别包含若干个不同的符号,或者第一时间单元和第二时间单元内不存在相同符号。例如,第一时间单元和第二时间单元可以位于一个时隙的不同位置。或者,第一时间单元和第二时间单元可以位于不同时隙。此时,数据的传输和参考信号的传输可以在时域上完全分离,避免了参考信号对数据的干扰,提高了数据传输的可靠性。以工业互联网为例,参考信号所在的第一时间单元在CT的data inactive time里,数据所在的第二时间单元在CT的实时业务传输时段里,使得更多的时频资源用于数据传输,否则若基于现有技术设计,CT的实时业务传输时段里需要一部分资源用于参考信号传输,导致用于数据传输的资源较少。
可选的,第一时间单元与第二时间单元可以与循环时间(cyclic time,CT)关联,以下列举两种可能性:
在一种可能的实现方式中,循环时间包括第一时间单元和第二时间单元,且第一时间单元位于第二时间单元之前,参考信号在第一时间单元传输,数据在第二时间单元传输。这里的数据,包括上行数据,和/或,下行数据。可以理解,数据还可以理解为控制信令或包含控制信令,此处不再赘述。
进一步地,若循环时间为1个CT,可应用于下行业务的数据和/或上行业务的数据在CT开始处到达,业务的上行数据和/或下行数据持续CT的一段时间长度,该时间长度为实时业务时间段,对该业务的数据的接收需要保证高可靠性。CT内的后一段时间长度为无业务时间段,用于传输本申请实施例中的参考信号。CT内的再后一段时间长度又为业务的上行数据和/或下行数据。因此,传输参考信号的CT内时长可对应为第一时间单元,后一个传输数据的CT内时长可对应为第二时间单元。
在另一种可能的实现方式中,若循环时间为2个CT,第一个CT包括第一时间单元,第二个CT包括第二时间单元。第一时间单元位于第二时间单元之前,此时,参考信号在第一时间单元传输,下行业务的数据和/或上行业务的数据在第二时间单元传输。
本申请实施例中,以工业互联网为例,上述数据在第二时间单元传输,可以指在上述 循环时间中,该数据仅在第二时间单元传输。可以理解的是,本申请实施例并不限定上述数据在上述循环时间外的传输行为,即该数据可以在上述循环时间外的时间单元上进行传输。换句话说,对于时域上的一个或多个循环时间,上述数据在该一个或多个循环时间内的第二时间单元中传输,而对于该一个或多个循环时间之外的其他时间单元,上述数据可以在该其他时间单元上传输,也可以不在该其他时间单元上传输,本申请实施例对此不作限定。
同理,本申请实施例中上述参考信号在第一时间单元传输,可以指在上述循环时间中,该数据仅在第一时间单元传输。可以理解的是,本申请实施例并不限定上述参考信号在上述循环时间外的传输行为,即该参考信号可以在上述循环时间外的时间单元上进行传输。换句话说,对于时域上的一个或多个循环时间,上述参考信号在该一个或多个循环时间内的第一时间单元中传输,而对于该一个或多个循环时间之外的其他时间单元,上述参考号可以在该其他时间单元上传输,也可以不在该其他时间单元上传输,本申请实施例对此不作限定。
上述数据可以是具有某种特性或需求的业务,例如,增强移动宽带(enhance mobile broadband,eMBB)业务、超高可靠与低延迟通信(ultra reliable low latency communication,URLLC)业务,或者海量机器类通信(massive machine type of communication,mMTC)业务。其中,eMBB业务具有数据量大的特性或需求,URLLC业务具有高可靠的特性或需求,mMTC业务具有广覆盖的特性或需求。
在本发明实施例中,第二时间单元可以包括控制信道和共享信道的调度资源。或者,第二时间单元可以与调度资源相映射。
本发明实施例中,示例性的,一个帧的长度可以定义为10ms,且一个帧可以包括10个子帧,1个子帧的长度可以定义为1ms。一个子帧可以包括若干个时隙,1个时隙可以包括14个符号(可称为slot)或12个符号。包含12个符号的时隙又可以称为迷你时隙(mini-slot)或非时隙(non-slot)。网络设备可以基于时隙或符号的控制信道向终端发送控制信令,或,基于时隙或符号的共享信道调度终端设备进行数据收发。另外,网络设备也可以基于时隙或符号定义和配置参考信号、时隙格式、子载波间隔等参数。
以PDSCH为例,不同的PDSCH在时域上占用的符号个数可以不同。例如,在数据传输过程中,PDSCH上承载的数据基于非时隙调度,一次数据传输的最小调度符号个数可以为2、4或者7个。这样,PDSCH在时域上占用的符号个数即为2、4或者7个。又或者,PDSCH上承载的数据基于时隙调度,一次数据传输的最小调度符号个数可以为14个。这样,PDSCH在时域上占用的符号个数即为14个。可以理解的是,上述PDSCH在时域上占用的符号个数仅为示意,本申请实施例并不限制PDSCH在时域上占用的具体符号个数。同理可得,控制信道如PDCCH、PSCCH,其他共享信道如PUSCH、PSSCH均在时域上可以占用不同的符号个数,本发明对此不做限定。
本申请实施例中,数据的调度资源可以理解为分配给发送端的资源,发送端通过上述调度资源向接收端发送数据。以下基于PDCCH和PDSCH举例说明。对于PDCCH和PUSCH,或者PSSCH和PSCCH的情况类似,所不同的是各信道的参考信号的时域参考位置和/或各信道的参考信号相对时域参考位置的相对位置取值不同,此处不再赘述。
具体的,发送端向接收端发送的数据可以称为下行数据,该下行调度例如下行控制信 息(downlink control information,DCI)可以通过物理下行控制信道(physical downlink control channel,PDCCH)由发送端向接收端发送。具体地,若发送端在时间单位n上通过PDCCH向接收端发送DCI,在物理下行共享信道(physical downlink share channel,
PDSCH)上传输的被该DCI调度的数据对应的时间单位为n+K0。K0可以理解为下行调度与相应下行数据传输的时间关系(Timing between DL assignment and corresponding DL data transmission)。为方便描述,以下统称与K0相关的时间单位为时隙,但本发明各实施中所描述的时间单位不仅局限于时隙。一般情况下,发送端可以配置时域资源分配表或称作PDSCH-symbolAllocation表(如表2所示),该时域资源分配表中的每行可以包括一个K0,时域资源分配信息,调度类型(或者称作PDSCH映射类型)中的一种或任意多种。其中,该时域资源分配信息可以指示时域资源,例如指示被调度的数据所占用的起始符号和符号个数,或指示下行数据所占用的时间单位。示例性的,该时域资源分配信息可以统一编码为起始长度指示值(start length indication value,SLIV)。
其中,调度类型A表示slot传输,调度类型B表示non-slot或mini-slot传输。
一般参考信号的时域位置的参考信息有下面两种情况:
映射模式A:又称为slot调度下的映射模式,DMRS可以位于PDSCH传输的slot的第2个或者第3个符号或者其他符号。对于这种情况参考信号的时域位置的参考位置,例如参考起始点,为PDSCH传输所在slot的开始符号。
映射模式B:又称作mini-slot调度下的映射模式,DMRS可以位于调度PDSCH资源的第0个符号,此时,参考信号的时域位置的参考位置,例如参考起始点,为分配的PDSCH传输时域资源的开始符号。例如,以基站为终端分配的调度资源位于某个slot的第7~8个符号为例,则该slot的第7个符号是DMRS的时域位置的参考起始点。
另外,发送端可以通过DCI指示接收端为上述数据传输所分配的时域资源对应该时域资源表中的哪一行,从而接收端可以获悉K0的取值和发送端所分配的传输数据的时域资源。当上述发送端为基站,接收端为终端时,基站可以通过无线资源控制(radio resource control,RRC)信令向终端发送上述时域资源分配表。除此之外,还可以为K0配置一个取值集合,K0不需要放在时域资源分配表里。
Figure PCTCN2019121241-appb-000001
表2
PDCCH:也可以称为PDCCH监测时机(monitor occasion),用于传输控制信令。基站需要通知终端如何监测PDCCH,例如PDCCH的位置信息。一般情况下,基站可以通过RRC信令为终端配置PDCCH监测周期,PDCCH监测偏移量(offset)和1个slot内的PDCCH监测模式(pattern,或者监测的符号)。例如,基站为终端配置的监测周期为4 个时隙,监测offset为2个时隙,pattern为符号0~1,则终端会以slot 2作为offset,每4个时隙监测一次确认是否有PDCCH,获悉PDCCH的位置为slot 2,slot 6,slot 10,slot 14,…..slot 2+4n,n为整数,且在上述slot内监测符号0~1即可。
PDSCH:也可以称为PDSCH时机(PDSCH occasion),用于传输下行数据。如表3所示,以时域资源分配表中K0取值0为例,其代表PDSCH和PDCCH在同1个时隙。以1个时隙包括14个符号为例,基于调度类型B,即一个时隙内可以调度一或多个PDSCH,终端获悉在1个时隙内,可用于基站向终端发送下行数据的PDSCH的位置有4个,具体为符号0~1;符号4~5;符号8~9;符号12~13。
Figure PCTCN2019121241-appb-000002
表3
作为一个可选的实施例,上述方法还包括:第一设备向第二设备发送参考信号信息,参考信号信息指示参考信号位于第一时间单元的参考位置。该参考信号可以是数据解调参考信号(DMRS),即用于数据解调做信道估计使用的参考信号。以下,以DMRS为例进行举例,可以理解,其他参考信号同样可以具有与时间单元的相对位置关系。
作为一个可选的实施例,上述参考信号包括以下至少一个:解调参考信号(demodulation reference signal,DMRS)、探测参考信号(sounding reference signal,SRS)、物理随机接入信道(physical random access channel,PRACH)上承载的信号、同步信号、相位跟踪参考信号(phase-tracking reference signals,PTRS),或者信道状态信息参考信号(channel state information-reference signal,CSI-RS)。
上述物理信号可以存在多种可能的组合。例如,上述物理信号所包括的信号可以为DMRS、SRS、PRACH上承载的信号、同步信号、PTRS以及CSI-RS。这样,在一种可能的实现方式中,参考信号在第一时间单元上传输,第二时间单元用于传输数据,从而可以增加用于传输数据的时域资源。在另一种可能的实现方式中,第二时间单元用于传输数据和部分用于数据解调的DMRS,也能够增加用于传输数据的时域资源。又例如,上述SRS、PRACH上承载的信号、同步信号、PTRS或CSI-RS在第二时间单元上传输,而所有用于数据解调的DMRS在第一时间单元内传输,这样能够更好地保证第二时间单元内业务数据的解调性能。
在一种可能的实现方式中,上述第一时间单元中的上行符号可以用于传输上行DMRS、SRS、上行PTRS和PRACH上承载的信号,上述第一时间单元中的下行符号可以用于传输下行DMRS、同步信号、下行PTRS和CSI-RS等。
其中,上行DMRS可以用于预定义或预配置的一个或多个循环时间内上行数据的解调,换句话说,可以通过预定义或预配置的方式,配置当前循环时间的第二时间单元中的 上行DMRS能够用于解调的上行数据所对应的循环时间。例如,若上述预定义或预配置的一个或多个循环时间为当前循环时间,那么上行DMRS可以用于当前循环时间内上行数据的解调。又例如,若上述预定义或预配置的一个或多个循环时间为当前循环时间的上一个循环时间,那么上行DMRS可以用于该上一个循环时间内上行数据的解调。再例如,若上述预定义或预配置的一个或多个循环时间为当前循环时间的下一个循环时间,那么上行DMRS可以用于该下一个循环时间内上行数据的解调。再例如,若上述预定义或预配置的一个或多个循环时间为当前循环时间和当前循环时间的下一个循环时间,那么上行DMRS可以用于该当前循环时间内上行数据的解调和该下一个循环时间内上行数据的解调。
同理,下行DMRS可以用于预定义或预配置的一个或多个循环时间内下行数据的解调,换句话说,可以通过预定义或预配置的方式,配置当前循环时间的第二时间单元中的下行DMRS能够用于解调的下行数据所对应的循环时间。下行DMRS的情况与上行DMRS的情况类似,此处不再赘述。
通常情况下,可选地,在传输单播数据时,不同的第二设备接收到的DMRS占用的时域资源、频域资源、码域资源和空域资源中的至少一个不同。
作为一个可选的实施例,当系统中存在多个第二设备都可以与第一设备进行数据传输,且该多个第二设备与第一设备之间的传输信道具备一定相关性时,该多个第一设备可以采用相同的DMRS。在这种情况下,第一节点可以发送一个组级特定的DMRS,用于上述多个第二节点对接收的数据进行解调。
作为一个可选的实施例,上述组级特定的DMRS可以在第一时间单元上传输,也可以其中一部分DMRS在第一时间单元上传输,另一部分DMRS在第二时间单元上传输,本申请实施例对此不作限定。上述相同的DMRS表示同一个DMRS(即组级特定的DMRS),也可以理解为发送DMRS采用的资源相同,该资源可以包括时域资源、频域资源、码域资源,以及空域资源中的至少一个。
上述信道的相关性可以理解为信道状态类似,例如,两个第一节点之间的距离小于一个阈值时,可以认为这两个第一节点与第二节点之间的信道具备相关性,可以采用相同的DMRS。该阈值可以是预定义或预配置。应理解,信道的相关性还可以体现为其他的特征,本申请实施例对此不作限定。
可选地,在一个循环时间中,如果需要用上述参考信号中的DMRS解调数据,那么DMRS在第一时间单元内所处的位置,可以取决于第一时间单元和第二时间单元的相对位置关系。换句话说,第一设备可以根据第一时间单元和第二时间单元的相对位置关系,配置DMRS在第一时间单元内的位置。例如,在一个循环时间中,若第一时间单元在第二时间单元之前,DMRS可以配置在第一时间单元的开头;若第一时间单元在第二时间单元之后,DMRS可以配置在第一时间单元的结尾;若第二时间单元位于两个第一时间单元之间,DMRS可以配置在后一个第一时间单元的结尾。这样,第二设备能够更快获取到DMRS,利用该DMRS对数据进行解调,提高数据传输效率。
可选的,参考信号信息包括参考信号的时域位置的参考信息。
前文描述过的映射模式A和映射模式B限制了参考信号和PDSCH的位置信息紧耦合,即参考信号和PDSCH在同一个slot、同一个mini-slot、或者相同调度资源内。为了提高 数据传输的可靠性和灵活性,本实施例可以用参考信号信息指示参考信号的时域位置的参考起始点信息。例如,以工业互联网为例,指示参考信号的时域位置的参考信息可以充分利用CT的业务特性。
可选的,参考信号信息包括第一时间单元的起始位置;或参考信号信息包括第一时间单元的起始位置和偏移值,该偏移值为相对于该起始位置的时间长度。
具体的,参考信号信息可以为周期和或偏移值信息。例如参考信号信息可以为一个周期(比如周期为4个slot)和一个偏移值(比如偏移值为1个slot和2个符号)信息,则参考信号的时域位置的参考起始点为slot 1的第2个符号,或者slot 1+4的第2个符号;或者slot 1+4+4的第2个符号….,依次类推。假设参考信号的时域位置为相对参考信号的时域参考起始点的第3个符号位置,则对于slot 2上传输的PDSCH1,它的DMRS位于slot 1的第5个符号(参考信号的时域位置的参考起始点为slot 1的第2个符号,再加上相对起始点的3个符号值)。对于slot 3上传输的PDSCH2,它的DMRS位于slot 1的第5个符号(参考信号的时域位置的参考起始点为slot 1的第2个符号,再加上相对起始点的3个符号值)。对于slot 7上传输的PDSCH3,它的DMRS位于slot 5的第5个符号(参考信号的时域位置的参考起始点为slot 5的第2个符号,再加上相对起始点的3个符号值)。由上面例子可发现,slot2和slot 3上的PDSCH1和PDSCH2的DMRS都位于slot 1上,如此实现了PDSCH和DMRS的解耦,因此slot 2和slot 3可以有更多的资源用于传输数据。可选的,本申请实施例中的通信系统中,PDSCH和DMRS也可以不解耦。以工业互联网为例,如果slot 1包括无数据时段(free time或data inactive time),该无数据时段不会调度PDSCH;如果slot 1有实时业务时段,则该slot 1可以包括PDSCH和DMRS,即该slot 1上的PDSCH可以用同样位于该slot 1上的DMRS调度。以第一时间单元包括若干个slot为例,该起始位置为该第一时间单元内的第一个slot或第一个slot内的第一个符号。若起始位置为第一个slot,上述偏移值为位于该第一时间单元内的自该第一个slot起,间隔若干个slot的时间长度。若起始位置为第一个符号,上述偏移值为位于该第一时间单元内的自该第一个符号起,间隔若干个符号的时间长度。
可选地,第一设备可以通过无线资源控制(radio resource control,RRC)信令、媒体访问控制单元(media access control control element,MAC CE)信令、下行控制信息(downlink control information,DCI)等信令中的至少一个指示上述参考信号信息。
作为一个可选的实施例,上述方法还包括:第一设备向第二设备发送无线资源控制RRC消息,该RRC消息包括参考信号信息。
例如,RRC消息可以包含参考周期和偏移(ReferencePeriodicityAndOffset)参数,用于配置周期。进一步,该参数还可以用于配置偏移值(offset)。例如参考信号信息可以为一个周期(比如周期为8个slot)和一个偏移值(比如偏移值为2个slot、0个符号)信息,则参考信号的时域位置的参考起始点为slot 2的第0个符号,或者slot 2+8的第0个符号;或者slot 2+8+8的第0个符号….,依次类推。通信设备结合“相对参考信号的时域参考起始点的相对位置”信息就可以知道参考信号的时域位置。例如假设相对参考信号的时域参考起始点的相对位置为2个符号,则通信设备可以知道参考信号的时域位置为slot 2的第2个符号,或者slot 2+8的第2个符号;或者slot 2+8+8的第2个符号。对于调度的PDSCH,通信设备可选地可以根据最近的DMRS做信道估计。例如对于调度在slot 3上 传输的PDSCH,可以使用slot 2的第2个符号的DMRS做信道估计。当然,PDSCH也可以用位于相同slot上的DMRS做信道估计。一种可能的实现方式为,以一个CT为例,该参数配置该CT内,以每若干个slot为周期的参考信号的参考位置。可选地,offset可以再确定该若干个slot里的某个符号或某个slot作为参考位置。例如,当offset为0时,则该CT内以每若干个slot为周期,该若干个slot的起始位置即作为上述参考位置。
作为一个可选的实施例,上述方法还包括:第一设备向第二设备发送下行控制指示DCI,DCI用于指示参考信号位于第一时间单元的参考位置。本发明实施例对DCI的格式和DCI中各域不做约束,比如DCI格式可以复用现有的DCI格式,也可以为新设计的DCI格式。可以为调度数据传输的DCI格式(e以5G NR系统存在DCI格式1_0,1_1,0_0,0_1用于调度PDSCH/PUSCH为例),也可以为指示DMRS传输的DCI格式。以复用现有的DCI格式为例,NR系统存在DCI格式1_0;1_1;0_0;0_1用于调度PDSCH和/或PUSCH;DCI格式2用于传输slot格式信息、抢占指示信息、功控信息等;对于sidelink通信,还可以存在别的DCI格式。通过复用上述格式之一,比如复用DCI格式1_0,将DCI格式1_0中的某个域(比如资源分配域)用作指示参考信号的时域参考信息,其他域填充默认的0或者1,如此DCI大小与DCI 1_0一样,可以避免提升用户盲检DCI的开销。作为另一种实现方式,设计新的DCI格式用于指示DMRS传输(参考信号的时域参考信息),其中有个专有域指示参考信号的时域参考信息,然后通过补0或者1的方式确保与上述格式之一的比特数对齐,如此可以确保不引入新的DCI大小,可以避免提升用户盲检DCI的开销。
通常情况下,第一设备向第二设备发送第一DCI,可以通过显式方式或隐式方式指示上述参考位置。
可选的,以隐式方式为例,第一设备在多个符号上向第二设备第一发送下行控制指示DCI,参考信号的时域参考起始点位置为以下任意一个:
承载所述DCI的时隙的起始位置,上述多个符号的起始符号,或,上述多个符号的末尾符号。
具体而言,第一设备可以通过上述多个符号向第二设备发送第一DCI,或者第二设备可以通过上述多个符号接收第一设备发送的第一DCI。此时,该多个符号与参考信号位于第一时间单元的参考位置有映射关系。例如,当第一时间单元为一个时隙时,根据映射关系,第二设备可以获悉参考位置为该时隙的起始位置,该多个符号的起始位置或结束位置。又如,当第一时间单元为多个时隙时,同样根据映射关系,第二设备可以获悉参考位置为该等时隙中某个时隙的起始位置,该多个符号的起始位置或结束位置。
可选的,以显示方式为例,下面对本申请中的DCI所包括的内容进行具体说明。
第一DCI中可以包括第一指示域,第一指示域用于指示参考信号位于第一时间单元的参考位置,如此,第二设备可根据第一指示域确定上述参考位置。需要说明的是,第二设备根据所述第一DCI确定上述参考位置的方式可以有多种,此处仅为一种可能的确定方式。
本发明实施例中,DMRS对应的频域位置可以预定义在整个BWP或资源池(resource pool,RP)内,也可以通过高层信令配置在上述BWP或RP内,或者可以由物理层信令指示,本发明不做限定。本发明实施例对“相对参考信号的时域参考起始点的相对位置” 信息也不做限定,可以为预定义或者信令指示,取值可以为0,2,3,8符号等。
进一步地,针对第一指示域,一种可能的实现方式:针对于第一设备可以在BWP或RP的带宽范围内为第二设备分配资源的场景,第一指示域可用于指示BWP或RP所对应的参考位置,第二设备可根据第一指示域所指示的BWP或RP所对应的参考位置,接收第一设备在第一时间单元上发送的导频信号。
具体来说,可以预先设置参考位置与BWP/RP之间的对应关系,或者,预先由第一设备配置好对应关系并发送给第二设备。如此,第二设备接收到DCI后,可通过解析得到第一指示域,进而根据上述对应关系,确定出BWP或RP所对应的参考位置。
以下列举一种可能的DMRS配置方式,以PDSCH的DMRS为例,表4定义了在不同PDSCH占用符号个数下的DMRS相对时域参考起始点的相对位置值。注意:表4只是“相对参考信号的时域参考起始点的相对位置值”的一个示意,具体实现过程中可以修改表4中的值,也可以体现为不同配置值。PDSCH:也可以称为PDSCH时机(PDSCH occasion)。如表4所示,以1个时隙包括12个符号(例如针对扩展CP配置下)或14个符号(例如针对正常CP配置)为例,基于调度类型A或调度类型B,一个时隙内可以调度一或多个PDSCH。表4中对于调度类型A,变量l 0等于2或者3;对于调度类型B,变量l 0等于0。
以“参考信号的时域参考起始点为PDSCH传输所在slot的开始符号”的情况举例。若调度的PDSCH在slot 2上传输,PDSCH符号个数为14(即slot 2上的符号0~13),PDSCH调度类型为A,l 0=2,且配置参数为1,则查表4可得DMRS相对时域参考起始点的相对位置值为2和8,因此最终得到DMRS的绝对时域位置为slot 2上的符号2和符号8,即DMRS在为slot 2的符号2和符号8上传输。
以“参考信号的时域参考起始点为分配的PDSCH传输资源的开始符号”的情况举例。若调度的PDSCH在slot 3的符号4~10上传输(即PDSCH的符号个数为6),PDSCH调度类型为B,l 0=0,且配置参数为0,则查表4可得DMRS相对时域参考起始点的相对位置值为0,因此最终得到DMRS的绝对时域位置为slot 3的符号4,即DMRS在slot 3的符号4上传输。
以“参考信号的时域参考起始点信息为周期等于4个slot、偏移值为1个slot、0个符号”的情况举例。若调度的PDSCH在slot 6的符号7~14上传输(即PDSCH的符号个数为7),PDSCH调度类型为B,l 0=0,且配置参数为0,则查表4可得DMRS相对时域参考起始点的相对位置值为0,因此最终得到DMRS的绝对时域位置为slot 1+4的符号0+0,即DMRS在slot 5的符号0上传输。
以“参考信号的时域参考起始点信息为第一DCI格式所在slot的第0个符号”的情况举例。若在slot 6上检测到第一DCI,若调度的PDSCH在slot 6的符号3~13上传输(即PDSCH的符号个数为10),PDSCH调度类型为A,l 0=2,且配置参数为1,则查表4可得DMRS相对时域参考起始点的相对位置值为2和8,因此最终得到DMRS的绝对时域位置为slot 6的符号2和符号8,即DMRS在slot 6的符号2和符号8上传输。
Figure PCTCN2019121241-appb-000003
表4
可选的,第一设备向第二设备发送参考信号信息,参考信号信息包括参考信号的时域参考起始点信息。作为另一种实现方法,第一设备向第二设备发送参考信号的参考起始点信息为预定义方式,比如预定义为数据传输所在slot的符号0,或者分配数据传输时域资源的第1个符号,或者对于映射类型A为所在slot的符号0,对于映射类型B为分配数据传输时域资源的第1个符号。第一设备向第二设备发送参考信号信息,所述参考信号信息包括相对上述参考信号的时域参考起始点的相对位置信息。该相对位置信息可以不再是上述表4中的值,可以为负值,比如为负1个slot,则若在slot 3上传输PDSCH,则其对 应的参考信号在slot 2上。该相对位置信息可以为相对PDSCH起始符号最近、且在PDSCH起始符号之前的参考信息,比如参考信号为周期为4个slot、偏移为0个slot、0个符号,则若在slot 3上传输PDSCH,则其对应的参考信号在slot 0的符号0上传输。
基于上述DMRS配置方式,通过灵活配置DMRS的时域参考起始点信息,第一设备可以以1个或者多个slot或mini-slot为周期向第二设备发送DMRS,而且可以实现DMRS和数据传输的解耦,根据业务模型特征、根据信道环境特征,实现信道估计、DMRS开销的折中,可以保证资源利用率的最大化,可以适用于eMBB传输,也适用于URLLC传输。
基于上述考虑,本发明实施例的方法,还包括:第一设备向第二设备发送指示信息,指示第二设备去使能调度资源中的参考信号。
可以理解,上文描述的各个步骤,例如:第一设备在第一时间单元上向第二设备发送参考信号;第一设备,在第二时间单元上向第二设备传输或接收数据;和第一设备向第二设备发送指示信息,指示第二设备去使能调度资源中的参考信号;在时序上或逻辑上没有必然的先后关系。具体而言,第一设备发送指示信息可以位于第一设备发送参考信号和/或第一设备传输或接收数据之前或之后;第一设备发送参考信号可以位于第一设备传输或接收数据之前或之后。
在本发明实施例中,该调度资源可以为第二时间单元对应的调度资源。具体的,以表4为例,第一设备指示第二设备在PDSCH中去使能DMRS。作为一种示例,上述指示信息可以通过高层消息中的新类型传输(NewTypeTrans)参数得以实现。可以理解,上述去使能动作同样适用于其他信道如PDCCH、PUSCH、PSSCH、PSCCH,或者信道对应的DMRS。
示例性的,上述指示信息可以指示第二设备忽略或丢弃在某个控制信道和/或共享信道中的参考信号,或者第二设备接收到该指示信息后,自行忽略或丢弃上述参考信号。此时,去使能参考信号,使得数据能够集中在一段时间内传输,不需要传输或者少量传输参考信号,尽可能地增加在实时业务时段内调度上述数据的传输资源,有利于提高数据传输的可靠性。例如,在第二时间单元中,有更多的时域资源可以用于传输数据,有利于降低数据的传输时间,从而降低传输时延,并且,有利于降低数据重传所需要的时间,获取更多的重传次数,从而提升数据传输的可靠性。
其中,第一设备指示第二设备去使能调度资源中的参考信号的具体实现方式可以有多种。
在一种可能的实现方式中,第一设备向第二设备发送指示信息,指示第二设备去使能调度资源中的至少一个参考信号,第二设备根据该指示去使能调度资源中的一个、多个或所有参考信号,其中,该指示信息可以包括至少一个参考信号的标识。
比如,调度资源中的参考信号中包括不同类型的参考信号。若上述指示包括上行DMRS的标识,则第二设备同时去使能所有的上行DMRS。或者,若上述指示包括下行DMRS的标识,则第二设备同时去使能所有的下行DRMS。
需要说明的是,指示信息中包括的参考信号的标识可以为在调度资源中的参考信号的索引,比如,上述调度资源中的参考信号包括上行DMRS和下行DMRS,则可以用1个比特来表示DMRS的索引,比如,“0”表示上行DMRS的索引,“1”表示下行DRMS的索引。采用这种方式,能够简化指示信息中所携带的比特数,降低传输负担。
作为示例,以“参考信号的时域参考起始点为分配的PDSCH传输所在slot的开始符号”、“参考信号相对时域参考起始点的相对位置值为表4”的情况举例。第一设备没有向第二设备发送指示信息(比如为第一RRC信令)前,若调度的PDSCH在slot 3的符号0~13上传输(即PDSCH的符号个数为14),PDSCH调度类型为A,l 0=2,且配置参数为1,则查表4可得DMRS相对时域参考起始点的相对位置值为2和10,因此最终得到DMRS的绝对时域位置为slot 3的符号2和10,即DMRS在slot 3的符号2和10上传输。第一设备向第二设备发送指示信息(比如为第一RRC信令指示去使能DMRS传输)后,若调度的PDSCH在slot 3的符号0~13上传输(即PDSCH的符号个数为14),PDSCH调度类型为A,l 0=2,且配置参数为1,则DMRS不在slot 3的符号2和10上传输了。因此可以修正表4为表5(注意:表4和表5可以为2个表,分别代表第一RRC参数配置为第一取值和第一RRC参数配置为第二取值的情况,也可以把表4和表5合成在一张表上。)
Figure PCTCN2019121241-appb-000004
表5
在本发明实施例中,由于和PDSCH关联的DMRS不再传输,PDSCH没有参考信号 做信道估计,因此可选地上述方法还包括:第一设备向第二设备发送参考信号信息,该参考信号信息用于指示PDSCH做信道估计所需要的参考信号信息,所述参考信号信息可以包括参考信号所占用第一时间单元的时间长度和/或(起始)位置信息。可选地所述参考信号信息可以包括参考信号的类型。
以第一时间单元为“起始信息:周期为4个slot,偏移值为3个符号;长度信息:1个符号”为例,则参考信号的位置为slot 0的符号3;slot 4的符号3,slot 8的符号3,依次类推。如此同样可以达到前面实施例的效果,即实现参考信号和数据的时域位置解耦,参考信号不必位于数据传输所在的mini-slot或者slot上。信息可以指示参考信号通过该slot中的若干个符号进行发送;以第一时间单元为多个slot为例,该参考信号信息可以指示参考信号通过若干个slot或若干个符号进行发送。另外,该参考信号信息还可以指示参考信号不占用的slot或符号,从而避免参考信号占用每个slot,提升数据传输可靠性和稳定性。
在本发明实施例中,参考信号类型可以为DMRS,CSI-RS,TRS,PTRS,DRS,SRS或者新的参考信号类型(称作第一参考信号类型)。当参考信号为CSI-RS或SRS时,接收节点根据第一时间单元上发送的CSI-RS或SRS,进行信道估计,获得信道估计结果,该信道测量结果可以用于预定义或预配置的循环时间内的数据的传输或者DCI/SCI(sidelink control information)调度的数据的传输。例如,该信道估计结果可以用于当前循环时间内的数据的传输,也可以用于当前循环时间之后的n个循环时间内的数据的传输,n为大于或等于1的整数。
可选的,作为一个实施例,第一设备向第二设备发送参考信号信息,该参考信号信息包括参考信号所占用第一时间单元的时间长度或位置信息。当上述参考信号为CSI-RS,TRS,PTRS,DRS与SRS中的任意一个时,其与控制信道和/或共享信道具有以下至少一种相同参数:预编码矩阵,QCL和天线端口。接收方从而可以基于上述相同参数进行信道估计,提升数据传输可靠性。或者,两个天线端口之间具有准共址(quasi co-located,QCL)关系,指的是一个天线端口的信道大尺度参数可以通过另一个天线端口得到的(conveyed)信道大尺度参数而推知(infer)。大尺度参数可以包括平均增益(average gain)、平均时延(average delay)、时延扩展(delay spread)、多普勒频移(Doppler shift)、多普勒扩展(Doppler spread)、空间参数(spatial parameter,或spatial Rx parameters)中的一项或多项。其中,空间参数可以包括发射角(Angle of arrival,AOA)、主发射角(Dominant angle of arrival,dominant AoA)、平均到达角(Average angle of arrival,average AoA)、离开角(Angle of departure,AOD)、信道相关矩阵,到达角的功率角度扩展谱,平均离开角(Average angle of departure,average AoD)、出发角的功率角度扩展谱、发射信道相关性、接收信道相关性、发射波束成型、接收波束成型、空间信道相关性、空间滤波器,或,空间滤波参数,或,空间接收参数等中的一项或多项。在多天线传输的场景中,设备可以调整天线阵列的权值,对发送信号、接收信号进行空间上的能量的聚集,也就是对信号进行空间上的滤波。一般称为波束成型技术(其中包括数字波束成型技术,如预编码)。其中,这种天线阵列权值的调整,可以通过调整移相器的相位、调整数字预编码的权值进行。形成的权值阵列也可以称为是空间滤波参数。天线端口包括用于上行数据传输的信道(简称上行数据信道),如物理上行共享信道PUSCH,的天线端口;用于解调的参考信号(简称解调参考信号),如解调参考信号(demodulation reference signal,DMRS),的天线端 口;用于信道探测的参考信号(简称信道探测参考信号),如探测参考信号(sounding reference signal,SRS),的天线端口等中的至少一个;是指的用于承载具体的物理信道,和/或,物理信号的天线端口。通过相同天线端口所发送的信号,无论这些信号是否是通过相同或不同的物理天线发送,他们在空间传输所经历的路径所对应的信道可视为相同或者相关(比如大尺度信道特性,如信道矩阵相同),也就是说,在相同的天线端口所发送的信号,接收端在解调时可以认为其信道相同或者相关。天线端口是一种逻辑上的含义。通常,信号接收端通过天线端口识别具有不同传输信道的信号。
进一步地,第一时间单元和第二时间单元的帧结构参数可能相同,也可能不同,因此,以第二设备支持在第一时间单元和第二时间单元上接收参考信号为例,包括两种情形:
情形1,第二设备支持在帧结构参数相同的第一时间单元和第二时间单元上接收参考信号,而不支持同时在帧结构参数不同的第一时间单元和第二时间单元上接收参考信号。
情形2,无论第一时间单元和第二时间单元的帧结构参数是否相同,第二设备均支持在第一时间单元和第二时间单元上接收参考信号。
本申请实施例中,也可以预先定义第二设备具有支持在帧结构参数相同的第一时间单元和第二时间单元上接收参考信号。
本申请实施例中,第二设备还可以向第一设备上报指示信息,用于指示第二设备是否支持在第一时间单元和第二时间单元上接收参考信号。若上述指示信息指示第二设备不支持在第一时间单元和第二时间单元上接收参考信号,则可能有多种可能的实现,本申请实施例对此情形下的具体实现方式不做限定。若指示信息指示第二设备支持在所述第一时间单元和第二时间单元上接收参考信号,则第一设备可以按照上述实现方式来配置参考信号的调度资源。
第一设备若根据指示信息确定第二设备属于情形1,则第一设备可以按照上述方式配置参考信号的调度资源,并进一步考虑参考信号的调度资源中的第一时间单元和第二时间单元的帧结构参数,比如可以配置参考信号的调度资源中的第一时间单元和第二时间单元帧结构参数相同,从而保证第二设备可以同时在参考信号的调度资源中的第一时间单元和第二时间单元上接收参考信号。又比如,第一设备也可以配置第一时间单元和第二时间单元的帧结构参数不同,此时,第一设备可以配置第一时间单元和第二时间单元帧结构参数的优先级,并将配置的帧结构参数的优先级发送给第二设备。可以理解,帧结构参数的优先级也可以是协议预先约定的,本发明具体不做限定。第一设备若根据指示信息确定第二设备属于情形2,则可以按照上述方式配置参考信号的调度资源,而无需考虑参考信号的调度资源中的第一时间单元和第二时间单元帧结构参数。
图5示出了本申请实施例提供的装置500。该装置对应上述实施例中的第二设备,具体地,该装置500可以是终端设备,也可以是终端设备中的芯片。该装置500包括:收发单元520。
该收发单元520,用于在第一时间单元上从第一设备接收参考信号;并在第二时间单元上从所述第一设备接收或向所述第一设备发送数据。
本申请实施例的装置,通过基于第一时间单元和第二时间单元,分别接收参考信号和收发数据,尽可能地降低参考信号对数据的干扰,有利于提高数据传输的可靠性。
可选的,收发单元520基于参考信号,在第二时间单元上从第一设备接收或向第一 设备发送数据。
可选的,第二时间单元包括控制信道和/或共享信道的调度资源。
可选的,第一时间单元和第二时间单元在时域上不重叠。
可选地,所述收发单元520还用于:从所述第一设备接收参考信号信息,所述参考信号信息指示所述参考信号位于所述第一时间单元的参考位置。
可选的,该装置还包括处理单元510,用于根据所述参考信号信息确定所述参考信号位于所述第一时间单元的参考位置。
可选的,所述参考信号信息包括所述第一时间单元的起始位置;或所述参考信号信息包括所述第一时间单元的起始位置和偏移值,所述偏移值为相对于所述起始位置的时间长度。
可选地,所述收发单元520还用于:从第一设备接收无线资源控制RRC消息,所述RRC消息包括所述参考信号信息。
可选地,所述收发单元520还用于:从第二设备接收下行控制指示DCI,所述DCI用于指示参考信号位于所述第一时间单元的参考位置。
可选的,当所述第一时间单元为时隙的多个符号时,第二设备基于所述多个符号从第一设备接收下行控制指示DCI,所述参考位置为以下任意一个:
所述时隙的起始位置;所述多个符号的起始符号;或所述多个符号的末尾符号。
可选地,所述物理信号包括下列信号中的至少一个:解调参考信号DMRS、探测参考信号SRS、物理随机接入信道PRACH上承载的信号、同步信号、相位跟踪参考信号PTRS,或者信道状态信息参考信号CSI-RS。
可选的,所述参考信号用于所述的数据的传输。可选的,所述收发单元520还用于:接收第一设备发送的指示信息,所述处理单元还用于根据所述指示信息去使能调度资源中的参考信号。
可选的,所述收发单元520还用于:接收第一设备发送的参考信号信息,该参考信号信息用于指示PDSCH做信道估计所需要的参考信号信息,所述参考信号信息可以包括参考信号所占用第一时间单元的时间长度和/或位置。
可选的,当所述参考信号信息指示CSI-RS时,所述CSI-RS与所述控制信道及所述共享信道具有以下相同参数:预编码矩阵,QCL和天线端口;
当所述参考信号信息指示SRS时,所述SRS与所述控制信道及所述共享信道具有以下相同参数:预编码矩阵,QCL和天线端口。
应理解,这里的装置500以功能单元的形式体现。这里的术语“单元”可以指应用特有集成电路(application specific integrated circuit,ASIC)、电子电路、用于执行一个或多个软件或固件程序的处理器(例如共享处理器、专有处理器或组处理器等)和存储器、合并逻辑电路和/或其它支持所描述的功能的合适组件。在一个可选例子中,本领域技术人员可以理解,装置500可以具体为上述实施例中的第一设备,装置500可以用于执行上述方法实施例中与第一设备对应的各个流程和/或步骤,为避免重复,在此不再赘述。
上述各个方案的装置500具有实现上述方法中第二设备执行的相应步骤的功能;所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块;例如发送单元可以由发射机替代,接收单元可以由接收 机替代,其它单元,如确定单元等可以由处理器替代,分别执行各个方法实施例中的收发操作以及相关的处理操作。
在本申请的实施例,图5中的装置也可以是芯片或者芯片系统,例如:片上系统(system on chip,SoC)。对应的,接收单元和发送单元可以是该芯片的收发电路,在此不做限定。
图6示出了本申请实施例提供的装置600。该装置对应上述实施例中的第一设备,具体地,该装置600可以是基站设备或终端设备,也可以是基站设备或终端设备中的芯片。该装置600包括:收发单元620。
该收发单元620,用于在第一时间单元上向第二设备发送参考信号;并在第二时间单元上向第二设备传输或接收数据。
本申请实施例的装置,通过将循环时间分成第一时间单元和第二时间单元,分别传输参考信号和收发数据,尽可能地降低参考信号对数据的干扰,有利于提高数据传输的可靠性。
可选的,收发单元620基于参考信号,在第二时间单元上向第二设备传输或接收数据。
可选的,第二时间单元包括控制信道和/或共享信道的调度资源。
可选的,第一时间单元和第二时间单元在时域上不重叠。
可选的,该装置还包括处理单元610,用于确定循环时间,该循环时间包括第一时间单元和第二时间单元。
可选地,所述收发单元620还用于:向所述第二设备发送参考信号信息,所述参考信号信息指示所述参考信号位于所述第一时间单元的参考位置。
可选的,所述参考信号信息包括所述第一时间单元的起始位置,或,所述参考信号信息包括所述第一时间单元的起始位置和偏移值,所述偏移值为相对于所述起始位置的时间长度。
可选地,所述收发单元620还用于:向第二设备发送无线资源控制RRC消息,所述RRC消息包括所述参考信号信息。
可选地,所述收发单元620还用于:向第二设备发送下行控制指示DCI,所述DCI用于指示参考信号位于所述第一时间单元的参考位置。
可选的,当所述第一时间单元为时隙的多个符号时,第一设备在所述多个符号上向第二设备发送下行控制指示DCI,所述参考位置为以下任意一个:
所述时隙的起始位置;所述多个符号的起始符号;或所述多个符号的末尾符号。
可选地,所述物理信号包括下列信号中的至少一个:解调参考信号DMRS、探测参考信号SRS、物理随机接入信道PRACH上承载的信号、同步信号、相位跟踪参考信号PTRS,或者信道状态信息参考信号CSI-RS。
可选的,所述参考信号用于所述的数据的传输。可选的,所述收发单元620还用于:向第二设备发送指示信息,指示第二设备去使能调度资源中的参考信号。
可选的,所述收发单元620还用于:向第二设备发送参考信号信息,该参考信号信息用于指示PDSCH做信道估计所需要的参考信号信息,所述参考信号信息可以包括参考信号所占用第一时间单元的时间长度和/或位置。
可选的,当所述参考信号信息指示CSI-RS时,所述CSI-RS与所述控制信道及所述共享信道具有以下相同参数:预编码矩阵,QCL和天线端口;
当所述参考信号信息指示SRS时,所述SRS与所述控制信道及所述共享信道具有以下相同参数:预编码矩阵,QCL和天线端口。
应理解,这里的装置600以功能单元的形式体现。这里的术语“单元”可以指应用特有集成电路(application specific integrated circuit,ASIC)、电子电路、用于执行一个或多个软件或固件程序的处理器(例如共享处理器、专有处理器或组处理器等)和存储器、合并逻辑电路和/或其它支持所描述的功能的合适组件。在一个可选例子中,本领域技术人员可以理解,装置600可以具体为上述实施例中的第一设备,装置600可以用于执行上述方法实施例中与第一设备对应的各个流程和/或步骤,为避免重复,在此不再赘述。
上述各个方案的装置600具有实现上述方法中第一设备执行的相应步骤的功能;所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块;例如发送单元可以由发射机替代,接收单元可以由接收机替代,其它单元,如确定单元等可以由处理器替代,分别执行各个方法实施例中的收发操作以及相关的处理操作。
在本申请的实施例,图6中的装置也可以是芯片或者芯片系统,例如:片上系统(system on chip,SoC)。对应的,接收单元和发送单元可以是该芯片的收发电路,在此不做限定。
图7示出了本申请实施例提供的另一装置700。该装置700包括处理器710。该装置700还可以包括通信接口720和/或存储器730。上述处理器、存储器、或通信接口的数量可以为一个或多个。
可选的,在一种设计中,处理器710、通信接口720和存储器730可以通过内部连接通路互相通信,该存储器730用于存储指令,该处理器710用于执行该存储器730存储的指令,以控制该通信接口720发送信号和/或接收信号。
可选的,在一种设计中,处理器710可以包括指令(有时也可以称为代码或程序),所述指令可以在所述处理器上被运行,使得所述通信装置700执行上述实施例中描述的方法。在又一种可能的设计中,通信装置700也可以包括电路,所述电路可以实现前述本发明实施例中的方法步骤。
可选的,在一种设计中,所述通信装置700中可以包括一个或多个存储器730,其上存有指令,所述指令可在所述处理器710上被运行,使得所述通信装置700执行上述方法实施例中描述的方法。
应理解,装置700可以具体为上述实施例中的第一设备或第二设备,并且可以用于执行上述方法实施例中与第一设备或第二设备对应的各个步骤和/或流程。可选地,该存储器730可以包括只读存储器和随机存取存储器,并向处理器710提供指令和数据。存储器710的一部分还可以包括非易失性随机存取存储器。例如,存储器710还可以存储设备类型的信息。该处理器710可以用于执行存储器中存储的指令,并且当该处理器710执行存储器中存储的指令时,该处理器710用于执行上述与该第一设备或第二设备对应的方法实施例的各个步骤和/或流程。
可选的,通信接口720用于接收或发送通信所需的信息、信号、数据等。例如,上述 通信接口720可以为具有收发功能的元件,例如发射器(发射机)、接收器(接收机)、收发器等。或者,上述通信接口可以通过上述具有收发功能的元件,实现与其他设备的通信。上述具有收发功能的元件可以由天线和/或射频装置实现。
应理解,在本申请实施例中,上述装置的处理器可以是中央处理单元(central processing unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
在一种可能的实现方式中,上述存储器730可以包含在处理器710中。或者,可以理解为处理器710本身就可以执行存储器730的存储指令的功能,本申请实施例对此不作限定。
在一种可能的实现方式中,存储器730可以与处理器710耦合,例如存储器730可以是独立存在,通过通信总线与处理器710相连接。存储器730也可以和处理器710集成在一起。存储器730可以用于存储执行本申请实施例提供的技术方案的应用程序代码,并由处理器710来控制执行。处理器710用于执行存储器730中存储的应用程序代码,从而实现本申请实施例提供的技术方案。
可选的,所述通信装置700还可以包括天线740,所述通信接口720可以通过天线740实现装置700的收发功能。
在具体实现中,作为一种实施例,装置700还可以包括输出设备和输入设备。输出设备和处理器710通信,可以以多种方式来显示信息。例如,输出设备可以是液晶显示器(liquid crystal display,LCD),发光二级管(light emitting diode,LED)显示设备,阴极射线管(cathode ray tube,CRT)显示设备,或投影仪(projector)等。输入设备和处理器710通信,可以以多种方式接收用户的输入。例如,输入设备可以是鼠标、键盘、触摸屏设备或传感设备等。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件单元组合执行完成。软件单元可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器执行存储器中的指令,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
本领域普通技术人员可以意识到,结合本文中所公开的实施例中描述的各方法步骤和单元,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各实施例的步骤及组成。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。本领域普通技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本申请实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分,或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (17)

  1. 一种传输方法,其特征在于,包括:
    第一设备在第一时间单元上向第二设备发送参考信号;和
    所述第一设备基于所述参考信号,在第二时间单元上向所述第二设备传输或接收数据;
    其中,所述第二时间单元包括控制信道和/或共享信道的调度资源,所述第一时间单元和所述第二时间单元在时域上不重叠。
  2. 如权利要求1所述的方法,其特征在于,还包括:
    所述第一设备向所述第二设备发送参考信号信息,所述参考信号信息指示所述参考信号位于所述第一时间单元的参考位置。
  3. 如权利要求2所述的方法,其特征在于:
    所述参考信号信息包括所述第一时间单元的起始位置;或
    所述参考信号信息包括所述第一时间单元的起始位置和偏移值,所述偏移值为相对于所述起始位置的时间长度。
  4. 如权利要求2或3所述的方法,其特征在于,所述第一设备向所述第二设备发送参考信号信息,具体包括:
    所述第一设备向所述第二设备发送无线资源控制RRC消息,所述RRC消息包括所述参考信号信息。
  5. 如权利要求1所述的方法,其特征在于,所述第一设备向所述第二设备发送参考信号信息,具体包括:
    所述第一设备向所述第二设备发送下行控制指示DCI,所述DCI用于指示所述参考信号位于所述第一时间单元的参考位置。
  6. 如权利要求5所述的方法,其特征在于,所述第一设备向所述第二设备发送下行控制指示DCI,所述DCI用于指示所述参考信号位于所述第一时间单元的参考位置,具体包括:
    当所述第一时间单元为时隙的多个符号时,所述第一设备在所述多个符号上向所述第二设备发送所述下行控制指示DCI,所述参考位置为以下任意一个:
    所述时隙的起始位置;
    所述多个符号的起始符号;或
    所述多个符号的末尾符号。
  7. 一种传输方法,其特征在于,包括:
    第二设备在第一时间单元上从第一设备接收参考信号;
    所述第二设备基于所述参考信号,在第二时间单元上从所述第一设备接收或向所述第一设备发送数据;
    其中,所述第二时间单元包括控制信道和/或共享信道的调度资源,所述第一时间单元和所述第二时间单元在时域上不重叠。
  8. 如权利要求7所述的方法,其特征在于,还包括:
    所述第二设备从所述第一设备接收参考信号信息,所述参考信号信息指示所述参考信号位于所述第一时间单元的参考位置。
  9. 如权利要求8所述的方法,其特征在于:
    所述参考信号信息包括所述第一时间单元的起始位置;或
    所述参考信号信息包括所述第一时间单元的起始位置和偏移值,所述偏移值为相对于所述起始位置的时间长度。
  10. 如权利要求8或9所述的方法,其特征在于,所述第二设备从所述第一设备接收参考信号信息,具体包括:
    所述第二设备从所述第一设备接收无线资源控制RRC消息,所述RRC消息包括所述参考信号信息。
  11. 如权利要求7所述的方法,其特征在于,所述第二设备从所述第一设备接收参考信号信息,具体包括:
    所述第二设备从所述第一设备接收下行控制指示DCI,所述DCI用于指示所述参考信号位于所述第一时间单元的参考位置。
  12. 如权利要求11所述的方法,其特征在于,所述第二设备从所述第一设备接收下行控制指示DCI,所述DCI用于指示所述参考信号位于所述第一时间单元的参考位置,具体包括:
    当所述第一时间单元为时隙的多个符号时,第二设备基于所述多个符号从第一设备接收下行控制指示DCI,所述参考位置为以下任意一个:
    所述时隙的起始位置;
    所述多个符号的起始符号;或
    所述多个符号的末尾符号。
  13. 如权利要求7-12任一项所述的方法,其特征在于,还包括:
    所述第二设备确定所述参考信号位于所述第一时间单元的参考位置。
  14. 一种装置,其特征在于,包括:处理器,所述处理器与存储器耦合,所述存储器用于存储程序,当所述程序被所述处理器执行时,使得所述装置执行如权利要求1-13中 任一项所述的方法。
  15. 一种计算机可读介质,用于存储计算机程序,其特征在于,所述计算机程序包括用于实现上述权利要求1-13中任一项所述的方法的指令。
  16. 一种计算机程序产品,所述计算机程序产品中包括计算机程序代码,其特征在于,当所述计算机程序代码在计算机上运行时,使得计算机实现上述权利要求1-13中任一项所述的方法。
  17. 一种芯片,其特征在于,包括:处理器,用于读取存储器中存储的指令,当所述处理器执行所述指令时,使得所述芯片实现上述权利要求1-13中任一项所述的方法。
PCT/CN2019/121241 2018-11-29 2019-11-27 传输方法和装置 WO2020108524A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19888506.3A EP3869887A4 (en) 2018-11-29 2019-11-27 TRANSMISSION METHOD AND DEVICE
US17/330,838 US20210282172A1 (en) 2018-11-29 2021-05-26 Transmission method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811447788.5A CN111246587B (zh) 2018-11-29 2018-11-29 传输方法和装置
CN201811447788.5 2018-11-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/330,838 Continuation US20210282172A1 (en) 2018-11-29 2021-05-26 Transmission method and apparatus

Publications (1)

Publication Number Publication Date
WO2020108524A1 true WO2020108524A1 (zh) 2020-06-04

Family

ID=70853879

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/121241 WO2020108524A1 (zh) 2018-11-29 2019-11-27 传输方法和装置

Country Status (4)

Country Link
US (1) US20210282172A1 (zh)
EP (1) EP3869887A4 (zh)
CN (1) CN111246587B (zh)
WO (1) WO2020108524A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113794528A (zh) * 2021-09-07 2021-12-14 中国电力科学研究院有限公司 一种电力5g网络授时的时频同步评测装置及方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114765835B (zh) * 2021-01-15 2024-02-27 维沃移动通信有限公司 终端操作的配置方法及装置、终端的节能方法及装置
WO2023133740A1 (zh) * 2022-01-12 2023-07-20 Oppo广东移动通信有限公司 通信方法、终端设备以及网络设备
CN117042116A (zh) * 2022-04-29 2023-11-10 大唐移动通信设备有限公司 资源调度方法、设备、装置及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107306147A (zh) * 2016-04-25 2017-10-31 中兴通讯股份有限公司 一种信息传输方法、装置和系统
WO2018014257A1 (en) * 2016-07-20 2018-01-25 Nec Corporation Methods and apparatuses for information transmission and information reception
CN108811120A (zh) * 2017-05-05 2018-11-13 中兴通讯股份有限公司 数据传输方法及装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR9906447A (pt) * 1998-05-13 2000-11-28 Samsung Electronics Co Ltd Dispositico e processo de recepção para um sistema de comunicação móvel
CN1953349B (zh) * 2005-10-17 2011-10-26 华为技术有限公司 一种上行资源分配方法
US20100120442A1 (en) * 2008-11-12 2010-05-13 Motorola, Inc. Resource sharing in relay operations within wireless communication systems
KR101745700B1 (ko) * 2012-02-29 2017-06-09 삼성전자주식회사 무선통신 시스템에서 기준 신호 송수신을 위한 장치 및 방법
CN107425948B (zh) * 2016-05-24 2020-12-01 华为技术有限公司 参考信号的传输方法及装置、网络设备和用户设备
KR102271448B1 (ko) * 2016-07-01 2021-07-01 엘지전자 주식회사 무선 통신 시스템에서 기지국과 단말 간 상향링크 신호를 송수신하는 방법 및 이를 지원하는 장치
CN108024363B (zh) * 2016-11-04 2023-05-23 中兴通讯股份有限公司 一种干扰处理方法及装置
CN108207029B (zh) * 2016-12-18 2020-05-26 上海朗帛通信技术有限公司 一种ue、基站中的方法和设备
EP3996421A3 (en) * 2018-01-11 2022-08-24 Comcast Cable Communications LLC Connection failure reporting
US11272540B2 (en) * 2018-08-09 2022-03-08 Ofinno, Llc Channel access and uplink switching

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107306147A (zh) * 2016-04-25 2017-10-31 中兴通讯股份有限公司 一种信息传输方法、装置和系统
WO2018014257A1 (en) * 2016-07-20 2018-01-25 Nec Corporation Methods and apparatuses for information transmission and information reception
CN108811120A (zh) * 2017-05-05 2018-11-13 中兴通讯股份有限公司 数据传输方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3869887A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113794528A (zh) * 2021-09-07 2021-12-14 中国电力科学研究院有限公司 一种电力5g网络授时的时频同步评测装置及方法

Also Published As

Publication number Publication date
CN111246587B (zh) 2021-10-19
CN111246587A (zh) 2020-06-05
US20210282172A1 (en) 2021-09-09
EP3869887A4 (en) 2022-01-26
EP3869887A1 (en) 2021-08-25

Similar Documents

Publication Publication Date Title
US20200252917A1 (en) Methods and Systems for Resource Configuration of Wireless Communication Systems
WO2020108524A1 (zh) 传输方法和装置
US11108614B2 (en) Apparatuses and methods of switching between different numerologies
JP7418472B2 (ja) マルチtrp pdsch送信方式の動的インジケーション
CN113767698A (zh) 省电模式下物理下行链路控制信道(pdcch)分配的确定
CN110313202B (zh) 控制具有增强型多媒体广播组播服务的用户设备载波聚合配置
WO2020221055A1 (zh) 接收数据和发送数据的方法、通信装置
US20200163097A1 (en) Communication method, network device, and relay device
JP2022552296A (ja) 複数のpdsch送信機会における開始シンボルをシグナリングするためのシステム及び方法
WO2014176967A1 (zh) 一种解调参考信号图样信息的选取方法、系统及装置
WO2018000929A1 (zh) 一种子帧配置方法及相关设备
WO2013029545A1 (zh) 一种传输数据的方法和设备
WO2021032065A1 (zh) 一种资源复用方法及装置
TW201803384A (zh) 傳輸數據的方法及裝置
WO2020216314A1 (zh) 通信方法和通信装置
JP2023526735A (ja) Tci状態のアクティブ化及びコードポイントからtci状態へのマッピングのためのシステム及び方法
CN108811074A (zh) 信息传输方法及装置
JP2023526813A (ja) 複数のtrpにわたる単一のcoresetに基づいたpdcchのダイバーシティ
WO2017133479A1 (zh) 一种下行控制信息传输方法及装置
AU2018263683B2 (en) Uplink transmission power control method and device in wireless cellular communication system
WO2016058469A1 (zh) 一种数据传输方法及装置
WO2020088275A1 (zh) 数据传输方法和装置
WO2021227849A1 (zh) 通信方法和通信装置
US20230300746A1 (en) Adaptive tracking loop updates in user equipment
WO2019157954A1 (zh) 通信方法、装置和系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19888506

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019888506

Country of ref document: EP

Effective date: 20210520