WO2017133479A1 - 一种下行控制信息传输方法及装置 - Google Patents

一种下行控制信息传输方法及装置 Download PDF

Info

Publication number
WO2017133479A1
WO2017133479A1 PCT/CN2017/071800 CN2017071800W WO2017133479A1 WO 2017133479 A1 WO2017133479 A1 WO 2017133479A1 CN 2017071800 W CN2017071800 W CN 2017071800W WO 2017133479 A1 WO2017133479 A1 WO 2017133479A1
Authority
WO
WIPO (PCT)
Prior art keywords
dci
scheduled
information
occupied
resource
Prior art date
Application number
PCT/CN2017/071800
Other languages
English (en)
French (fr)
Inventor
王磊
郑方政
高雪娟
潘学明
孙韶辉
Original Assignee
电信科学技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201610125584.4A external-priority patent/CN107027184B/zh
Application filed by 电信科学技术研究院 filed Critical 电信科学技术研究院
Priority to US16/075,131 priority Critical patent/US11382123B2/en
Priority to JP2018540423A priority patent/JP6630838B2/ja
Priority to KR1020187025348A priority patent/KR102219746B1/ko
Priority to EP17746799.0A priority patent/EP3404979B1/en
Publication of WO2017133479A1 publication Critical patent/WO2017133479A1/zh
Priority to US17/829,279 priority patent/US20220295534A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a downlink control information transmission method and apparatus.
  • the mobile Internet is providing users with a richer business experience such as augmented reality, virtual reality, ultra high definition (3D) video, mobile cloud and more.
  • the Internet of Things expands the range of services for mobile communications, from human-to-human communication to the intelligent interconnection of people and things, things and things, enabling mobile communication technologies to penetrate into a wider range of industries and fields. Massive device connectivity and diverse IoT services bring new technical challenges to mobile communications.
  • the existing LTE FDD (Frequency Division Dual) system uses a frame structure (frame structure type 1, FS1 for short), and its structure is as shown in FIG. 1.
  • frame structure type 1, FS1 for short In the FDD system, on Line transmission and downlink transmission use different carrier frequencies, and both uplink transmission and downlink transmission use the same frame structure.
  • a 10ms length radio frame On each carrier, a 10ms length radio frame contains 10 1ms subframes, and each subframe is divided into two 0.5ms long slots.
  • the TTI duration of uplink data and downlink data transmission is 1 ms.
  • the existing LTE TDD (Time Division Dual) system uses a frame structure type 2 (FS2), as shown in FIG. 2 .
  • FS2 frame structure type 2
  • uplink and downlink transmissions use different subframes or different time slots on the same frequency.
  • Each 10ms radio frame in FS2 consists of two 5ms half frames, each of which contains five 1ms subframes.
  • the sub-frames in FS2 are classified into three types: downlink sub-frames, uplink sub-frames, and special sub-frames.
  • Each special sub-frame consists of DwPTS (Downlink Pilot Time Slot), GP (Guard Period), and GP (Guard Period).
  • UpPTS Uplink Pilot Time Slot
  • UpPTS Uplink Pilot Time Slot
  • the DwPTS can transmit the downlink pilot, the downlink service data, and the downlink control signaling; the GP does not transmit any signal; the UpPTS only transmits the random access and the SRS (Sounding Reference Symbol), and cannot transmit the uplink service or the uplink control information.
  • Each field includes at least one downlink subframe and at least one uplink subframe, and at most one special subframe. Table 7 lists the seven uplink and downlink subframe configurations supported by FS2.
  • the minimum resource granularity in the time domain is one OFDM (Orthogonal Frequency Division Multiplexing) symbol
  • the minimum resource granularity in the frequency domain is one subcarrier.
  • the number of a basic RE (Resource Element) is expressed as (k, l). among them, Indicates the number of PRBs (Physical Resource Blocks) included in the system bandwidth. Indicates the number of subcarriers included in an RB. Indicates the number of OFDM symbols included in one downlink slot.
  • PRB is a larger dimensional resource unit, RE composition. There is a PRB pair in a subframe, and the PRB pair is the basic unit of data resource allocation.
  • DCI Downlink Control Information
  • PDCCH Physical Downlink Control Channel
  • DCI format0/4 is used for uplink data scheduling
  • DCI format1/1A/1B/1C/1D/2/2A/2B/2C is used for downlink data scheduling.
  • the format of the DCI is different for different transmission modes or uses, and the number of information bits is different, and the meaning of the information field is also different.
  • the DCI contains most of the information required to schedule UEs (User Equipment), such as resource allocation information, MCS (Modulation and Coding Scheme), and HARQ (Hybrid Automatic Repeat reQuest). ) ID, NDI (New Data Indicator), etc.
  • UEs User Equipment
  • MCS Modulation and Coding Scheme
  • HARQ Hybrid Automatic Repeat reQuest
  • the TTI length is fixed to 1 ms, and the minimum granularity of resource allocation is PRB.
  • the current DCI can only allocate resources with a TTI length of 1 ms, and the minimum granularity of the scheduling resources is a PRB, and the UE is allocated consecutive or discontinuous with a minimum granularity of PRB or RBG (Resource Block Group) in one TTI. resource of.
  • Embodiments of the present invention provide a downlink control information transmission method and apparatus, which are The flexible resource allocation scenario of the transmission time interval implements downlink control information transmission.
  • a downlink control information DCI includes at least one or more of the following information fields: a first information field for indicating a frequency domain resource occupied by the data resource scheduled by the DCI, A second information field of the time domain resource occupied by the data resource scheduled by the DCI, and a third information field for indicating the scheduled N users, where N is an integer greater than or equal to 1.
  • the frequency domain resources occupied by the data resources scheduled by the DCI include:
  • the number of subcarriers occupied by the data resources scheduled by the DCI and the starting number is the number of subcarriers occupied by the data resources scheduled by the DCI and the starting number.
  • the time domain resources occupied by the data resources scheduled by the DCI include:
  • the transmission time interval TTI length used by the data transmission scheduled by the DCI used by the data transmission scheduled by the DCI.
  • the third information field is used to indicate a user identifier of the scheduled N users.
  • the DCI also includes one or any combination of the following information fields:
  • a fourth information field for indicating one or a set of modulation and coding policies MCS
  • a fifth information field for indicating one or a set of multiple input multiple output channel information
  • a seventh information field for indicating one or a group of uplink HARQ ACK/NACK information
  • An eighth information field for indicating the type of transmission and/or type of service.
  • the seventh information field exists in a DCI for scheduling uplink transmission.
  • the DCI further includes a ninth information field, where the ninth information field is used to indicate whether the scheduled group of users divides the first information domain and the second information domain in the DCI.
  • the indicated time-frequency resource region, wherein the equalization includes equally dividing in the time domain or equally dividing in the frequency domain.
  • the method before the DCI is transmitted, the method further includes: the base station allocates transmission resources to the N users.
  • the method further includes: the base station performing data transmission with the N users according to the allocated transmission resource.
  • DCI Downlink control information DCI
  • the DCI includes at least one or more of the following information fields: a first information field for indicating a frequency domain resource occupied by the data resource scheduled by the DCI, A second information field of the time domain resource occupied by the data resource scheduled by the DCI, and a third information field for indicating the scheduled N users, where N is an integer greater than or equal to 1.
  • the frequency domain resources occupied by the data resources scheduled by the DCI include:
  • the number of subcarriers occupied by the data resources scheduled by the DCI and the starting number is the number of subcarriers occupied by the data resources scheduled by the DCI and the starting number.
  • the time domain resources occupied by the data resources scheduled by the DCI include:
  • the transmission time interval TTI length used by the data transmission scheduled by the DCI used by the data transmission scheduled by the DCI.
  • the third information field is used to indicate a user identifier of the scheduled N users.
  • the DCI also includes one or any combination of the following information fields:
  • a fourth information field for indicating one or a set of modulation and coding policies MCS
  • a fifth information field for indicating one or a set of multiple input multiple output channel information
  • a seventh information field for indicating one or a group of uplink HARQ ACK/NACK information
  • An eighth information field for indicating the type of transmission and/or type of service.
  • the seventh information field is present in the DCI for scheduling uplink transmission.
  • the DCI further includes a ninth information field, where the ninth information field is used to indicate whether the scheduled group of users divides the first information domain and the second information domain in the DCI.
  • the indicated time-frequency resource region, wherein the equalization includes equally dividing in the time domain or equally dividing in the frequency domain.
  • the method further includes: performing data reception or transmission according to the transmission resource allocated by the base station.
  • a sending module configured to transmit downlink control information DCI, where the DCI includes at least one or more of the following information domains: a first information domain used to indicate a frequency domain resource occupied by the data resource scheduled by the DCI And a second information field for indicating a time domain resource size occupied by the data resource scheduled by the DCI, and a third information field for indicating the scheduled N users, where N is an integer greater than or equal to 1.
  • the frequency domain resources occupied by the data resources scheduled by the DCI include:
  • the number of subcarriers occupied by the data resources scheduled by the DCI and the starting number is the number of subcarriers occupied by the data resources scheduled by the DCI and the starting number.
  • the time domain resources occupied by the data resources scheduled by the DCI include:
  • the transmission time interval TTI length used by the data transmission scheduled by the DCI used by the data transmission scheduled by the DCI.
  • the third information field is used to indicate a user identifier of the scheduled N users.
  • the DCI also includes one or any combination of the following information fields:
  • a fourth information field for indicating one or a set of modulation and coding policies MCS
  • a fifth information field for indicating one or a set of multiple input multiple output channel information
  • a seventh information field for indicating one or a set of uplink HARQ ACK/NACK information.
  • the seventh information domain exists in a DCI for scheduling uplink transmission
  • An eighth information field for indicating the type of transmission and/or type of service.
  • the ninth information field further includes a ninth information field, where the ninth information field is used to indicate whether the scheduled group of users divides the first information domain and the second information domain in the DCI.
  • the implementation further includes: an allocating module, configured to allocate transmission resources to the N users before transmitting downlink control information.
  • the implementation further includes: a transmission module, configured to perform data transmission with the N users according to the allocated transmission resource after transmitting the downlink control information.
  • a receiving module configured to receive downlink control information DCI, where the DCI includes at least one or more of the following information domains: a first information domain used to indicate a frequency domain resource occupied by the data resource scheduled by the DCI And a second information field for indicating a time domain resource occupied by the data resource scheduled by the DCI, and a third information field for indicating the scheduled N users, where N is an integer greater than or equal to 1.
  • the frequency domain resources occupied by the data resources scheduled by the DCI include:
  • the number of subcarriers occupied by the data resources scheduled by the DCI and the starting number is the number of subcarriers occupied by the data resources scheduled by the DCI and the starting number.
  • the time domain resources occupied by the data resources scheduled by the DCI include:
  • the transmission time interval TTI length used by the data transmission scheduled by the DCI used by the data transmission scheduled by the DCI.
  • the third information field is used to indicate a user identifier of the scheduled N users.
  • the DCI also includes one or any combination of the following information fields:
  • a fourth information field for indicating one or a set of modulation and coding policies MCS
  • a fifth information field for indicating one or a set of multiple input multiple output channel information
  • a seventh information field for indicating one or a group of uplink HARQ ACK/NACK information
  • An eighth information field for indicating the type of transmission and/or type of service.
  • the seventh information field is present in a DCI for scheduling uplink transmission.
  • the DCI further includes a ninth information field, where the ninth information field is used to indicate whether the scheduled group of users divides the first information domain and the second information domain in the DCI.
  • the indicated time-frequency resource region, wherein the equalization includes equally dividing in the time domain or equally dividing in the frequency domain.
  • the implementation further includes: a transmission module, configured to perform data reception or transmission according to the transmission resource allocated by the base station after receiving the DCI.
  • a base station provided by another embodiment of the present invention includes: a processor, a memory, a transceiver, and a bus interface;
  • the processor is configured to read a program in the memory and perform the following process:
  • a downlink control information DCI includes at least one or more of the following information fields: a first information field for indicating a frequency domain resource occupied by the data resource scheduled by the DCI, A second information field of the time domain resource occupied by the data resource scheduled by the DCI, and a third information field for indicating the scheduled N users, where N is an integer greater than or equal to 1.
  • a terminal provided by another embodiment of the present invention includes: a processor, a memory, a transceiver, and a bus interface;
  • the processor is configured to read a program in the memory and perform the following process:
  • DCI Downlink control information DCI
  • the DCI includes at least one or more of the following information fields: a first information field for indicating a frequency domain resource occupied by the data resource scheduled by the DCI, A second information field of the time domain resource occupied by the data resource scheduled by the DCI, and a third information field for indicating the scheduled N users, where N is an integer greater than or equal to 1.
  • the downlink control information that is transmitted includes at least one or more of the following information domains: a first information domain for indicating a frequency domain resource occupied by the data resource scheduled by the DCI. And a second information field for indicating a time domain resource occupied by the data resource scheduled by the DCI, and a third information domain for indicating the N users scheduled.
  • the downlink control information may indicate one or more of the following information: a data resource scheduled by the DCI, such as a resource unit or a subcarrier, and a time domain resource occupied by the data resource scheduled by the DCI, for example, in the time domain.
  • the occupied symbols therefore, enable downlink control information transmission for a flexible resource allocation scenario with variable transmission time intervals.
  • FIG. 1 is a schematic diagram of a frame structure of an LTE FDD system in the background art
  • FIG. 2 is a schematic diagram of a frame structure of an LTE TDD system in the background art
  • FIG. 3 is a schematic diagram of resources of an LTE system in the background art
  • FIG. 4 is a schematic flowchart of a downlink control information transmission process on a network side according to an embodiment of the present invention
  • FIG. 5 is a schematic flowchart of a downlink control information transmission process on a terminal side according to an embodiment of the present disclosure
  • 6a and 6b are respectively schematic diagrams of DCI transmission when scheduling a UE in an embodiment of the present invention.
  • FIG. 7a and 7b are schematic diagrams of DCI transmission when scheduling a group of UEs according to an embodiment of the present invention.
  • 8a and 8b are schematic diagrams of DCI transmission when scheduling a group of UEs according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of a base station according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of a terminal according to an embodiment of the present invention.
  • FIG. 11 is a schematic structural diagram of a base station according to another embodiment of the present disclosure.
  • FIG. 12 is a schematic structural diagram of a terminal according to another embodiment of the present invention.
  • the TTI length and the resources occupied in the TTI are dynamically configured according to the service requirements (for example, a few RUs or even several REs can be occupied, where the RU is the English abbreviation of the Resource Unit, the Chinese is the resource unit, and one RU can occupy one in the frequency domain. Or multiple subcarriers, one or more symbols can be occupied in the time domain, which has become a trend of technology development.
  • the embodiment of the present invention provides a DCI transmission scheme for flexible resource configuration in a variable TTI for such a dynamic resource allocation scenario.
  • the base station may be an eNB (Evolutional Node B, an evolved base station, referred to as an eNB or an e-NodeB), a macro base station, a micro base station (also referred to as a "small base station"), and a pico base station.
  • the AP, the Access Point (access point) or the TP (Transmission Point), and the base station of the next generation wireless communication system, etc., the base station can also be used as a concept including a cell or a sector, which is used in the embodiment of the present invention. Not limited.
  • the terminal may be a handheld device with wireless communication function, an in-vehicle device, a wearable device, a computing device or other processing device connected to the wireless modem, and various forms of UE, MS (Mobile station, mobile
  • MS Mobile station, mobile
  • LTE may be considered to correspond to 3GPP (3rd Generation Partnership Project) Release 8 (Rel-8 or R8), Release 9 (Rel-9 or R9), Release 10 (Rel) -10 or R10) and versions 10 and above
  • the LTE network structure may be a macro cell, a micro cell, a pico cell, a femto cell, a network of repeaters and relay forwarding nodes, and various hybrid network structures ( It may be composed of one or more of a macro cell, a micro cell, a pico cell, a femto cell, and a repeater and a relay forwarding node, etc., which is not limited in this embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a DCI transmission process implemented by a network side according to an embodiment of the present invention, where the flow may be performed by a base station.
  • the process can include the following steps:
  • Step 402 Transmit DCI, where the DCI includes at least one or more of the following information fields: a first information field for indicating a frequency domain resource occupied by the data resource scheduled by the DCI, and used to indicate the DCI.
  • the second information field of the time domain resource occupied by the scheduled data resource the third information field for indicating the scheduled N users (such as the UE, the same below), and N is an integer greater than or equal to 1.
  • the DCI may include: a first information domain used to indicate a frequency domain resource size occupied by the data resource scheduled by the DCI, for example, the information domain may indicate the occupied resource size, or the occupied resource location and the resource. Size, etc.; a second information field for indicating the size of the time domain resource occupied by the data resources scheduled by the DCI.
  • the first information field may be used to indicate the number of RBs occupied by the data resources scheduled by the DCI, or the number of resource units occupied by the data resources scheduled by the DCI, or the data resources scheduled by the DCI.
  • the number of subcarriers occupied may be used to indicate the number of RBs occupied by the data resources scheduled by the DCI, or the number of resource units occupied by the data resources scheduled by the DCI, or the data resources scheduled by the DCI. The number of subcarriers occupied.
  • the resource unit may be an RU, and an RU is a resource region that occupies X1 subcarriers in the frequency domain and occupies X2 symbols in the time domain, and both X1 and X2 are integers greater than or equal to 1, and the value may be advanced.
  • the appointment can also be configured by a higher layer.
  • the resource unit may also be an RE, and one RE is a resource region that occupies one subcarrier in the frequency domain and occupies one symbol in the time domain.
  • the symbol may be an OFDM symbol.
  • the second indication field may be used to indicate the number of symbols occupied by the data resources scheduled by the DCI, or the TTI length occupied by the data resources scheduled by the DCI.
  • the third information field may be used to indicate an ID of one UE or a group of UEs that are scheduled.
  • the UE corresponding to the one or a group of UE IDs is a UE that needs to perform data transmission; when the UE is scheduled to perform downlink transmission, the UE corresponding to the one or a group of UE IDs is required.
  • the UE that receives the data is not limited to one UE or a group of UEs that are scheduled.
  • the DCI may further include one or any combination of the following fourth information domain to the eighth information domain:
  • the fourth indication field contains one or a group of MCS indication information.
  • the fourth information field includes one MCS indication information, and is used to indicate that the UE corresponding to the UE ID is performed according to the MSC.
  • the fourth information field may include an MCS indication information, indicating that the M UE IDs correspond to The UE performs data transmission or reception according to the MSC; as another example, if the number of scheduled UEs is M (M is an integer greater than 1), the fourth information field may include M MCS indication information, where each The MCS indication information is used to indicate that the UE corresponding to one UE ID performs data transmission or reception according to the MSC.
  • a fifth information field for indicating MIMO (Multi-Input Multi-Output) related information includes MIMO channel information.
  • the MIMO channel information may include a transmitted TB (Transmission Block) number, a precoding matrix number, and the like.
  • the fifth information field includes one or a set of MIMO related information.
  • the fourth information field includes one MIMO channel information, and is used to indicate that the UE corresponding to the UE ID is configured according to the MIMO channel.
  • the information is transmitted or received; as another example, if the number of scheduled UEs is M (M is an integer greater than 1), the fourth information domain may include one MIMO.
  • the channel information is used to indicate that the UE corresponding to the M UE IDs performs data transmission or reception according to the MIMO channel information.
  • the four information fields may include M MIMO channel information, where each MIMO channel information is used to indicate that a UE corresponding to one UE ID performs data transmission or reception according to the MIMO channel information.
  • a sixth information field used to indicate a HARQ process ID.
  • the terminal simultaneously feeds back the HARQ process ID allocated to the terminal when performing HARQ ACK/NACK feedback, so that the base station identifies the terminal to which the HARQ ACK/NACK feedback information belongs.
  • the sixth information field includes one or a group of HARQ process identifier indication information.
  • the fourth information field includes one HARQ process ID indication information, and is used to indicate that the UE corresponding to the UE ID is configured according to the The HARQ process ID performs HARQ ACK/NACK feedback and data transmission; as another example, if the number of scheduled UEs is M (M is an integer greater than 1), the fourth information field may include one HARQ process ID indication information.
  • the fourth information field may include M HARQ process ID indication information, where each HARQ process ID indication information is used to indicate that the UE corresponding to one UE ID performs HARQ ACK/NACK feedback and data transmission according to the HARQ process ID.
  • a seventh information field for indicating ACK/NACK (acknowledgement/non-confirmation) information of the uplink HARQ.
  • the seventh information field includes one or a set of ACK/NACK indication information.
  • the seventh information field includes one ACK/NACK information, which is used to indicate that the UE corresponding to the UE ID is based on the ACK.
  • /NACK information is performed for UL HARQ; as another example, if the number of scheduled UEs is M (M is an integer greater than 1), the seventh information field may include an ACK/NACK information for indicating the M The UE corresponding to the UE ID performs UL according to the ACK/NACK information.
  • the seventh information field may include M ACK/NACK information, where each ACK/NACK information is used to indicate The UE corresponding to one UE ID performs UL HARQ according to the ACK/NACK information.
  • the seventh information domain may exist in a DCI for scheduling uplink transmission.
  • the transmission type may be, but not limited to, unicast, multicast, and broadcast.
  • the service type may be, but not limited to, unicast, paging, SIB (System Information Block), RAR (Random). Access Response (random access response), MBMS (Multimedia Broadcast Multicast Service).
  • the ninth information field may be further included on the basis of the foregoing DCI, where the ninth information field is used to indicate whether the scheduled group of users is equally divided by the first information domain and the second information domain in the DCI.
  • the ninth information field may not be included in the DCI, and the scheduled group of users may determine whether to divide the first information domain and the time-frequency resource region indicated by the second information domain in the DCI according to a predetermined agreement, or according to The pre-agreed rule allocates the first information domain of the DCI and the time-frequency resource region indicated by the second information domain.
  • the group of UEs may pass the equalization identifier carried in the ninth information domain in the DCI, and the first The information domain and the time-frequency resource region indicated by the second information domain are equally divided, and shared information such as the MCS level indicated in the DCI can be shared, thereby reducing overhead.
  • each information domain cannot be shared (such as an information field for indicating MCS level, MIMO channel information, etc.), and the allocated time-frequency resources may also be the same. In this case, the ninth information field may not necessarily exist.
  • the DCI may include one or more of the first information domain to the third information domain, and further, may include one or more of the fourth information domain to the ninth information domain.
  • the information fields in the DCI may be arranged in the DCI according to a predetermined order.
  • the embodiment of the present invention does not limit the order of the information fields.
  • the base station may transmit the DCI in the PDCCH.
  • step 402 the following steps may be further included:
  • Step 401 The base station allocates transmission resources to the N users.
  • the base station can dynamically configure the TTI length and the time-frequency resource used for data transmission in the TTI according to the service requirement, and the video resource can include several RUs or several REs.
  • step 402 the following steps may also be included:
  • Step 403 The base station performs data transmission with the N users according to the allocated transmission resource.
  • the base station When the UE is scheduled to perform uplink transmission, the base station receives data sent by the UE corresponding to the one or a group of UE IDs, and when the UE performs downlink transmission, the base station sends data to the UE corresponding to the one or a group of UE IDs.
  • the transmitted DCI includes at least one or more of the following information fields: a first information field for indicating a frequency domain resource size occupied by the data resource scheduled by the DCI, And a second information field indicating a time domain resource size occupied by the data resource scheduled by the DCI, and a third information domain for indicating the scheduled N users. Since the downlink control information can indicate the resource unit or subcarrier occupied by the transmission resource in the frequency domain and the symbol occupied in the time domain, the downlink control information is implemented for the flexible resource allocation scenario of the variable transmission time interval. transmission.
  • FIG. 5 is a schematic diagram of a DCI transmission process on a terminal side according to an embodiment of the present invention, where the process may be performed by a UE.
  • the process can include the following steps:
  • Step 501 Receive a DCI, where the DCI includes at least one or more of the following information fields: a first information field used to indicate a frequency domain resource occupied by the data resource scheduled by the DCI, and used to indicate the DCI.
  • the second information field of the time domain resource occupied by the scheduled data resource the third information field for indicating the scheduled N users (such as the UE, the same below), and N is an integer greater than or equal to 1.
  • the DCI may include: a first information domain used to indicate a frequency domain resource size occupied by the data resource scheduled by the DCI, for example, the information domain may indicate the occupied resource size, or the occupied resource location and the resource. Size, etc.; a second information field for indicating the size of the time domain resource occupied by the data resources scheduled by the DCI.
  • step 401 the following steps may also be included:
  • Step 502 Perform data transmission according to the transmission resource allocated by the base station.
  • the UE When the base station schedules the UE to perform downlink transmission, the UE receives data transmitted by the base station on the allocated transmission resource; when the base station schedules the UE to perform uplink transmission, the UE transmits data to the base station on the allocated transmission resource.
  • the transmitted DCI includes at least the following information field: a first information field for indicating a resource element or a subcarrier occupied by the allocated transmission resource in the frequency domain, and is used to indicate that the DCI is scheduled.
  • the base station currently only schedules one UE, and the number of RUs occupied by the transmission resources allocated to the UE in the frequency domain is L1, and the number of OFDM symbols occupied in the time domain is L2.
  • the information domain structure and resource indication of the DCI are as shown in Figure 6a.
  • the base station transmits the DCI in the PDCCH of the downlink TTI of one subframe, and the DCI indicates the scheduled UE and the transmission resource allocated by the UE in the downlink TTI.
  • the first information field of the DCI is used to indicate the L1 RUs
  • the second information field is used to indicate the L2 OFDM symbols
  • the third information field is used to indicate the ID of the scheduled UE
  • the fourth information field is used to indicate the UE.
  • the coded debug level used the fifth information field is used to indicate channel information of the UE, the sixth information field is used to indicate the current HARQ process ID of the UE, and the seventh information field is used to indicate UL HARQ feedback.
  • the UE determines that the UE ID is the same as the UE ID of the UE according to the UE ID carried in the third information domain, and determines that the UE is scheduled according to the first letter.
  • the indication information (the number of RUs is L1) carried in the information domain and the indication information (the number of OFDM symbols is L2) carried in the second information domain determine the time-frequency resource location occupied by the data area, and further according to the fourth information domain
  • the indicated MCS and the channel information indicated by the fifth information field perform data transmission or reception in the determined data area.
  • the UE may further perform ACK/NACK feedback according to the HARQ process ID indicated by the sixth information field in the DCI, and perform UL HARQ according to the ACK/NACK information indicated by the seventh information field.
  • the control channel occupies RU#0 (that is, the first RU) in the frequency domain, and the occupation number in the time domain is OFDM symbol #0 (ie, the first OFDM symbol), and the time-frequency occupied by the data region
  • the location is: the RUs occupied in the frequency domain are RUs numbered 0 to (L1-1), for a total of L1 RUs; the OFDM symbols occupying the OFDM symbols in the time domain are 0 to (L2-1) OFDM symbols, for a total of L2 OFDM symbols.
  • the terminal may determine a specific resource location of the data transmission according to the start location information and the resource size information.
  • the DCI transmitted by the base station can be as shown in Figure 6b.
  • the DCI shown in FIG. 6b is compared with the DCI shown in FIG. 6a by adding an eighth information field for indicating the type of service and/or the type of transmission, which may indicate the type of transmission and/or type of service of the current base station.
  • the RU in the above example may also be replaced with an RB, that is, the number of RBs occupied by the data resources scheduled by the DCI is indicated in the first information field.
  • the base station currently schedules a group of UEs (for example, three UEs, namely UE1, UE2, and UE3), and the number of RUs allocated to the UE in the frequency domain is L1, in the time domain.
  • the number of OFDM symbols occupied is L2.
  • the information domain structure and resource indication of the DCI are as shown in Figure 7a.
  • the base station transmits DCI in the PDCCH of the downlink TTI of one subframe, and the DCI indicates the scheduled 3 UEs and the transmission resources allocated for the UEs in the downlink TTI.
  • the first information field of the DCI is used to indicate L1 RUs
  • the second information field is used to indicate L2 OFDM symbols
  • the third information field is used to indicate the IDs of the scheduled UE1, UE2, and UE3, and the fourth information field is used.
  • the fifth information field is used to indicate the respective channel information of the three UEs
  • the sixth information field is used to indicate the respective HARQ process IDs of the three UEs
  • the seventh information domain is used to indicate the coding level of each of the three UEs.
  • the information in each information domain is in one-to-one correspondence according to a sequence of mappings.
  • the UE1ID in the third information domain corresponds to the first MCS indication information in the fourth information domain, and corresponds to the first in the fifth information domain.
  • the UE determines that the UE ID is the same as the UE's own UE ID according to the UE ID carried in the third information domain, and determines that the UE is scheduled, and the UE uses a control channel (control channel).
  • the RU is the reference point
  • the time-frequency occupied by the data area is determined according to the indication information (the number of RUs L1) carried in the first information domain and the indication information (the number of OFDM symbols is L2) carried in the second information domain.
  • the UE may further perform ACK/NACK feedback according to the HARQ process ID indicated by the sixth information field in the DCI, and perform UL HARQ according to the ACK/NACK information indicated by the seventh information field.
  • the control channel occupies RU#0 (that is, the first RU) in the frequency domain, and the occupation number in the time domain is OFDM symbol #0 (ie, the first OFDM symbol), and the time-frequency occupied by the data region
  • the location is: the RUs occupied in the frequency domain are RUs numbered 0 to (L1-1), for a total of L1 RUs; the OFDM symbols occupying the OFDM symbols in the time domain are 0 to (L2-1) OFDM symbols, for a total of L2 OFDM symbols.
  • the base station schedules UE1, UE2, and UE3 to perform MIMO transmission on the time-frequency resource.
  • the terminal may determine a specific resource location of the data transmission according to the start location information and the resource size information.
  • the DCI transmitted by the base station can be as shown in Figure 7b.
  • the DCI shown in Figure 7b compared to the DCI shown in Figure 7a, adds an eighth information field for indicating the type of service and/or type of transmission, which may indicate the type of transmission and/or type of service of the current base station.
  • the RU in the above example may also be replaced with an RB, that is, the DCI is indicated in the first information field.
  • the base station currently schedules a group of UEs (eg, three UEs, UE1, UE2, and UE3, respectively), and the group of UEs have similar channel conditions and service types.
  • the number of RUs occupied by the base station for the UE in the frequency domain is L1
  • the number of OFDM symbols occupied in the time domain is L2.
  • the information domain structure and resource indication of the DCI are as shown in Figure 8a.
  • the base station transmits DCI in the PDCCH of the downlink TTI of one subframe, and the DCI indicates the scheduled 3 UEs and the transmission resources allocated for the UEs in the downlink TTI.
  • the first information field of the DCI is used to indicate L1 RUs
  • the second information field is used to indicate L2 OFDM symbols
  • the third information field is used to indicate the IDs of the scheduled UE1, UE2, and UE3, and the fourth information field is used.
  • the fifth information field is used to indicate the channel information common to the three UEs
  • the sixth information field is used to indicate the HARQ process ID of the three UEs
  • the seventh information domain is used to indicate the coding level of the three UEs.
  • the information in each information domain is in one-to-one correspondence according to a sequence of mappings.
  • the UE1ID in the third information domain corresponds to the first HARQ process ID in the sixth indication domain, and corresponds to the first in the seventh information domain.
  • ACK/NACK information and so on.
  • an additional ninth information field may be added in the DCI to indicate whether a group of UEs need to share the data area indicated in the DCI, and the information field may be a 1-bit information field.
  • the indication information in the ninth information field takes a value of 1
  • the three scheduled UEs are equally divided into data areas indicated in the DCI, that is, equally divided in the time domain or in the frequency domain. Minute.
  • the UE determines that the UE ID is the same as the UE's own UE ID according to the UE ID carried in the third information domain, and determines that the UE is scheduled, and the UE uses a control channel (control channel).
  • the RU is a reference point, and is determined according to the indication information (the number of RUs L1) carried in the first information domain and the indication information (the number of OFDM symbols is L2) carried in the second information domain and the information indicated by the ninth information field.
  • the time-frequency resource location occupied by the data area is further generated, and the data is transmitted or received in the determined data area according to the MCS indicated by the fourth information field and the channel information indicated by the fifth information field.
  • the UE may also The HARQ process ID indicated by the sixth information field in the DCI performs ACK/NACK feedback, and performs UL HARQ according to the ACK/NACK information indicated by the seventh information field.
  • the control channel occupies RU#0 (that is, the first RU) in the frequency domain, and the occupation number in the time domain is OFDM symbol #0 (ie, the first OFDM symbol), and the time-frequency occupied by the data region
  • the location is: the RUs occupied in the frequency domain are RUs numbered 0 to (L1-1), for a total of L1 RUs; the OFDM symbols occupying the OFDM symbols in the time domain are 0 to (L2-1) OFDM symbols, for a total of L2 OFDM symbols.
  • the terminal may determine a specific resource location of the data transmission according to the start location information and the resource size information.
  • the DCI transmitted by the base station can be as shown in Figure 8b.
  • the DCI shown in Figure 8b adds an eighth information field for indicating the type of service and/or type of transmission, which may indicate the type of transmission and/or type of service of the current base station, as compared to the DCI shown in Figure 8a.
  • the RU in the above example may also be replaced with an RB, that is, the number of RBs occupied by the data resources scheduled by the DCI is indicated in the first information field.
  • the embodiment of the present invention further provides a base station, which can implement the DCI transmission function of the network side described in the foregoing embodiment.
  • FIG. 9 is a schematic structural diagram of a base station according to an embodiment of the present invention.
  • the base station may include: a sending module 902;
  • the implementation may further include: an allocation module 901 and/or a transmission module 903;
  • the allocation module 901 is configured to allocate transmission resources for the N users.
  • the sending module 902 is configured to transmit a DCI, where the DCI includes at least one or more of the following information fields: a first information field used to indicate a frequency domain resource occupied by the data resource scheduled by the DCI, a second information field indicating a time domain resource occupied by the data resource scheduled by the DCI, and a third information field indicating a scheduled N users, where N is an integer greater than or equal to 1;
  • the DCI may include: a first information field used to indicate a frequency domain resource size occupied by the data resource scheduled by the DCI, for example, the information domain may indicate a size of the occupied resource, or The second information domain for indicating the size of the time domain resource occupied by the data resource scheduled by the DCI.
  • the transmission module 903 is configured to perform data transmission with the N users according to the allocated transmission resource.
  • the frequency domain resources occupied by the data resources scheduled by the DCI include:
  • the number of subcarriers occupied by the data resources scheduled by the DCI and the starting number is the number of subcarriers occupied by the data resources scheduled by the DCI and the starting number.
  • the time domain resources occupied by the data resources scheduled by the DCI include:
  • the transmission time interval TTI length used by the data transmission scheduled by the DCI used by the data transmission scheduled by the DCI.
  • the third information field is used to indicate the user identifier of the scheduled N users.
  • the DCI also includes one or any combination of the following information fields:
  • a fourth information field for indicating one or a set of modulation and coding policies MCS
  • a fifth information field for indicating one or a set of multiple input multiple output channel information
  • a seventh information field for indicating one or a group of uplink HARQ ACK/NACK information
  • An eighth information field for indicating the type of transmission and/or type of service.
  • the seventh information domain may exist in the DCI that schedules uplink data.
  • the downlink control information further includes a ninth information field, where the ninth information field is used to indicate whether the scheduled group of users divides the first information domain and the second information domain in the DCI.
  • the indicated time-frequency resource region, wherein the equalization includes equally dividing in the time domain or equally dividing in the frequency domain.
  • the embodiment of the present invention further provides a terminal, which can implement the terminal-side DCI transmission function described in the foregoing embodiment.
  • FIG. 10 is a schematic structural diagram of a terminal according to an embodiment of the present invention.
  • the terminal may include: a receiving module 1001;
  • the implementation may further include a transmission module 1002;
  • the receiving module 1001 is configured to receive a DCI, where the DCI includes at least one or more of the following information fields: a first information field used to indicate a frequency domain resource occupied by the data resource scheduled by the DCI, a second information field indicating a time domain resource occupied by the data resource scheduled by the DCI, and a third information field indicating a scheduled N users, where N is an integer greater than or equal to 1;
  • the transmission module 1002 is configured to perform data reception or transmission according to the allocated transmission resource.
  • the DCI may include: a first information domain used to indicate a frequency domain resource size occupied by the data resource scheduled by the DCI, for example, the information domain may indicate the occupied resource size, or the occupied resource location and the resource. Size, etc.; a second information field for indicating the size of the time domain resource occupied by the data resources scheduled by the DCI.
  • the frequency domain resources occupied by the data resources scheduled by the DCI include:
  • the number of subcarriers occupied by the data resources scheduled by the DCI and the starting number is the number of subcarriers occupied by the data resources scheduled by the DCI and the starting number.
  • the time domain resources occupied by the data resources scheduled by the DCI include:
  • the transmission time interval TTI length used by the data transmission scheduled by the DCI used by the data transmission scheduled by the DCI.
  • the third information field is used to indicate the user identifier of the scheduled N users.
  • the DCI also includes one or any combination of the following information fields:
  • a fourth information field for indicating one or a set of modulation and coding policies MCS
  • a fifth information field for indicating one or a set of multiple input multiple output channel information
  • a seventh information field for indicating one or a group of uplink HARQ ACK/NACK information
  • An eighth information field for indicating the type of transmission and/or type of service.
  • the seventh information domain exists in the DCI that schedules uplink transmission.
  • the DCI further includes a ninth information field, where the ninth information field is used to indicate whether the scheduled group of users is equally divided by the first information domain and the second information domain in the DCI.
  • the time-frequency resource region, wherein the equalization includes equally dividing in the time domain or equally dividing in the frequency domain.
  • the embodiment of the present invention further provides a base station, which can implement the DCI transmission process on the network side described in the foregoing embodiment.
  • FIG. 11 is a schematic structural diagram of a base station according to an embodiment of the present invention.
  • the base station can include a processor 1101, a memory 1102, a transceiver 1103, and a bus interface.
  • the processor 1101 is responsible for managing the bus architecture and general processing, and the memory 1102 can store data used by the processor 1101 when performing operations.
  • the transceiver 1103 is configured to receive and transmit data under the control of the processor 1101.
  • the bus architecture may include any number of interconnected buses and bridges, specifically linked by one or more processors represented by processor 1101 and various circuits of memory represented by memory 1102.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
  • the bus interface provides an interface.
  • the processor 1101 is responsible for managing the bus architecture and general processing, and the memory 1102 can store data used by the processor 1101 when performing operations.
  • the flow disclosed in the embodiment of the present invention may be applied to the processor 1101 or implemented by the processor 1101.
  • each step of the signal processing flow may be completed by an integrated logic circuit of hardware in the processor 1101 or an instruction in the form of software.
  • the processor 1101 can be a general purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, a discrete hardware component, and can implement or perform the embodiments of the present invention.
  • a general purpose processor can be a microprocessor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 1102, and the processor 1101 reads the information in the memory 1102 and completes the steps of the signal processing flow in conjunction with its hardware.
  • the processor 1101 is configured to read a program in the memory 1102 and perform the following process:
  • the DCI includes at least one or more of the following information fields: a first information field for indicating a frequency domain resource occupied by the data resource scheduled by the DCI, for indicating the DCI
  • the second information field of the time domain resource occupied by the scheduled data resource the third information field for indicating the scheduled N users, and N is an integer greater than or equal to 1.
  • the DCI may include: a first information domain used to indicate a frequency domain resource size occupied by the data resource scheduled by the DCI, for example, the information domain may indicate the occupied resource size, or the occupied resource location and the resource. Size, etc.; a second information field for indicating the size of the time domain resource occupied by the data resources scheduled by the DCI.
  • the frequency domain resources occupied by the data resources scheduled by the DCI include:
  • the number of subcarriers occupied by the data resources scheduled by the DCI and the starting number is the number of subcarriers occupied by the data resources scheduled by the DCI and the starting number.
  • the time domain resources occupied by the data resources scheduled by the DCI include:
  • the transmission time interval TTI length used by the data transmission scheduled by the DCI used by the data transmission scheduled by the DCI.
  • the third information field is used to indicate a user identifier of the scheduled N users.
  • the DCI also includes one or any combination of the following information fields:
  • a fourth information field for indicating one or a set of modulation and coding policies MCS
  • a fifth information field for indicating one or a set of multiple input multiple output channel information
  • a seventh information field for indicating one or a set of uplink HARQ ACK/NACK information.
  • the seventh information domain exists in a DCI that schedules uplink data.
  • An eighth information field for indicating the type of transmission and/or type of service.
  • the DCI further includes a ninth information field, where the ninth information field is used to indicate whether the scheduled group of users divides the first information domain and the second information domain in the DCI.
  • the indicated time-frequency resource region, wherein the equalization includes equally dividing in the time domain or equally dividing in the frequency domain.
  • the processor 1101 is further configured to allocate a transmission resource to the N users before transmitting the downlink control information.
  • the processor 1101 is further configured to: after transmitting the downlink control information, perform data transmission with the N users according to the allocated transmission resource.
  • the embodiment of the present invention further provides a terminal, which can implement the terminal-side DCI transmission process described in the foregoing embodiment.
  • FIG. 12 is a schematic structural diagram of a terminal according to an embodiment of the present invention. As shown, the terminal can include a processor 1201, a memory 1202, a transceiver 1203, and a bus interface.
  • the processor 1201 is responsible for managing the bus architecture and general processing, and the memory 1202 can store data used by the processor 1201 in performing operations.
  • the transceiver 1203 is configured to receive and transmit data under the control of the processor 1201.
  • the bus architecture may include any number of interconnected buses and bridges, specifically linked by one or more processors represented by processor 1201 and various circuits of memory represented by memory 1202.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
  • the bus interface provides an interface.
  • the processor 1201 is responsible for managing the bus architecture and general processing, and the memory 1202 can store data used by the processor 1201 in performing operations.
  • the flow disclosed in the embodiment of the present invention may be applied to the processor 1201 or implemented by the processor 1201.
  • each step of the signal processing flow may be completed by an integrated logic circuit of hardware in the processor 1201 or an instruction in a form of software.
  • the processor 1201 may be a general purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or a transistor logic device, a discrete hardware component, and may implement or perform the embodiments of the present invention.
  • a general purpose processor can be a microprocessor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 1202, and the processor 1201 reads the information in the memory 1202 and completes the steps of the signal processing flow in conjunction with its hardware.
  • the processor 1201 is configured to read a program in the memory 1202 and perform the following process:
  • the DCI includes at least the following information field: a first information field used to indicate a frequency domain resource occupied by the data resource scheduled by the DCI, and used to indicate a data resource scheduled by the DCI.
  • a second information field of the time domain resource, a third information field for indicating the N users scheduled, and N is an integer greater than or equal to 1.
  • the DCI may include: indicating a frequency occupied by the data resource scheduled by the DCI.
  • the first information domain of the domain resource size for example, the information domain may indicate the size of the occupied resource, or the occupied resource location and the resource size, etc.; the first is used to indicate the size of the time domain resource occupied by the data resource scheduled by the DCI. Two information fields.
  • the frequency domain resources occupied by the data resources scheduled by the DCI include:
  • the number of subcarriers occupied by the data resources scheduled by the DCI and the starting number is the number of subcarriers occupied by the data resources scheduled by the DCI and the starting number.
  • the time domain resources occupied by the data resources scheduled by the DCI include:
  • the transmission time interval TTI length used by the data transmission scheduled by the DCI used by the data transmission scheduled by the DCI.
  • the third information field is used to indicate a user identifier of the scheduled N users.
  • the DCI also includes one or any combination of the following information fields:
  • a fourth information field for indicating one or a set of modulation and coding policies MCS
  • a fifth information field for indicating one or a set of multiple input multiple output channel information
  • a seventh information field for indicating one or a group of uplink HARQ ACK/NACK information
  • An eighth information field for indicating the type of transmission and/or type of service.
  • the seventh information domain exists in a DCI that schedules uplink transmission.
  • the DCI further includes a ninth information field, where the ninth information field is used to indicate whether the scheduled group of users divides the first information domain and the second information domain in the DCI. Alleged The time-frequency resource region, wherein the equalization comprises equally dividing in the time domain or equally in the frequency domain.
  • the processor 1201 is further configured to: after receiving the downlink control information, perform data reception or transmission according to the allocated transmission resource.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种下行控制信息传输方法及装置。本发明中,在传输的下行控制信息中至少包含以下信息域中的一种或多种:用于指示所述DCI所调度的数据资源所占的频域资源的第一信息域、用于指示所述DCI所调度的数据资源所占的时域资源的第二信息域、用于指示被调度的N个用户的第三信息域。由于通过下行控制信息可以指示出传输资源在频域上和/或时域上所占的资源大小,因此针对可变的传输时间间隔的灵活资源分配场景实现了下行控制信息传输。

Description

一种下行控制信息传输方法及装置
本申请要求在2016年2月2日提交中国专利局、申请号为201610074559.8、发明名称为“一种下行控制信息传输方法及装置”,以及在2016年3月4日提交中国专利局、申请号为201610125584.4、发明名称为“一种下行控制信息传输方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信技术领域,尤其涉及一种下行控制信息传输方法及装置。
背景技术
(1)下一代移动通信技术
移动互联网正在为用户提供增强现实、虚拟现实、超高清(3D)视频、移动云等更加丰富的业务体验。物联网扩展了移动通信的服务范围,从人与人通信延伸到人与物、物与物智能互联,使移动通信技术渗透至更加广阔的行业和领域。海量的设备连接和多样化的物联网业务给移动通信带来新的技术挑战。
随着新的业务需求的持续出现和丰富,对未来移动通信系统提出了更高的性能需求,例如更高的峰值速率、更好的用户体验速率、更小的时延、更高的可靠性、更高的频谱效率和更高的能耗效率等,并需要支持更多的用户接入以及使用各种业务类型。为了支持数量巨大的各类终端连接以及不同的业务类型,上下行资源的灵活配置成为技术发展的一大趋势。未来的系统资源可以根据业务的不同,划分成不同的子带,并在子带上划分长度不同的TTI(Transmission Time Interval,传输时间间隔),以满足多种业务需求。
(2)现有LTE(Long Term Evolution,长期演进)子帧结构
现有LTE FDD(Frequency Division Dual,频分双工)系统使用帧结构(frame structure type 1,简称FS1),其结构如图1所示。在FDD系统中,上 行传输和下行传输使用不同的载波频率,上行传输和下行传输均使用相同的帧结构。在每个载波上,一个10ms长度的无线帧包含有10个1ms子帧,每个子帧内分为两个0.5ms长的时隙。上行数据和下行数据发送的TTI时长为1ms。
现有LTE TDD(Time Division Dual,时分双工)系统使用帧结构(frame structure type 2,简称FS2),如图2所示。在TDD系统中,上行传输和下行传输使用相同的频率上的不同子帧或不同时隙。FS2中每个10ms无线帧由两个5ms半帧构成,每个半帧中包含5个1ms子帧。FS2中的子帧分为三类:下行子帧、上行子帧和特殊子帧,每个特殊子帧由DwPTS(Downlink Pilot Time Slot,下行传输时隙)、GP(Guard Period,保护间隔)和UpPTS(Uplink Pilot Time Slot,上行传输时隙)三部分构成。其中DwPTS可以传输下行导频、下行业务数据和下行控制信令;GP不传输任何信号;UpPTS仅传输随机接入和SRS(Sounding Reference Symbol,探测参考信号),不能传输上行业务或上行控制信息。每个半帧中包含至少1个下行子帧和至少1个上行子帧,以及至多1个特殊子帧。FS2中支持的7种上下行子帧配置方式如表1所示。
表1:上下行配置(Uplink-downlink configurations)
Figure PCTCN2017071800-appb-000001
(3)现有LTE下行资源粒度
在现有LTE系统中,时域上最小资源粒度为一个OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)符号,频域上最小资源粒度为一个子载波。如图3所示,一个基本RE(Resource Element,资源单元)的 编号表示为(k,l),
Figure PCTCN2017071800-appb-000002
其中,
Figure PCTCN2017071800-appb-000003
表示系统带宽内所包含的PRB(Physical Resource Block,物理资源块)数量,
Figure PCTCN2017071800-appb-000004
表示一个RB所包含的子载波数量,
Figure PCTCN2017071800-appb-000005
表示一个下行时隙中所包含的OFDM符号数量。PRB是更大维度的资源单元,由
Figure PCTCN2017071800-appb-000006
个RE组成。一个子帧中有一个PRB对(PRB pair),PRB pair是数据资源分配的基本单位。
(4)现有LTE系统中DCI格式
在LTE系统中,DCI(Downlink Control Information,下行控制信息)由PDCCH(Physical Downlink Control Channel,物理下行控制信道)承载,用于传输上/下行的调度信息以及相关的公共控制信息。根据DCI中包含信息的不同,定义了多种格式,例如DCI format0/4用于上行数据调度,DCI format1/1A/1B/1C/1D/2/2A/2B/2C用于下行数据调度,每种格式的DCI针对不同的传输模式或用途,包含的信息比特数量不同,信息域的含义也有所不同。DCI中包含了调度UE(User Equipment,用户设备)所需的大部分信息,例如资源分配信息、MCS(Modulation and Coding Scheme,调制与编码策略)、HARQ(Hybrid Automatic Repeat reQuest,混合自动重传请求)ID、NDI(New Data Indicator,新数据指示)等。
综上所述,在现有LTE系统中,TTI长度固定为1ms,资源分配的最小粒度为PRB。当前的DCI只能调度TTI长度为1ms内的资源,且调度资源的最小粒度为PRB,在一个TTI内以PRB或者RBG(Resource Block Group,资源块组)为最小粒度为UE分配连续或者非连续的资源。
但是,当未来的业务种类需要更小的资源调度粒度和更灵活的资源分配方式时,当前的DCI格式无法满足需求。
发明内容
本发明实施例提供一种下行控制信息传输方法及装置,用以针对可变的 传输时间间隔的灵活资源分配场景实现下行控制信息传输。
本发明实施例提供的下行控制信息传输方法,包括:
传输下行控制信息DCI,所述DCI中至少包含以下信息域中的一种或多种:用于指示所述DCI所调度的数据资源所占的频域资源的第一信息域、用于指示所述DCI所调度的数据资源所占的时域资源的第二信息域、用于指示被调度的N个用户的第三信息域,N为大于等于1的整数。
实施中,所述DCI所调度的数据资源所占的频域资源包括:
所述DCI所调度的数据资源所占的资源块的数量;或者,
所述DCI所调度的数据资源所占的资源块数量以及资源起始位置;或者,
所述DCI所调度的数据资源所占的资源单元的数量;或者,
所述DCI所调度的数据资源所占的资源单元的数量以及资源单元的起始编号;或者,
所述DCI所调度的数据资源所占的子载波的数量;或者,
所述DCI所调度的数据资源所占的子载波的数量以及起始编号。
实施中,所述DCI所调度的数据资源所占的时域资源包括:
所述DCI所调度的数据资源所占的符号的数量;或者,
所述DCI所调度的数据资源所占的符号的数量以及起始符号编号;或者,
所述DCI所调度的数据传输所使用的传输时间间隔TTI长度;或者,
所述DCI所调度的数据传输所使用的传输时间间隔TTI长度以及数据传输的时域起始位置。
实施中,所述第三信息域用于指示所述被调度的N个用户的用户标识。
实施中,所述DCI中还包括以下信息域中的一种或任意组合:
用于指示一个或一组调制与编码策略MCS的第四信息域;
用于指示一个或一组多输入多输出信道信息的第五信息域;
用于指示一个或一组混合自动重传请求HARQ进程标识的第六信息域:
用于指示一个或一组上行HARQ的ACK/NACK信息的第七信息域;
用于指示传输类型和/或业务类型的第八信息域。
实施中,所述第七信息域存在于用于调度上行传输的DCI中。
实施中,所述DCI中还包括第九信息域,所述第九信息域用于指示被调度的一组用户是否均分所述DCI中的所述第一信息域和所述第二信息域所指示的时频资源区域,其中,所述均分包括在时域上均分或在频域上均分。
实施中,传输DCI之前,还包括:基站为所述N个用户分配传输资源。
实施中,传输DCI之后,还包括:基站根据分配的传输资源与所述N个用户进行数据传输。
本发明另一实施例提供的下行控制信息传输方法,包括:
接收下行控制信息DCI,所述DCI中至少包含以下信息域中的一种或多种:用于指示所述DCI所调度的数据资源所占的频域资源的第一信息域、用于指示所述DCI所调度的数据资源所占的时域资源的第二信息域、用于指示被调度的N个用户的第三信息域,N为大于等于1的整数。
实施中,所述DCI所调度的数据资源所占的频域资源包括:
所述DCI所调度的数据资源所占的资源块的数量;或者,
所述DCI所调度的数据资源所占的资源块数量以及资源起始位置;或者,
所述DCI所调度的数据资源所占的资源单元的数量;或者,
所述DCI所调度的数据资源所占的资源单元的数量以及资源单元的起始编号;或者,
所述DCI所调度的数据资源所占的子载波的数量;或者,
所述DCI所调度的数据资源所占的子载波的数量以及起始编号。
实施中,所述DCI所调度的数据资源所占的时域资源包括:
所述DCI所调度的数据资源所占的符号的数量;或者,
所述DCI所调度的数据资源所占的符号的数量以及起始符号编号;或者,
所述DCI所调度的数据传输所使用的传输时间间隔TTI长度;或者,
所述DCI所调度的数据传输所使用的传输时间间隔TTI长度以及数据传输的时域起始位置。
实施中,所述第三信息域用于指示所述被调度的N个用户的用户标识。
实施中,所述DCI中还包括以下信息域中的一种或任意组合:
用于指示一个或一组调制与编码策略MCS的第四信息域;
用于指示一个或一组多输入多输出信道信息的第五信息域;
用于指示一个或一组混合自动重传请求HARQ进程标识的第六信息域:
用于指示一个或一组上行HARQ的ACK/NACK信息的第七信息域;
用于指示传输类型和/或业务类型的第八信息域。
其中,所述第七信息域存在于所述用于调度上行传输的DCI中。
实施中,所述DCI中还包括第九信息域,所述第九信息域用于指示被调度的一组用户是否均分所述DCI中的所述第一信息域和所述第二信息域所指示的时频资源区域,其中,所述均分包括在时域上均分或在频域上均分。
实施中,接收下行控制信息之后,还包括:根据基站分配的传输资源进行数据接收或发送。
本发明实施例提供的基站,包括:
发送模块,用于传输下行控制信息DCI,所述DCI中至少包含以下信息域中的一种或多种:用于指示所述DCI所调度的数据资源所占的频域资源的第一信息域、用于指示所述DCI所调度的数据资源所占的时域资源大小的第二信息域、用于指示被调度的N个用户的第三信息域,N为大于等于1的整数。
实施中,所述DCI所调度的数据资源所占的频域资源包括:
所述DCI所调度的数据资源所占的资源块的数量;或者,
所述DCI所调度的数据资源所占的资源块数量以及资源起始位置;或者,
所述DCI所调度的数据资源所占的资源单元的数量;或者,
所述DCI所调度的数据资源所占的资源单元的数量以及资源单元的起始编号;或者,
所述DCI所调度的数据资源所占的子载波的数量;或者,
所述DCI所调度的数据资源所占的子载波的数量以及起始编号。
实施中,所述DCI所调度的数据资源所占的时域资源包括:
所述DCI所调度的数据资源所占的符号的数量;或者,
所述DCI所调度的数据资源所占的符号的数量以及起始符号编号;或者,
所述DCI所调度的数据传输所使用的传输时间间隔TTI长度;或者,
所述DCI所调度的数据传输所使用的传输时间间隔TTI长度以及数据传输的时域起始位置。
实施中,所述第三信息域用于指示所述被调度的N个用户的用户标识。
实施中,所述DCI中还包括以下信息域中的一种或任意组合:
用于指示一个或一组调制与编码策略MCS的第四信息域;
用于指示一个或一组多输入多输出信道信息的第五信息域;
用于指示一个或一组混合自动重传请求HARQ进程标识的第六信息域:
用于指示一个或一组上行HARQ的ACK/NACK信息的第七信息域。
其中,所述第七信息域存在于用于调度上行传输的DCI中;
用于指示传输类型和/或业务类型的第八信息域。
其中,所述DCI中还包括第九信息域,所述第九信息域用于指示被调度的一组用户是否均分所述DCI中的所述第一信息域和所述第二信息域所指示的时频资源区域,其中,所述均分包括在时域上均分或在频域上均分。
实施中,还包括:分配模块,用于在传输下行控制信息之前,为所述N个用户分配传输资源。
实施中,还包括:传输模块,用于在传输下行控制信息之后,根据分配的传输资源与所述N个用户进行数据传输。
本发明实施例提供的终端,包括:
接收模块,用于接收下行控制信息DCI,所述DCI中至少包含以下信息域中的一种或多种:用于指示所述DCI所调度的数据资源所占的频域资源的第一信息域、用于指示所述DCI所调度的数据资源所占的时域资源的第二信息域、用于指示被调度的N个用户的第三信息域,N为大于等于1的整数。
实施中,所述DCI所调度的数据资源所占的频域资源包括:
所述DCI所调度的数据资源所占的资源块的数量;或者,
所述DCI所调度的数据资源所占的资源块数量以及资源起始位置;或者,
所述DCI所调度的数据资源所占的资源单元的数量;或者,
所述DCI所调度的数据资源所占的资源单元的数量以及资源单元的起始编号;或者,
所述DCI所调度的数据资源所占的子载波的数量;或者,
所述DCI所调度的数据资源所占的子载波的数量以及起始编号。
实施中,所述DCI所调度的数据资源所占的时域资源包括:
所述DCI所调度的数据资源所占的符号的数量;或者,
所述DCI所调度的数据资源所占的符号的数量以及起始符号编号;或者,
所述DCI所调度的数据传输所使用的传输时间间隔TTI长度;或者,
所述DCI所调度的数据传输所使用的传输时间间隔TTI长度以及数据传输的时域起始位置。
实施中,所述第三信息域用于指示所述被调度的N个用户的用户标识。
实施中,所述DCI中还包括以下信息域中的一种或任意组合:
用于指示一个或一组调制与编码策略MCS的第四信息域;
用于指示一个或一组多输入多输出信道信息的第五信息域;
用于指示一个或一组混合自动重传请求HARQ进程标识的第六信息域:
用于指示一个或一组上行HARQ的ACK/NACK信息的第七信息域;
用于指示传输类型和/或业务类型的第八信息域。
其中,所述第七信息域存在于用于调度上行传输的DCI中。
实施中,所述DCI中还包括第九信息域,所述第九信息域用于指示被调度的一组用户是否均分所述DCI中的所述第一信息域和所述第二信息域所指示的时频资源区域,其中,所述均分包括在时域上均分或在频域上均分。
实施中,还包括:传输模块,用于在接收下DCI之后,根据基站分配的传输资源进行数据接收或发送。
本发明另一实施例提供的基站,包括:处理器、存储器、收发机以及总线接口;
所述处理器,用于读取存储器中的程序,执行下列过程:
传输下行控制信息DCI,所述DCI中至少包含以下信息域中的一种或多种:用于指示所述DCI所调度的数据资源所占的频域资源的第一信息域、用于指示所述DCI所调度的数据资源所占的时域资源的第二信息域、用于指示被调度的N个用户的第三信息域,N为大于等于1的整数。
本发明另一实施例提供的终端,包括:处理器、存储器、收发机以及总线接口;
所述处理器,用于读取存储器中的程序,执行下列过程:
接收下行控制信息DCI,所述DCI中至少包含以下信息域中的一种或多种:用于指示所述DCI所调度的数据资源所占的频域资源的第一信息域、用于指示所述DCI所调度的数据资源所占的时域资源的第二信息域、用于指示被调度的N个用户的第三信息域,N为大于等于1的整数。
本发明的上述实施例中,在传输的下行控制信息中至少包含以下信息域中的一种或多种:用于指示所述DCI所调度的数据资源所占的频域资源的第一信息域、用于指示所述DCI所调度的数据资源所占的时域资源的第二信息域、用于指示被调度的N个用户的第三信息域。由于通过下行控制信息可以指示出以下信息中的一种或多种:DCI所调度的数据资源,比如资源单元或子载波,DCI所调度的数据资源所占的时域资源,比如在时域上所占的符号,因此针对可变的传输时间间隔的灵活资源分配场景实现了下行控制信息传输。
附图说明
图1为背景技术中LTE FDD系统的帧结构示意图;
图2为背景技术中LTE TDD系统的帧结构示意图;
图3为背景技术中LTE系统的资源示意图;
图4为本发明实施例提供的网络侧的下行控制信息传输流程示意图;
图5为本发明实施例提供的终端侧的下行控制信息传输流程示意图;
图6a和图6b分别为本发明实施例中调度一个UE时的DCI传输示意图;
图7a和图7b分别为本发明实施例中调度一组UE时的DCI传输示意图;
图8a和图8b分别为本发明实施例中调度一组UE时的DCI传输示意图;
图9为本发明一实施例提供的基站的结构示意图;
图10为本发明一实施例提供的终端的结构示意图;
图11为本发明另一实施例提供的基站的结构示意图;
图12为本发明另一实施例提供的终端的结构示意图。
具体实施方式
随着移动技术的发展,未来移动通信系统需要提供更低的网络时延并支持更丰富的业务类型。根据业务需求动态地配置TTI长度以及在TTI内占据的资源(比如可占用几个RU甚至若干个RE,其中RU是Resource Unit的英文简称,中文为资源单元,一个RU在频域上可占用一个或多个子载波、在时域上可占用一个或多个符号),成为技术发展的趋势。本发明实施例针对这种动态的资源分配场景,给出一种用于在可变TTI中灵活资源配置的DCI传输方案。
在本发明实施例中,基站可以是LTE系统中的eNB(Evolutional Node B,演进型基站,简称为eNB或e-NodeB)、宏基站、微基站(也称为“小基站”)、微微基站、AP(Access Point,接入站点)或TP(Transmission Point,传输站点)以及下一代无线通信系统的基站等,基站也可以用作包括小区或扇区的概念,本发明实施例中对此并不限定。
在本发明实施例中,终端可以是具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备,以及各种形式的UE,MS(Mobile station,移动台),终端(terminal),终端设备(Terminal Equipment)等,本发明实施例中对此并不限定。
在本发明实施例中,LTE可以被认为对应于3GPP(3rd Generation Partnership Project,第三代合作伙伴)版本8(Rel-8或R8)、版本9(Rel-9或R9)、版本10(Rel-10或R10)以及版本10及以上的版本,LTE网络结构可以是宏蜂窝、微蜂窝、微微蜂窝、毫微微蜂窝,由中继器和中继转发节点组成的网络以及各种混合网络结构(可以由宏蜂窝、微蜂窝、微微蜂窝、毫微微蜂窝,以及中继器和中继转发节点中的一种或多种组成)等,本发明实施例中对此并不限定。
下面结合附图对本发明实施例进行详细描述。
参见图4,为本发明实施例提供的网络侧实现的DCI传输流程示意图,该流程可由基站执行。
如图所示,该流程可包括如下步骤:
步骤402:传输DCI,所述DCI中至少包含以下信息域中的一种或多种:用于指示该DCI所调度的数据资源所占的频域资源的第一信息域、用于指示该DCI所调度的数据资源所占的时域资源的第二信息域、用于指示被调度的N个用户(如UE,以下同)的第三信息域,N为大于等于1的整数。
具体的,DCI中可以包含:用于指示该DCI所调度的数据资源所占的频域资源大小的第一信息域,例如,该信息域可以指示所占资源大小,或者所占资源位置以及资源大小等;用于指示该DCI所调度的数据资源所占的时域资源大小的第二信息域。
其中,所述第一信息域可以用于指示DCI所调度的数据资源所占的RB的数量,或者该DCI所调度的数据资源所占的资源单元的数量,或者该DCI所调度的数据资源所占的子载波的数量。
其中,所述资源单元可以是RU,一个RU是在频域上占用X1个子载波、在时域上占用X2个符号的资源区域,X1和X2均为大于等于1的整数,其取值可以预先约定也可以由高层配置。所述资源单元也可以是RE,一个RE是在频域上占用1个子载波、在时域上占用1个符号的资源区域。
其中,所述符号可以是OFDM符号。
具体地,所述第二指示域可以用于指示DCI所调度的数据资源所占的符号的数量,或者DCI所调度的数据资源所占的TTI长度。
具体地,所述第三信息域可以用于指示被调度的一个UE或一组UE的ID。其中,调度UE进行上行传输时,所述一个或一组UE ID所对应的UE为需要进行数据发送的UE;调度UE进行下行传输时,所述一个或一组UE ID所对应的UE为需要接收数据的UE。
进一步地,上述DCI中还可包括以下第四信息域至第八信息域中的一种或任意组合:
-第四信息域,用于指示MCS。
实施中,第四指示域中包含一个或者一组MCS指示信息。作为一个例子,如果被调度的UE数量为一个(即第三信息域中包含一个UE ID),则第四信息域中包含一个MCS指示信息,用于指示该UE ID对应的UE按照该MSC进行数据发送或接收;作为另一个例子,如果被调度的UE数量为M个(M为大于1的整数),则第四信息域中可包含一个MCS指示信息,用于指示这M个UE ID对应的UE按照该MSC进行数据发送或接收;作为另一个例子,如果被调度的UE数量为M个(M为大于1的整数),则第四信息域中可包含M个MCS指示信息,其中每个MCS指示信息用于指示一个UE ID对应的UE按照该MSC进行数据发送或接收。
-第五信息域,用于指示MIMO(Multi-Input Multi-Output,多输入多输出)相关信息。所述MIMO相关信息包括MIMO信道信息(MIMO channel information),具体地,MIMO信道信息可包括传输的TB(Transmission Block,传输块)数量、预编码矩阵编号等。
实施中,所述第五信息域中包含一个或者一组MIMO相关信息。作为一个例子,如果被调度的UE数量为一个(即第三信息域中包含一个UE ID),则第四信息域中包含一个MIMO信道信息,用于指示该UE ID对应的UE根据该MIMO信道信息进行数据发送或接收;作为另一个例子,如果被调度的UE数量为M个(M为大于1的整数),则第四信息域中可包含一个MIMO 信道信息,用于指示这M个UE ID对应的UE根据该MIMO信道信息进行数据发送或接收;作为另一个例子,如果被调度的UE数量为M个(M为大于1的整数),则第四信息域中可包含M个MIMO信道信息,其中每个MIMO信道信息用于指示一个UE ID对应的UE根据该MIMO信道信息进行数据发送或接收。
-第六信息域,用于指示HARQ进程标识(HARQ process ID)。终端在进行HARQ ACK/NACK反馈时同时反馈分配给该终端的HARQ process ID,以使基站识别该HARQ ACK/NACK反馈信息所属的终端。
实施中,所述第六信息域中包含一个或者一组HARQ进程标识指示信息。作为一个例子,如果被调度的UE数量为一个(即第三信息域中包含一个UE ID),则第四信息域中包含一个HARQ process ID指示信息,用于指示该UE ID对应的UE根据该HARQ process ID进行HARQ ACK/NACK反馈与数据传输;作为另一个例子,如果被调度的UE数量为M个(M为大于1的整数),则第四信息域中可包含一个HARQ process ID指示信息,用于指示这M个UE ID对应的UE根据该HARQ process ID进行HARQ ACK/NACK反馈与数据传输;作为另一个例子,如果被调度的UE数量为M个(M为大于1的整数),则第四信息域中可包含M个HARQ process ID指示信息,其中每个HARQ process ID指示信息用于指示一个UE ID对应的UE根据该HARQ process ID进行HARQ ACK/NACK反馈与数据传输。
-第七信息域,用于指示上行HARQ的ACK/NACK(确认/非确认)信息。
实施中,所述第七信息域中包含一个或者一组ACK/NACK指示信息。作为一个例子,如果被调度的UE数量为一个(即第三信息域中包含一个UE ID),则第七信息域中包含一个ACK/NACK信息,用于指示该UE ID对应的UE根据该ACK/NACK信息进行UL HARQ;作为另一个例子,如果被调度的UE数量为M个(M为大于1的整数),则第七信息域中可包含一个ACK/NACK信息,用于指示这M个UE ID对应的UE根据该ACK/NACK信息进行UL  HARQ;作为另一个例子,如果被调度的UE数量为M个(M为大于1的整数),则第七信息域中可包含M个ACK/NACK信息,其中每个ACK/NACK信息用于指示一个UE ID对应的UE根据该ACK/NACK信息进行UL HARQ。
可选地,所述第七信息域可存在于用于调度上行传输的DCI中。
-第八信息域,用于指示传输类型和/或业务类型。其中,传输类型可以是但不限于单播、多播、广播,业务类型可以是但不限于单播(unicast)、寻呼(Paging)、SIB(System Information Block,系统信息块)、RAR(Random Access Response,随机接入响应)、MBMS(Multimedia Broadcast Multicast Service,多媒体广播多播业务)。
进一步地,在上述DCI的基础上还可包括第九信息域,该第九信息域用于指示被调度的一组用户是否均分该DCI中的第一信息域和第二信息域所指示的时频资源区域,其中,所述均分包括在时域上均分或在频域上均分。当然,DCI中也可不包含上述第九信息域,被调度的一组用户可根据预先约定确定是否均分该DCI中的第一信息域和第二信息域所指示的时频资源区域,或者根据预先约定的规则分配该DCI的第一信息域和第二信息域所指示的时频资源区域。
具体实施时,如果被调度的一组UE的信道状况类似,可以共用部分信息域(如MCS等级),则该组UE可通过DCI中的第九信息域中承载的均分标识,对第一信息域和第二信息域所指示的时频资源区域进行均分,并可共享DCI中指示的MCS等级等共用信息,从而减小开销(overhead)。一般的,如果被调度的一组UE的信道条件有所差别,则各个信息域不能共用(比如用于指示MCS等级、MIMO信道信息等的信息域),所分配的时频资源也可能是不一样的。在这种情况下,第九信息域可以不必存在。
上述DCI中可包括第一信息域至第三信息域中的一种或多种,进一步地,在此基础上可包括第四信息域至第九信息域中的一种或多种。
上述DCI中的各信息域,可根据预先约定的顺序在DCI中排列,本发明实施例对各信息域的排列顺序不做限制。
其中,基站可在PDCCH中传输该DCI。
进一步地,在步骤402之前还可包括如下步骤:
步骤401:基站为所述N个用户分配传输资源。
其中,基站可根据业务需求动态配置TTI长度以及在TTI内用于数据传输的时频资源,该视频资源可以包括若干个RU或若干个RE。
进一步地,在步骤402之后还可包括如下步骤:
步骤403:基站根据分配的传输资源与所述N个用户进行数据传输。
其中,调度UE进行上行传输时,基站接收所述一个或一组UE ID所对应的UE发送的数据;调度UE进行下行传输时,基站向所述一个或一组UE ID对应的UE发送数据。
通过以上描述可以看出,在传输的DCI中至少包含以下信息域中的一种或多种:用于指示该DCI所调度的数据资源所占的频域资源大小的第一信息域、用于指示该DCI所调度的数据资源所占的时域资源大小的第二信息域、用于指示被调度的N个用户的第三信息域。由于通过下行控制信息可以指示出传输资源在频域上所占的资源单元或子载波,在时域上所占的符号,因此针对可变的传输时间间隔的灵活资源分配场景实现了下行控制信息传输。
参见图5,为本发明实施例提供的终端侧的DCI传输流程示意图,该流程可由UE执行。
如图所示,该流程可包括如下步骤:
步骤501:接收DCI,所述DCI中至少包含以下信息域中的一种或多种:用于指示该DCI所调度的数据资源所占的频域资源的第一信息域、用于指示该DCI所调度的数据资源所占的时域资源的第二信息域、用于指示被调度的N个用户(如UE,以下同)的第三信息域,N为大于等于1的整数。
具体的,DCI中可以包含:用于指示该DCI所调度的数据资源所占的频域资源大小的第一信息域,例如,该信息域可以指示所占资源大小,或者所占资源位置以及资源大小等;用于指示该DCI所调度的数据资源所占的时域资源大小的第二信息域。
进一步地,在步骤401之后,还可包括如下步骤:
步骤502:根据基站分配的传输资源进行数据传输。
其中,基站调度UE进行下行传输时,UE在分配的传输资源上接收基站发送的数据;基站调度UE进行上行传输时,UE在分配的传输资源上向基站发送数据。
图5所示流程中,DCI中包含的信息域及其相关描述,可参见前述实施例,在此不再重复。
通过以上描述可以看出,在传输的DCI中至少包含以下信息域:用于指示分配的传输资源在频域上所占的资源单元或子载波的第一信息域、用于指示该DCI所调度的数据资源所占的频域资源大小的第二信息域、用于指示该DCI所调度的数据资源所占的时域资源大小的第三信息域。由于通过下行控制信息可以指示出传输资源在频域上所占的资源单元或子载波,在时域上所占的符号,因此针对可变的传输时间间隔的灵活资源分配场景实现了下行控制信息传输。
为了更清楚地理解上述实施例,下面以几个具体应用场景为例进行说明。
场景1
该场景中,基站当前仅调度一个UE,且为该UE分配的传输资源在频域上所占的RU的个数为L1,在时域上所占的OFDM符号的个数为L2。该场景下,DCI的信息域构成以及资源指示如图6a所示。
在网络侧,基站在一个子帧的下行TTI的PDCCH中传输DCI,通过该DCI指示被调度的UE以及为该UE在该下行TTI中分配的传输资源。其中,DCI的第一信息域用于指示L1个RU,第二信息域用于指示L2个OFDM符号,第三信息域用于指示被调度的UE的ID,第四信息域用于指示该UE使用的编码调试等级,第五信息域用于指示该UE的信道信息,第六信息域用于指示该UE当前的HARQ process ID,第七信息域用于指示UL HARQ反馈。
在终端侧,UE接收到该DCI后,若根据第三信息域中承载的UE ID判断该UE ID与该UE自己的UE ID相同,则确定该UE被调度,根据第一信 息域中承载的指示信息(RU数量为L1)和第二信息域中承载的指示信息(OFDM符号数量为L2),确定出数据区域所占的时频资源位置,并进一步根据第四信息域指示的MCS和第五信息域指示的信道信息,在确定出的数据区域进行数据的发送或接收。进一步地,对于下行数据传输,UE还可根据该DCI中的第六信息域指示的HARQ进程ID进行ACK/NACK反馈,根据第七信息域指示的ACK/NACK信息进行UL HARQ。
本例子中,control channel在频域上占用RU#0(即第一个RU),在时域上占用编号为OFDM符号#0(即第一个OFDM符号),则数据区域所占的时频位置为:频域上占据的RU为编号为0至(L1-1)的RU,共计L1个RU;在时域上占据的OFDM符号的编号为0至(L2-1)的OFDM符号,共计L2个OFDM符号。进一步的,当DCI中携带频域起始位置以及时域起始位置信息时,终端可以根据起始位置信息以及资源大小信息,确定数据传输的具体资源位置。
场景1下,在另外的例子中,基站发送的DCI可如图6b所示。图6b所示的DCI与图6a所示的DCI相比,增加了用于指示业务类型和/或传输类型的第八信息域,该信息域可指示当前基站的传输类型和/或业务类型。
上述例子中的RU也可以替换为RB,即在第一信息域中指示出该DCI所调度的数据资源所占的RB的数量。
场景2
该场景中,基站当前调度一组UE(例如3个UE,分别为UE1、UE2和UE3),且为该UE分配的传输资源在频域上所占的RU的个数为L1,在时域上所占的OFDM符号的个数为L2。该场景下,DCI的信息域构成以及资源指示如图7a所示。
在网络侧,基站在一个子帧的下行TTI的PDCCH中传输DCI,通过该DCI指示被调度的3个UE以及为这些UE在该下行TTI中分配的传输资源。其中,DCI的第一信息域用于指示L1个RU,第二信息域用于指示L2个OFDM符号,第三信息域用于指示被调度的UE1、UE2和UE3的ID,第四信息域用 于指示这3个UE各自使用的编码调试等级,第五信息域用于指示这3个UE各自的信道信息,第六信息域用于指示这3个UE各自的HARQ process ID,第七信息域用于指示这3个UE各自的UL HARQ反馈信息。其中,各个信息域中的信息按照先后的映射顺序一一对应,例如,第三信息域中的UE1ID对应第四信息域中的第一个MCS指示信息,并对应第五信息域中的第一个信道信息,并对应第六指示域中的第一个HARQ process ID,并对应第七信息域中的第一个ACK/NACK信息,以此类推。
在终端侧,UE接收到该DCI后,若根据第三信息域中承载的UE ID判断该UE ID与该UE自己的UE ID相同,则确定该UE被调度,该UE以控制信道(control channel)所在RU为参考点,根据第一信息域中承载的指示信息(RU数量为L1)和第二信息域中承载的指示信息(OFDM符号数量为L2),确定出数据区域所占的时频资源位置,并进一步根据第四信息域指示的MCS和第五信息域指示的信道信息,在确定出的数据区域进行数据的发送或接收。进一步地,对于下行数据传输,UE还可根据该DCI中的第六信息域指示的HARQ进程ID进行ACK/NACK反馈,根据第七信息域指示的ACK/NACK信息进行UL HARQ。
本例子中,control channel在频域上占用RU#0(即第一个RU),在时域上占用编号为OFDM符号#0(即第一个OFDM符号),则数据区域所占的时频位置为:频域上占据的RU为编号为0至(L1-1)的RU,共计L1个RU;在时域上占据的OFDM符号的编号为0至(L2-1)的OFDM符号,共计L2个OFDM符号。基站调度UE1、UE2和UE3在该时频资源上进行MIMO传输。进一步的,当DCI中携带频域起始位置以及时域起始位置信息时,终端可以根据起始位置信息以及资源大小信息,确定数据传输的具体资源位置。
场景2下,在另外的例子中,基站发送的DCI可如图7b所示。图7b所示的DCI与图7a所示的DCI相比,增加了用于指示业务类型和/或传输类型的第八信息域,该信息域可指示当前基站的传输类型和/或业务类型。
上述例子中的RU也可以替换为RB,即在第一信息域中指示出该DCI所 调度的数据资源所占的RB的数量。
场景3
该场景中,基站当前调度一组UE(例如3个UE,分别为UE1、UE2和UE3),这一组UE具有相似的信道条件和以及业务类型。基站为该UE分配的传输资源在频域上所占的RU的个数为L1,在时域上所占的OFDM符号的个数为L2。该场景下,DCI的信息域构成以及资源指示如图8a所示。
在网络侧,基站在一个子帧的下行TTI的PDCCH中传输DCI,通过该DCI指示被调度的3个UE以及为这些UE在该下行TTI中分配的传输资源。其中,DCI的第一信息域用于指示L1个RU,第二信息域用于指示L2个OFDM符号,第三信息域用于指示被调度的UE1、UE2和UE3的ID,第四信息域用于指示这3个UE共同使用的编码调试等级,第五信息域用于指示这3个UE共同的信道信息,第六信息域用于指示这3个UE各自的HARQ process ID,第七信息域用于指示这3个UE各自的UL HARQ反馈信息。其中,各个信息域中的信息按照先后的映射顺序一一对应,例如,第三信息域中的UE1ID对应第六指示域中的第一个HARQ process ID,并对应第七信息域中的第一个ACK/NACK信息,以此类推。
在这种情况下,DCI中可增加额外的第九信息域,用于指示一组UE是否需要均分DCI中指示的数据区域,该信息域可以是1比特信息域。例如,当所述第九信息域中的指示信息取值为1时,则这3个被调度的UE均分DCI中所指示的数据区域,即在时域上均分或者在频域上均分。
在终端侧,UE接收到该DCI后,若根据第三信息域中承载的UE ID判断该UE ID与该UE自己的UE ID相同,则确定该UE被调度,该UE以控制信道(control channel)所在RU为参考点,根据第一信息域中承载的指示信息(RU数量为L1)和第二信息域中承载的指示信息(OFDM符号数量为L2)以及第九信息域指示的信息,确定出数据区域所占的时频资源位置,并进一步根据第四信息域指示的MCS和第五信息域指示的信道信息,在确定出的数据区域进行数据的发送或接收。进一步地,对于下行数据传输,UE还可根据 该DCI中的第六信息域指示的HARQ进程ID进行ACK/NACK反馈,根据第七信息域指示的ACK/NACK信息进行UL HARQ。
本例子中,control channel在频域上占用RU#0(即第一个RU),在时域上占用编号为OFDM符号#0(即第一个OFDM符号),则数据区域所占的时频位置为:频域上占据的RU为编号为0至(L1-1)的RU,共计L1个RU;在时域上占据的OFDM符号的编号为0至(L2-1)的OFDM符号,共计L2个OFDM符号。进一步的,当DCI中携带频域起始位置以及时域起始位置信息时,终端可以根据起始位置信息以及资源大小信息,确定数据传输的具体资源位置。
场景3下,在另外的例子中,基站发送的DCI可如图8b所示。图8b所示的DCI与图8a所示的DCI相比,增加了用于指示业务类型和/或传输类型的第八信息域,该信息域可指示当前基站的传输类型和/或业务类型。
上述例子中的RU也可以替换为RB,即在第一信息域中指示出该DCI所调度的数据资源所占的RB的数量。
基于相同的技术构思,本发明实施例还提供了一种基站,该基站可实现前述实施例描述的网络侧的DCI传输功能。
参见图9,为本发明实施例提供的基站的结构示意图。该基站可包括:发送模块902;
具体实施中还可以进一步地包括:分配模块901和/或传输模块903;
则其关系可以如下:
分配模块901,用于为N个用户分配传输资源。
发送模块902,用于传输DCI,该DCI中至少包含以下信息域中的一种或多种:用于指示所述DCI所调度的数据资源所占的频域资源的第一信息域、用于指示所述DCI所调度的数据资源所占的时域资源的第二信息域、用于指示被调度的N个用户的第三信息域,N为大于等于1的整数;
具体的,DCI中可以包含:用于指示该DCI所调度的数据资源所占的频域资源大小的第一信息域,例如,该信息域可以指示所占资源大小,或者所 占资源位置以及资源大小等;用于指示该DCI所调度的数据资源所占的时域资源大小的第二信息域。
传输模块903,用于根据分配的传输资源与所述N个用户进行数据传输。
实施中,所述DCI所调度的数据资源所占的频域资源包括:
所述DCI所调度的数据资源所占的资源块的数量;或者,
所述DCI所调度的数据资源所占的资源块数量以及资源起始位置;或者,
所述DCI所调度的数据资源所占的资源单元的数量;或者,
所述DCI所调度的数据资源所占的资源单元的数量以及资源单元的起始编号;或者,
所述DCI所调度的数据资源所占的子载波的数量;或者,
所述DCI所调度的数据资源所占的子载波的数量以及起始编号。
实施中,所述DCI所调度的数据资源所占的时域资源包括:
所述DCI所调度的数据资源所占的符号的数量;或者,
所述DCI所调度的数据资源所占的符号的数量以及起始符号编号;或者,
所述DCI所调度的数据传输所使用的传输时间间隔TTI长度;或者,
所述DCI所调度的数据传输所使用的传输时间间隔TTI长度以及数据传输的时域起始位置。
实施中,第三信息域用于指示所述被调度的N个用户的用户标识。
实施中,DCI中还包括以下信息域中的一种或任意组合:
用于指示一个或一组调制与编码策略MCS的第四信息域;
用于指示一个或一组多输入多输出信道信息的第五信息域;
用于指示一个或一组HARQ进程标识的第六信息域:
用于指示一个或一组上行HARQ的ACK/NACK信息的第七信息域;
用于指示传输类型和/或业务类型的第八信息域。
实施中,第七信息域可存在于调度上行数据的DCI中。
实施中,下行控制信息中还包括第九信息域,所述第九信息域用于指示被调度的一组用户是否均分所述DCI中的所述第一信息域和所述第二信息域 所指示的时频资源区域,其中,所述均分包括在时域上均分或在频域上均分。
基于相同的技术构思,本发明实施例还提供了一种终端,该终端可实现前述实施例描述的终端侧的DCI传输功能。
参见图10,为本发明实施例提供的终端的结构示意图。该终端可包括:接收模块1001;
具体实施中还可以进一步地包括传输模块1002;
则其关系可如下:
接收模块1001,用于接收DCI,所述DCI中至少包含以下信息域中的一种或多种:用于指示所述DCI所调度的数据资源所占的频域资源的第一信息域、用于指示所述DCI所调度的数据资源所占的时域资源的第二信息域、用于指示被调度的N个用户的第三信息域,N为大于等于1的整数;
传输模块1002,用于根据分配的传输资源进行数据接收或发送。
具体的,DCI中可以包含:用于指示该DCI所调度的数据资源所占的频域资源大小的第一信息域,例如,该信息域可以指示所占资源大小,或者所占资源位置以及资源大小等;用于指示该DCI所调度的数据资源所占的时域资源大小的第二信息域。
实施中,所述DCI所调度的数据资源所占的频域资源包括:
所述DCI所调度的数据资源所占的资源块的数量;或者,
所述DCI所调度的数据资源所占的资源块数量以及资源起始位置;或者,
所述DCI所调度的数据资源所占的资源单元的数量;或者,
所述DCI所调度的数据资源所占的资源单元的数量以及资源单元的起始编号;或者,
所述DCI所调度的数据资源所占的子载波的数量;或者,
所述DCI所调度的数据资源所占的子载波的数量以及起始编号。
实施中,所述DCI所调度的数据资源所占的时域资源包括:
所述DCI所调度的数据资源所占的符号的数量;或者,
所述DCI所调度的数据资源所占的符号的数量以及起始符号编号;或者,
所述DCI所调度的数据传输所使用的传输时间间隔TTI长度;或者,
所述DCI所调度的数据传输所使用的传输时间间隔TTI长度以及数据传输的时域起始位置。
实施中,第三信息域用于指示所述被调度的N个用户的用户标识。
实施中,DCI中还包括以下信息域中的一种或任意组合:
用于指示一个或一组调制与编码策略MCS的第四信息域;
用于指示一个或一组多输入多输出信道信息的第五信息域;
用于指示一个或一组HARQ进程标识的第六信息域:
用于指示一个或一组上行HARQ的ACK/NACK信息的第七信息域;
用于指示传输类型和/或业务类型的第八信息域。
实施中,第七信息域存在于调度上行传输的DCI中。
实施中,DCI中还包括第九信息域,所述第九信息域用于指示被调度的一组用户是否均分所述DCI中的所述第一信息域和所述第二信息域所指示的时频资源区域,其中,所述均分包括在时域上均分或在频域上均分。
基于相同的技术构思,本发明实施例还提供了一种基站,该基站可实现前述实施例描述的网络侧的DCI传输流程。
参见图11为本发明实施例提供的基站的结构示意图。如图所示,该基站可包括:处理器1101、存储器1102、收发机1103以及总线接口。
处理器1101负责管理总线架构和通常的处理,存储器1102可以存储处理器1101在执行操作时所使用的数据。收发机1103用于在处理器1101的控制下接收和发送数据。
总线架构可以包括任意数量的互联的总线和桥,具体由处理器1101代表的一个或多个处理器和存储器1102代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。处理器1101负责管理总线架构和通常的处理,存储器1102可以存储处理器1101在执行操作时所使用的数据。
本发明实施例揭示的流程,可以应用于处理器1101中,或者由处理器1101实现。在实现过程中,信号处理流程的各步骤可以通过处理器1101中的硬件的集成逻辑电路或者软件形式的指令完成。处理器1101可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本发明实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器1102,处理器1101读取存储器1102中的信息,结合其硬件完成信号处理流程的步骤。
具体地,处理器1101,用于读取存储器1102中的程序,执行下列过程:
传输DCI,所述DCI中至少包含以下信息域中的一种或多种:用于指示所述DCI所调度的数据资源所占的频域资源的第一信息域、用于指示所述DCI所调度的数据资源所占的时域资源的第二信息域、用于指示被调度的N个用户的第三信息域,N为大于等于1的整数。
具体的,DCI中可以包含:用于指示该DCI所调度的数据资源所占的频域资源大小的第一信息域,例如,该信息域可以指示所占资源大小,或者所占资源位置以及资源大小等;用于指示该DCI所调度的数据资源所占的时域资源大小的第二信息域。
实施中,所述DCI所调度的数据资源所占的频域资源包括:
所述DCI所调度的数据资源所占的资源块的数量;或者,
所述DCI所调度的数据资源所占的资源块数量以及资源起始位置;或者,
所述DCI所调度的数据资源所占的资源单元的数量;或者,
所述DCI所调度的数据资源所占的资源单元的数量以及资源单元的起始编号;或者,
所述DCI所调度的数据资源所占的子载波的数量;或者,
所述DCI所调度的数据资源所占的子载波的数量以及起始编号。
实施中,所述DCI所调度的数据资源所占的时域资源包括:
所述DCI所调度的数据资源所占的符号的数量;或者,
所述DCI所调度的数据资源所占的符号的数量以及起始符号编号;或者,
所述DCI所调度的数据传输所使用的传输时间间隔TTI长度;或者,
所述DCI所调度的数据传输所使用的传输时间间隔TTI长度以及数据传输的时域起始位置。
实施中,所述第三信息域用于指示所述被调度的N个用户的用户标识。
实施中,所述DCI中还包括以下信息域中的一种或任意组合:
用于指示一个或一组调制与编码策略MCS的第四信息域;
用于指示一个或一组多输入多输出信道信息的第五信息域;
用于指示一个或一组HARQ进程标识的第六信息域:
用于指示一个或一组上行HARQ的ACK/NACK信息的第七信息域。
其中,所述第七信息域存在于调度上行数据的DCI中;
用于指示传输类型和/或业务类型的第八信息域。
实施中,所述DCI中还包括第九信息域,所述第九信息域用于指示被调度的一组用户是否均分所述DCI中的所述第一信息域和所述第二信息域所指示的时频资源区域,其中,所述均分包括在时域上均分或在频域上均分。
进一步地,处理器1101还可用于:在传输下行控制信息之前,还为所述N个用户分配传输资源。
进一步地,处理器1101还可用于:在传输下行控制信息之后,根据分配的传输资源与所述N个用户进行数据传输。
基于相同的技术构思,本发明实施例还提供了一种终端,该终端可实现前述实施例描述的终端侧的DCI传输流程。
参见图12,为本发明实施例提供的终端的结构示意图。如图所示,该终端可包括:处理器1201、存储器1202、收发机1203以及总线接口。
处理器1201负责管理总线架构和通常的处理,存储器1202可以存储处理器1201在执行操作时所使用的数据。收发机1203用于在处理器1201的控制下接收和发送数据。
总线架构可以包括任意数量的互联的总线和桥,具体由处理器1201代表的一个或多个处理器和存储器1202代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。处理器1201负责管理总线架构和通常的处理,存储器1202可以存储处理器1201在执行操作时所使用的数据。
本发明实施例揭示的流程,可以应用于处理器1201中,或者由处理器1201实现。在实现过程中,信号处理流程的各步骤可以通过处理器1201中的硬件的集成逻辑电路或者软件形式的指令完成。处理器1201可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本发明实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器1202,处理器1201读取存储器1202中的信息,结合其硬件完成信号处理流程的步骤。
具体地,处理器1201,用于读取存储器1202中的程序,执行下列过程:
接收DCI,所述DCI中至少包含以下信息域:用于指示所述DCI所调度的数据资源所占的频域资源的第一信息域、用于指示所述DCI所调度的数据资源所占的时域资源的第二信息域、用于指示被调度的N个用户的第三信息域,N为大于等于1的整数。
具体的,DCI中可以包含:用于指示该DCI所调度的数据资源所占的频 域资源大小的第一信息域,例如,该信息域可以指示所占资源大小,或者所占资源位置以及资源大小等;用于指示该DCI所调度的数据资源所占的时域资源大小的第二信息域。
实施中,所述DCI所调度的数据资源所占的频域资源包括:
所述DCI所调度的数据资源所占的资源块的数量;或者,
所述DCI所调度的数据资源所占的资源块数量以及资源起始位置;或者,
所述DCI所调度的数据资源所占的资源单元的数量;或者,
所述DCI所调度的数据资源所占的资源单元的数量以及资源单元的起始编号;或者,
所述DCI所调度的数据资源所占的子载波的数量;或者,
所述DCI所调度的数据资源所占的子载波的数量以及起始编号。
实施中,所述DCI所调度的数据资源所占的时域资源包括:
所述DCI所调度的数据资源所占的符号的数量;或者,
所述DCI所调度的数据资源所占的符号的数量以及起始符号编号;或者,
所述DCI所调度的数据传输所使用的传输时间间隔TTI长度;或者,
所述DCI所调度的数据传输所使用的传输时间间隔TTI长度以及数据传输的时域起始位置。
实施中,所述第三信息域用于指示所述被调度的N个用户的用户标识。
实施中,所述DCI中还包括以下信息域中的一种或任意组合:
用于指示一个或一组调制与编码策略MCS的第四信息域;
用于指示一个或一组多输入多输出信道信息的第五信息域;
用于指示一个或一组HARQ进程标识的第六信息域:
用于指示一个或一组上行HARQ的ACK/NACK信息的第七信息域;
用于指示传输类型和/或业务类型的第八信息域。
其中,所述第七信息域存在于调度上行传输的DCI中。
实施中,所述DCI中还包括第九信息域,所述第九信息域用于指示被调度的一组用户是否均分所述DCI中的所述第一信息域和所述第二信息域所指 示的时频资源区域,其中,所述均分包括在时域上均分或在频域上均分。
进一步地,处理器1201还可用于:在接收下行控制信息之后,根据分配的传输资源进行数据接收或发送。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本发明的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (36)

  1. 一种下行控制信息传输方法,其特征在于,包括:
    传输下行控制信息DCI,所述DCI中至少包含以下信息域中的一种或多种:用于指示所述DCI所调度的数据资源所占的频域资源的第一信息域、用于指示所述DCI所调度的数据资源所占的时域资源的第二信息域、用于指示被调度的N个用户的第三信息域,N为大于等于1的整数。
  2. 如权利要求1所述的方法,其特征在于,所述DCI所调度的数据资源所占的频域资源包括:
    所述DCI所调度的数据资源所占的资源块的数量;或者,
    所述DCI所调度的数据资源所占的资源块数量以及资源起始位置;或者,
    所述DCI所调度的数据资源所占的资源单元的数量;或者,
    所述DCI所调度的数据资源所占的资源单元的数量以及资源单元的起始编号;或者,
    所述DCI所调度的数据资源所占的子载波的数量;或者,
    所述DCI所调度的数据资源所占的子载波的数量以及起始编号。
  3. 如权利要求1所述的方法,其特征在于,所述DCI所调度的数据资源所占的时域资源包括:
    所述DCI所调度的数据资源所占的符号的数量;或者,
    所述DCI所调度的数据资源所占的符号的数量以及起始符号编号;或者,
    所述DCI所调度的数据传输所使用的传输时间间隔TTI长度;或者,
    所述DCI所调度的数据传输所使用的传输时间间隔TTI长度以及数据传输的时域起始位置。
  4. 如权利要求1所述的方法,其特征在于,所述第三信息域用于指示所述被调度的N个用户的用户标识。
  5. 如权利要求1至4中任一项所述的方法,其特征在于,所述DCI中还包括以下信息域中的一种或任意组合:
    用于指示一个或一组调制与编码策略MCS的第四信息域;
    用于指示一个或一组多输入多输出信道信息的第五信息域;
    用于指示一个或一组混合自动重传请求HARQ进程标识的第六信息域:
    用于指示一个或一组上行HARQ的ACK/NACK信息的第七信息域;
    用于指示传输类型和/或业务类型的第八信息域。
  6. 如权利要求5所述的方法,其特征在于,所述第七信息域存在于调度上行传输的DCI中。
  7. 如权利要求1至6中任一项所述的方法,其特征在于,所述DCI中还包括第九信息域,所述第九信息域用于指示被调度的一组用户是否均分所述DCI中的所述第一信息域和所述第二信息域所指示的时频资源区域,其中,所述均分包括在时域上均分或在频域上均分。
  8. 如权利要求1至7中任一项所述的方法,其特征在于,传输DCI之前,还包括:基站为所述N个用户分配传输资源。
  9. 如权利要求1至7中任一项所述的方法,其特征在于,传输DCI之后,还包括:基站根据分配的传输资源与所述N个用户进行数据传输。
  10. 一种下行控制信息传输方法,其特征在于,包括:
    接收下行控制信息DCI,所述DCI中至少包含以下信息域中的一种或多种:用于指示所述DCI所调度的数据资源所占的频域资源的第一信息域、用于指示所述DCI所调度的数据资源所占的时域资源的第二信息域、用于指示被调度的N个用户的第三信息域,N为大于等于1的整数。
  11. 如权利要求10所述的方法,其特征在于,所述DCI所调度的数据资源所占的频域资源包括:
    所述DCI所调度的数据资源所占的资源块的数量;或者,
    所述DCI所调度的数据资源所占的资源块数量以及资源起始位置;或者,
    所述DCI所调度的数据资源所占的资源单元的数量;或者,
    所述DCI所调度的数据资源所占的资源单元的数量以及资源单元的起始编号;或者,
    所述DCI所调度的数据资源所占的子载波的数量;或者,
    所述DCI所调度的数据资源所占的子载波的数量以及起始编号。
  12. 如权利要求10所述的方法,其特征在于,所述DCI所调度的数据资源所占的时域资源包括:
    所述DCI所调度的数据资源所占的符号的数量;或者,
    所述DCI所调度的数据资源所占的符号的数量以及起始符号编号;或者,
    所述DCI所调度的数据传输所使用的传输时间间隔TTI长度;或者,
    所述DCI所调度的数据传输所使用的传输时间间隔TTI长度以及数据传输的时域起始位置。
  13. 如权利要求10所述的方法,其特征在于,所述第三信息域用于指示所述被调度的N个用户的用户标识。
  14. 如权利要求10至13中任一项所述的方法,其特征在于,所述DCI中还包括以下信息域中的一种或任意组合:
    用于指示一个或一组调制与编码策略MCS的第四信息域;
    用于指示一个或一组多输入多输出信道信息的第五信息域;
    用于指示一个或一组混合自动重传请求HARQ进程标识的第六信息域:
    用于指示一个或一组上行HARQ的ACK/NACK信息的第七信息域;
    用于指示传输类型和/或业务类型的第八信息域。
  15. 如权利要求14所述的方法,其特征在于,所述第七信息域存在于调度上行传输的DCI中。
  16. 如权利要求10至15中任一项所述的方法,其特征在于,所述DCI中还包括第九信息域,所述第九信息域用于指示被调度的一组用户是否均分所述DCI中的所述第一信息域和所述第二信息域所指示的时频资源区域,其中,所述均分包括在时域上均分或在频域上均分。
  17. 如权利要求10至16中任一项所述的方法,其特征在于,接收下行控制信息之后,还包括:根据基站分配的传输资源进行数据接收或发送。
  18. 一种基站,其特征在于,包括:
    发送模块,用于传输下行控制信息DCI,所述DCI中至少包含以下信息域中的一种或多种:用于指示所述DCI所调度的数据资源所占的频域资源的第一信息域、用于指示所述DCI所调度的数据资源所占的时域资源的第二信息域、用于指示被调度的N个用户的第三信息域,N为大于等于1的整数。
  19. 如权利要求18所述的基站,其特征在于,所述DCI所调度的数据资源所占的频域资源包括:
    所述DCI所调度的数据资源所占的资源块的数量;或者,
    所述DCI所调度的数据资源所占的资源块数量以及资源起始位置;或者,
    所述DCI所调度的数据资源所占的资源单元的数量;或者,
    所述DCI所调度的数据资源所占的资源单元的数量以及资源单元的起始编号;或者,
    所述DCI所调度的数据资源所占的子载波的数量;或者,
    所述DCI所调度的数据资源所占的子载波的数量以及起始编号。
  20. 如权利要求18所述的基站,其特征在于,所述DCI所调度的数据资源所占的时域资源包括:
    所述DCI所调度的数据资源所占的符号的数量;或者,
    所述DCI所调度的数据资源所占的符号的数量以及起始符号编号;或者,
    所述DCI所调度的数据传输所使用的传输时间间隔TTI长度;或者,
    所述DCI所调度的数据传输所使用的传输时间间隔TTI长度以及数据传输的时域起始位置。
  21. 如权利要求18所述的基站,其特征在于,所述第三信息域用于指示所述被调度的N个用户的用户标识。
  22. 如权利要求18至21中任一项所述的基站,其特征在于,所述DCI中还包括以下信息域中的一种或任意组合:
    用于指示一个或一组调制与编码策略MCS的第四信息域;
    用于指示一个或一组多输入多输出信道信息的第五信息域;
    用于指示一个或一组混合自动重传请求HARQ进程标识的第六信息域:
    用于指示一个或一组上行HARQ的ACK/NACK信息的第七信息域;
    用于指示传输类型和/或业务类型的第八信息域。
  23. 如权利要求22所述的基站,其特征在于,所述第七信息域存在于调度上行传输的DCI中。
  24. 如权利要求18至23中任一项所述的基站,其特征在于,所述DCI中还包括第九信息域,所述第九信息域用于指示被调度的一组用户是否均分所述DCI中的所述第一信息域和所述第二信息域所指示的时频资源区域,其中,所述均分包括在时域上均分或在频域上均分。
  25. 如权利要求18至24中任一项所述的基站,其特征在于,还包括:
    分配模块,用于在传输下行控制信息之前,为所述N个用户分配传输资源。
  26. 如权利要求18至24中任一项所述的基站,其特征在于,还包括:
    传输模块,用于在传输下行控制信息之后,根据分配的传输资源与所述N个用户进行数据传输。
  27. 一种终端,其特征在于,包括:
    接收模块,用于接收下行控制信息DCI,所述DCI中至少包含以下信息域中的一种或多种:用于指示所述DCI所调度的数据资源所占的频域资源的第一信息域、用于指示所述DCI所调度的数据资源所占的时域资源的第二信息域、用于指示被调度的N个用户的第三信息域,N为大于等于1的整数。
  28. 如权利要求27所述的终端,其特征在于,所述DCI所调度的数据资源所占的频域资源包括:
    所述DCI所调度的数据资源所占的资源块的数量;或者,
    所述DCI所调度的数据资源所占的资源块数量以及资源起始位置;或者,
    所述DCI所调度的数据资源所占的资源单元的数量;或者,
    所述DCI所调度的数据资源所占的资源单元的数量以及资源单元的起始编号;或者,
    所述DCI所调度的数据资源所占的子载波的数量;或者,
    所述DCI所调度的数据资源所占的子载波的数量以及起始编号。
  29. 如权利要求27所述的终端,其特征在于,所述DCI所调度的数据资源所占的时域资源包括:
    所述DCI所调度的数据资源所占的符号的数量;或者,
    所述DCI所调度的数据资源所占的符号的数量以及起始符号编号;或者,
    所述DCI所调度的数据传输所使用的传输时间间隔TTI长度;或者,
    所述DCI所调度的数据传输所使用的传输时间间隔TTI长度以及数据传输的时域起始位置。
  30. 如权利要求27所述的终端,其特征在于,所述第三信息域用于指示所述被调度的N个用户的用户标识。
  31. 如权利要求27至30中任一项所述的终端,其特征在于,所述DCI中还包括以下信息域中的一种或任意组合:
    用于指示一个或一组调制与编码策略MCS的第四信息域;
    用于指示一个或一组多输入多输出信道信息的第五信息域;
    用于指示一个或一组混合自动重传请求HARQ进程标识的第六信息域:
    用于指示一个或一组上行HARQ的ACK/NACK信息的第七信息域;
    用于指示传输类型和/或业务类型的第八信息域。
  32. 如权利要求31所述的终端,其特征在于,所述第七信息域存在于调度上行传输的DCI中。
  33. 如权利要求27至32中任一项所述的终端,其特征在于,所述DCI中还包括第九信息域,所述第九信息域用于指示被调度的一组用户是否均分所述DCI中的所述第一信息域和所述第二信息域所指示的时频资源区域,其中,所述均分包括在时域上均分或在频域上均分。
  34. 如权利要求27至33中任一项所述的终端,其特征在于,还包括:
    传输模块,用于在接收下DCI之后,根据基站分配的传输资源进行数据接收或发送。
  35. 一种基站,其特征在于,包括:处理器、存储器、收发机以及总线 接口;
    所述处理器,用于读取存储器中的程序,执行下列过程:
    传输下行控制信息DCI,所述DCI中至少包含以下信息域中的一种或多种:用于指示所述DCI所调度的数据资源所占的频域资源的第一信息域、用于指示所述DCI所调度的数据资源所占的时域资源的第二信息域、用于指示被调度的N个用户的第三信息域,N为大于等于1的整数。
  36. 一种终端,其特征在于,包括:处理器、存储器、收发机以及总线接口;
    所述处理器,用于读取存储器中的程序,执行下列过程:
    接收下行控制信息DCI,所述DCI中至少包含以下信息域中的一种或多种:用于指示所述DCI所调度的数据资源所占的频域资源的第一信息域、用于指示所述DCI所调度的数据资源所占的时域资源的第二信息域、用于指示被调度的N个用户的第三信息域,N为大于等于1的整数。
PCT/CN2017/071800 2016-02-02 2017-01-20 一种下行控制信息传输方法及装置 WO2017133479A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/075,131 US11382123B2 (en) 2016-02-02 2017-01-20 Method and apparatus for transmitting downlink control information
JP2018540423A JP6630838B2 (ja) 2016-02-02 2017-01-20 ダウンリンク制御情報の伝送方法及び装置
KR1020187025348A KR102219746B1 (ko) 2016-02-02 2017-01-20 다운링크 제어 정보의 전송 방법 및 장치
EP17746799.0A EP3404979B1 (en) 2016-02-02 2017-01-20 Method and apparatus for transmitting downlink control information
US17/829,279 US20220295534A1 (en) 2016-02-02 2022-05-31 Method and apparatus for transmitting downlink control information

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201610074559 2016-02-02
CN201610074559.8 2016-02-02
CN201610125584.4 2016-03-04
CN201610125584.4A CN107027184B (zh) 2016-02-02 2016-03-04 一种下行控制信息传输方法及装置

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/075,131 A-371-Of-International US11382123B2 (en) 2016-02-02 2017-01-20 Method and apparatus for transmitting downlink control information
US17/829,279 Continuation US20220295534A1 (en) 2016-02-02 2022-05-31 Method and apparatus for transmitting downlink control information

Publications (1)

Publication Number Publication Date
WO2017133479A1 true WO2017133479A1 (zh) 2017-08-10

Family

ID=59499338

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/071800 WO2017133479A1 (zh) 2016-02-02 2017-01-20 一种下行控制信息传输方法及装置

Country Status (1)

Country Link
WO (1) WO2017133479A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111669828A (zh) * 2017-12-26 2020-09-15 Oppo广东移动通信有限公司 一种数据传输方法及装置、计算机存储介质
CN112671520A (zh) * 2019-10-16 2021-04-16 大唐移动通信设备有限公司 一种下行控制信息的确定方法、设备、装置及介质
CN113518350A (zh) * 2020-04-09 2021-10-19 维沃移动通信有限公司 调度方法和设备
CN114430929A (zh) * 2019-09-24 2022-05-03 上海诺基亚贝尔股份有限公司 用于传输的资源重新调度

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101801097A (zh) * 2010-01-08 2010-08-11 中兴通讯股份有限公司 物理上行共享信道调度信息的指示方法
CN101801093A (zh) * 2010-02-03 2010-08-11 中兴通讯股份有限公司 资源分配方式指示方法、装置和系统
WO2013012261A2 (ko) * 2011-07-19 2013-01-24 엘지전자 주식회사 무선통신 시스템에서 자원 할당 정보를 송신 및 수신하는 방법과 이를 위한 장치
CN103716823A (zh) * 2013-12-23 2014-04-09 上海无线通信研究中心 Lte/lte-a系统中下行控制信息盲检指示发送及下行控制信息盲检方法
CN103874217A (zh) * 2014-03-17 2014-06-18 大唐移动通信设备有限公司 在tdd-lte系统中上行抗干扰的方法及设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101801097A (zh) * 2010-01-08 2010-08-11 中兴通讯股份有限公司 物理上行共享信道调度信息的指示方法
CN101801093A (zh) * 2010-02-03 2010-08-11 中兴通讯股份有限公司 资源分配方式指示方法、装置和系统
WO2013012261A2 (ko) * 2011-07-19 2013-01-24 엘지전자 주식회사 무선통신 시스템에서 자원 할당 정보를 송신 및 수신하는 방법과 이를 위한 장치
CN103716823A (zh) * 2013-12-23 2014-04-09 上海无线通信研究中心 Lte/lte-a系统中下行控制信息盲检指示发送及下行控制信息盲检方法
CN103874217A (zh) * 2014-03-17 2014-06-18 大唐移动通信设备有限公司 在tdd-lte系统中上行抗干扰的方法及设备

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111669828A (zh) * 2017-12-26 2020-09-15 Oppo广东移动通信有限公司 一种数据传输方法及装置、计算机存储介质
CN111669828B (zh) * 2017-12-26 2023-05-02 Oppo广东移动通信有限公司 一种数据传输方法及装置、计算机存储介质
CN114430929A (zh) * 2019-09-24 2022-05-03 上海诺基亚贝尔股份有限公司 用于传输的资源重新调度
CN112671520A (zh) * 2019-10-16 2021-04-16 大唐移动通信设备有限公司 一种下行控制信息的确定方法、设备、装置及介质
CN112671520B (zh) * 2019-10-16 2023-02-17 大唐移动通信设备有限公司 一种下行控制信息的确定方法、设备、装置及介质
CN113518350A (zh) * 2020-04-09 2021-10-19 维沃移动通信有限公司 调度方法和设备

Similar Documents

Publication Publication Date Title
US20220295534A1 (en) Method and apparatus for transmitting downlink control information
KR102480608B1 (ko) D2d 통신을 위한 자원 할당 방법 및 장치
CN111263353B (zh) 空口能力交换的系统和方法
CN106664702B (zh) 一种数据传输方法、装置及系统
CN106413105B (zh) 一种资源传输的指示方法、装置、网络侧设备及终端
US20150319746A1 (en) Techniques for enabling and performing harq transmissions in a d2d communication between wireless devices in a wireless telecommunications network
CN108702595B (zh) 用于执行上行链路传输的方法和设备
TWI607636B (zh) 用於通訊之方法及設備、相關電腦程式、以及基地台或使用者設備
JP2024045192A (ja) マルチtrp pdsch送信方式の動的インジケーション
CN116685000A (zh) 一种无线通信方法和设备
WO2020221151A1 (zh) 由用户设备执行的方法以及用户设备
US9532341B2 (en) Allocation of communication resources
WO2016045564A1 (en) A method and device of resource allocations for scheduling assignments in device to device communications
CN110121910A (zh) 一种发送上行控制信息的方法、网络设备及终端
WO2020253770A1 (zh) 由用户设备执行的方法以及用户设备
WO2014185836A1 (en) A network node and method therein for harq processes in a d2d communication
JP2018528687A (ja) 無線通信方法、ネットワークデバイス、ユーザ装置、及びシステム
WO2018121052A1 (zh) 上行控制的资源确定方法、装置、发送端和接收端
JP2019533352A (ja) データ伝送のための方法及び装置
WO2017133479A1 (zh) 一种下行控制信息传输方法及装置
WO2019047632A1 (zh) 用于传输下行数据的资源的确定和配置方法、终端和基站
CN107046719B (zh) 用于减少时分双工的传输时延的方法、装置和系统
CN111406431B (zh) 用于指示连续的资源分配的方法、装置和计算机可读介质
JP2019533361A (ja) データ伝送のための方法及び装置
WO2021204191A1 (zh) 由用户设备执行的方法以及用户设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17746799

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018540423

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017746799

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017746799

Country of ref document: EP

Effective date: 20180816

Ref document number: 20187025348

Country of ref document: KR

Kind code of ref document: A