WO2019157954A1 - 通信方法、装置和系统 - Google Patents

通信方法、装置和系统 Download PDF

Info

Publication number
WO2019157954A1
WO2019157954A1 PCT/CN2019/073778 CN2019073778W WO2019157954A1 WO 2019157954 A1 WO2019157954 A1 WO 2019157954A1 CN 2019073778 W CN2019073778 W CN 2019073778W WO 2019157954 A1 WO2019157954 A1 WO 2019157954A1
Authority
WO
WIPO (PCT)
Prior art keywords
time unit
sub
transmission direction
aggregation
indicated
Prior art date
Application number
PCT/CN2019/073778
Other languages
English (en)
French (fr)
Inventor
李华
唐浩
曹永照
李新县
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201810173318.8A external-priority patent/CN110167170B/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19754815.9A priority Critical patent/EP3737184A4/en
Publication of WO2019157954A1 publication Critical patent/WO2019157954A1/zh
Priority to US16/990,784 priority patent/US11606787B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present application relates to the field of communications, and in particular, to a communication method, apparatus, and system.
  • Data transmission in the NR system supports slot aggregation techniques.
  • slot aggregation technology data is transmitted on one or more time slots, and data transmission using the slot aggregation technology occupies more resources, enhances data transmission coverage, and improves data transmission reliability.
  • the embodiments of the present application provide a communication method, apparatus, and system for solving a slot aggregation technology in a flexible slot structure.
  • the application provides a communication method, which is applied to a terminal device, and includes:
  • first indication information and format information determining, according to a transmission direction of the sub-time unit in the time unit indicated by the first indication information, and a transmission direction of the sub-time unit indicated by the format information, determining whether the time unit is Belongs to the aggregation time unit.
  • the determining the time according to a transmission direction in a sub-time unit in a time unit indicated by the first indication information and a transmission direction of the sub-time unit indicated by the format information Whether the unit belongs to the aggregation time unit including:
  • the determining the time according to a transmission direction in a sub-time unit in a time unit indicated by the first indication information and a transmission direction of the sub-time unit indicated by the format information Whether the unit belongs to the aggregation time unit including:
  • the time unit belongs to an aggregation time unit when the proportion of the first sub-time unit occupies at least one of the time units reaches M, wherein the first sub-time unit indicated by the first indication information
  • the transmission direction is the same as the transmission direction of the first sub-time unit indicated by the format information, and the value of M is in the range of [0, 1].
  • the determining the time according to a transmission direction in a sub-time unit in a time unit indicated by the first indication information and a transmission direction of the sub-time unit indicated by the format information Whether the unit belongs to the aggregation time unit including:
  • the determining the time according to a transmission direction in a sub-time unit in a time unit indicated by the first indication information and a transmission direction of the sub-time unit indicated by the format information Whether the unit belongs to the aggregation time unit including:
  • the time unit belongs to an aggregation time unit when a ratio of the third sub-time unit to at least one of the time units is less than Q, wherein the third sub-time unit indicated by the first indication information
  • the transmission direction is different from the transmission direction of the third sub-time unit indicated by the format information, and the value of Q is in the range of [0, 1].
  • the communication method further includes:
  • the number of the polymerization time units is determined according to the number of polymerizations.
  • the application further provides a communication method, which is applied to a network device, where the method includes:
  • Determining first indication information and format information determining, according to a transmission direction of the sub-time unit in the time unit indicated by the first indication information, and a transmission direction of the sub-time unit indicated by the format information, determining whether the time unit is Belongs to the aggregation time unit.
  • the determining the time according to a transmission direction in a sub-time unit in a time unit indicated by the first indication information and a transmission direction of the sub-time unit indicated by the format information Whether the unit belongs to the aggregation time unit including:
  • the determining the time according to a transmission direction in a sub-time unit in a time unit indicated by the first indication information and a transmission direction of the sub-time unit indicated by the format information Whether the unit belongs to the aggregation time unit including:
  • the time unit belongs to an aggregation time unit when the proportion of the first sub-time unit occupies at least one of the time units reaches M, wherein the first sub-time unit indicated by the first indication information
  • the transmission direction is the same as the transmission direction of the first sub-time unit indicated by the format information, and the value of M is in the range of [0, 1].
  • the determining the time according to a transmission direction in a sub-time unit in a time unit indicated by the first indication information and a transmission direction of the sub-time unit indicated by the format information Whether the unit belongs to the aggregation time unit including:
  • the determining the time according to a transmission direction in a sub-time unit in a time unit indicated by the first indication information and a transmission direction of the sub-time unit indicated by the format information Whether the unit belongs to the aggregation time unit including:
  • the time unit belongs to an aggregation time unit when a ratio of the third sub-time unit to at least one of the time units is less than Q, wherein the third sub-time unit indicated by the first indication information
  • the transmission direction is different from the transmission direction of the third sub-time unit indicated by the format information, and the value of Q is in the range of [0, 1].
  • the communication method further includes:
  • Determining the second indication information sending the second indication information to the terminal device, where the second indication information indicates an aggregation number;
  • the number of the polymerization time units is determined according to the number of polymerizations.
  • the communication method further includes:
  • the present application further provides a communication apparatus, configured to perform the communication method of the foregoing first aspect, where the communication apparatus includes:
  • An obtaining module configured to obtain first indication information and format information
  • an aggregation time unit determining module configured to determine, according to a transmission direction of the sub-time unit in the time unit indicated by the first indication information, and a transmission direction of the sub-time unit indicated by the format information, whether the time unit belongs to Aggregation time unit.
  • the aggregation time unit judging module is specifically configured to:
  • the aggregation time unit judging module is specifically configured to:
  • the time unit belongs to an aggregation time unit when the proportion of the first sub-time unit occupies at least one of the time units reaches M, wherein the first sub-time unit indicated by the first indication information
  • the transmission direction is the same as the transmission direction of the first sub-time unit indicated by the format information, and the value of M is in the range of [0, 1].
  • the aggregation time unit judging module is specifically configured to:
  • the aggregation time unit judging module is specifically configured to:
  • the time unit belongs to an aggregation time unit when a ratio of the third sub-time unit to at least one of the time units is less than Q, wherein the third sub-time unit indicated by the first indication information
  • the transmission direction is different from the transmission direction of the third sub-time unit indicated by the format information, and the value of Q is in the range of [0, 1].
  • the acquiring module is further configured to: acquire second indication information, where the second indication information indicates an aggregation number;
  • the aggregation time unit determining module is further configured to determine the number of the aggregation time units according to the number of aggregations.
  • the present application further provides a communication apparatus, configured to perform the communication method of the foregoing second aspect, including:
  • An obtaining module configured to determine first indication information and format information
  • an aggregation time unit determining module configured to determine, according to a transmission direction of the sub-time unit in the time unit indicated by the first indication information, and a transmission direction of the sub-time unit indicated by the format information, whether the time unit belongs to Aggregation time unit.
  • the aggregation time unit judging module is specifically configured to:
  • the aggregation time unit judging module is specifically configured to:
  • the time unit belongs to an aggregation time unit when the proportion of the first sub-time unit occupies at least one of the time units reaches M, wherein the first sub-time unit indicated by the first indication information
  • the transmission direction is the same as the transmission direction of the first sub-time unit indicated by the format information, and the value of M is in the range of [0, 1].
  • the aggregation time unit judging module is specifically configured to:
  • the aggregation time unit judging module is specifically configured to:
  • the time unit belongs to an aggregation time unit when a ratio of the third sub-time unit to at least one of the time units is less than Q, wherein the third sub-time unit indicated by the first indication information
  • the transmission direction is different from the transmission direction of the third sub-time unit indicated by the format information, and the value of Q is in the range of [0, 1].
  • the obtaining module is further configured to: determine second indication information; the second indication information indicates an aggregation number;
  • the aggregation time unit determining module is further configured to determine the number of the aggregation time units according to the number of aggregations.
  • the communication device further includes:
  • a sending module configured to send at least one of the first indication information, the format information, and the second indication information to the terminal device.
  • the application further provides a terminal device, configured to perform the communication method of the foregoing first aspect, including:
  • a receiver configured to acquire first indication information and format information
  • a processor configured to determine, according to a transmission direction of the sub-time unit in the time unit indicated by the first indication information, and a transmission direction of the sub-time unit indicated by the format information, whether the time unit belongs to an aggregation time unit .
  • the processor is specifically used to:
  • the processor is specifically used to:
  • the time unit belongs to an aggregation time unit when the proportion of the first sub-time unit occupies at least one of the time units reaches M, wherein the first sub-time unit indicated by the first indication information
  • the transmission direction is the same as the transmission direction of the first sub-time unit indicated by the format information, and the value of M is in the range of [0, 1].
  • the processor is specifically used to:
  • the processor is specifically used to:
  • the time unit belongs to an aggregation time unit when a ratio of the third sub-time unit to at least one of the time units is less than Q, wherein the third sub-time unit indicated by the first indication information
  • the transmission direction is different from the transmission direction of the third sub-time unit indicated by the format information, and the value of Q is in the range of [0, 1].
  • the receiver is further configured to: acquire second indication information, where the second indication information indicates a number of aggregations;
  • the processor is further configured to determine the number of the aggregation time units according to the number of aggregations.
  • the application further provides a network device, configured to perform the communication method of the foregoing second aspect, including:
  • a processor configured to determine first indication information and format information, determine according to a transmission direction of the sub-time unit in the time unit indicated by the first indication information, and a transmission direction of the sub-time unit indicated by the format information Whether the time unit belongs to an aggregation time unit.
  • the processor is specifically used to:
  • the processor is specifically used to:
  • the time unit belongs to an aggregation time unit when the proportion of the first sub-time unit occupies at least one of the time units reaches M, wherein the first sub-time unit indicated by the first indication information
  • the transmission direction is the same as the transmission direction of the first sub-time unit indicated by the format information, and the value of M is in the range of [0, 1].
  • the processor is specifically used to:
  • the processor is specifically used to:
  • the time unit belongs to an aggregation time unit when a ratio of the third sub-time unit to at least one of the time units is less than Q, wherein the third sub-time unit indicated by the first indication information
  • the transmission direction is different from the transmission direction of the third sub-time unit indicated by the format information, and the value of Q is in the range of [0, 1].
  • the processor is further configured to: determine second indication information, where the second indication information indicates an aggregation number;
  • the processor is further configured to determine the number of the aggregation time units according to the number of aggregations.
  • the network device further includes:
  • a transmitter configured to send at least one of the first indication information, the format information, and the second indication information to the terminal device.
  • the present application further provides a communication system, including the terminal device in various possible implementation manners as in the fifth aspect and the fifth aspect, and various possible implementation manners in the sixth aspect and the sixth aspect, Network equipment.
  • the present application further provides a terminal device, including: a memory, a processor, and a computer program, wherein the computer program is stored in the memory, and the processor runs the computer program to perform the first aspect as described above and A communication method in various possible implementations of the first aspect.
  • the present application further provides a network device, including: a memory, a processor, and a computer program, wherein the computer program is stored in the memory, and the processor runs the computer program to perform the second aspect as described above
  • a network device including: a memory, a processor, and a computer program, wherein the computer program is stored in the memory, and the processor runs the computer program to perform the second aspect as described above
  • the present application further provides a computer storage medium, the storage medium comprising a computer program for implementing the communication method in the first aspect and the various possible implementations of the first aspect.
  • the present application further provides a computer storage medium, the storage medium comprising a computer program for implementing the communication method in the second aspect and the various possible implementations of the second aspect.
  • the application further provides a computer program product, comprising: computer program code, when the computer program code is run on a computer, causing the computer to perform the first aspect and the first aspect as described above
  • a communication method in a possible implementation.
  • the present application further provides a computer program product, comprising: computer program code, when the computer program code is run on a computer, causing the computer to perform the second aspect and the second aspect described above A communication method in a possible implementation.
  • the present application further provides a chip, including a memory and a processor, the memory is configured to store a computer program, the processor is configured to call and run the computer program from the memory, so that the installation is performed
  • the communication device of the chip performs the communication method in the first aspect as described above and in various possible implementations of the first aspect.
  • the present application further provides a chip, including a memory and a processor, the memory is configured to store a computer program, the processor is configured to call and run the computer program from the memory, so that the installation is performed
  • the communication device of the chip performs the communication method of the second aspect as described above and the various possible implementations of the second aspect.
  • the embodiment of the present application provides an apparatus, including at least one processor and at least one memory, where the processor is configured to perform the method in any one of the foregoing first to second aspects, at least one memory and at least one Processor coupling.
  • an embodiment of the present application provides an apparatus, including at least one processor and at least one memory, at least one memory coupled to at least one processor, and at least one memory for storing computer program code or computer instructions, when When the plurality of processors execute the above computer program code or computer instructions, the apparatus performs the method of any one of the above first to second aspects.
  • the embodiment of the present application provides an apparatus, including at least one processor, where the processor is configured to perform the method in any one of the foregoing first to second aspects.
  • the embodiment of the present application provides an apparatus, including at least one communication interface, for performing the transmitting and receiving steps in the method of any one of the foregoing first to second aspects. Further, the apparatus may further comprise at least one processor for performing the processing steps of the method of any of the above first to second aspects, the at least one processor being coupled to the at least one communication interface.
  • the foregoing processing step includes determining whether the time unit belongs to an aggregation time unit or the like.
  • the foregoing sending and receiving steps include implementing information interaction inside the device, or implementing transmission between the network device and the communication device.
  • the embodiment of the present application provides a computer storage medium, comprising computer instructions, when the computer instruction is run on the device, causing the device to perform the method in any one of the foregoing first to second aspects.
  • the embodiment of the present application provides a computer program product, when the computer program product is run on a computer, causing the computer to perform the method in any one of the first aspect to the second aspect.
  • the embodiment of the present application provides a chip, which is in the form of a device, and the chip may be any one of the sixteenth to twenty-first aspects.
  • FIG. 1 shows a system architecture that may be applicable to an embodiment of the present application
  • FIG. 2 is a schematic diagram of a time relationship between downlink scheduling and corresponding downlink data transmission in the embodiment of the present application;
  • FIG. 3 is a schematic diagram of an aggregation time slot in an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a time relationship between downlink data transmission and corresponding HARQ codebook feedback in the embodiment of the present application;
  • FIG. 5 is a schematic flowchart of a communication method according to Embodiment 1 of the present application.
  • FIG. 6 is a schematic flowchart of a communication method according to Embodiment 2 of the present application.
  • FIG. 7 is a schematic flowchart of a communication method according to Embodiment 3 of the present application.
  • FIG. 8 is a schematic flowchart diagram of a communication method according to Embodiment 4 of the present application.
  • Embodiment 9 is a schematic flowchart of a communication method provided in Embodiment 5 of the present application.
  • FIG. 10 is a schematic structural diagram of a communication apparatus according to Embodiment 1 of the present application.
  • FIG. 11 is a schematic structural diagram of a communication apparatus according to Embodiment 2 of the present application.
  • FIG. 12 is a schematic structural diagram of a terminal device according to Embodiment 1 of the present application.
  • FIG. 13 is a schematic structural diagram of a network device according to Embodiment 1 of the present application.
  • FIG. 14 is a schematic structural diagram of a terminal device according to Embodiment 2 of the present application.
  • FIG. 15 is a schematic structural diagram of a network device according to Embodiment 2 of the present application.
  • FIG. 1 is a schematic diagram of Embodiment 1 of a network architecture to which the embodiment of the present application is applied.
  • the network architecture provided by this embodiment includes a network device 10 and at least one terminal device 20.
  • the network device 10 is a device for accessing the terminal device 20 to the wireless network, and may be in Global System of Mobile communication (GSM) or Code Division Multiple Access (CDMA).
  • Base Transceiver Station (BTS) which may also be a base station (NodeB, NB for short) in Wideband Code Division Multiple Access (WCDMA), or Long Term Evolution (referred to as Long Term Evolution).
  • the relay station, the access point, the in-vehicle device, the wearable device, and the like in the frequency band are not limited herein.
  • FIG. 1 schematically shows a possible schematic diagram, taking the network device 10 as a base station as an example.
  • the terminal device 20 may be a wireless terminal or a wired terminal, the wireless terminal may be a device that provides voice and/or other service data connectivity to the user, a handheld device with a wireless connection function, or other processing device connected to the wireless modem. .
  • the wireless terminal can communicate with one or more core networks via a Radio Access Network (RAN), which can be a mobile terminal, such as a mobile phone (or "cellular" phone) and a mobile terminal.
  • RAN Radio Access Network
  • the computer for example, can be a portable, pocket, handheld, computer built-in or in-vehicle mobile device that exchanges language and/or data with the wireless access network.
  • FIG. 1 schematically depicts a possible schematic diagram, taking the terminal device 20 as a mobile phone as an example.
  • a radio frame contains 10 1ms subframes. Each subframe includes two slots, and the number of symbols included in each slot is related to the length of a cyclic prefix (CP) in the subframe.
  • CP cyclic prefix
  • a guard interval needs to be inserted between every two OFDM symbols, and the guard interval length is generally greater than The maximum delay spread of the wireless channel, such that the multipath component of one symbol does not interfere with the next symbol.
  • the signal within the guard interval is called the cyclic prefix CP.
  • the CP type can be divided into a normal CP (Normal CP, NCP) and an extended CP (ECP).
  • Normal CP normal CP
  • ECP extended CP
  • the application scenario of the ECP is usually in the presence of a large delay extended channel environment.
  • each slot includes 7 symbols, and each subframe is composed of 14 symbols.
  • each subframe has a sequence number of #0, #1, #2, #3, #4, respectively. , #5, #6, #7, #8, #9, #10, #11, #12, #13 symbol composition.
  • each slot includes 6 symbols, and each subframe is composed of 12 symbols, for example, each subframe has a sequence number of #0, #1, #2, #3, #4,# 5, #6, #7, #8, #9, #10, #11 symbol composition.
  • the uplink subframe is used for data transmission from the terminal device 20 to the network device 10, that is, uplink data transmission.
  • the downlink subframe is used for data transmission from the network device 10 to the terminal device 20, that is, downlink data transmission.
  • D in Table 1 represents a downlink subframe
  • U represents an uplink subframe
  • S represents a special subframe.
  • the special subframe S is used for switching from downlink to uplink, and specifically includes a part of downlink symbols, symbols of uplink and downlink conversion, and partial uplink symbols.
  • the 5G NR communication system can support a variety of configuration parameters numerologies. Numerology can be defined by one or more of the following parameter information: subcarrier spacing, cyclic prefix CP, time unit, bandwidth, and so on.
  • the time unit is used to indicate a time length or a time unit in the time domain, and may be, for example, a sampling point, a symbol, a mini-slot, a slot, a plurality of slots, and a subframe. Wireless frame or frame structure, etc.
  • the time unit information may include the type, length, or structure of the time unit.
  • one radio frame is 10 ms and contains 10 subframes.
  • a sub-frame contains at least one slot, and one slot has 14 symbols fixed.
  • the number of slots in one subframe is related to the corresponding subcarrier spacing, as shown in Table 2 below.
  • Table 2 shows an example in which the CP is a normal CP, and the number of slots corresponding to different subcarrier spacings is illustrated.
  • denotes an index of different subcarrier spacing
  • the correspondence relationship between subcarrier spacing and ⁇ is as shown in Table 3 above.
  • the subcarrier spacing is 15 kHz
  • the corresponding ⁇ has a value of 0
  • CP is normal
  • the number of slots in a subframe is 1
  • the number of slots in a frame is 10.
  • the subcarrier spacing is 30 kHz
  • the corresponding ⁇ value is 1
  • CP is normal
  • the number of slots in one subframe is 2
  • the number of slots in one frame is 20.
  • the communication transmission further supports a flexible slot format, that is, the symbols in one slot can be used for uplink data transmission, or all for downlink data transmission, or in one slot. Some symbols are used for uplink data transmission and some symbols are used for downlink data transmission.
  • the slot structure can be configured according to slot format related information (SFI).
  • SFI indicates the corresponding slot, and each symbol is an uplink symbol, a downlink symbol, or an unknown symbol, as shown in Table 4 below.
  • each subframe in the 5G communication system can include downlink and uplink transmission opportunities, which is more conducive to the transmission of short-latency services.
  • slot aggregation technology data is uplink or downlink transmitted on one or more time slots.
  • Data transmission using slot aggregation technology occupies more resources, enhances data transmission coverage, and improves data transmission reliability.
  • the optional frame configuration structure is determined according to the data transmission direction, the number of time slots to be aggregated indicated by the aggregation factor, and the frame configuration structure in Table 1, so that the frame structure is flexible. Poor sex.
  • the network device 10 can perform slot aggregation scheduling by using dynamic downlink control information (DCI), where the DCI indicates the direction of data transmission and the symbols used for uplink/downlink transmission in the time slot.
  • DCI may be transmitted by the network device 10 to the terminal device 20 through a physical downlink control channel (PDCCH).
  • PDCH physical downlink control channel
  • the network device 10 may send an uplink time domain resource allocation table and a downlink time domain resource allocation table (time resource allocation table) to the terminal device 20 through high layer signaling, such as radio resource control (RRC).
  • RRC radio resource control
  • the uplink/downlink time domain resource allocation table includes up to 16 rows.
  • Each of the downlink time domain resource allocation tables shown in Table 5 below includes at least one of the following: a time relationship between the downlink scheduling and the corresponding downlink data transmission (K0). , time domain resource allocation information and scheduling type (or PDSCH mapping type). There are 4 rows exemplified in Table 5.
  • the time domain resource allocation information includes a start symbol and a number of symbols.
  • FIG. 2 is a schematic diagram of a time relationship between downlink scheduling and corresponding downlink data transmission in the embodiment of the present application.
  • the network device 10 transmits DCI to the terminal device through the PDCCH in the time unit n
  • the time unit corresponding to the data scheduled by the DCI transmitted on the physical downlink share channel (PDSCH) is n+K0.
  • the value of K0 in Fig. 2 is exemplarily 3.
  • the following time units collectively referred to as K0 are time slots, but the time units described in the various embodiments of the present application are not limited to time slots.
  • the time domain resource allocation information may indicate a time domain resource, for example, indicating a starting symbol and a number of symbols occupied by the scheduled data in one time unit. For example, when the time unit is a time slot, the time domain resource allocation information indicates the start symbol index of the data scheduled in the scheduled time slot and the number of symbols of the scheduling data.
  • the time domain resource allocation information may be uniformly encoded as a start length indication value (SLIV).
  • the index of the scheduling data start symbol may be 0, 1, 2, 3 in one slot, and the length of the scheduling data may be up to 14 symbols; for NCP and PDSCH resources Mapping type B, in one slot, the index of the starting data of the scheduling data may be any value, the length of the scheduling data may be 2, 4 or 7 symbols; for the NCP and PUSCH resource mapping type A, in one slot
  • the scheduling data start symbol index is 0, the length of the scheduling data is up to 14 symbols; for the NCP and PUSCH resource mapping type B, in one time slot, the scheduling data start symbol index is any value, and the length of the scheduling data Up to 14 symbols; for ECP and PDSCH resource mapping type A, the index of the scheduling data start symbol may be 0, 1, 2, 3 in one slot, and the length of the scheduling data may be up to 12 symbols; for ECP and PDSCH
  • the resource mapping type B, in one time slot, the index of the starting data of the scheduling data may be any value, the length of the scheduling data may be up to 14 symbols; for ECP and PD
  • the DCI sent by the network device 10 to the terminal device 20 may carry an index number, where the index number indicates that the time domain resource allocated by the data transmission scheduled by the DCI corresponds to the downlink time domain resource allocation table.
  • the network device 10 may also send a set of values of K0, such as ⁇ 1, 2, 3, 4 ⁇ , to the terminal device 20 through RRC, and notify the terminal device 20 of the K0 in the DCI to be a specific set. Which one, and no longer put K0 in the time domain resource allocation table.
  • the terminal device 20 receives an aggregation factor transmitted by the network device 10 through RRC.
  • the terminal device 20 can determine, according to the aggregation factor, the K0 and SLIV indicated by the DCI, the aggregated time slot for aggregation used for data transmission using the aggregated slot technology.
  • FIG. 3 is a schematic diagram of an aggregation time slot in an embodiment of the present application. As shown in FIG. 3, the aggregation time slot is exemplified in FIG. 3 by taking the aggregation factor as 4, the value of K0 as 1, the start symbol as 3, and the number of symbols as 8.
  • the DCI sent by the network device 10 to the terminal device 20 further carries a time relationship between the downlink data transmission and the corresponding hybrid automatic repeat reQuest (HARQ) codebook feedback (Timing between DL data reception and corresponding Acknowledgement, K1).
  • FIG. 4 is a schematic diagram showing the time relationship between downlink data transmission and corresponding HARQ codebook feedback in the embodiment of the present application. Specifically, if the network device 10 transmits the downlink data to the terminal device 20 via the PDSCH in the time unit n, the terminal device 20 transmits the uplink feedback information corresponding to the downlink data, such as the uplink control information, to the network device 10 in the time unit n+K1. Uplink control information, UCI). The value of K1 in Fig.
  • the terminal device 20 transmits the UCI to the network device 10 via the PUSCH or the PUCCH.
  • the network device 10 may pre-configure a set of K1 values, such as ⁇ 1, 2, 3, 4 ⁇ , and send it to the terminal device through RRC signaling.
  • the DCI is then sent to the terminal device 20 for notifying the terminal device 20 which K1 of the data transmission is specifically assigned to which one of the sets.
  • each row in the uplink time domain resource allocation table includes at least one of the following: Timing between UpLink and the corresponding Uplink data transmission (K2), and time domain resource allocation information. .
  • the K2 indicates the time interval from the PDCCH to the PUSCH. If the network device 10 sends the DCI to the terminal device through the PDCCH in the time unit n, the DCI is scheduled to be transmitted on the physical uplink share channel (PUSCH).
  • the time unit corresponding to the data is n+K2.
  • the time domain resource allocation information is the same as the time domain resource information in the downlink time domain resource allocation table, and is not described herein again.
  • the slot structure configured by the network device 10 and the slot aggregation scheduling indicated by the DCI by the network device 10 indicate that the symbols in the slot are used for uplink/downlink. Therefore, there may be a time when the network device 10 is configured.
  • the gap structure and the network device 10 are scheduled to collide with each other through the slot aggregation indicated by the DCI.
  • the solution to the above conflict in the NR system is that the terminal device determines consecutive time slots as aggregated time slots according to the aggregation factor.
  • the use of consecutive time slots as the aggregation time slots has problems that are not conducive to delay sensitive number transmission, which affects data transmission efficiency.
  • the present application proposes a communication method, which improves data transmission efficiency.
  • the communication method provided by the present application will be described in detail below using a detailed embodiment.
  • FIG. 5 is a schematic flowchart diagram of a communication method according to Embodiment 1 of the present application.
  • the execution body of the method may be the terminal device 20 in FIG.
  • the embodiment relates to a method for acquiring an aggregation time slot in a communication process, and determining whether a time slot is an aggregation time slot according to the SFI and the SLIV configured by the network device for the terminal device, thereby improving data transmission efficiency.
  • the method includes:
  • the first indication information may be a start length indication value SLIV
  • the format information may be slot format related information SFI.
  • the manner in which the terminal device obtains the SLIV specifically includes:
  • the terminal device receives the downlink control information sent by the network device, where the downlink control information carries an index number, and the terminal device obtains the SLIV according to the index number in the time domain resource allocation table corresponding to the transmission direction indicated by the format of the DCI.
  • the terminal device may determine to perform uplink data transmission or downlink data transmission according to the format of the DCI.
  • the terminal device determines the SLIV in the downlink time domain resource allocation table according to the index number in the DCI.
  • the terminal device determines the SLIV in the uplink time domain resource allocation table according to the index number in the DCI.
  • the process for the terminal device to obtain the SFI includes:
  • the terminal device acquires an SFI that the network device sends through RRC signaling or downlink control information.
  • the network device may configure the SFI to the terminal device in a semi-static manner, such as RRC signaling, and the network device also configures the SFI period through RRC signaling, and the SFI may be 0.125 ms, 0.25 ms, 0.5 ms, 1 ms, 2 ms. , 5ms and 10ms, etc.
  • the network device can also configure the SFI to the terminal device in a dynamic manner, such as DCI.
  • the terminal device acquires the SFI by detecting the common downlink control channel Group Common PDCCH in the group.
  • a Group Common PDCCH can indicate the SFI of one or more slots.
  • S502. Determine, according to a transmission direction of the sub-time unit in the time unit indicated by the first indication information, and a transmission direction of the sub-time unit indicated by the format information, whether the time unit belongs to the aggregation time unit.
  • the time unit may be a frame, a subframe, a time slot, or the like.
  • the time unit is used as a time slot as an example, and a process of determining whether a time unit belongs to an aggregation time unit is described.
  • the transmission direction of the sub-time unit in the time unit indicated by the first indication information may be the transmission direction of the data to be transmitted in the sub-time unit, and the transmission direction may be uplink, downlink, and unknown.
  • some or all of the sub-time units in the time unit may be determined by the first indication information, and the transmission direction of the part or all sub-time units is determined by the format of the DCI corresponding to the first indication information, and the transmission directions are the same.
  • the first indication information indicates that the transmission direction of the symbols 3 to 10 is the downlink transmission direction.
  • the format information indicates the transmission direction of each sub-time unit in the time unit, such as uplink, downlink, and unknown.
  • the format information indicates the transmission direction of each symbol in the slot n.
  • the present embodiment can determine whether the time slot n belongs to an aggregated time slot according to whether there is a collision between the transmission direction of the symbol 3 to the symbol 10 in the first indication information and the transmission direction in the format information.
  • any sub-time unit when the first indication information indicates that the transmission direction of the sub-time unit is uplink, if the format information indicates that the transmission direction of the sub-time unit is uplink or unknown, determining that the transmission direction is the same; If the format information indicates that the transmission direction of the sub-time unit is downlink, it is determined that the transmission direction is different.
  • the first information indicates that the transmission direction of the sub-time unit is downlink
  • the format information indicates that the transmission direction of the sub-time unit is downlink or unknown, it is determined that the transmission direction is the same;
  • the information indicates that the transmission direction of the sub-time unit is uplink, and it is determined that the transmission direction is different.
  • the first indication information indicates that the transmission direction of the sub-time unit is unknown, it is determined that the transmission direction is the same.
  • the transmission direction of the time unit is the transmission direction indicated by the format of the DCI, and all the time units belonging to the aggregation time unit have the same transmission direction.
  • the data occupies all the aggregation time units for transmission, which increases the resources occupied by the data transmission and improves the reliability of data transmission.
  • the time unit is not occupied, and the time unit for aggregation may be discontinuous.
  • the terminal device can transmit data or instructions according to the transmission direction of each sub-time unit in the time unit indicated by the format information, thereby improving the flexibility of data transmission.
  • the foregoing determining, according to the transmission direction of the sub-time unit indicated by the first indication information and the format information, whether the time unit is used for aggregation may include the following implementation manners as follows:
  • the determining time unit belongs to the aggregation time unit when the transmission direction of the at least one sub-time unit in the time unit indicated by the first indication information is the same as the transmission direction of the at least one sub-time unit indicated by the format information.
  • the time unit there are at least N sub-time units in the time unit, which are respectively recorded as sub-time units 1 to N.
  • the first indication information is that the transmission direction configured for the sub-time units 1 to N is the same as the transmission direction configured for the sub-time units 1 to N
  • the time unit is considered to belong to the aggregation time unit.
  • N is a positive integer.
  • the time unit belongs to the aggregation time unit.
  • the transmission direction of the aggregation time unit is the same as the transmission direction indicated by the sub-time unit in the time unit.
  • the determining time unit belongs to the aggregation time unit; wherein the transmission direction of the first sub-time unit indicated by the first indication information is indicated by the format information
  • the transmission direction of the first sub-time unit is the same, and the value of M is in the range of [0, 1].
  • the sub-time unit in which the transmission direction indicated by the first indication information in the time unit is the same as the transmission direction indicated by the format information is recorded as the first sub-time unit, and the first sub-time unit in the time unit occupies the time unit
  • the ratio of at least one sub-time unit reaches M, it is determined that the time unit belongs to the aggregation time unit.
  • the at least one sub-time unit may be a sub-time unit indicating a transmission direction in the first indication information.
  • M is any real number from 0 to 1.
  • M is 1, it means that at least one of the sub-time units in the time unit is the first sub-time unit.
  • the transmission direction of the aggregation time unit is the same as the transmission direction indicated by the sub-time unit in the time unit.
  • the determining time unit belongs to the aggregation time unit; wherein, the transmission direction of the second sub-time unit indicated by the first indication information and the transmission direction of the two sub-time units indicated by the format information Different, P is a positive integer.
  • the sub-time unit in which the transmission direction indicated by the first indication information in the time unit is different from the transmission direction indicated by the format information is recorded as the second sub-time unit, and the number of the second sub-time unit in the time unit does not reach P
  • the number of the second sub-time unit in the time unit does not reach P
  • the transmission direction of the aggregation time unit is the same as the transmission direction indicated by the sub-time unit in the time unit.
  • the time unit belongs to the aggregation time unit when the ratio of the third sub-time unit to the at least one sub-time unit in the time unit is less than Q; wherein the transmission direction of the third sub-time unit indicated by the first indication information is indicated by the format information The transmission direction of the third sub-time unit is different, and the value of Q is in the range of [0, 1].
  • the sub-time unit in which the transmission direction indicated by the first indication information in the time unit is different from the transmission direction indicated by the format information is recorded as the third sub-time unit, and the third sub-time in the time unit accounts for at least the time unit.
  • the ratio of one sub-time unit is less than Q, it is determined that the time unit belongs to the aggregation time unit; when the ratio of the third sub-time in the time unit to at least one sub-time unit in the time unit is not less than Q, it is determined that the time unit does not belong to the aggregation time. unit.
  • the at least one sub-time unit may be a sub-time unit indicating a transmission direction in the first indication information.
  • the transmission direction of the aggregation time unit is the same as the transmission direction indicated by the sub-time unit in the time unit.
  • the communication method provided by the embodiment of the present application includes acquiring first indication information and format information, and determining, according to a transmission direction of a sub-time unit in a time unit indicated by the first indication information, and a transmission direction of the sub-time unit indicated by the format information. Whether the time unit belongs to the aggregation time unit.
  • the aggregation time unit can be discontinuous.
  • the transmission direction indicated by the DCI format and the aggregation factor are avoided, and the continuous time unit is used as the aggregation time unit, which is disadvantageous for the delay sensitive number transmission.
  • FIG. 6 is a schematic flowchart diagram of a communication method according to Embodiment 2 of the present application.
  • the terminal device further receives second indication information indicating the number of aggregations, and determines the number of aggregation time units according to the number of aggregations.
  • the communication method further includes:
  • the terminal device receives the second indication information that is sent by the network device, and the second indication information may be an aggregation factor, indicating the number of aggregations.
  • the number of time units occupied during data transmission between the network device and the terminal device is the number of aggregations indicated by the aggregation factor.
  • the network device sends the second indication information to the terminal device by using RRC signaling.
  • S602. Determine the number of aggregation time units according to the number of aggregations.
  • S601 and S602 in this embodiment may be executed after S502 in the embodiment shown in FIG. 5.
  • the communication method provided in this embodiment includes: acquiring second indication information, where the second indication information indicates the number of aggregations, and determining the number of aggregation time units according to the number of aggregations.
  • the terminal device determines the number of aggregations according to the second indication information, determines the number of aggregation time units according to the number of aggregations, and determines an aggregation time unit for data transmission according to the number of aggregation time units.
  • FIG. 7 is a schematic flowchart diagram of a communication method according to Embodiment 3 of the present application. As shown in FIG. 7, the communication method includes:
  • the terminal device receives the DCI sent by the network device.
  • the manner of obtaining the first indication information, the format information, and the second indication information may be as shown in any of the foregoing embodiments, and is not repeatedly described in this embodiment.
  • S703. Determine an off-time unit according to the uplink feedback time unit K1 in the downlink control information and the processing time unit interval.
  • the DCI carries an uplink feedback time unit K1
  • the processing time unit interval is a time interval required for the terminal device to process downlink data. Therefore, the time unit within the time interval before the time unit K1 cannot be used as the aggregation time unit. Therefore, the cutoff time unit can be determined according to K1 and the processing time unit interval, and the cutoff time unit is before K1.
  • the processing time unit interval may be predefined for the terminal device and the network device, or may be sent to the terminal device by the network device by signaling.
  • the determination process of the aggregation time unit may be ended.
  • the non-existent time unit can be used for downlink data transmission, otherwise the terminal device cannot upload the feedback information in the uplink feedback time unit K1, and therefore, the determination of the aggregation time unit is also ended. process.
  • S705. Determine, according to a transmission direction of the sub-time unit in the current time unit indicated by the first indication information, and a transmission direction of the sub-time unit in the current time unit indicated by the format indication, whether the current time unit belongs to the aggregation time unit.
  • the specific manner of determining whether the current time unit belongs to the aggregation time unit in the embodiment is the same as the specific manner of determining whether the time unit belongs to the aggregation time unit in the embodiment shown in FIG. 5, and details are not described herein again.
  • the communication method provided by the embodiment of the present application provides an exemplary description of whether the current time unit belongs to the aggregation time unit.
  • the method includes: obtaining the downlink control information, determining, according to the uplink feedback time unit K1 and the processing time unit interval in the downlink control information, the deadline unit, acquiring the first indication information, the format information, and the second indication information, where the second indication information indicates aggregation.
  • the transmission direction of the sub-time unit in the time unit determines whether the current time unit belongs to the aggregation time unit. In this embodiment, according to the configuration of the first indication information and the format information on the transmission direction of the sub-time unit in the time unit, it is determined whether the time unit belongs to the aggregation time unit, and when the time unit does not belong to the aggregation time unit, the time unit does not need to be used.
  • the aggregation time unit can be discontinuous.
  • the transmission direction indicated by the DCI format and the aggregation factor are avoided, and the continuous time unit is used as the aggregation time unit, which is disadvantageous for the delay sensitive number transmission.
  • FIG. 8 is a schematic flowchart of a communication method according to Embodiment 4 of the present application. This embodiment describes a process in which the terminal device acquires all the aggregated time slots of the time slot for aggregation. As shown in FIG. 8, the communication method includes:
  • the terminal device receives the DCI sent by the network device, where the DCI carries the start time slot information.
  • the K0 time slot is taken as the first time slot.
  • the K2 time slot is taken as the first time slot.
  • the method for determining whether the time unit belongs to the aggregation time unit in the embodiment shown in FIG. 5 determines whether the ith time slot belongs to the aggregation time slot, which is not described herein again.
  • S804 Add 1 to the number of the aggregated timeslots, and determine whether the number of the aggregated timeslots reaches the number indicated by the aggregation factor; if yes, the process ends; if not, execute S805.
  • the number of aggregate time slots is incremented by one.
  • the initial value of the number of aggregated time slots is zero. It is determined whether the number of modified aggregation time slots reaches the number indicated by the aggregation factor. If so, all time slots required to aggregate time slots are acquired. If not, continue to acquire the aggregated time slots for aggregation.
  • uplink data transmission or downlink data transmission is determined according to the format of the DCI.
  • i is incremented by 1, for example, it is determined whether the second time slot is an aggregate time slot.
  • the downlink data transmission is determined according to the format of the DCI, it is further determined whether the ith time slot is a cut-off time slot, and the manner of obtaining the cut-off time slot is specifically as shown in the foregoing embodiment of FIG. Narration.
  • the aggregation time unit can be discontinuous.
  • the transmission direction indicated by the DCI format and the aggregation factor are avoided, and the continuous time unit is used as the aggregation time unit, which is disadvantageous for the delay sensitive number transmission.
  • Another aspect of the embodiment of the present application further provides a communication method, where the execution subject is a network device.
  • the execution subject is a network device.
  • FIG. 9 is a schematic flowchart diagram of a communication method according to Embodiment 5 of the present application. As shown in FIG. 9, the communication method includes:
  • S901. Determine first indication information and format information.
  • S902. Determine, according to a transmission direction of the sub-time unit in the time unit indicated by the first indication information, and a transmission direction of the sub-time unit indicated by the format information, whether the time unit belongs to the aggregation time unit.
  • determining, according to the transmission direction in the sub-time unit in the time unit indicated by the first indication information and the transmission direction of the sub-time unit indicated by the format information, determining whether the time unit belongs to the aggregation time unit include:
  • the determining time unit belongs to the aggregation time unit when the transmission direction of the at least one sub-time unit in the time unit indicated by the first indication information is the same as the transmission direction of the at least one sub-time unit indicated by the format information.
  • determining, according to the transmission direction in the sub-time unit in the time unit indicated by the first indication information and the transmission direction of the sub-time unit indicated by the format information, determining whether the time unit belongs to the aggregation time Units including:
  • the determining time unit belongs to the aggregation time unit; wherein the transmission direction of the first sub-time unit indicated by the first indication information is indicated by the format information
  • the transmission direction of the first sub-time unit is the same, and the value of M is in the range of [0, 1].
  • determining, according to the transmission direction in the sub-time unit in the time unit indicated by the first indication information and the transmission direction of the sub-time unit indicated by the format information, determining whether the time unit belongs to the aggregation time Units including:
  • the determining time unit belongs to the aggregation time unit; wherein, the transmission direction of the second sub-time unit indicated by the first indication information and the transmission direction of the two sub-time units indicated by the format information Different, P is a positive integer.
  • determining, according to the transmission direction in the sub-time unit in the time unit indicated by the first indication information and the transmission direction of the sub-time unit indicated by the format information, determining whether the time unit belongs to the aggregation time Units including:
  • the time unit belongs to the aggregation time unit when the ratio of the third sub-time unit to the at least one sub-time unit in the time unit is less than Q; wherein the transmission direction of the third sub-time unit indicated by the first indication information is indicated by the format information The transmission direction of the third sub-time unit is different, and the value of Q is in the range of [0, 1].
  • the communication method further includes:
  • the communication method further includes:
  • Another aspect of the embodiment of the present application further provides a communication apparatus for performing the communication method in the foregoing embodiment shown in FIG. 5 to FIG. 8 having the same or similar technical features and technical effects.
  • FIG. 10 is a schematic structural diagram of a communication apparatus according to Embodiment 1 of the present application. As shown in FIG. 10, the communication apparatus includes:
  • the obtaining module 1001 is configured to obtain first indication information and format information.
  • the aggregation time unit determining module 1002 is configured to determine, according to the transmission direction of the sub-time unit in the time unit indicated by the first indication information and the transmission direction of the sub-time unit indicated by the format information, whether the time unit belongs to the aggregation time unit.
  • the aggregation time unit determining module 1002 is specifically configured to:
  • the determining time unit belongs to the aggregation time unit when the transmission direction of the at least one sub-time unit in the time unit indicated by the first indication information is the same as the transmission direction of the at least one sub-time unit indicated by the format information.
  • the aggregation time unit determining module 1002 is specifically configured to:
  • the determining time unit belongs to the aggregation time unit; wherein the transmission direction of the first sub-time unit indicated by the first indication information is indicated by the format information
  • the transmission direction of the first sub-time unit is the same, and the value of M is in the range of [0, 1].
  • the aggregation time unit determining module 1002 is specifically configured to:
  • the determining time unit belongs to the aggregation time unit; wherein, the transmission direction of the second sub-time unit indicated by the first indication information and the transmission direction of the two sub-time units indicated by the format information Different, P is a positive integer.
  • the aggregation time unit determining module 1002 is specifically configured to:
  • the time unit belongs to the aggregation time unit when the ratio of the third sub-time unit to the at least one sub-time unit in the time unit is less than Q; wherein the transmission direction of the third sub-time unit indicated by the first indication information is indicated by the format information The transmission direction of the third sub-time unit is different, and the value of Q is in the range of [0, 1].
  • the obtaining module 1001 is further configured to: obtain second indication information, where the second indication information indicates an aggregation number;
  • the aggregation time unit judging module 1002 is further configured to determine the number of aggregation time units according to the number of aggregations.
  • Another aspect of the embodiment of the present application further provides a communication apparatus for performing the communication method in the embodiment shown in FIG. 9 described above, having the same or similar technical features and technical effects.
  • FIG. 11 is a schematic structural diagram of a communication apparatus according to Embodiment 2 of the present application. As shown in FIG. 11, the method includes:
  • the obtaining module 1101 is configured to determine first indication information and format information
  • the aggregation time unit determining module 1102 is configured to determine, according to the transmission direction of the sub-time unit in the time unit indicated by the first indication information and the transmission direction of the sub-time unit indicated by the format information, whether the time unit belongs to the aggregation time unit.
  • the aggregation time unit determining module 1102 is specifically configured to:
  • the determining time unit belongs to the aggregation time unit when the transmission direction of the at least one sub-time unit in the time unit indicated by the first indication information is the same as the transmission direction of the at least one sub-time unit indicated by the format information.
  • the aggregation time unit determining module 1102 is specifically configured to:
  • the determining time unit belongs to the aggregation time unit; wherein the transmission direction of the first sub-time unit indicated by the first indication information is indicated by the format information
  • the transmission direction of the first sub-time unit is the same, and the value of M is in the range of [0, 1].
  • the aggregation time unit determining module 1102 is specifically configured to:
  • the determining time unit belongs to the aggregation time unit; wherein, the transmission direction of the second sub-time unit indicated by the first indication information and the transmission direction of the two sub-time units indicated by the format information Different, P is a positive integer.
  • the aggregation time unit determining module 1102 is specifically configured to:
  • the time unit belongs to the aggregation time unit when the ratio of the third sub-time unit to the at least one sub-time unit in the time unit is less than Q; wherein the transmission direction of the third sub-time unit indicated by the first indication information is indicated by the format information The transmission direction of the third sub-time unit is different, and the value of Q is in the range of [0, 1].
  • the obtaining module 1101 is further configured to: determine second indication information; the second indication information indicates an aggregation number;
  • the aggregation time unit judging module is further configured to determine the number of aggregation time units according to the number of aggregations.
  • the communications apparatus further includes:
  • the sending module 1103 is configured to send at least one of the first indication information, the format information, and the second indication information to the terminal device.
  • Another embodiment of the present application further provides a terminal device for performing the communication method in the foregoing embodiment shown in FIG. 5 to FIG. 8 , which has the same or similar technical features and technical effects.
  • FIG. 12 is a schematic structural diagram of a terminal device according to Embodiment 1 of the present application. As shown in FIG. 12, the method includes:
  • the receiver 1201 is configured to obtain first indication information and format information.
  • the processor 1202 is configured to determine, according to a transmission direction of the sub-time unit in the time unit indicated by the first indication information, and a transmission direction of the sub-time unit indicated by the format information, whether the time unit belongs to the aggregation time unit.
  • the processor 1202 is specifically configured to:
  • the determining time unit belongs to the aggregation time unit when the transmission direction of the at least one sub-time unit in the time unit indicated by the first indication information is the same as the transmission direction of the at least one sub-time unit indicated by the format information.
  • the processor 1202 is specifically configured to:
  • the determining time unit belongs to the aggregation time unit; wherein the transmission direction of the first sub-time unit indicated by the first indication information is indicated by the format information
  • the transmission direction of the first sub-time unit is the same, and the value of M is in the range of [0, 1].
  • the processor 1202 is specifically configured to:
  • the determining time unit belongs to the aggregation time unit; wherein, the transmission direction of the second sub-time unit indicated by the first indication information and the transmission direction of the two sub-time units indicated by the format information Different, P is a positive integer.
  • the processor 1202 is specifically configured to:
  • the time unit belongs to the aggregation time unit when the ratio of the third sub-time unit to the at least one sub-time unit in the time unit is less than Q; wherein the transmission direction of the third sub-time unit indicated by the first indication information is indicated by the format information The transmission direction of the third sub-time unit is different, and the value of Q is in the range of [0, 1].
  • the receiver 1201 is further configured to: obtain second indication information, where the second indication information indicates an aggregation number;
  • the processor 1202 is further configured to determine the number of aggregation time units according to the number of aggregations.
  • Another embodiment of the present application further provides a network device for performing the communication method in the foregoing embodiment shown in FIG. 9, which has the same or similar technical features and technical effects.
  • FIG. 13 is a schematic structural diagram of a network device according to Embodiment 1 of the present application. As shown in FIG. 13, the method includes:
  • the processor 1301 is configured to determine first indication information and format information, determine, according to a transmission direction of the sub-time unit in the time unit indicated by the first indication information, and a transmission direction of the sub-time unit indicated by the format information, whether the time unit belongs to the aggregation. Time unit.
  • the processor 1301 is specifically configured to:
  • the determining time unit belongs to the aggregation time unit when the transmission direction of the at least one sub-time unit in the time unit indicated by the first indication information is the same as the transmission direction of the at least one sub-time unit indicated by the format information.
  • the processor 1301 is specifically configured to:
  • the determining time unit belongs to the aggregation time unit; wherein the transmission direction of the first sub-time unit indicated by the first indication information is indicated by the format information
  • the transmission direction of the first sub-time unit is the same, and the value of M is in the range of [0, 1].
  • the processor 1301 is specifically configured to:
  • the determining time unit belongs to the aggregation time unit; wherein, the transmission direction of the second sub-time unit indicated by the first indication information and the transmission direction of the two sub-time units indicated by the format information Different, P is a positive integer.
  • the processor 1301 is specifically configured to:
  • the time unit belongs to the aggregation time unit when the ratio of the third sub-time unit to the at least one sub-time unit in the time unit is less than Q; wherein the transmission direction of the third sub-time unit indicated by the first indication information is indicated by the format information The transmission direction of the third sub-time unit is different, and the value of Q is in the range of [0, 1].
  • the processor 1301 is further configured to: determine second indication information, where the second indication information indicates an aggregation number;
  • the processor is further configured to determine the number of aggregation time units according to the number of aggregations.
  • the network device further includes:
  • the transmitter 1302 is configured to send at least one of the first indication information, the format information, and the second indication information to the terminal device.
  • FIG. 14 is a schematic structural diagram of a terminal device according to Embodiment 2 of the present application. As shown in FIG. 14, the terminal device includes a processor 1401, a memory 1402, a communication interface 1403, and a bus 1404;
  • the processor 1401, the memory 1402, and the communication interface 1403 are connected and communicate with each other through a bus 1404.
  • the memory 1402 is configured to store computer execution instructions. When the device is running, the processor 1401 executes a computer execution instruction in the memory 1402 to utilize The hardware resources in the device perform the steps in the communication method corresponding to FIGS. 5 to 8.
  • FIG. 15 is a schematic structural diagram of a network device according to Embodiment 2 of the present application. As shown in FIG. 15, the network device includes a processor 1501, a memory 1502, a communication interface 1503, and a bus 1504.
  • the processor 1501, the memory 1502 and the communication interface 1503 are connected and communicate with each other through a bus 1504.
  • the memory 1502 is configured to store computer execution instructions. When the device is running, the processor 1501 executes a computer execution instruction in the memory 1502 to utilize The hardware resources in the device perform the steps in the communication method corresponding to FIG.
  • FIG. 1 Another aspect of the present application also provides a communication system, as shown in FIG. 1, including a terminal device as shown in FIG. 12 or FIG. 14 and a network device as shown in FIG. 13 or FIG.
  • FIG. 5 Another aspect of the present application also provides a terminal device comprising: a memory, a processor, and a computer program stored in a memory, the processor running the computer program to perform the steps in the communication method corresponding to the above-described FIG. 5 to FIG.
  • Another aspect of the present application also provides a network device, including: a memory, a processor, and a computer program, the computer program being stored in a memory, and the processor running the computer program to perform the steps in the communication method corresponding to FIG. 9 above.
  • Another aspect of the present application also provides a computer storage medium comprising a computer program for implementing the steps in the communication method corresponding to Figures 5 through 8 above.
  • Another aspect of the present application also provides a computer storage medium including a computer program for implementing the steps in the communication method corresponding to FIG. 9 described above.
  • Another aspect of the present application also provides a computer program product comprising computer program code for causing a computer to perform the steps of the communication method corresponding to Figures 5-8 above when the computer program code is run on a computer.
  • Another aspect of the present application also provides a computer program product comprising computer program code for causing a computer to perform the steps of the communication method corresponding to FIG. 9 described above when the computer program code is run on a computer.
  • Another aspect of the present application also provides a chip including a memory for storing a computer program, and a processor for calling and running the computer program from the memory, such that the chip-mounted communication device performs the above-described FIG. 5 to FIG. 8 steps in the corresponding communication method.
  • Another aspect of the present application also provides a chip, including a memory and a processor, the memory is used to store a computer program, and the processor is configured to call and run the computer program from the memory, so that the chip-mounted communication device performs the corresponding operation as shown in FIG. 9 above.
  • the steps in the communication method are also provided.
  • the present application further provides a first apparatus, including at least one processor and at least one memory, where the processor is configured to perform any one of the communication methods corresponding to the foregoing FIG. 5 to FIG. 9, at least one memory and at least one processor. coupling.
  • Another aspect of the present application is also a second apparatus comprising at least one processor and at least one memory, at least one memory coupled to at least one processor, at least one memory for storing computer program code or computer instructions, when one or more When the processor executes the above computer program code or computer instruction, the apparatus executes any of the communication methods corresponding to the above-described FIGS. 5 to 9.
  • Another aspect of the present application is to provide a third apparatus, including at least one processor, for performing any one of the communication methods corresponding to the foregoing FIG. 5 to FIG.
  • Another aspect of the present application is to provide a fourth device, including at least one communication interface, for performing the transmitting and receiving steps of any of the foregoing communication methods corresponding to FIG. 5 to FIG.
  • the apparatus may further comprise at least one processor for performing the processing steps of any of the communication methods corresponding to the above-described FIG. 5 to FIG. 9, at least one processor coupled to the at least one communication interface.
  • the foregoing processing step includes determining whether the time unit belongs to an aggregation time unit or the like.
  • the foregoing sending and receiving steps include implementing information interaction inside the device, or implementing transmission between the network device and the communication device.
  • Another aspect of the present application also provides a computer storage medium comprising computer instructions that, when executed on a device, cause the device to perform any of the communication methods corresponding to Figures 5-9 above.
  • Another aspect of the present application also provides a computer program product that, when executed on a computer, causes the computer to perform any of the communication methods corresponding to Figures 5 through 9 above.
  • Another aspect of the present application also provides a chip, which is in the form of a device, which may be any of the foregoing first device, second device, third device, fourth device, computer storage medium, and computer program product.
  • a device which is in the form of a device, which may be any of the foregoing first device, second device, third device, fourth device, computer storage medium, and computer program product.
  • Another aspect of the present application further provides a time-frequency resource allocation table, and the time-frequency resource allocation table is described in detail below.
  • the time-frequency resource allocation table in the following embodiments may be used as the time-frequency resource allocation table in the embodiment shown in FIG. 5 to FIG. 9, for determining K0/K2, SLIV information, and the like.
  • the network device configures an uplink time domain resource allocation table for uplink scheduling of the terminal device in the RRC signaling, and configures a downlink time domain resource allocation table for the downlink scheduling of the terminal device.
  • the time domain resource allocation table can be as shown in Table 5, and includes, for example, 4 rows and 5 columns of contents.
  • the five column parameters are respectively the index number of the table row number, K0, the scheduling data start symbol, the number of symbols of the scheduling data, and the scheduling type.
  • the time domain resource allocation table can also contain 4 rows and 4 columns of content.
  • the four column parameters are the index number of the table row number, K0, the start symbol and length SLIV of the scheduling data, and the resource mapping type. Therefore, the downlink control of the uplink scheduling and the downlink scheduling of the network device indicates that the information indicating the time domain resource allocation of the terminal device can be indicated by sequentially indicating the 2-bit indication information in the DCI.
  • a method of determining a time domain resource allocation table is to determine different tables according to different CP types.
  • the corresponding table is predefined.
  • the corresponding table is configured through RRC signaling.
  • the value range of the SLIV can be further constrained by considering the mapping types of different CP types and data, so that the resource allocation is indicated by the identifier with a smaller number of bits, thereby saving the overhead.
  • the network device cannot configure the time domain resource allocation table for the terminal device through RRC signaling, and the predefined time domain resource allocation table is required.
  • the predefined time domain resource allocation table is required for the uplink fallback DCI.
  • the DCI format0_0 pre-defined uplink time domain resource allocation table.
  • the selection of the number of table rows is related to the number of predefined K0/K2 and SLIV values, and the number of table rows can be 4 or 8, etc., so only occupying 2 bits or 3 bits in the DCI can indicate the time domain resource allocation of the terminal device. Information.
  • different time domain resource allocation tables can be set for different CP types.
  • a table is predefined for NCP and ECP, such as Table 6 and Table 7, or a table shared by NCP and ECP is predefined, as shown in Table 8.
  • Predefining different tables for NCP and ECP can reduce the bit cost overhead of time domain indication information in DCI.
  • Predefining a table for NCP and ECP can reduce the processing complexity of the UE.
  • the value of K2 may be 1, 2, 3, 4, 5, 6, 7, 8, and the value of K2 takes into account different data processing capabilities of different UEs, thereby satisfying different UE capabilities and Roll back the demand.
  • the starting symbol of the PUSCH may be 0, 1, 2, 3, 4, and the number of symbols may be 2, 4, 7, 8, 10, 12, 14.
  • slot scheduling except for the symbols occupied by the control channel in one slot, other symbols are used for data transmission, thereby maximizing the actual available resources of the UE.
  • the number of symbols can be 2, 4 7, reducing the scheduling delay.
  • the starting symbol of the PUSCH may be 0, and the number of symbols may be 2, 4, 8, 10, 12, 14, and the number of possible PUSCH symbols, which maximizes scheduling flexibility.
  • the second column is the value of K2, and the value of K2 is 2.
  • the PUSCH mapping type is B, the starting symbol of the PUSCH is 0 or 2, and the number of symbols can be 2, 4, 7, 10 .
  • the PUSCH mapping type is A, the starting symbol of the PUSCH is 0, and the number of symbols is 12.
  • the value of K0 may be 0, and the value of K0 is 0 to reduce the processing time of the UE receiving data, and reduce the delay of data scheduling.
  • the starting symbol position of the PDSCH It can be 0, 1, 2, 3, 4, and the number of symbols can be 2, 4, 7. Determining the possible starting position of the PDSCH and the number of scheduling symbols that the PDSCH mapping rule B can satisfy determines the number of symbols according to the number of symbols that the downlink control channel may occupy, thereby maximizing scheduling flexibility.
  • the starting symbol position of the PDSCH may be 0, 1, 2, 3, and the number of symbols may be 7, 9, 11, 14 in addition to the symbols occupied by the control channel in one slot, and others. Symbols are used for data transmission, thereby maximizing the actual available resources of the UE. As shown in Table 9, the second column is the value of K0, and K0 is 0.
  • the PDSCH mapping type is B, the starting symbol of the PDSCH is 0, and the number of symbols can be 2, 4, 7.
  • the PDSCH mapping type is A, the starting symbol of the PDSCH is 0, and the number of symbols is 12.
  • the value of K2 can be 1, 2, 3, 4, 5, 6, 7, 8.
  • the PUSCH mapping type is B
  • the starting symbol of the PUSCH may be 0, 1, 2, 3, 4, and the number of symbols may be 2, 4, 6, 8, 10, 12.
  • the PUSCH mapping type is A
  • the starting symbol of the PUSCH may be 0, and the number of symbols may be 2, 4, 8, 10, 12.
  • K2 is 2.
  • the PUSCH mapping type is B
  • the starting symbol of the PUSCH is 0, 2
  • the number of symbols may be 2, 4, 6, and 8.
  • the PUSCH mapping type is A
  • the starting symbol of the PUSCH is 0, and the number of symbols is 10.
  • the second column is the value of K0, the value of K0 can be 0, and when the PDSCH mapping type is B, the starting symbol position of the PDSCH can be 0, 1, 2, 3, 4, symbol The number can be 2, 4, 6; when the PDSCH mapping type is A, the starting symbol position of the PDSCH can be 0, 1, 2, 3, and the number of symbols can be 5, 7, 8, 9, 10, 12 .
  • the selection rules and beneficial effects of different parameters are the same as the NCP downlink fallback DCI.
  • the uplink back-off DCI table is shared, the second column is the value of K2, and the value of K2 may be 1, 2, 3, 4, 5, 6, 7, 8 when the PUSCH mapping type is B, PUSCH
  • the starting symbol can be 0, 1, 2, 3, 4, and the number of symbols can be 2, 4, 6, 7, 8, 10, 12, 14; when the PUSCH mapping type is A, the starting symbol of the PUSCH can be It is 0, and the number of symbols can be 2, 4, 8, 10, 12, 14.
  • the selection rules and beneficial effects of different parameters are the same as the NCP uplink fallback DCI.
  • the downlink back-off DCI table is shared, the second column is the value of K0, and the value of K0 can be 0.
  • the PDSCH mapping type is B
  • the starting symbol position of the PDSCH can be 0, 1, 2, 3, 4
  • the number of symbols can be 2, 4, 6, 7,
  • the PDSCH mapping type is A
  • the starting symbol position of the PDSCH can be 0, 1, 2, 3, the number of symbols can be 8, 10, 12, 14.
  • the selection rules and beneficial effects of different parameters are the same as the NCP downlink fallback DCI.
  • the uplink pre-return DCI and the downlink fallback DCI may use the same predefined table.
  • Tables 6 to 8 are as follows:
  • the index number K2 Start symbol Number of symbols PUSCH mapping type 0 2 0 2 Type B 1 2 0 4 Type B 2 2 0 6 Type B 3 2 0 10 Type A 4 2 2 2 Type B 5 2 2 4 Type B 6 2 2 6 Type B 7 2 2 8 Type B
  • the index number K2 Start symbol Number of symbols PUSCH mapping type 0 2 0 2 Type B 1 2 0 4 Type B 2 2 0 6 Type B 3 2 0 7 Type B 4 2 0 10 Type A 5 2 0 12 Type A 6 2 2 2 Type B 7 2 2 4 Type B 8 2 2 6 Type B 9 2 2 7 Type B 10 2 2 8 Type B 11 2 2 10 Type B
  • the downlink back-off resource allocation table is predefined for the downlink back-off DCI, such as DCI format1_0.
  • the table is 4 columns. If the data start symbol column and the symbol number column are respectively indicated, then the table is 5 columns.
  • the selection of the number of table rows is related to the number of values of the predefined K0/K2 and SLIV.
  • the number of table rows can be 4 or 8, etc.
  • In the DCI only 2 or 3 bits can be used to indicate the time domain of the terminal device.
  • different time domain resource allocation tables can be set for different CP types. For example, a table is predefined for NCP and ECP, such as Table 9 and Table 10, or a table shared by NCP and ECP is predefined, as shown in Table 11. Table 9 to Table 11 are as follows:
  • the index number K0 Start symbol Number of symbols PDSCH mapping type 0 0 0 2 Type B 1 0 0 4 Type B 2 0 0 7 Type B 3 0 0 12 Type A
  • the index number K0 Start symbol Number of symbols PDSCH mapping type 0 0 0 2 Type B 1 0 0 4 Type B 2 0 0 6 Type B 3 0 0 10 Type A
  • the index number K0 Start symbol Number of symbols PDSCH mapping type 0 0 0 2 Type B 1 0 0 4 Type B 2 0 0 6 Type B 3 0 0 7 Type B 4 0 0 10 Type A 5 0 0 12 Type A
  • the NCP downlink fallback DCI predefined table may also be Table 12, at least one row in Table 13, the NCP uplink fallback DCI predefined table may also be at least one row in Table 14.
  • Type A 4 1 2 12 Type B 5 2 2 12 Type B 6 3 2 12 Type B 7 4 2 12 Type B
  • the table defined for the ECP downlink fallback DCI may also be Table 15, at least one row in Table 16, and the ECP uplink fallback DCI predefined table may also be at least one row in Table 17.
  • the NCP and the ECP may correspond to the same or different SLIV formulas, so that the NCP time domain resource allocation table and the ECP time domain resource allocation table may be configured for the terminal device, and the scheduling corresponding to the different CP types may be configured.
  • the number of data start symbols and the length of the scheduling data determine that the set of SLIV values is different.
  • the terminal device determines the time domain resource allocation table according to the CP type, or configures a time domain resource allocation table shared by the NCP and the ECP.
  • NCP and ECP use the same SLIV formula, then the formula can be:
  • S indicates the start symbol start and L indicates the number of symbols length.
  • NCP and ECP use different SLIV formulas
  • the formula used by NCP can be:
  • the formula used by ECP can be:
  • S indicates the start symbol start and L indicates the number of symbols length.
  • the index of the start symbol and the length of the scheduling data in the time domain resource allocation of the physical uplink data sharing channel PUSCH and the physical downlink data sharing channel PDSCH have different value ranges.
  • the number of bits used to indicate the SLIV value may be different.
  • the value of SLIV in the time domain resource allocation table of the physical downlink data sharing channel is represented by 6 bits
  • the value of SLIV in the time domain resource allocation table of the uplink data sharing channel is represented by 7 bits.
  • the maximum SLIV value generated using the SLIV formula is greater than 63, that is, 6 bits cannot be directly used to represent the SLIV value.
  • the time domain resource allocation can be indicated by 6 bits or less.
  • the present invention defines a mapping rule between the parameter index and the SLIV value in the RRC. This parameter is used in the configured time domain resource allocation table to indicate the SLIV value.
  • the NCP and the ECP may correspond to different parameter index and SLIV value mapping rules.
  • the specific index and SLIV mapping rules can be determined by a table.
  • the mapping between the parameter index and the SLIV value may be separately defined by the NCP and the ECP, or may be a mapping rule shared by the predefined NCP and the ECP.
  • NCP and ECP use the same SLIV formula, using the same or different time domain resource configuration table.
  • Using the same table means that only one table is configured in the high-level signaling, and different time domain resources are used.
  • the configuration table refers to a table in the high-level signaling for configuring NCP and ECP respectively, and the same parameter index and SLIV value mapping rules, as shown in at least one of the rows shown in Table 27.
  • NCP and ECP use the same SLIV formula, use the same or different time domain resource configuration tables, use the same mapping rules, as shown in at least one of the rows shown in Table 20, or use different mapping rules, such as At least one of the rows shown in Table 18 and Table 19.
  • NCP and ECP use the same SLIV formula, using the same or different time domain resource configuration tables, using the same parameter index and SLIV value mapping rules, as shown in at least one of the tables in Table 32.
  • NCP and ECP use the same SLIV formula, using the same or different time domain resource configuration tables, using the same mapping rules, as shown in at least one of the tables in Table 33.
  • the mapping table of the parameter index and the SLIV shared by the NCP and the ECP may be at least one line in at least one mapping manner in the following table:
  • the following is based on the downlink 6-bit indication, and the uplink 7-bit indication is used as an example.
  • the table corresponding to the other number of bits can be similarly deduced. Specifically, it is not limited herein.
  • Reserved can be used to indicate other possible SLIV values, and can also be used to indicate other information.
  • the mapping table of the parameter index and the SLIV corresponding to the NCP and the ECP respectively may be at least one row in at least one mapping manner in the following table:
  • NCP and ECP use different SLIV formulas, use the same or different time domain resource configuration table, and different parameters index and SLIV value mapping rules, as shown in at least one of Table 27 and Table 29. .
  • NCP and ECP use different SLIV formulas, use the same or different time domain resource configuration tables, and different parameters index and SLIV value mapping rules, as shown in at least one of Table 28 and Table 30.
  • NCP and ECP use different SLIV formulas, use the same or different time domain resource configuration tables, and different parameters index and SLIV value mapping rules, as shown in at least one of Table 31 and Table 33.
  • NCP and ECP use different SLIV formulas, using the same or different time domain resource configuration tables, and different parameters index and SLIV value mapping rules, as shown in at least one of Tables 32 and 34.
  • the terminal device may determine different mappings between the index and the SLIV according to different mapping types.
  • the different mapping types may be the PDSCH mapping rule A, the PDSCH mapping rule B, the PUSCH mapping rule A, and the PUSCH mapping rule B. At least one of them.
  • the computer program product includes one or more computer instructions.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transfer to another website site, computer, server, or data center by wire (eg, coaxial cable, fiber optic) or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (such as a floppy disk, a hard disk, a magnetic tape), an optical medium (such as an optical disk), or a semiconductor medium (such as a solid-state drive (SSD)), etc., which may store non-transient code of the program code.
  • Non-transitory machine readable medium such as a floppy disk, a hard disk, a magnetic tape
  • an optical medium such as an optical disk
  • a semiconductor medium such as a solid-state drive (SSD)

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种通信方法、装置和系统。通信方法包括:获取第一指示信息和格式信息;根据第一指示信息指示的时间单元中的子时间单元的传输方向以及格式信息指示的子时间单元的传输方向,确定时间单元是否属于聚合时间单元。通过根据第一指示信息和格式信息对时间单元中的子时间单元的传输方向的配置,来确定时间单元是否属于聚合时间单元,当时间单元不属于聚合时间单元时,该时间单元不用于基于聚合技术的数据传输,使得聚合时间单元可以不连续。避免了直接根据DCI格式指示的传输方向以及聚合因子,采用连续时间单元作为聚合时间单元,导致的不利于时延敏感数传输的问题。

Description

通信方法、装置和系统
本申请要求于2018年02月13日提交中国专利局、申请号为201810151034.9、申请名称为“通信方法、装置和系统”的中国专利申请以及于2018年03月02日提交中国专利局、申请号为201810173318.8、申请名称为“通信方法、装置和系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,尤其涉及一种通信方法、装置和系统。
背景技术
在第五代移动通信(the 5th Generation,简称5G)新空口(New Radio,简称NR)系统中,通信传输支持灵活的时隙结构。
NR系统中的数据传输支持时隙聚合技术。时隙聚合技术中数据在一个或多个时隙上进行传输,采用了时隙聚合技术的数据传输占用了更多的资源,增强了数据传输覆盖,提高了数据传输可靠性。
如何在灵活的时隙结构下支持时隙聚合技术,是一个需要研究的问题。
发明内容
本申请实施例提供了一种通信方法、装置和系统,用于解决在灵活的时隙结构下支持时隙聚合技术。
第一方面,本申请提供一种通信方法,应用于终端设备,包括:
获取第一指示信息和格式信息;根据所述第一指示信息指示的时间单元中的子时间单元的传输方向以及所述格式信息指示的所述子时间单元的传输方向,确定所述时间单元是否属于聚合时间单元。
在一种可能的设计中,所述根据所述第一指示信息指示的时间单元中的子时间单元中的传输方向以及所述格式信息指示的所述子时间单元的传输方向,确定所述时间单元是否属于聚合时间单元,包括:
当所述第一指示信息指示的时间单元中的至少一个子时间单元的传输方向与所述格式信息指示的所述至少一个子时间单元的传输方向相同,确定所述时间单元属于聚合时间单元。
在一种可能的设计中,所述根据所述第一指示信息指示的时间单元中的子时间单元中的传输方向以及所述格式信息指示的所述子时间单元的传输方向,确定所述时间单元是否属于聚合时间单元,包括:
当第一子时间单元占所述时间单元中的至少一个子时间单元的比例达到M,确定所述 时间单元属于聚合时间单元;其中,所述第一指示信息指示的所述第一子时间单元的传输方向与所述格式信息指示的所述第一子时间单元的传输方向相同,M的取值在[0,1]范围内。
在一种可能的设计中,所述根据所述第一指示信息指示的时间单元中的子时间单元中的传输方向以及所述格式信息指示的所述子时间单元的传输方向,确定所述时间单元是否属于聚合时间单元,包括:
当所述时间单元中第二子时间单元的数目少于P,确定所述时间单元属于聚合时间单元;其中,所述第一指示信息指示的所述第二子时间单元的传输方向与所述格式信息指示的所述二子时间单元的传输方向不同,P为正整数。
在一种可能的设计中,所述根据所述第一指示信息指示的时间单元中的子时间单元中的传输方向以及所述格式信息指示的所述子时间单元的传输方向,确定所述时间单元是否属于聚合时间单元,包括:
当第三子时间单元占所述时间单元中的至少一个子时间单元的比例小于Q,确定所述时间单元属于聚合时间单元;其中,所述第一指示信息指示的所述第三子时间单元的传输方向与所述格式信息指示的所述第三子时间单元的传输方向不同,Q的取值在[0,1]范围内。
在一种可能的设计中,通信方法还包括:
获取第二指示信息,所述第二指示信息指示聚合数目;
根据所述聚合数目确定所述聚合时间单元的数量。
第二方面,本申请还提供一种通信方法,应用于网络设备,所述方法包括:
确定第一指示信息和格式信息;根据所述第一指示信息指示的时间单元中的子时间单元的传输方向以及所述格式信息指示的所述子时间单元的传输方向,确定所述时间单元是否属于聚合时间单元。
在一种可能的设计中,所述根据所述第一指示信息指示的时间单元中的子时间单元中的传输方向以及所述格式信息指示的所述子时间单元的传输方向,确定所述时间单元是否属于聚合时间单元,包括:
当所述第一指示信息指示的时间单元中的至少一个子时间单元的传输方向与所述格式信息指示的所述至少一个子时间单元的传输方向相同,确定所述时间单元属于聚合时间单元。
在一种可能的设计中,所述根据所述第一指示信息指示的时间单元中的子时间单元中的传输方向以及所述格式信息指示的所述子时间单元的传输方向,确定所述时间单元是否属于聚合时间单元,包括:
当第一子时间单元占所述时间单元中的至少一个子时间单元的比例达到M,确定所述时间单元属于聚合时间单元;其中,所述第一指示信息指示的所述第一子时间单元的传输方向与所述格式信息指示的所述第一子时间单元的传输方向相同,M的取值在[0,1]范围内。
在一种可能的设计中,所述根据所述第一指示信息指示的时间单元中的子时间单元中的传输方向以及所述格式信息指示的所述子时间单元的传输方向,确定所述时间单元是否属于聚合时间单元,包括:
当所述时间单元中第二子时间单元的数目少于P,确定所述时间单元属于聚合时间单元;其中,所述第一指示信息指示的所述第二子时间单元的传输方向与所述格式信息指示的所述二子时间单元的传输方向不同,P为正整数。
在一种可能的设计中,所述根据所述第一指示信息指示的时间单元中的子时间单元中的传输方向以及所述格式信息指示的所述子时间单元的传输方向,确定所述时间单元是否属于聚合时间单元,包括:
当第三子时间单元占所述时间单元中的至少一个子时间单元的比例小于Q,确定所述时间单元属于聚合时间单元;其中,所述第一指示信息指示的所述第三子时间单元的传输方向与所述格式信息指示的所述第三子时间单元的传输方向不同,Q的取值在[0,1]范围内。
在一种可能的设计中,通信方法还包括:
确定第二指示信息,将所述第二指示信息发送至所述终端设备,所述第二指示信息指示聚合数目;
根据所述聚合数目确定所述聚合时间单元的数量。
在一种可能的设计中,通信方法还包括:
将所述第一指示信息、所述格式信息和所述第二指示信息中的至少一项发送至终端设备
第三方面,本申请还提供一种通信装置,用于执行上述第一方面的通信方法,通信装置包括:
获取模块,用于获取第一指示信息和格式信息;
聚合时间单元判断模块,用于根据所述第一指示信息指示的时间单元中的子时间单元的传输方向以及所述格式信息指示的所述子时间单元的传输方向,确定所述时间单元是否属于聚合时间单元。
在一种可能的设计中,所述聚合时间单元判断模块具体用于:
当所述第一指示信息指示的时间单元中的至少一个子时间单元的传输方向与所述格式信息指示的所述至少一个子时间单元的传输方向相同,确定所述时间单元属于聚合时间单元。
在一种可能的设计中,所述聚合时间单元判断模块具体用于:
当第一子时间单元占所述时间单元中的至少一个子时间单元的比例达到M,确定所述时间单元属于聚合时间单元;其中,所述第一指示信息指示的所述第一子时间单元的传输方向与所述格式信息指示的所述第一子时间单元的传输方向相同,M的取值在[0,1]范围内。
在一种可能的设计中,所述聚合时间单元判断模块具体用于:
当所述时间单元中第二子时间单元的数目少于P,确定所述时间单元属于聚合时间单元;其中,所述第一指示信息指示的所述第二子时间单元的传输方向与所述格式信息指示的所述二子时间单元的传输方向不同,P为正整数。
在一种可能的设计中,所述聚合时间单元判断模块具体用于:
当第三子时间单元占所述时间单元中的至少一个子时间单元的比例小于Q,确定所述时间单元属于聚合时间单元;其中,所述第一指示信息指示的所述第三子时间单元的传输 方向与所述格式信息指示的所述第三子时间单元的传输方向不同,Q的取值在[0,1]范围内。
在一种可能的设计中,所述获取模块还用于,获取第二指示信息,所述第二指示信息指示聚合数目;
所述聚合时间单元判断模块还用于,根据所述聚合数目确定所述聚合时间单元的数量。
第四方面,本申请还提供一种通信装置,用于执行上述第二方面的通信方法,包括:
获取模块,用于确定第一指示信息和格式信息;
聚合时间单元判断模块,用于根据所述第一指示信息指示的时间单元中的子时间单元的传输方向以及所述格式信息指示的所述子时间单元的传输方向,确定所述时间单元是否属于聚合时间单元。
在一种可能的设计中,所述聚合时间单元判断模块具体用于:
当所述第一指示信息指示的时间单元中的至少一个子时间单元的传输方向与所述格式信息指示的所述至少一个子时间单元的传输方向相同,确定所述时间单元属于聚合时间单元。
在一种可能的设计中,所述聚合时间单元判断模块具体用于:
当第一子时间单元占所述时间单元中的至少一个子时间单元的比例达到M,确定所述时间单元属于聚合时间单元;其中,所述第一指示信息指示的所述第一子时间单元的传输方向与所述格式信息指示的所述第一子时间单元的传输方向相同,M的取值在[0,1]范围内。
在一种可能的设计中,所述聚合时间单元判断模块具体用于:
当所述时间单元中第二子时间单元的数目少于P,确定所述时间单元属于聚合时间单元;其中,所述第一指示信息指示的所述第二子时间单元的传输方向与所述格式信息指示的所述二子时间单元的传输方向不同,P为正整数。
在一种可能的设计中,所述聚合时间单元判断模块具体用于:
当第三子时间单元占所述时间单元中的至少一个子时间单元的比例小于Q,确定所述时间单元属于聚合时间单元;其中,所述第一指示信息指示的所述第三子时间单元的传输方向与所述格式信息指示的所述第三子时间单元的传输方向不同,Q的取值在[0,1]范围内。
在一种可能的设计中,所述获取模块还用于,确定第二指示信息;所述第二指示信息指示聚合数目;
所述聚合时间单元判断模块还用于,根据所述聚合数目确定所述聚合时间单元的数量。
在一种可能的设计中,通信装置还包括:
发送模块,用于将所述第一指示信息、所述格式信息和所述第二指示信息中的至少一项发送至终端设备。
第五方面,本申请还提供一种终端设备,用于执行上述第一方面的通信方法,包括:
接收器,用于获取第一指示信息和格式信息;
处理器,用于根据所述第一指示信息指示的时间单元中的子时间单元的传输方向以及所述格式信息指示的所述子时间单元的传输方向,确定所述时间单元是否属于聚合时间单元。
在一种可能的设计中,处理器具体用于:
当所述第一指示信息指示的时间单元中的至少一个子时间单元的传输方向与所述格式信息指示的所述至少一个子时间单元的传输方向相同,确定所述时间单元属于聚合时间单元。
在一种可能的设计中,处理器具体用于:
当第一子时间单元占所述时间单元中的至少一个子时间单元的比例达到M,确定所述时间单元属于聚合时间单元;其中,所述第一指示信息指示的所述第一子时间单元的传输方向与所述格式信息指示的所述第一子时间单元的传输方向相同,M的取值在[0,1]范围内。
在一种可能的设计中,处理器具体用于:
当所述时间单元中第二子时间单元的数目少于P,确定所述时间单元属于聚合时间单元;其中,所述第一指示信息指示的所述第二子时间单元的传输方向与所述格式信息指示的所述二子时间单元的传输方向不同,P为正整数。
在一种可能的设计中,处理器具体用于:
当第三子时间单元占所述时间单元中的至少一个子时间单元的比例小于Q,确定所述时间单元属于聚合时间单元;其中,所述第一指示信息指示的所述第三子时间单元的传输方向与所述格式信息指示的所述第三子时间单元的传输方向不同,Q的取值在[0,1]范围内。
在一种可能的设计中,接收器还用于,获取第二指示信息,所述第二指示信息指示聚合数目;
处理器还用于,根据所述聚合数目确定所述聚合时间单元的数量。
第六方面,本申请还提供一种网络设备,用于执行上述第二方面的通信方法,包括:
处理器,用于确定第一指示信息和格式信息,根据所述第一指示信息指示的时间单元中的子时间单元的传输方向以及所述格式信息指示的所述子时间单元的传输方向,确定所述时间单元是否属于聚合时间单元。
在一种可能的设计中,处理器具体用于:
当所述第一指示信息指示的时间单元中的至少一个子时间单元的传输方向与所述格式信息指示的所述至少一个子时间单元的传输方向相同,确定所述时间单元属于聚合时间单元。
在一种可能的设计中,处理器具体用于:
当第一子时间单元占所述时间单元中的至少一个子时间单元的比例达到M,确定所述时间单元属于聚合时间单元;其中,所述第一指示信息指示的所述第一子时间单元的传输方向与所述格式信息指示的所述第一子时间单元的传输方向相同,M的取值在[0,1]范围内。
在一种可能的设计中,处理器具体用于:
当所述时间单元中第二子时间单元的数目少于P,确定所述时间单元属于聚合时间单元;其中,所述第一指示信息指示的所述第二子时间单元的传输方向与所述格式信息指示的所述二子时间单元的传输方向不同,P为正整数。
在一种可能的设计中,处理器具体用于:
当第三子时间单元占所述时间单元中的至少一个子时间单元的比例小于Q,确定所述时间单元属于聚合时间单元;其中,所述第一指示信息指示的所述第三子时间单元的传输方向与所述格式信息指示的所述第三子时间单元的传输方向不同,Q的取值在[0,1]范围内。
在一种可能的设计中,所述处理器还用于,确定第二指示信息,所述第二指示信息指示聚合数目;
处理器还用于,根据所述聚合数目确定所述聚合时间单元的数量。
在一种可能的设计中,网络设备还包括:
发送器,用于将所述第一指示信息、所述格式信息和所述第二指示信息中的至少一项发送至终端设备。
第七方面,本申请还提供一种通信系统,包括如上述第五方面以及第五方面各种可能的实现方式中的终端设备和如上述第六方面以及第六方面各种可能的实现方式中的网络设备。
第八方面,本申请还提供一种终端设备,包括:存储器、处理器以及计算机程序,所述计算机程序存储在所述存储器中,所述处理器运行所述计算机程序执行如上述第一方面以及第一方面各种可能的实现方式中的通信方法。
第九方面,本申请还提供一种网络设备,包括:存储器、处理器以及计算机程序,所述计算机程序存储在所述存储器中,所述处理器运行所述计算机程序执行如上述第二方面以及第二方面各种可能的实现方式中的通信方法。
第十方面,本申请还提供一种计算机存储介质,所述存储介质包括计算机程序,所述计算机程序用于实现如上述第一方面以及第一方面各种可能的实现方式中的通信方法。
第十一方面,本申请还提供一种计算机存储介质,所述存储介质包括计算机程序,所述计算机程序用于实现如上述第二方面以及第二方面各种可能的实现方式中的通信方法。
第十二方面,本申请还提供一种计算机程序产品,所述计算机程序产品包括计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行如上述第一方面以及第一方面各种可能的实现方式中的通信方法。
第十三方面,本申请还提供一种计算机程序产品,所述计算机程序产品包括计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行上述第二方面以及第二方面各种可能的实现方式中的通信方法。
第十四方面,本申请还提供一种芯片,包括存储器和处理器,所述存储器用于存储计算机程序,所述处理器用于从所述存储器中调用并运行所述计算机程序,使得安装有所述芯片的通信设备执行如上述第一方面以及第一方面各种可能的实现方式中的通信方法。
第十五方面,本申请还提供一种芯片,包括存储器和处理器,所述存储器用于存储计算机程序,所述处理器用于从所述存储器中调用并运行所述计算机程序,使得安装有所述芯片的通信设备执行如上述第二方面以及第二方面各种可能的实现方式中的通信方法。
第十六方面,本申请实施例提供了一种装置,包括至少一个处理器和至少一个存储器,处理器用于执行上述第一方面至第二方面任一项中的方法,至少一个存储器与至少一个处理器耦合。
第十七方面,本申请实施例提供了一种装置,包括至少一个处理器和至少一个存储器, 至少一个存储器与至少一个处理器耦合,至少一个存储器用于存储计算机程序代码或计算机指令,当一个或多个处理器执行上述计算机程序代码或计算机指令时,装置执行上述第一至第二方面任一项中的方法。
第十八方面,本申请实施例提供了一种装置,包括至少一个处理器,处理器用于执行上述第一至第二方面任一项中的方法。
第十九方面,本申请实施例提供了一种装置,包括至少一个通信接口,用于执行上述第一至第二方面任一项方法中的收发步骤。进一步,该装置还可以包括至少一个处理器,用于执行上述第一至第二方面任一项方法中的处理步骤,至少一个处理器和至少一个通信接口耦合。
可选的,上述处理步骤包括确定时间单元是否属于聚合时间单元等。可选的,上述收发步骤包括实现装置内部的信息交互,或实现网络设备和通信设备间的传输。
第二十方面,本申请实施例提供了一种计算机存储介质,包括计算机指令,当计算机指令在装置上运行时,使得该装置执行上述第一方面至第二方面任一项中的方法。
第二十一方面,本申请实施例提供了一种计算机程序产品,当计算机程序产品在计算机上运行时,使得计算机执行上述第一方面至第二方面任一项中的方法。
第二十二方面,本申请实施例提供了一种芯片,该芯片以装置的形式存在,该芯片可以为上述第十六方面至第二十一方面中的任意一种装置。
本申请的在上述各方面提供的实现的基础上,还可以进行进一步组合以提供更多实现。
附图说明
图1示出了本申请实施例可能适用的一种系统架构;
图2为本申请实施例中的下行调度与相应下行数据传输的时间关系的示意图;
图3为本申请实施例中聚合时隙的示意图;
图4为本申请实施例中的下行数据传输与相应HARQ码本反馈的时间关系的示意图;
图5为本申请实施例一提供的通信方法的流程示意图;
图6为本申请实施例二提供的通信方法的流程示意图;
图7为本申请实施例三提供的通信方法的流程示意图;
图8为本申请实施例四提供的通信方法的流程示意图;
图9为本申请实施例五提供的通信方法的流程示意图;
图10为本申请实施例一提供的通信装置的结构示意图;
图11为本申请实施例二提供的通信装置的结构示意图;
图12为本申请实施例一提供的终端设备的结构示意图;
图13为本申请实施例一提供的网络设备的结构示意图;
图14为本申请实施例二提供的终端设备的结构示意图;
图15为本申请实施例二提供的网络设备的结构示意图。
具体实施方式
图1为本申请实施例适用的网络架构实施例一的示意图。如图1所示,本实施例 提供的网络架构包括网络设备10和至少一个终端设备20。
其中,网络设备10是一种将终端设备20接入到无线网络的设备,可以是全球移动通讯(Global System of Mobile communication,简称GSM)或码分多址(Code Division Multiple Access,简称CDMA)中的基站(Base Transceiver Station,简称BTS),也可以是宽带码分多址(Wideband Code Division Multiple Access,简称WCDMA)中的基站(NodeB,简称NB),还可以是长期演进(Long Term Evolution,简称LTE)中的演进型基站(Evolutional Node B,简称eNB或eNodeB),或者中继站或接入点,或者未来第五代移动通信(the 5th Generation Mobile Communication,5G)网络中的基站,或者工作在高频频段的中继站、接入点、车载设备、可穿戴设备等,本申请在此并不限定。图1示意性的绘出了一种可能的示意,以网络设备10为基站为例进行了绘示。
终端设备20可以是无线终端也可以是有线终端,无线终端可以为向用户提供语音和/或其他业务数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。无线终端可以经无线接入网(Radio Access Network,简称RAN)与一个或多个核心网进行通信,无线终端可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(Personal Communication Service,简称PCS)电话、无绳电话、会话发起协议(Session Initiation Protocol,简称SIP)话机、无线本地环路(Wireless Local Loop,简称WLL)站、个人数字助理(Personal Digital Assistant,简称PDA)等设备。无线终端也可以称为系统、订户单元(Subscriber Unit)、订户站(Subscriber Station),移动站(Mobile Station)、移动台(Mobile)、远程站(Remote Station)、远程终端(Remote Terminal)、接入终端(Access Terminal)、用户终端(User Terminal)、用户代理(User Agent),本申请在此不作限定。图1示意性的绘出了一种可能的示意,以终端设备20为移动电话为例进行了绘示。
在传统的LTE通信系统中,网络设备10与终端设备20之间的数据传输以无线帧(radio frame)为时间单位。一个无线帧包含10个1ms的子帧(subframe)。每个子帧均包括两个时隙(slot),每个slot包括的符号的个数与子帧中循环前缀(cyclic prefix,CP)的长度相关。
具体地,在正交频分复用(orthogonal frequency division multiplexing,OFDM)系统中,为了最大限度地消除符号间干扰,需要在每两个OFDM符号之间插入保护间隔,该保护间隔长度一般要大于无线信道的最大时延扩展,这样一个符号的多径分量就不会对下一个符号造成干扰。保护间隔内的信号称为循环前缀CP。CP类型可以分为普通CP(Normal CP,NCP)和扩展CP(Extended CP,ECP),其中ECP的应用场景通常是存在大的时延扩展信道环境中。
如果CP为普通(normal)CP,则每个slot包括7个符号,每个子帧由14个符号组成,例如,每个子帧由序号分别为#0,#1,#2,#3,#4,#5,#6,#7,#8,#9,#10,#11,#12,#13的符号组成。如果CP为扩展(extended)CP,每个slot包括6个符号,每个子帧由12个符号组成,例如每个子帧由序号分别为#0,#1,#2,#3,#4,#5,#6, #7,#8,#9,#10,#11的符号组成。
LTE通信系统中对于一个无线帧中的每个子帧为上行子帧或下行子帧规定了7种固定的帧配置结构,如下表1所示。上行子帧用于进行从终端设备20到网络设备10的数据传输,即上行数据传输。下行子帧用于进行从网络设备10到终端设备20的数据传输,即下行数据传输。
表1
Figure PCTCN2019073778-appb-000001
其中,表1中的D表示下行子帧,U表示上行子帧,S表示特殊子帧。特殊子帧S用于从下行到上行的切换,具体包括部分的下行符号,上下行转换的符号以及部分的上行符号。终端设备20和网络设备10之间进行通信时,帧结构仅能采用如表1中的7种中的任一种。这种固定的帧配置结构在一定程度上限制了终端设备20和网络设备10之间的通信灵活性,不利于短时延业务的传输。
为提高通信灵活性,5G NR通信系统可以支持多种配置参数numerologies。numerology可以通过以下参数信息中的一个或多个定义:子载波间隔,循环前缀CP,时间单位,带宽等。其中,时间单位用于表示时域内的时间长度或时间单元,例如可以为采样点,符号(symbol),微时隙(mini-slot),时隙(slot),多个时隙,子帧,无线帧或帧结构(frame)等。时间单位信息可以包括时间单位的类型,长度,或者结构等。
在5G NR通信系统中,一个无线帧为10ms,包含有10个子帧。一个子帧中包含有至少一个slot,一个slot固定有14个符号。一个子帧中的slot个数和对应的子载波间隔相关,如下表2所示。
表2
μ 一个slot中符号个数 一个帧中slot个数 一个子帧中slot个数
0 14 10 1
1 14 20 2
2 14 40 4
3 14 80 8
4 14 160 16
5 14 320 32
表3
μ 子载波间隔(KHz) 循环前缀CP
0 15 normal
1 30 normal
2 60 Normal,extended
3 120 normal
4 240 normal
其中,表2以CP为normal CP为例,对不同的子载波间隔对应的slot数目进行示例说明。表2中μ表示不同的子载波间隔的索引,子载波间隔与μ的对应关系如上表3所示。例如,当子载波间隔为15kHz的时候,对应的μ的取值为0,CP为normal,一个子帧中slot的个数为1,一个帧中slot个数为10。当子载波间隔为30kHz的时候,对应的μ的取值为1,CP为normal,一个子帧中slot的个数为2,一个帧中slot个数为20。通过修改5G NR通信系统的配置参数,可以提高5G通信系统中的数据传输的灵活性。
在5G NR通信系统中,通信传输进一步支持灵活的时隙结构(slot format),即1个slot中的符号可全部用于上行数据传输,或者全部用于下行数据传输,或者1个slot中的部分符号用于上行数据传输,部分符号用于下行数据传输。时隙结构可根据时隙格式相关信息(slot format related information,SFI)配置。SFI指示了相应的slot中,每个符号为上行符号、下行符号或未知符号,具体可以如下表4所示。
表4
Figure PCTCN2019073778-appb-000002
Figure PCTCN2019073778-appb-000003
其中,D指示下行符号,U指示上行符号,X指示未知符号。未知符号可以被网络设备10后续的信息指示用于上行传输或下行传输,也可以由终端设备20配置用于上行传输或下行传输,还可以作为上下行切换的时间间隔。与LTE通信系统相比,5G通信系统中每个子帧都可以包含有下行和上行的传输机会,更有利于短时延业务的传输。
时隙聚合技术中数据在一个或多个时隙上进行上行传输或下行传输。采用了时隙聚合技术的数据传输占用了更多的资源,增强了数据传输覆盖,提高了数据传输可靠性。
LTE通信系统中基于时隙聚合技术进行数据传输时,需根据数据传输方向、聚合因子指示的待聚合的时隙数目和表1中的帧配置结构确定可选的帧配置结构,使得帧结构灵活性较差。
在5G NR系统中,网络设备10具体可通过动态的下行控制信息(downlink control information,DCI)进行时隙聚合调度,DCI指示数据传输的方向以及时隙中用于上行/下行传输的符号。DCI可以通过物理下行控制信道(physical downlink control channel,PDCCH)由网络设备10向终端设备20发送。
具体地,网络设备10可通过高层信令,比如无线资源控制(radio resource control,RRC)向终端设备20发送上行时域资源分配表和下行时域资源分配表(time resource allocation表)。上行/下行时域资源分配表中包括至多16行。
其中,如下表5所示的下行时域资源分配表中的每一行包含了如下中的至少一项:下行调度与相应下行数据传输的时间关系(Timing between Downlink assignment and corresponding Downlink data transmission,K0)、时域资源分配信息和调度类型(或PDSCH 映射类型)。表5中示例性的有4行。其中,时域资源分配信息包括起始符号和符号个数。
表5
索引号index K0 起始符号 符号个数 调度类型(PDSCH映射类型)
0 0 2 10 A
1 1 3 8 A
2 0 4 7 B
3 3 2 10 A
具体地,图2为本申请实施例中的下行调度与相应下行数据传输的时间关系的示意图。如图2所示,若网络设备10在时间单位n上通过PDCCH向终端设备发送DCI,在物理下行共享信道(physical downlink share channel,PDSCH)上传输的被该DCI调度的数据对应的时间单位为n+K0。图2中K0取值示例性的为3。为方便描述,以下统称与K0相关的时间单位为时隙,但本申请各实施中所描述的时间单位不仅局限于时隙。
具体地,时域资源分配信息可以指示时域资源,例如指示被调度的数据在一个时间单位内所占用的起始符号和符号个数。例如,当时间单位为时隙,则时域资源分配信息表示了在被调度的时隙中被调度的数据的起始符号索引和调度数据的符号个数。示例性地,时域资源分配信息可以统一编码为起始长度指示值(start length indication value,SLIV)。
示例性地,对于NCP和PDSCH资源映射类型A,在一个时隙内,调度数据起始符号的索引可以为0,1,2,3,调度数据的长度至多14个符号;对于NCP和PDSCH资源映射类型B,在一个时隙内,调度数据起始符号的索引可以为任意一个值,调度数据的长度可以为2,4或7个符号;对于NCP和PUSCH资源映射类型A,在一个时隙内,调度数据起始符号索引为0,调度数据的长度至多14个符号;对于NCP和PUSCH资源映射类型B,在一个时隙内,调度数据起始符号索引为任意一个值,调度数据的长度至多14个符号;对于ECP和PDSCH资源映射类型A,在一个时隙内,调度数据起始符号的索引可以为0,1,2,3,调度数据的长度至多12个符号;对于ECP和PDSCH资源映射类型B,在一个时隙内,调度数据起始符号的索引可以为任意一个值,调度数据的长度可以为2,4或6个符号;对于ECP和PUSCH资源映射类型A,在一个时隙内,调度数据起始符号索引为0,调度数据的长度至多12个符号;对于NCP和PUSCH资源映射类型B,在一个时隙内,调度数据起始符号索引为任意一个值,调度数据的长度至多12个符号;
示例性地,网络设备10向终端设备20发送的DCI中具体可以携带有索引号,索引号指示为被该DCI调度的数据传输所分配的时域资源对应该下行时域资源分配表中的哪一行,从而使得终端设备20可以获悉K0的取值和网络设备10所分配的传输数据的时域资源。示例性的,网络设备10还可通过RRC向终端设备20发送K0的一个取值集合,比如{1,2,3,4},并在DCI中通知终端设备20的K0具体取值为集合中的哪一,并不再将K0放在时域资源分配表里。
示例性地,终端设备20接收网络设备10通过RRC发送的聚合因子。终端设备20根据聚合因子、DCI指示的K0和SLIV可确定采用聚合时隙技术进行数据传输时占用的用于聚合的聚合时隙。图3为本申请实施例中聚合时隙的示意图。如图3所示, 图3中以聚合因子为4、K0取值为1、起始符号为3、符号个数为8为例对聚合时隙进行了示例性说明。
示例性地,网络设备10向终端设备20发送的DCI中还携带有下行数据传输与相应混合自动重传请求(Hybrid Automatic Repeat reQuest,HARQ)码本反馈的时间关系(Timing between DL data reception and corresponding acknowledgement,K1)。图4为本申请实施例中的下行数据传输与相应HARQ码本反馈的时间关系的示意图。具体地,若网络设备10在时间单位n上经由PDSCH向终端设备20发送下行数据,终端设备20在时间单位n+K1上向网络设备10传输该下行数据对应的上行反馈信息如上行控制信息(uplink control information,UCI)。图4中K1取值示例性的为3。一般情况下,终端设备20经由PUSCH或者PUCCH向网络设备10传输UCI。网络设备10可以预先配置K1取值集合,比如{1,2,3,4},并通过RRC信令发送给终端设备。随后向终端设备20发送DCI,用于通知终端设备20为该数据传输分配的K1具体取值为集合中的哪一个。
具体地,上行时域资源分配表中的每一行包含如下中的至少一项:上行调度与相应上行数据传输的时间关系(Timing between UpLink assignment and corresponding UpLink data transmission,K2)、时域资源分配信息。其中,K2指示了从PDCCH到PUSCH的时间间隔,若网络设备10在时间单位n上通过PDCCH向终端设备发送DCI,在物理上行共享信道(physical uplink share channel,PUSCH)上传输的被该DCI调度的数据对应的时间单位为n+K2。时域资源分配信息与下行时域资源分配表中的时域资源信息相同,本申请不再赘述。
参照上述分析,网络设备10配置的时隙结构与网络设备10通过DCI指示的时隙聚合调度均对时隙中的符号用于上行/下行进行了指示,因此,可能存在网络设备10配置的时隙结构与网络设备10通过DCI指示的时隙聚合调度冲突的情况。在NR系统中上述冲突的解决方案为:终端设备根据聚合因子确定连续的时隙作为聚合时隙。但是,采用连续的时隙作为聚合时隙,存在不利于时延敏感数传输的问题,影响了数据传输效率。
为解决上述问题,本申请提出一种通信方法,根据提高了数据传输效率。下面采用详细的实施例,对本申请提供的通信方法进行详细说明。
图5为本申请实施例一提供的通信方法的流程示意图。该方法的执行主体可以为图1中的终端设备20。本实施例涉及通信过程中聚合时隙的获取方法,根据网络设备为终端设备配置的SFI和SLIV同时确定时隙是否为聚合时隙,提高了数据传输效率。如图5所示,该方法包括:
S501、获取第一指示信息和格式信息。
具体地,第一指示信息可以为起始长度指示值SLIV,格式信息可以为时隙格式相关信息SFI。
可选地,终端设备获取SLIV的方式具体包括:
终端设备接收网络设备发送的下行控制信息,下行控制信息中携带有索引号,终端设备根据索引号在DCI的格式指示的传输方向所对应的时域资源分配表中获取SLIV。
示例性地,终端设备在接收DCI时,可根据DCI的格式确定进行上行数据传输或下行数据传输。当DCI的格式指示下行数据传输时,终端设备根据DCI中的索引号,在下行时 域资源分配表中确定SLIV。当DCI的格式指示上行数据传输时,终端设备根据DCI中的索引号,在上行时域资源分配表中确定SLIV。
可选地,终端设备获取SFI的过程具体包括:
终端设备获取网络设备通过RRC信令或下行控制信息发送的SFI。
示例性地,网络设备可以通过半静态方式,如RRC信令向终端设备配置SFI,网络设备还通过RRC信令配置SFI的周期,SFI的可以为0.125ms、0.25ms、0.5ms、1ms、2ms、5ms和10ms等。示例性地,网络设备还可以通过动态方式,如DCI向终端设备配置SFI。例如,终端设备通过检测组内公共下行控制信道Group Common PDCCH获取SFI。一个Group Common PDCCH可以指示一个或多个slot的SFI。
S502、根据第一指示信息指示的时间单元中的子时间单元的传输方向以及格式信息指示的子时间单元的传输方向,确定时间单元是否属于聚合时间单元。
具体地,时间单元可以为帧、子帧、时隙等。本申请以下各实施例中以时间单元为时隙为例,对确定时间单元是否属于聚合时间单元的过程进行说明。
其中,第一指示信息指示的时间单元中的子时间单元的传输方向可以为子时间单元中的待传数据的传输方向,传输方向可以为上行、下行和未知。具体可以由第一指示信息确定时间单元中的部分或全部子时间单元,并由第一指示信息对应的DCI的格式确定该部分或全部子时间单元的传输方向,且传输方向均相同。例如,对于包括14个符号的时隙n,第一指示信息中指示了符号3至符号10的传输方向为下行传输方向。格式信息中指示了时间单元中的各子时间单元的传输方向,例如上行、下行和未知。例如,对于该时隙n,格式信息指示了时隙n中每一个符号的传输方向。本实施例可以根据符号3至符号10在第一指示信息中的传输方向与格式信息中的传输方向是否存在冲突来确定时隙n是否属于聚合时隙。
示例性的,对于任一子时间单元,当第一指示信息指示该子时间单元的传输方向为上行时,若格式信息指示该子时间单元的传输方向为上行或未知,则确定传输方向相同;若格式信息指示该子时间单元的传输方向为下行,则确定传输方向不同。同样的,对于任一子时间单元,当第一信息指示该子时间单元的传输方向为下行时,若格式信息指示该子时间单元的传输方向为下行或未知,则确定传输方向相同;若格式信息指示该子时间单元的传输方向为上行,则确定传输方向不同。对于任一子时间单元,当第一指示信息指示该子时间单元的传输方向为未知时,则确定传输方向相同。
具体地,当确定时间单元属于聚合时间单元,确定时间单元的传输方向为DCI的格式指示的传输方向,属于聚合时间单元的所有时间单元具有相同的传输方向。在进行数据传输时,数据占用所有的聚合时间单元进行传输,增加了数据传输占用的资源,提高了数据传输可靠性。具体地,当确定时间单元不属于聚合时间单元,则在进行数据传输时,不占用该时间单元,用于聚合的时间单元可以为不连续的。终端设备可根据格式信息指示的该时间单元中的各子时间单元的传输方向,传输数据或指令等,提高了数据传输的灵活性。
具体地,上述根据第一指示信息和格式信息分别指示的子时间单元的传输方向确定时间单元是否用于聚合的过程,示例性的可以包括如下几种实现方式:
第一种实现方式:
当第一指示信息指示的时间单元中的至少一个子时间单元的传输方向与格式信息指示的该些至少一个子时间单元的传输方向相同,确定时间单元属于聚合时间单元。
可选地,时间单元中存在至少N个子时间单元,分别记为子时间单元1至N。当第一指示信息为子时间单元1至N配置的传输方向与格式信息为子时间单元1至N配置的传输方向一一相同时,认为该时间单元属于聚合时间单元。其中,N为正整数。
可选地,还可以为当第一指示信息指示的时间单元中的配置了传输方向的各子时间单元的传输方向与格式信息指示的该些各子时间单元的传输方向一一相同,则确定时间单元属于聚合时间单元。
此时,聚合时间单元的传输方向与第一指示信息为时间单元中的子时间单元指示的传输方向相同。
第二种可能的实现方式:
当第一子时间单元占时间单元中的至少一个子时间单元的比例达到M,确定时间单元属于聚合时间单元;其中,第一指示信息指示的第一子时间单元的传输方向与格式信息指示的第一子时间单元的传输方向相同,M的取值在[0,1]范围内。
可选地,将时间单元中第一指示信息指示的传输方向与格式信息指示的传输方向相同的子时间单元记为第一子时间单元,当时间单元中第一子时间单元占时间单元中的至少一个子时间单元的比例达到M时,确定时间单元属于聚合时间单元。可选地,该些至少一个子时间单元可以为第一指示信息中指示了传输方向的子时间单元。其中,M为0至1中的任意实数。当M为1表示时间单元中的至少一个子时间单元均为第一子时间单元。
此时,聚合时间单元的传输方向与第一指示信息为时间单元中的子时间单元指示的传输方向相同。
第三种可能的实现方式:
当时间单元中第二子时间单元的数目少于P,确定时间单元属于聚合时间单元;其中,第一指示信息指示的第二子时间单元的传输方向与格式信息指示的二子时间单元的传输方向不同,P为正整数。
可选地,将时间单元中第一指示信息指示的传输方向与格式信息指示的传输方向不同的子时间单元记为第二子时间单元,当时间单元中第二子时间单元的数目未达到P时,确定时间单元属于聚合时间单元;当时间单元中第二子时间单元的数目达到P时,确定时间单元不属于聚合时间单元。
此时,聚合时间单元的传输方向与第一指示信息为时间单元中的子时间单元指示的传输方向相同。
第四种可能的实现方式:
当第三子时间单元占时间单元中的至少一个子时间单元的比例小于Q,确定时间单元属于聚合时间单元;其中,第一指示信息指示的第三子时间单元的传输方向与格式信息指示的第三子时间单元的传输方向不同,Q的取值在[0,1]范围内。
可选地,将时间单元中第一指示信息指示的传输方向与格式信息指示的传输方向不同的子时间单元记为第三子时间单元,当时间单元中第三子时间占时间单元中的至少一个子时间单元的比例小于Q时,确定时间单元属于聚合时间单元;当时间单元中第三子时间占时间单元中的至少一个子时间单元的比例不小于Q时,确定时间单元不属于聚合时间单元。 可选地,该些至少一个子时间单元可以为第一指示信息中指示了传输方向的子时间单元。
此时,聚合时间单元的传输方向与第一指示信息为时间单元中的子时间单元指示的传输方向相同。
本申请实施例提供的通信方法,包括获取第一指示信息和格式信息,并根据第一指示信息指示的时间单元中的子时间单元的传输方向以及格式信息指示的子时间单元的传输方向,确定时间单元是否属于聚合时间单元。本实施例中根据第一指示信息和格式信息对时间单元中的子时间单元的传输方向的配置,来确定时间单元是否属于聚合时间单元,当时间单元不属于聚合时间单元时,该时间单元不用于基于聚合技术的数据传输,使得聚合时间单元可以不连续。避免了直接根据DCI格式指示的传输方向以及聚合因子,采用连续时间单元作为聚合时间单元,导致的不利于时延敏感数传输的问题。
在上述实施例的基础上,本申请实施例还提供一种通信方法。图6为本申请实施例二提供的通信方法的流程示意图。本实施例中终端设备还接收指示聚合数目的第二指示信息,根据聚合数目确定聚合时间单元的数量。如图6所示,通信方法还包括:
S601、获取第二指示信息,第二指示信息指示聚合数目。
具体地,终端设备接收网络设备发送的第二指示信息,第二指示信息示例性的可以为聚合因子,指示了聚合数目。在网络设备和终端设备之间进行数据传输时占用的时间单元的数目为聚合因子指示的聚合数目。可选地,网络设备通过RRC信令向终端设备发送第二指示信息。
S602、根据聚合数目确定聚合时间单元的数量。
具体地,在根据第二指示信息确定了聚合数目后,确定属于聚合时间单元的时间单元的数量是否达到聚合数目,若达到,则确定聚合时间单元的数量为第二指示信息指示的聚合数目;若未达到,则确定当前聚合时间单元的数量,并再次执行图5所示实施例中的判断时间单元是否聚合时间单元的步骤。可选地,本实施例中的S601和S602可以在图5所示实施例中的S502之后执行。
本实施例提供的通信方法包括:获取第二指示信息,第二指示信息指示聚合数目,根据聚合数目确定聚合时间单元的数量。本实施例中终端设备根据第二指示信息确定聚合数目,并根据聚合数目确定聚合时间单元的数量,根据聚合时间单元的数量确定用于数据传输的聚合时间单元。
可选地,在上述实施例的基础上,本申请实施例还提供一种通信方法,对当DCI的格式指示进行下行数据传输时,确定当前时间单元是否属于聚合时间单元的过程进行说明。图7为本申请实施例三提供的通信方法的流程示意图。如图7所示,通信方法包括:
S701、获取下行控制信息。
具体地,终端设备接收网络设备发送的DCI。
S702、获取第一指示信息、格式信息和第二指示信息,第二指示信息指示聚合数目。
具体地,第一指示信息、格式信息和第二指示信息的获取方式可以如上述任一实施例所示,本实施例不再赘述。
S703、根据下行控制信息中的上行反馈时间单元K1,以及处理时间单元间隔,确定截止时间单元。
具体地,DCI中携带有上行反馈时间单元K1,处理时间单元间隔为终端设备处理下行数据所需要占用的时间间隔。因此,在时间单元K1之前的时间间隔内的时间单元均无法作为聚合时间单元。因此,可根据K1和处理时间单元间隔,确定截止时间单元,截止时间单元在K1之前。示例性地,处理时间单元间隔可以为终端设备和网络设备预定义的,也可以为网络设备通过信令向终端设备发送的。
S704、确定属于聚合时间单元的时间单元的数目未达到聚合数目且当前时间单元在截止时间单元之前。
示例性地,在判断当前时间单元是否属于聚合时间单元之前,若确定已经属于聚合时间单元的时间单元的数目已达到聚合数目,则可结束聚合时间单元的确定过程。同时,若确定当前时间单元不在截止时间单元之前,则说明不存在时间单元可以用于进行下行数据传输,否则终端设备无法在上行反馈时间单元K1上传反馈信息,因此,同样结束聚合时间单元的确定过程。
S705、根据第一指示信息指示的当前时间单元中的子时间单元的传输方向以及格式指示指示的当前时间单元中的子时间单元的传输方向,确定当前时间单元是否属于聚合时间单元。
示例性地,本实施例中的确定当前时间单元是否属于聚合时间单元的具体方式与图5所示实施例中的确定时间单元是否属于聚合时间单元的具体方式相同,本申请不再赘述。
本申请实施例提供的通信方法,对当前时间单元是否属于聚合时间单元进行了示例性的说明。具体包括:获取下行控制信息,根据下行控制信息中的上行反馈时间单元K1和处理时间单元间隔,确定截止时间单元,获取第一指示信息、格式信息和第二指示信息,第二指示信息指示聚合数目,确定属于聚合时间单元的时间单元的数目未达到聚合数目且当前时间单元在截止时间单元之前,根据第一指示信息指示的当前时间单元中的子时间单元的传输方向以及格式指示指示的当前时间单元中的子时间单元的传输方向,确定当前时间单元是否属于聚合时间单元。本实施例中根据第一指示信息和格式信息对时间单元中的子时间单元的传输方向的配置,来确定时间单元是否属于聚合时间单元,当时间单元不属于聚合时间单元时,该时间单元不用于基于聚合技术的数据传输,使得聚合时间单元可以不连续。避免了直接根据DCI格式指示的传输方向以及聚合因子,采用连续时间单元作为聚合时间单元,导致的不利于时延敏感数传输的问题。
具体地,在上述任一实施例的基础上,图8为本申请实施例四提供的通信方法的流程示意图。本实施例对终端设备获取用于聚合的时隙的所有聚合时隙的过程进行说明。如图8所示,通信方法包括:
S801、接收DCI。
示例性地,终端设备接收网络设备发送的DCI,DCI中携带有起始时隙信息。
S802、将DCI的起始时隙作为第i时隙,令i=1。
示例性的,当DCI的格式指示下行数据传输时,将K0时隙作为第1时隙。当DCI的格式指示上行数据传输时,将K2时隙作为第1时隙。
S803、判断第i时隙是否属于聚合时隙;若是,则执行S804;若否;则执行S805。
示例性地,采用图5所示实施例中的确定时间单元是否属于聚合时间单元的方法,判断第i时隙是否属于聚合时隙,本申请对此不再赘述。
S804、将聚合时隙数目加1,判断聚合时隙数目是否达到聚合因子指示的数目;若是,则结束;若否;则执行S805。
示例性地,当第i时隙属于聚合时隙时,将聚合时隙数目加1。聚合时隙数目的初始数值为0。判断修改后的聚合时隙数目是否达到聚合因子指示的数目。若达到,则获取了聚合时隙所需的所有时隙。若未达到,在继续获取用于聚合的聚合时隙。
S805、判断DCI的格式是否指示下行数据传输;若是,则执行S807;若否,则执行S806。
示例性地,根据DCI的格式判断进行上行数据传输或下行数据传输。
S806、将i加1,并执行S804。
示例性地,当根据DCI的格式判断进行上行数据传输时,将i增加1,例如判断第二时隙是否为聚合时隙。
S807、将i加1,判断第i时隙是否为截止时隙;若是,则结束;若否;则执行S804。
示例性地,当根据DCI的格式判断进行下行数据传输时,还需进一步判断第i时隙是否为截止时隙,截止时隙的获取方式具体如上述图7实施例所示,本申请不再赘述。
本实施例中根据第一指示信息和格式信息对时间单元中的子时间单元的传输方向的配置,来确定时间单元是否属于聚合时间单元,当时间单元不属于聚合时间单元时,该时间单元不用于基于聚合技术的数据传输,使得聚合时间单元可以不连续。避免了直接根据DCI格式指示的传输方向以及聚合因子,采用连续时间单元作为聚合时间单元,导致的不利于时延敏感数传输的问题。
本申请实施例另一方面还提供一种通信方法,执行主体为网络设备。与图5至图8所示实施例具有相对应的技术特征和技术效果,本申请对此不再赘述。
图9为本申请实施例五提供的通信方法的流程示意图。如图9所示,通信方法包括:
S901、确定第一指示信息和格式信息。
S902、根据第一指示信息指示的时间单元中的子时间单元的传输方向以及格式信息指示的子时间单元的传输方向,确定时间单元是否属于聚合时间单元。
可选地,一种可能的实现方式中,根据第一指示信息指示的时间单元中的子时间单元中的传输方向以及格式信息指示的子时间单元的传输方向,确定时间单元是否属于聚合时间单元,包括:
当第一指示信息指示的时间单元中的至少一个子时间单元的传输方向与格式信息指示的至少一个子时间单元的传输方向相同,确定时间单元属于聚合时间单元。
可选地,另一种可能的实现方式中,根据第一指示信息指示的时间单元中的子时间单元中的传输方向以及格式信息指示的子时间单元的传输方向,确定时间单元是否属于聚合时间单元,包括:
当第一子时间单元占时间单元中的至少一个子时间单元的比例达到M,确定时间单元属于聚合时间单元;其中,第一指示信息指示的第一子时间单元的传输方向与格式信息指示的第一子时间单元的传输方向相同,M的取值在[0,1]范围内。
可选地,另一种可能的实现方式中,根据第一指示信息指示的时间单元中的子时间单元中的传输方向以及格式信息指示的子时间单元的传输方向,确定时间单元是否属于聚合时间单元,包括:
当时间单元中第二子时间单元的数目少于P,确定时间单元属于聚合时间单元;其中,第一指示信息指示的第二子时间单元的传输方向与格式信息指示的二子时间单元的传输方向不同,P为正整数。
可选地,另一种可能的实现方式中,根据第一指示信息指示的时间单元中的子时间单元中的传输方向以及格式信息指示的子时间单元的传输方向,确定时间单元是否属于聚合时间单元,包括:
当第三子时间单元占时间单元中的至少一个子时间单元的比例小于Q,确定时间单元属于聚合时间单元;其中,第一指示信息指示的第三子时间单元的传输方向与格式信息指示的第三子时间单元的传输方向不同,Q的取值在[0,1]范围内。
可选地,通信方法还包括:
S11、确定第二指示信息,第二指示信息指示聚合数目;
S12、根据聚合数目确定聚合时间单元的数量。
可选地,通信方法还包括:
将第一指示信息、格式信息和第二指示信息中的至少一项发送至终端设备。
本申请实施例另一方面还提供一种通信装置,用于执行上述图5至图8所示实施例中的通信方法,具有相同或相似的技术特征和技术效果。
图10为本申请实施例一提供的通信装置的结构示意图,如图10所示,通信装置包括:
获取模块1001,用于获取第一指示信息和格式信息;
聚合时间单元判断模块1002,用于根据第一指示信息指示的时间单元中的子时间单元的传输方向以及格式信息指示的子时间单元的传输方向,确定时间单元是否属于聚合时间单元。
可选地,聚合时间单元判断模块1002具体用于:
当第一指示信息指示的时间单元中的至少一个子时间单元的传输方向与格式信息指示的至少一个子时间单元的传输方向相同,确定时间单元属于聚合时间单元。
可选地,聚合时间单元判断模块1002具体用于:
当第一子时间单元占时间单元中的至少一个子时间单元的比例达到M,确定时间单元属于聚合时间单元;其中,第一指示信息指示的第一子时间单元的传输方向与格式信息指示的第一子时间单元的传输方向相同,M的取值在[0,1]范围内。
可选地,聚合时间单元判断模块1002具体用于:
当时间单元中第二子时间单元的数目少于P,确定时间单元属于聚合时间单元;其中,第一指示信息指示的第二子时间单元的传输方向与格式信息指示的二子时间单元的传输方向不同,P为正整数。
可选地,聚合时间单元判断模块1002具体用于:
当第三子时间单元占时间单元中的至少一个子时间单元的比例小于Q,确定时间单元属于聚合时间单元;其中,第一指示信息指示的第三子时间单元的传输方向与格式信息指示的第三子时间单元的传输方向不同,Q的取值在[0,1]范围内。
可选地,获取模块1001还用于,获取第二指示信息,第二指示信息指示聚合数目;
聚合时间单元判断模块1002还用于,根据聚合数目确定聚合时间单元的数量。
本申请实施例另一方面还提供一种通信装置,用于执行上述图9所示实施例中的通信 方法,具有相同或相似的技术特征和技术效果。
图11为本申请实施例二提供的通信装置的结构示意图,如图11所示,包括:
获取模块1101,用于确定第一指示信息和格式信息;
聚合时间单元判断模块1102,用于根据第一指示信息指示的时间单元中的子时间单元的传输方向以及格式信息指示的子时间单元的传输方向,确定时间单元是否属于聚合时间单元。
可选地,聚合时间单元判断模块1102具体用于:
当第一指示信息指示的时间单元中的至少一个子时间单元的传输方向与格式信息指示的至少一个子时间单元的传输方向相同,确定时间单元属于聚合时间单元。
可选地,聚合时间单元判断模块1102具体用于:
当第一子时间单元占时间单元中的至少一个子时间单元的比例达到M,确定时间单元属于聚合时间单元;其中,第一指示信息指示的第一子时间单元的传输方向与格式信息指示的第一子时间单元的传输方向相同,M的取值在[0,1]范围内。
可选地,聚合时间单元判断模块1102具体用于:
当时间单元中第二子时间单元的数目少于P,确定时间单元属于聚合时间单元;其中,第一指示信息指示的第二子时间单元的传输方向与格式信息指示的二子时间单元的传输方向不同,P为正整数。
可选地,聚合时间单元判断模块1102具体用于:
当第三子时间单元占时间单元中的至少一个子时间单元的比例小于Q,确定时间单元属于聚合时间单元;其中,第一指示信息指示的第三子时间单元的传输方向与格式信息指示的第三子时间单元的传输方向不同,Q的取值在[0,1]范围内。
可选地,获取模块1101还用于,确定第二指示信息;第二指示信息指示聚合数目;
聚合时间单元判断模块还用于,根据聚合数目确定聚合时间单元的数量。
可选地,如图11所示,通信装置还包括:
发送模块1103,用于将第一指示信息、格式信息和第二指示信息中的至少一项发送至终端设备。
本申请实施例另一方面还提供一种终端设备,用于执行上述图5至图8所示实施例中的通信方法,具有相同或相似的技术特征和技术效果。
图12为本申请实施例一提供的终端设备的结构示意图,如图12所示,包括:
接收器1201,用于获取第一指示信息和格式信息;
处理器1202,用于根据第一指示信息指示的时间单元中的子时间单元的传输方向以及格式信息指示的子时间单元的传输方向,确定时间单元是否属于聚合时间单元。
可选地,处理器1202具体用于:
当第一指示信息指示的时间单元中的至少一个子时间单元的传输方向与格式信息指示的至少一个子时间单元的传输方向相同,确定时间单元属于聚合时间单元。
可选地,处理器1202具体用于:
当第一子时间单元占时间单元中的至少一个子时间单元的比例达到M,确定时间单元属于聚合时间单元;其中,第一指示信息指示的第一子时间单元的传输方向与格式信息指示的第一子时间单元的传输方向相同,M的取值在[0,1]范围内。
可选地,处理器1202具体用于:
当时间单元中第二子时间单元的数目少于P,确定时间单元属于聚合时间单元;其中,第一指示信息指示的第二子时间单元的传输方向与格式信息指示的二子时间单元的传输方向不同,P为正整数。
可选地,处理器1202具体用于:
当第三子时间单元占时间单元中的至少一个子时间单元的比例小于Q,确定时间单元属于聚合时间单元;其中,第一指示信息指示的第三子时间单元的传输方向与格式信息指示的第三子时间单元的传输方向不同,Q的取值在[0,1]范围内。
可选地,接收器1201还用于,获取第二指示信息,第二指示信息指示聚合数目;
处理器1202还用于,根据聚合数目确定聚合时间单元的数量。
本申请实施例另一方面还提供一种网络设备,用于执行上述图9所示实施例中的通信方法,具有相同或相似的技术特征和技术效果。
图13为本申请实施例一提供的网络设备的结构示意图,如图13所示,包括:
处理器1301,用于确定第一指示信息和格式信息,根据第一指示信息指示的时间单元中的子时间单元的传输方向以及格式信息指示的子时间单元的传输方向,确定时间单元是否属于聚合时间单元。
可选地,处理器1301具体用于:
当第一指示信息指示的时间单元中的至少一个子时间单元的传输方向与格式信息指示的至少一个子时间单元的传输方向相同,确定时间单元属于聚合时间单元。
可选地,处理器1301具体用于:
当第一子时间单元占时间单元中的至少一个子时间单元的比例达到M,确定时间单元属于聚合时间单元;其中,第一指示信息指示的第一子时间单元的传输方向与格式信息指示的第一子时间单元的传输方向相同,M的取值在[0,1]范围内。
可选地,处理器1301具体用于:
当时间单元中第二子时间单元的数目少于P,确定时间单元属于聚合时间单元;其中,第一指示信息指示的第二子时间单元的传输方向与格式信息指示的二子时间单元的传输方向不同,P为正整数。
可选地,处理器1301具体用于:
当第三子时间单元占时间单元中的至少一个子时间单元的比例小于Q,确定时间单元属于聚合时间单元;其中,第一指示信息指示的第三子时间单元的传输方向与格式信息指示的第三子时间单元的传输方向不同,Q的取值在[0,1]范围内。
可选地,处理器1301还用于,确定第二指示信息,第二指示信息指示聚合数目;
处理器还用于,根据聚合数目确定聚合时间单元的数量。
可选地,网络设备还包括:
发送器1302,用于将第一指示信息、格式信息和第二指示信息中的至少一项发送至终端设备。
本申请实施例再一方面还提供一种终端设备。图14为本申请实施例二提供的终端设备的结构示意图。如图14所示,终端设备包括处理器1401、存储器1402、通信接口1403以及总线1404;其中,
处理器1401、存储器1402和通信接口1403之间通过总线1404连接并完成相互间的通信,存储器1402中用于存储计算机执行指令,设备运行时,处理器1401执行存储器1402中的计算机执行指令以利用设备中的硬件资源执行图5至图8对应的通信方法中的步骤。
本申请实施例再一方面还提供一种网络设备。图15为本申请实施例二提供的网络设备的结构示意图。如图15所示,网络设备包括处理器1501、存储器1502、通信接口1503以及总线1504;其中,
处理器1501、存储器1502和通信接口1503之间通过总线1504连接并完成相互间的通信,存储器1502中用于存储计算机执行指令,设备运行时,处理器1501执行存储器1502中的计算机执行指令以利用设备中的硬件资源执行图9对应的通信方法中的步骤。
本申请另一方面还提供一种通信系统,如图1所示,包括如图12或图14所示的终端设备和如图13或图15所示的网络设备。
本申请另一方面还提供一种终端设备,包括:存储器、处理器以及计算机程序,计算机程序存储在存储器中,处理器运行计算机程序执行如上述图5至图8对应的通信方法中的步骤。
本申请另一方面还提供一种网络设备,包括:存储器、处理器以及计算机程序,计算机程序存储在存储器中,处理器运行计算机程序执行如上述图9对应的通信方法中的步骤。
本申请另一方面还提供一种计算机存储介质,存储介质包括计算机程序,计算机程序用于实现如上述图5至图8对应的通信方法中的步骤。
本申请另一方面还提供一种计算机存储介质,存储介质包括计算机程序,计算机程序用于实现如上述图9对应的通信方法中的步骤。
本申请另一方面还提供一种计算机程序产品,计算机程序产品包括计算机程序代码,当计算机程序代码在计算机上运行时,使得计算机执行如上述图5至图8对应的通信方法中的步骤。
本申请另一方面还提供一种计算机程序产品,计算机程序产品包括计算机程序代码,当计算机程序代码在计算机上运行时,使得计算机执行上述图9对应的通信方法中的步骤。
本申请另一方面还提供一种芯片,包括存储器和处理器,存储器用于存储计算机程序,处理器用于从存储器中调用并运行计算机程序,使得安装有芯片的通信设备执行如上述图5至图8对应的通信方法中的步骤。
本申请另一方面还提供一种芯片,包括存储器和处理器,存储器用于存储计算机程序,处理器用于从存储器中调用并运行计算机程序,使得安装有芯片的通信设备执行如上述图9对应的通信方法中的步骤。
本申请另一方面还提供一种第一装置,包括至少一个处理器和至少一个存储器,处理器用于执行上述图5至图9对应的通信方法中任一方法,至少一个存储器与至少一个处理器耦合。
本申请另一方面还提供一种第二装置,包括至少一个处理器和至少一个存储器,至少一个存储器与至少一个处理器耦合,至少一个存储器用于存储计算机程序代码或计算机指令,当一个或多个处理器执行上述计算机程序代码或计算机指令时,装置执行上述图5至图9对应的通信方法中任一方法。
本申请另一方面还提供一种第三装置,包括至少一个处理器,处理器用于执行上述图 5至图9对应的通信方法中任一方法。
本申请另一方面还提供一种第四装置,包括至少一个通信接口,用于执行上述图5至图9对应的通信方法中任一方法的收发步骤。进一步,该装置还可以包括至少一个处理器,用于执行上述图5至图9对应的通信方法中任一方法的处理步骤,至少一个处理器和至少一个通信接口耦合。
可选的,上述处理步骤包括确定时间单元是否属于聚合时间单元等。可选的,上述收发步骤包括实现装置内部的信息交互,或实现网络设备和通信设备间的传输。
本申请另一方面还提供一种计算机存储介质,包括计算机指令,当计算机指令在装置上运行时,使得该装置执行上述图5至图9对应的通信方法中任一方法。
本申请另一方面还提供一种计算机程序产品,当计算机程序产品在计算机上运行时,使得计算机执行上述图5至图9对应的通信方法中任一方法。
本申请另一方面还提供一种芯片,该芯片以装置的形式存在,该芯片可以为上述第一装置、第二装置、第三装置、第四装置、计算机存储介质和计算机程序产品中的任意一种装置。
本申请另一方面还提供一种时频资源分配表,下面对时频资源分配表进行详细说明。以下各实施例中的时频资源分配表可以作为图5至图9所示方式实施例中的时频资源分配表,用于确定K0/K2、SLIV信息等。
可选地,网络设备在终端设备完成初始接入之后,在RRC信令中为终端设备的上行调度配置上行时域资源分配表,为终端设备的下行调度配置下行时域资源分配表。时域资源分配表可以如表5所示,包含比如4行,5列内容。其中,5列参数分别为表格行数的索引号,K0,调度数据起始符号、调度数据的符号个数,调度类型。时域资源分配表还可以包含4行,4列内容。其中,4列参数分别为表格行数的索引号,K0,调度数据的起始符号和长度SLIV、资源映射类型。因此,网络设备在上行调度和下行调度的下行控制指示DCI中秩序携带2比特的指示信息即可指示终端设备时域资源分配的信息。
一种确定时域资源分配表的方法,为根据不同的CP类型确定不同的表格。对fallback DCI的时域资源调度而言,预定义对应的表格。对non-fallback DCI的时域资源调度而言,通过RRC信令配置对应的表格。其中,通过考虑不同的CP类型和数据的映射类型,可以进一步约束SLIV的取值范围,从而用较少比特数的标识来指示资源分配,节省了开销。
在终端设备初始接入过程中,网络设备无法通过RRC信令为终端设备配置时域资源分配表,需要预定义时域资源分配表。可选地,为上行回退DCI,比如DCI format0_0预定义上行时域资源分配表。当表格中使用SLIV指示数据调度的起始符号和符号个数,则表格为4列,如果使用数据起始符号列和符号个数列分别指示,则表格为5列。表格行数的选择与预定义的K0/K2、SLIV值的个数相关,表格行数可以为4或8等,因此在DCI中仅占用2比特或3比特即可指示终端设备时域资源分配的信息。
可选地,可针对不同的CP类型设置不同的时域资源分配表。比如分别为NCP和ECP预定义一张表格,如表6和表7,或预定义一张NCP和ECP共用的表格,如表8所示。为NCP和ECP预定义不同的表格可以减少DCI中时域指示信息的比特数开销,为NCP和ECP预定义一张表格可以减少UE的处理复杂度。
对于NCP上行回退DCI表格,K2的值可以为1,2,3,4,5,6,7,8,K2的取值考虑了不同 UE的不同数据处理能力,从而满足不同的UE能力和回退需求。当PUSCH映射类型为B时,PUSCH的起始符号可以为0,1,2,3,4,符号个数可以为2,4,7,8,10,12,14。对于时隙调度,一个时隙内除了控制信道所占的符号,其它符号都用来做数据传输,从而最大化了UE的实际可用资源,对于非时隙调度,符号个数可以为2,4,7,减少调度时延。当PUSCH映射类型为A时,PUSCH的起始符号可以为0,符号个数可以为2,4,8,10,12,14,多个可能的PUSCH符号个数,最大化了调度的灵活性。如表6所示,第二列为K2的值,K2取值为2,当PUSCH映射类型为B时,PUSCH的起始符号为0或2,符号个数可以为2,4,7,10。当PUSCH映射类型为A时,PUSCH的起始符号为0,符号个数为12。
对于NCP下行回退DCI表格,K0的值可以为0,K0取值为0可以减少UE接收数据的处理时间,减少数据调度的时延,当PDSCH映射类型为B时,PDSCH的起始符号位置可为0,1,2,3,4,符号个数可以为2,4,7。根据下行控制信道可能占用的符号个数确定PDSCH可能的起始位置和PDSCH映射规则B可以满足的调度符号个数确定符号个数,从而最大化调度的灵活性。当PDSCH映射类型为A时,PDSCH的起始符号位置可以为0,1,2,3,符号个数可以为7,9,11,14,一个时隙内除了控制信道所占的符号,其它符号都用来做数据传输,从而最大化了UE的实际可用资源。如表9所示,第二列为K0的值,K0取值为0,当PDSCH映射类型为B时,PDSCH的起始符号为0,符号个数可以为2,4,7。当PDSCH映射类型为A时,PDSCH的起始符号为0,符号个数为12。
对于ECP上行回退DCI表格,K2的值可以为1,2,3,4,5,6,7,8。当PUSCH映射类型为B时,PUSCH的起始符号可以为0,1,2,3,4,符号个数可以为2,4,6,8,10,12。当PUSCH映射类型为A时,PUSCH的起始符号可以为0,符号个数可以为2,4,8,10,12。不同参数的选取规则和有益效果与NCP上行回退DCI相同。如表7所示,第二列为K2的值,K2取值为2。当PUSCH映射类型为B时,PUSCH的起始符号为0,2,符号个数可以为2,4,6,8。当PUSCH映射类型为A时,PUSCH的起始符号为0,符号个数为10。
对于ECP下行回退DCI表格,第二列为K0的值,K0的值可以为0,当PDSCH映射类型为B时,PDSCH的起始符号位置可为0,1,2,3,4,符号个数可以为2,4,6;当PDSCH映射类型为A时,PDSCH的起始符号位置可以为0,1,2,3,符号个数可以为5,7,8,9,10,12。不同参数的选取规则和有益效果与NCP下行回退DCI相同。
对于NCP和ECP共用上行回退DCI表格,第二列为K2的值,K2的值可以为1,2,3,4,5,6,7,8,当PUSCH映射类型为B时,PUSCH的起始符号可以为0,1,2,3,4,符号个数可以为2,4,6,7,8,10,12,14;当PUSCH映射类型为A时,PUSCH的起始符号可以为0,符号个数可以为2,4,8,10,12,14。不同参数的选取规则和有益效果与NCP上行回退DCI相同。
对于NCP和ECP共用下行回退DCI表格,第二列为K0的值,K0的值可以为0,当PDSCH映射类型为B时,PDSCH的起始符号位置可为0,1,2,3,4,符号个数可以为2,4,6,7,当PDSCH映射类型为A时,PDSCH的起始符号位置可以为0,1,2,3,符号个数可以为8,10,12,14。不同参数的选取规则和有益效果与NCP下行回退DCI相同。
可选的,上行回退DCI和下行回退DCI可以使用同一个预定义的表格。表6至表8如下所示:
表6 NCP上行回退DCI时域资源指示表格示例
Figure PCTCN2019073778-appb-000004
表7 ECP上行回退DCI时域资源指示表格示例
索引号 K2 起始符号 符号个数 PUSCH映射类型
0 2 0 2 Type B
1 2 0 4 Type B
2 2 0 6 Type B
3 2 0 10 Type A
4 2 2 2 Type B
5 2 2 4 Type B
6 2 2 6 Type B
7 2 2 8 Type B
表8 NCP+ECP上行回退DCI时域资源指示表格示例
索引号 K2 起始符号 符号个数 PUSCH映射类型
0 2 0 2 Type B
1 2 0 4 Type B
2 2 0 6 Type B
3 2 0 7 Type B
4 2 0 10 Type A
5 2 0 12 Type A
6 2 2 2 Type B
7 2 2 4 Type B
8 2 2 6 Type B
9 2 2 7 Type B
10 2 2 8 Type B
11 2 2 10 Type B
可选地,为下行回退DCI,比如DCI format1_0预定义下行时域资源分配表。当表格中使用SLIV指示数据调度的起始符号和符号个数,那么表格为4列,如果使用数据起始符号列和符号个数列分别指示,那么表格为5列。表格行数的选择与预定义的K0/K2、SLIV的取值的个数相关,表格行数可以为4或8等,在DCI中仅需使用2比特或3比特即可指示终端设备时域资源分配的信息。可选地,可针对不同的CP类型设置不同的时域资源分配表。比如分别为NCP和ECP预定义一张表格,如表9和表10,或预定义一张NCP和ECP共用的表格,如表11。表9至表11如下所示:
表9 NCP下行回退DCI时域资源指示表格示例
索引号 K0 起始符号 符号个数 PDSCH映射类型
0 0 0 2 Type B
1 0 0 4 Type B
2 0 0 7 Type B
3 0 0 12 Type A
表10 ECP下行回退DCI时域资源指示表格示例
索引号 K0 起始符号 符号个数 PDSCH映射类型
0 0 0 2 Type B
1 0 0 4 Type B
2 0 0 6 Type B
3 0 0 10 Type A
表11 NCP+ECP下行回退DCI时域资源指示表格示例
索引号 K0 起始符号 符号个数 PDSCH映射类型
0 0 0 2 Type B
1 0 0 4 Type B
2 0 0 6 Type B
3 0 0 7 Type B
4 0 0 10 Type A
5 0 0 12 Type A
示例性的,NCP下行回退DCI预定义的表格还可以为表12,表13中至少一行,NCP上行回退DCI预定义的表格还可以为表14中至少一行。
表12 NCP下行回退DCI时域资源指示表格示例
index K0 start Length PDSCH mapping type
0 0 2 12 Type A
1 0 2 10 Type A
2 0 2 9 Type A
3 0 2 8 Type A
4 0 3 11 Type A
5 0 3 9 Type A
6 0 3 8 Type A
7 0 3 7 Type A
表13 NCP下行回退DCI时域资源指示表格示例
index K0 start Length PDSCH mapping type
0 0 2 12 Type A
1 0 2 11 Type A
2 0 2 10 Type A
3 0 2 9 Type A
4 0 3 11 Type A
5 0 3 10 Type A
6 0 3 9 Type A
7 0 3 8 Type A
表14 NCP上行回退DCI时域资源指示表格示例
index K2 start Length PUSCH mapping type
0 1 0 14 Type A
1 2 0 14 Type A
2 3 0 14 Type A
3 4 0 14 Type A
4 1 2 12 Type B
5 2 2 12 Type B
6 3 2 12 Type B
7 4 2 12 Type B
示例性的,为ECP下行回退DCI预定义的表格还可以为表15,表16中至少一行,ECP上行回退DCI预定义的表格还可以为表17中至少一行。
表15 ECP下行回退DCI时域资源指示表格示例
index K0 start Length PDSCH mapping type
0 0 2 10 Type A
1 0 2 8 Type A
2 0 2 7 Type A
3 0 2 6 Type A
4 0 3 9 Type A
5 0 3 7 Type A
6 0 3 6 Type A
7 0 3 5 Type A
表16 ECP下行回退DCI时域资源指示表格示例
index K0 start Length PDSCH mapping type
0 0 2 10 Type A
1 0 2 9 Type A
2 0 2 8 Type A
3 0 2 7 Type A
4 0 3 9 Type A
5 0 3 8 Type A
6 0 3 7 Type A
7 0 3 6 Type A
表17 ECP上行回退DCI时域资源指示表格示例
index K2 start Length PUSCH mapping type
0 1 0 12 Type A
1 2 0 12 Type A
2 3 0 12 Type A
3 4 0 12 Type A
4 1 2 10 Type B
5 2 2 10 Type B
6 3 2 10 Type B
7 4 2 6 Type B
对于RRC配置的时域资源分配表格,NCP和ECP可以对应相同或不同的SLIV公式,从而可以为终端设备配置NCP时域资源分配表格一个和ECP时域资源分配表格一个,不同CP类型对应的调度数据起始符号个数和调度数据长度确定SLIV值的集合不同,终端设备根据CP类型确定时域资源分配表格,或配置一个NCP和ECP共用的时域资源分配表格。
可选的,如果NCP和ECP使用相同的SLIV公式,那么该公式可以为:
if(L-1)≤7 then
SLIV=14·(L-1)+S
else
SLIV=14·(14-L+1)+(14-1-S)
where0<L≤14-S
其中,S指示起始符号start,L指示符号个数length。
如果NCP和ECP使用不同的SLIV公式,那么NCP使用的公式可以为:
if(L-1)≤7 then
SLIV=14·(L-1)+S
else
SLIV=14·(14-L+1)+(14-1-S)
where0<L≤14-S,
ECP使用的公式可以为:
if(L-1)≤6 then
SLIV=12·(L-1)+S
else
SLIV=12·(12-L+1)+(12-1-S)
where0<L≤12-S
其中,S指示起始符号start,L指示符号个数length。
可选的,对于RRC配置的时域资源分配表格,因为物理上行数据共享信道PUSCH和物理下行数据共享信道PDSCH的时域资源分配中起始符号的索引和调度数据的长度有不同的取值范围,用于指示SLIV值的比特数可能不相同,比如物理下行数据共享信道时域资源分配表格中SLIV的值使用6比特表示,上行数据共享信道时域资源分配表格中SLIV的值使用7比特表示,然而使用SLIV公式生成的最大SLIV值是大于63的,即不能直接使用6比特来表示SLIV值。考虑到SLIV可能的个数是小于等于64的,因此为了降低开销,即可以用6bit或者更少的bit指示时域资源分配,本发明定义一个参数index和SLIV值之间的映射规则,在RRC配置的时域资源分配表格中,使用该参数来指示SLIV值。
可选地,NCP和ECP可以对应不同的参数index与SLIV值映射规则。具体的该参数index与SLIV映射规则可以通过表格确定。
参数index与SLIV值之间的映射可以是区分NCP和ECP分别定义,也可以是预定义NCP和ECP共用的映射规则。
比如,对于PDSCH映射规则A,NCP和ECP使用相同的SLIV公式,使用相同或不同的时域资源配置表格,使用相同的表格是指高层信令中只配置一张表格,使用不同的时域资源配置表格是指高层信令中为NCP和ECP分别配置一张表格,和相同的参数index与SLIV值映射规则,如表27所示中的至少一行。
对于PDSCH映射规则B,NCP和ECP使用相同的SLIV公式,使用相同或不同的时域资源配置表格,使用相同的映射规则,如表20所示中的至少一行,或使用不同的映射规则,如表18和表19所示中的至少一行。
对于PUSCH映射规则A,NCP和ECP使用过相同的SLIV公式,使用相同或不同的时域资源配置表格,使用相同的参数index与SLIV值映射规则,如表32所示中的至少一行。
对于PUSCH映射规则B,NCP和ECP使用相同的SLIV公式,使用相同或不同的时域资源配置表格,使用相同的映射规则,如表33所示中的至少一行。
表18 NCP PDSCH映射规则B下index与SLIV映射
Index SLIV start Length
0~12 14~26 0~12 2
13~23 42~52 0~10 4
24~31 84~91 0~7 7
表19 ECP PDSCH映射规则B下index与SLIV映射
Index SLIV start Length
0~10 14~24 0~10 2
11~19 42~50 0~8 4
20~26 70~76 0~6 6
表20 ECP和NCP PDSCH映射规则B下index与SLIV映射
Index SLIV start Length
0~12 14~26 0~12 2
13~23 42~52 0~10 4
24~30 70~76 0~6 6
31~38 84~91 0~7 7
可选的,NCP和ECP采用相同的SLIV公式时,NCP和ECP共用的参数index与SLIV的映射表格可以如下表中的至少一种映射方式下的至少一行:
以下按照下行6bit指示,上行7bit指示为例,其他的bit数对应的表格可以类似推导,具体的,在此不做限定。
表21-1 NCP和ECP PDSCH下index与SLIV映射
Figure PCTCN2019073778-appb-000005
其中,保留位(Reserved)可用于指示其他可能的SLIV取值,也可以用于指示其他信息。
表21-2 NCP和ECP PDSCH下index与SLIV映射
Figure PCTCN2019073778-appb-000006
表22-1 NCP和ECP PUSCH下index与SLIV映射
Figure PCTCN2019073778-appb-000007
表22-2 NCP和ECP PUSCH下index与SLIV映射
Figure PCTCN2019073778-appb-000008
Figure PCTCN2019073778-appb-000009
可选的,NCP和ECP采用相同的SLIV公式时,NCP和ECP分别对应的参数index与SLIV的映射表格可以如下表中的至少一种映射方式下的至少一行:
表23-1 NCP PDSCH下index与SLIV映射
Figure PCTCN2019073778-appb-000010
表23-2 NCP PDSCH下index与SLIV映射
Figure PCTCN2019073778-appb-000011
表24-1 ECP PDSCH下index与SLIV映射
Figure PCTCN2019073778-appb-000012
Figure PCTCN2019073778-appb-000013
表24-2 ECP PDSCH下index与SLIV映射
Figure PCTCN2019073778-appb-000014
表25-1 NCP PUSCH下index与SLIV映射
Figure PCTCN2019073778-appb-000015
表25-2 NCP PUSCH下index与SLIV映射
Figure PCTCN2019073778-appb-000016
表26-1 ECP PUSCH下index与SLIV映射
Figure PCTCN2019073778-appb-000017
表26-2 ECP PUSCH下index与SLIV映射
Figure PCTCN2019073778-appb-000018
Figure PCTCN2019073778-appb-000019
比如,对于PDSCH映射类型A,NCP和ECP使用不同的SLIV公式,使用相同或不同的时域资源配置表格,和不同参数index与SLIV值映射规则,如表27和表29所示中的至少一行。
对于PDSCH映射类型B,NCP和ECP使用不同的SLIV公式,使用相同或不同的时域资源配置表格,和不同参数index与SLIV值映射规则,如表28和表30所示中的至少一行。
对于PUSCH映射类型A,NCP和ECP使用不同的SLIV公式,使用相同或不同的时域资源配置表格,和不同参数index与SLIV值映射规则,如表31和表33所示中的至少一行。
对于PUSCH映射类型B,NCP和ECP使用不同的SLIV公式,使用相同或不同的时域资源配置表格,和不同参数index与SLIV值映射规则,如表32和表34所示中的至少一行。可选的,终端设备可以根据不同的映射类型确定不同的index与SLIV之间的映射关系,不同的映射类型可以为PDSCH映射规则A,PDSCH映射规则B,PUSCH映射规则A,PUSCH映射规则B中的至少一种。
表27-1 NCP PDSCH映射规则A下index与SLIV映射
index SLIV Length start
0~3 0~3 1 0~3
4~7 14~17 2 0~3
8~11 28~31 3 0~3
12~15 42~45 4 0~3
16~19 56~59 5 0~3
20~23 70~73 6 0~3
24~27 84~87 7 0~3
28~31 98~101 8 0~3
32~35 92~95 9 0~3
36~39 79~82 10 0~3
40~43 66~69 11 0~3
44~46 53~55 12 0~2
47~48 40~41 13 0~1
49 27 14 0
表27-2 NCP PDSCH映射规则A下index与SLIV映射
index SLIV Length start
0~3 28~31 3 0~3
4~7 42~45 4 0~3
8~11 56~59 5 0~3
12~15 70~73 6 0~3
16~19 84~87 7 0~3
20~23 98~101 8 0~3
24~27或27~24 97~94 9 0~3
28~31或 83~80 10 0~3
31~28
32~35或35~32 69~66 11 0~3
36~38或38~36 55~53 12 0~2
39~40或40~39 41~40 13 0~1
41 27 14 0
表28 NCP PDSCH映射规则B下index与SLIV映射
index SLIV start Length
0~12 14~26 0~12 2
13~23 42~52 0~10 4
24~31 84~91 0~7 7
表29-1 ECP PDSCH映射规则A下index与SLIV映射
index SLIV Length start
0~3 0~3 1 0~3
4~7 12~15 2 0~3
8~11 24~27 3 0~3
12~15 36~39 4 0~3
16~19 48~51 5 0~3
20~23 60~63 6 0~3
24~27 72~75 7 0~3
28~31 68~71 8 0~3
32~35 56~59 9 0~3
36~38 45~47 10 0~2
39~40 34~35 11 0~1
41 23 12 0
表29-2 ECP PDSCH映射规则A下index与SLIV映射
index SLIV Length start
0~3 24~27 3 0~3
4~7 36~39 4 0~3
8~11 48~51 5 0~3
12~15 60~63 6 0~3
16~19 72~75 7 0~3
20~23或23~20 71~68 8 0~3
24~27或27~24 59~56 9 0~3
28~30或30~28 47~45 10 0~2
31~32或32~31 35~34 11 0~1
33 23 12 0
表30 ECP PDSCH映射规则B下index与SLIV映射
index SLIV start Length
0~10 12~22 0~10 2
11~19 36~44 0~8 4
20~26 60~66 0~6 6
表31-1 NCP PUSCH映射规则A下index与SLIV映射
index SLIV Length start
0 0 1 0
1 14 2 0
2 28 3 0
3 42 4 0
4 56 5 0
5 70 6 0
6 84 7 0
7 98 8 0
8 92 9 0
9 79 10 0
10 66 11 0
11 53 12 0
12 40 13 0
13 27 14 0
表31-2 NCP PUSCH映射规则A下index与SLIV映射
index SLIV Length start
0 42 4 0
1 56 5 0
2 70 6 0
3 84 7 0
4 98 8 0
5 92 9 0
6 79 10 0
7 66 11 0
8 53 12 0
9 40 13 0
10 27 14 0
表32-1 NCP PUSCH映射规则B下index与SLIV映射
Index SLIV Length start
0~13 0~13 1 0~13
14~26 14~26 2 0~12
28~39 28~39 3 0~11
42~52 42~52 4 0~10
56~65 56~65 5 0~9
70~78 70~78 6 0~8
84~91 84~91 7 0~7
98~104 98~104 8 0~6
92~97 92~97 9 0~5
79~83 79~83 10 0~4
66~69 66~69 11 0~3
53~55 53~55 12 0~2
40~41 40~41 13 0~1
27 27 14 0
表32-2 NCP PUSCH映射规则B下index与SLIV映射
Index SLIV Length start
0~13 0~13 1 0~13
14~26 14~26 2 0~12
28~39 28~39 3 0~11
42~52 42~52 4 0~10
56~65 56~65 5 0~9
70~78 70~78 6 0~8
84~91 84~91 7 0~7
98~104 98~104 8 0~6
97~92或92~97 97~92 9 0~5
83~79或79~83 83~79 10 0~4
69~66或66~69 69~66 11 0~3
55~53或53~55 55~53 12 0~2
41~40或40~41 41~40 13 0~1
27 27 14 0
表33-1 ECP PUSCH映射规则A下index与SLIV映射
index SLIV Length start
0 0 1 0
1 12 2 0
2 24 3 0
3 36 4 0
4 48 5 0
5 60 6 0
6 72 7 0
7 71 8 0
8 59 9 0
9 47 10 0
10 35 11 0
11 23 12 0
表33-2 ECP PUSCH映射规则A下index与SLIV映射
index SLIV Length start
0 36 4 0
1 48 5 0
2 60 6 0
3 72 7 0
4 71 8 0
5 59 9 0
6 47 10 0
7 35 11 0
8 23 12 0
表34-1 ECP PUSCH映射规则B下index与SLIV映射
Index SLIV Length start
0~13 0~11 1 0~11
14~26 12~22 2 0~10
28~39 24~33 3 0~9
42~52 36~44 4 0~8
56~65 48~55 5 0~7
70~78 60~66 6 0~6
84~91 72~77 7 0~5
98~104 67~71 8 0~4
92~97 56~59 9 0~3
79~83 45~47 10 0~2
66~69 34~35 11 0~1
53~55 23 12 0
表34-2 ECP PUSCH映射规则B下index与SLIV映射
Index SLIV Length start
0~11 0~11 1 0~11
12~22 12~22 2 0~10
24~33 24~33 3 0~9
36~44 36~44 4 0~8
48~55 48~55 5 0~7
60~66 60~66 6 0~6
72~77 72~77 7 0~5
71~67或67~71 71~67 8 0~4
59~56或56~59 59~56 9 0~3
47~45或45~47 47~45 10 0~2
35~34或34~35 35~34 11 0~1
23 23 12 0
需要说明的是,本申请所提供的实施例仅仅是示意性的。所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。在本申请实施例以及附图中揭示的特征可以独立存在也可以组合存在。在本申请实施例中以硬件形式描述的特征可以通过软件来执行,反之亦然。在此不做限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的方法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤)或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如软盘、硬盘、磁带)、光介质(例如光盘)、或者半导体介质(例如固态硬盘(solid-state drive,SSD))等各种可以存储程序代码的非短暂性的(non-transitory)机器可读介质。
需要说明的是,本申请所提供的实施例仅仅是示意性的。所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,在上述实施例中,对各个实施例的描述都 各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。在本申请实施例以及附图中揭示的特征可以独立存在也可以组合存在。在本申请实施例中以硬件形式描述的特征可以通过软件来执行,反之亦然。在此不做限定。

Claims (35)

  1. 一种通信方法,其特征在于,所述方法包括:
    获取第一指示信息和格式信息;
    根据所述第一指示信息指示的时间单元中的子时间单元的传输方向以及所述格式信息指示的所述子时间单元的传输方向,确定所述时间单元是否属于聚合时间单元。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述第一指示信息指示的时间单元中的子时间单元中的传输方向以及所述格式信息指示的所述子时间单元的传输方向,确定所述时间单元是否属于聚合时间单元,包括:
    当所述第一指示信息指示的时间单元中的至少一个子时间单元的传输方向与所述格式信息指示的所述至少一个子时间单元的传输方向相同,确定所述时间单元属于聚合时间单元。
  3. 根据权利要求1所述的方法,其特征在于,所述根据所述第一指示信息指示的时间单元中的子时间单元中的传输方向以及所述格式信息指示的所述子时间单元的传输方向,确定所述时间单元是否属于聚合时间单元,包括:
    当第一子时间单元占所述时间单元中的至少一个子时间单元的比例达到M,确定所述时间单元属于聚合时间单元;其中,所述第一指示信息指示的所述第一子时间单元的传输方向与所述格式信息指示的所述第一子时间单元的传输方向相同,M的取值在[0,1]范围内。
  4. 根据权利要求1所述的方法,其特征在于,所述根据所述第一指示信息指示的时间单元中的子时间单元中的传输方向以及所述格式信息指示的所述子时间单元的传输方向,确定所述时间单元是否属于聚合时间单元,包括:
    当所述时间单元中第二子时间单元的数目少于P,确定所述时间单元属于聚合时间单元;其中,所述第一指示信息指示的所述第二子时间单元的传输方向与所述格式信息指示的所述二子时间单元的传输方向不同,P为正整数。
  5. 根据权利要求1所述的方法,其特征在于,所述根据所述第一指示信息指示的时间单元中的子时间单元中的传输方向以及所述格式信息指示的所述子时间单元的传输方向,确定所述时间单元是否属于聚合时间单元,包括:
    当第三子时间单元占所述时间单元中的至少一个子时间单元的比例小于Q,确定所述时间单元属于聚合时间单元;其中,所述第一指示信息指示的所述第三子时间单元的传输方向与所述格式信息指示的所述第三子时间单元的传输方向不同,Q的取值在[0,1]范围内。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述方法还包括:
    获取第二指示信息,所述第二指示信息指示聚合数目;
    根据所述聚合数目确定所述聚合时间单元的数量。
  7. 一种通信方法,其特征在于,所述方法包括:
    确定第一指示信息和格式信息;
    根据所述第一指示信息指示的时间单元中的子时间单元的传输方向以及所述格式信息指示的所述子时间单元的传输方向,确定所述时间单元是否属于聚合时间单元。
  8. 根据权利要求7所述的方法,其特征在于,所述根据所述第一指示信息指示的时间单元中的子时间单元中的传输方向以及所述格式信息指示的所述子时间单元的传输方向,确定所述时间单元是否属于聚合时间单元,包括:
    当所述第一指示信息指示的时间单元中的至少一个子时间单元的传输方向与所述格式信息指示的所述至少一个子时间单元的传输方向相同,确定所述时间单元属于聚合时间单元。
  9. 根据权利要求7所述的方法,其特征在于,所述根据所述第一指示信息指示的时间单元中的子时间单元中的传输方向以及所述格式信息指示的所述子时间单元的传输方向,确定所述时间单元是否属于聚合时间单元,包括:
    当第一子时间单元占所述时间单元中的至少一个子时间单元的比例达到M,确定所述时间单元属于聚合时间单元;其中,所述第一指示信息指示的所述第一子时间单元的传输方向与所述格式信息指示的所述第一子时间单元的传输方向相同,M的取值在[0,1]范围内。
  10. 根据权利要求7所述的方法,其特征在于,所述根据所述第一指示信息指示的时间单元中的子时间单元中的传输方向以及所述格式信息指示的所述子时间单元的传输方向,确定所述时间单元是否属于聚合时间单元,包括:
    当所述时间单元中第二子时间单元的数目少于P,确定所述时间单元属于聚合时间单元;其中,所述第一指示信息指示的所述第二子时间单元的传输方向与所述格式信息指示的所述二子时间单元的传输方向不同,P为正整数。
  11. 根据权利要求7所述的方法,其特征在于,所述根据所述第一指示信息指示的时间单元中的子时间单元中的传输方向以及所述格式信息指示的所述子时间单元的传输方向,确定所述时间单元是否属于聚合时间单元,包括:
    当第三子时间单元占所述时间单元中的至少一个子时间单元的比例小于Q,确定所述时间单元属于聚合时间单元;其中,所述第一指示信息指示的所述第三子时间单元的传输方向与所述格式信息指示的所述第三子时间单元的传输方向不同,Q的取值在[0,1]范围内。
  12. 根据权利要求7至11中任一项所述的方法,其特征在于,所述方法还包括:
    确定第二指示信息,所述第二指示信息指示聚合数目;
    根据所述聚合数目确定所述聚合时间单元的数量。
  13. 根据权利要求12所述的方法,其特征在于,所述方法还包括:
    将所述第一指示信息、所述格式信息和所述第二指示信息中的至少一项发送至终端设备。
  14. 一种通信装置,其特征在于,包括:
    获取模块,用于获取第一指示信息和格式信息;
    聚合时间单元判断模块,用于根据所述第一指示信息指示的时间单元中的子时间单元的传输方向以及所述格式信息指示的所述子时间单元的传输方向,确定所述时间单元是否属于聚合时间单元。
  15. 根据权利要求14所述的装置,其特征在于,所述聚合时间单元判断模块具体用于:
    当所述第一指示信息指示的时间单元中的至少一个子时间单元的传输方向与所述格式信息指示的所述至少一个子时间单元的传输方向相同,确定所述时间单元属于聚合时间单元。
  16. 根据权利要求14所述的装置,其特征在于,所述聚合时间单元判断模块具体用于:
    当第一子时间单元占所述时间单元中的至少一个子时间单元的比例达到M,确定所述时间单元属于聚合时间单元;其中,所述第一指示信息指示的所述第一子时间单元的传输方向与所述格式信息指示的所述第一子时间单元的传输方向相同,M的取值在[0,1]范围内。
  17. 根据权利要求14所述的装置,其特征在于,所述聚合时间单元判断模块具体用于:
    当所述时间单元中第二子时间单元的数目少于P,确定所述时间单元属于聚合时间单元;其中,所述第一指示信息指示的所述第二子时间单元的传输方向与所述格式信息指示的所述二子时间单元的传输方向不同,P为正整数。
  18. 根据权利要求14所述的装置,其特征在于,所述聚合时间单元判断模块具体用于:
    当第三子时间单元占所述时间单元中的至少一个子时间单元的比例小于Q,确定所述时间单元属于聚合时间单元;其中,所述第一指示信息指示的所述第三子时间单元的传输方向与所述格式信息指示的所述第三子时间单元的传输方向不同,Q的取值在[0,1]范围内。
  19. 根据权利要求14至18中任一项所述的装置,其特征在于,所述获取模块还用于,获取第二指示信息,所述第二指示信息指示聚合数目;
    所述聚合时间单元判断模块还用于,根据所述聚合数目确定所述聚合时间单元的数量。
  20. 一种通信装置,其特征在于,包括:
    获取模块,用于确定第一指示信息和格式信息;
    聚合时间单元判断模块,用于根据所述第一指示信息指示的时间单元中的子时间单元的传输方向以及所述格式信息指示的所述子时间单元的传输方向,确定所述时间单元是否属于聚合时间单元。
  21. 根据权利要求20所述的装置,其特征在于,所述聚合时间单元判断模块具体用于:
    当所述第一指示信息指示的时间单元中的至少一个子时间单元的传输方向与所述格式信息指示的所述至少一个子时间单元的传输方向相同,确定所述时间单元属于聚合时间单元。
  22. 根据权利要求20所述的装置,其特征在于,所述聚合时间单元判断模块具体用于:
    当第一子时间单元占所述时间单元中的至少一个子时间单元的比例达到M,确定所述时间单元属于聚合时间单元;其中,所述第一指示信息指示的所述第一子时间单元的传输方向与所述格式信息指示的所述第一子时间单元的传输方向相同,M的取值在[0,1]范围内。
  23. 根据权利要求20所述的装置,其特征在于,所述聚合时间单元判断模块具体用于:
    当所述时间单元中第二子时间单元的数目少于P,确定所述时间单元属于聚合时间单元;其中,所述第一指示信息指示的所述第二子时间单元的传输方向与所述格式信息指示的所述二子时间单元的传输方向不同,P为正整数。
  24. 根据权利要求20所述的装置,其特征在于,所述聚合时间单元判断模块具体用于:
    当第三子时间单元占所述时间单元中的至少一个子时间单元的比例小于Q,确定所述时间单元属于聚合时间单元;其中,所述第一指示信息指示的所述第三子时间单元的传输方向与所述格式信息指示的所述第三子时间单元的传输方向不同,Q的取值在[0,1]范围内。
  25. 根据权利要求20至24中任一项所述的装置,其特征在于,所述获取模块还用于,确定第二指示信息;所述第二指示信息指示聚合数目;
    所述聚合时间单元判断模块还用于,根据所述聚合数目确定所述聚合时间单元的数量。
  26. 根据权利要求25所述的装置,其特征在于,所述装置还包括:
    发送模块,用于将所述第一指示信息、所述格式信息和所述第二指示信息中的至少一项发送至终端设备。
  27. 一种通信系统,其特征在于,包括如权利要求14至19中任一项所述的通信装置和如权利要求20至26中任一项所述的通信装置。
  28. 一种终端设备,其特征在于,包括:存储器、处理器以及计算机程序,所述计算机程序存储在所述存储器中,所述处理器运行所述计算机程序执行如权利要求1至6中任一项所述的通信方法。
  29. 一种网络设备,其特征在于,包括:存储器、处理器以及计算机程序,所述计算机程序存储在所述存储器中,所述处理器运行所述计算机程序执行如权利要求7至13中任一项所述的通信方法。
  30. 一种计算机存储介质,其特征在于,所述存储介质包括计算机程序,所述计算机程序用于实现如权利要求1至6任一项所述的通信方法。
  31. 一种计算机存储介质,其特征在于,所述存储介质包括计算机程序,所述计算机程序用于实现如权利要求7至13任一项所述的通信方法。
  32. 一种计算机程序产品,其特征在于,所述计算机程序产品包括计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行如权利要求1至6任一项所述的通信方法。
  33. 一种计算机程序产品,其特征在于,所述计算机程序产品包括计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行如权利要求7至13任一项所述的通信方法。
  34. 一种芯片,其特征在于,包括存储器和处理器,所述存储器用于存储计算机程序,所述处理器用于从所述存储器中调用并运行所述计算机程序,使得安装有所述芯片的通信设备执行如权利要求1至6任一项所述的通信方法。
  35. 一种芯片,其特征在于,包括存储器和处理器,所述存储器用于存储计算机程序,所述处理器用于从所述存储器中调用并运行所述计算机程序,使得安装有所述芯片的通信设备执行如权利要求7至13任一项所述的通信方法。
PCT/CN2019/073778 2018-02-13 2019-01-29 通信方法、装置和系统 WO2019157954A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19754815.9A EP3737184A4 (en) 2018-02-13 2019-01-29 COMMUNICATION METHOD, DEVICE AND SYSTEM
US16/990,784 US11606787B2 (en) 2018-02-13 2020-08-11 Communications method, apparatus, and system to support slot aggregation

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201810151034 2018-02-13
CN201810151034.9 2018-02-13
CN201810173318.8 2018-03-02
CN201810173318.8A CN110167170B (zh) 2018-02-13 2018-03-02 通信方法、装置和系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/990,784 Continuation US11606787B2 (en) 2018-02-13 2020-08-11 Communications method, apparatus, and system to support slot aggregation

Publications (1)

Publication Number Publication Date
WO2019157954A1 true WO2019157954A1 (zh) 2019-08-22

Family

ID=67618906

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/073778 WO2019157954A1 (zh) 2018-02-13 2019-01-29 通信方法、装置和系统

Country Status (1)

Country Link
WO (1) WO2019157954A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10880914B2 (en) * 2018-02-26 2020-12-29 Qualcomm Incorporated Grant free uplink transmission techniques

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101043715A (zh) * 2006-03-21 2007-09-26 华为技术有限公司 一种上行信道分配的方法
US20140108437A1 (en) * 2012-10-12 2014-04-17 Adobe Systems Incorporated Aggregation of data from disparate sources into an efficiently accessible format
CN106385709A (zh) * 2016-10-31 2017-02-08 宇龙计算机通信科技(深圳)有限公司 资源调度方法及资源调度装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101043715A (zh) * 2006-03-21 2007-09-26 华为技术有限公司 一种上行信道分配的方法
US20140108437A1 (en) * 2012-10-12 2014-04-17 Adobe Systems Incorporated Aggregation of data from disparate sources into an efficiently accessible format
CN106385709A (zh) * 2016-10-31 2017-02-08 宇龙计算机通信科技(深圳)有限公司 资源调度方法及资源调度装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Offline discussion on GC-PDCCH carrying SFI", 3GPP TSG RAN WG1 #91 R1-1721702, 4 December 2017 (2017-12-04), XP051370780 *
See also references of EP3737184A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10880914B2 (en) * 2018-02-26 2020-12-29 Qualcomm Incorporated Grant free uplink transmission techniques

Similar Documents

Publication Publication Date Title
CN110073627B (zh) 通信系统中的uci传输
WO2017024563A1 (zh) 一种数据传输方法、装置及系统
CN110167170B (zh) 通信方法、装置和系统
JP2019522916A (ja) 基準信号のトリガ及び制御シグナリング
EP3787216A1 (en) Configuration of downlink transmissions
WO2020052514A1 (zh) 一种信息发送方法,信息接收的方法和装置
AU2018368980B2 (en) Information transmission method and device
AU2016414454B2 (en) Method and terminal device for transmitting data
JP6807453B2 (ja) 情報送信方法、端末デバイス、およびネットワークデバイス
JP7175976B2 (ja) ダウンリンク制御情報の伝送方法、ブラインド検出回数を取得するための方法及び装置
CN110035523B (zh) 一种uci传输方法及设备
WO2018000929A1 (zh) 一种子帧配置方法及相关设备
RU2682916C1 (ru) Способ и устройство передачи данных
WO2020200035A1 (zh) 传输上行控制信息的方法及装置
US11632219B2 (en) Resource determining method, indication method, and apparatus
US20210274521A1 (en) Method, apparatus and computer readable media for control signal transmission and reception
WO2019029014A1 (zh) 通信方法、终端设备和网络设备
WO2020108524A1 (zh) 传输方法和装置
WO2015032057A1 (zh) 上报信道状态信息、确定调制编码方式的方法及装置
US11991684B2 (en) Data transmission method and apparatus
WO2019137011A1 (zh) 一种通信方法及上行资源确定方法
WO2017024565A1 (zh) 数据传输方法、装置及系统
CN108810991B (zh) 子载波间隔类型的确定方法、装置
WO2019157954A1 (zh) 通信方法、装置和系统
CN107251501B (zh) 一种信息的发送和接收方法、用户设备及基站

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19754815

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019754815

Country of ref document: EP

Effective date: 20200806

NENP Non-entry into the national phase

Ref country code: DE