WO2021087945A1 - 用于肿瘤外泌体自校准检测的双功能杂化薄膜的制备方法 - Google Patents

用于肿瘤外泌体自校准检测的双功能杂化薄膜的制备方法 Download PDF

Info

Publication number
WO2021087945A1
WO2021087945A1 PCT/CN2019/116519 CN2019116519W WO2021087945A1 WO 2021087945 A1 WO2021087945 A1 WO 2021087945A1 CN 2019116519 W CN2019116519 W CN 2019116519W WO 2021087945 A1 WO2021087945 A1 WO 2021087945A1
Authority
WO
WIPO (PCT)
Prior art keywords
zif
bpnss
self
exosomes
aptamer
Prior art date
Application number
PCT/CN2019/116519
Other languages
English (en)
French (fr)
Inventor
桂日军
孙玉娇
金辉
Original Assignee
青岛大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛大学 filed Critical 青岛大学
Priority to US17/051,782 priority Critical patent/US11105767B1/en
Publication of WO2021087945A1 publication Critical patent/WO2021087945A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/58Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing copper, silver or gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H21/00Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/115Aptamers, i.e. nucleic acids binding a target molecule specifically and with high affinity without hybridising therewith ; Nucleic acids binding to non-nucleic acids, e.g. aptamers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/31Half-cells with permeable membranes, e.g. semi-porous or perm-selective membranes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • G01N27/3277Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction being a redox reaction, e.g. detection by cyclic voltammetry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54366Apparatus specially adapted for solid-phase testing
    • G01N33/54373Apparatus specially adapted for solid-phase testing involving physiochemical end-point determination, e.g. wave-guides, FETS, gratings
    • G01N33/5438Electrodes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57484Immunoassay; Biospecific binding assay; Materials therefor for cancer involving compounds serving as markers for tumor, cancer, neoplasia, e.g. cellular determinants, receptors, heat shock/stress proteins, A-protein, oligosaccharides, metabolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/16Aptamers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/705Assays involving receptors, cell surface antigens or cell surface determinants
    • G01N2333/70596Molecules with a "CD"-designation not provided for elsewhere in G01N2333/705
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • G01N27/3278Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction involving nanosized elements, e.g. nanogaps or nanoparticles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/4163Systems checking the operation of, or calibrating, the measuring apparatus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57407Specifically defined cancers
    • G01N33/57415Specifically defined cancers of breast
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57484Immunoassay; Biospecific binding assay; Materials therefor for cancer involving compounds serving as markers for tumor, cancer, neoplasia, e.g. cellular determinants, receptors, heat shock/stress proteins, A-protein, oligosaccharides, metabolites
    • G01N33/57488Immunoassay; Biospecific binding assay; Materials therefor for cancer involving compounds serving as markers for tumor, cancer, neoplasia, e.g. cellular determinants, receptors, heat shock/stress proteins, A-protein, oligosaccharides, metabolites involving compounds identifable in body fluids

Definitions

  • the invention belongs to the technical field of preparation of functional hybrid film materials and tumor exosomes sensors, and specifically relates to a bifunctional hybrid film based on self-assembly of black phosphorus nanosheets and ferrocene-doped cobalt-based metal-organic framework composites
  • the preparation method of the material, the prepared film material can be used for the precise capture of CD63 transmembrane protein and the self-calibration detection of breast cancer exosomes.
  • Exosomes are extracellular vesicles with a size of 50-100 nanometers that are released from multivesicles through endolysates. They carry a large number of biopolymers from parent cells, including transmembrane and cytoplasmic proteins, mRNA, and DNA. And micro-RNA etc. Exosomes act as messengers that mediate information between cells and play an important role in detecting changes in the physiological state of diseases, especially cancer. In recent years, as a promising biomarker, exosomes have been widely used in the early diagnosis of cancer, which overcomes the high cost and low sensitivity of invasive screening in the cancer detection process.
  • the current methods used for the detection of exosomes mainly include flow cytometry, nanoparticle tracking analysis, surface plasmon resonance, colorimetry, luminescence, and electrochemical analysis.
  • Zhu et al. used surface plasmon resonance imaging technology to achieve quantitative detection of exosomes (Ling Zhu, Kun Wang, Jian Cui, Huan Liu, Xiangli Bu, Huailei Ma, Weizhi Wang, He Gong, Christopher Lausted, Leroy Hood, Guang Yang,Zhiyuan Hu,Label-free quantitative detection of tumor-derived exosomes through surface plasmon resonance imaging,Analytical Chemistry,2014,86,8857-8864); Xia et al.
  • Li Zhiyang and others used G-tetrajoint-Hemin to simulate peroxidase catalyzed H 2 O 2 reaction to generate signals, combined with rolling circle amplification to synthesize a large number of G-tetrajoint for signal amplification, in order to realize the quantitative detection of exosomes (Li Zhiyang, He Nongyue, Huang Rongrong. Patent name: A method for detecting exosomes based on aptamer and rolling circle amplification. National invention patent.
  • the present invention discloses a bifunctional hybrid film based on the simple self-assembly of the cobalt-based metal-organic framework ZIF-67 composite doped with black phosphorous nanosheets BPNSs and ferrocene Fc on the indium tin oxide ITO film electrode
  • the preparation method of material BPNSs/Fc/ZIF-67, this thin film material can be used for precise capture of CD63 transmembrane protein and self-calibration detection of breast cancer MCF-7 cell exosomes.
  • the purpose of the present invention is to overcome the above-mentioned problems in the prior art and design a new method for detecting tumor exosomes with convenient operation, high sensitivity, low cost and good specificity.
  • the present invention relates to a bifunctional hybrid film for self-calibration detection of tumor exosomes, and its preparation method includes the following steps:
  • a method for preparing a bifunctional hybrid film for self-calibration and detection of tumor exosomes characterized in that the method specifically includes the following steps:
  • hybrid thin film sensor the hybrid thin film is used as the working electrode, placed in the three-electrode system of the electrochemical workstation, the phosphate water buffer is used as the electrolyte, and the exocytosis extracted from breast cancer MCF-7 cells is added. Measure the electrochemical square wave voltammetry curve of different exosomes concentration.
  • the linear detection range of tumor exosomes concentration is 1 ⁇ 10 2 ⁇ 1 ⁇ 10 6 particles ⁇ L -1
  • the detection limit is 50-100 particles ⁇ L -1 .
  • the effect of the present invention is: a kind of ZIF-67 composite based on black phosphorous nanosheets BPNSs, aptamers and ferrocene Fc doped with cobalt-based metal organic framework, simple and self-assembled on indium tin oxide ITO film electrode is reported.
  • Functional hybrid thin film material namely aptamer-BPNSs/Fc/ZIF-67/ITO.
  • the methylene blue MB-labeled single-stranded DNA aptamer binds specifically to the CD63 transmembrane protein by aptamer-ligand to achieve precise capture of the CD63 transmembrane protein.
  • CD63 transmembrane protein is a specific biopolymer carried by breast cancer MCF-7 cell exosomes.
  • the method of the invention has the advantages of convenient operation, high sensitivity, low cost and good specificity, and can be used as a new exosomes self-calibration detection method for the quantitative detection of exosomes in biomedical samples.
  • Figure 1 shows the preparation of a bifunctional hybrid thin film material based on the self-assembly of black phosphorus nanosheets and ferrocene-doped cobalt-based metal-organic framework complexes, and its use for precise capture of CD63 transmembrane proteins and breast cancer exocrine Schematic diagram of the principle of self-calibration testing;
  • Figure 2(a) shows the electrochemical square wave voltammetry curve measured with the hybrid film material as the working electrode in the presence of different exosomes concentrations
  • Figure 2(b) shows the ratio of redox current peak intensity I Fc /I MB of ferrocene and methylene blue corresponding to different exosomal concentrations, fitting the linear relationship between the different I Fc /I MB ratios and the concentration of exosomes .
  • Preparation of Fc/ZIF-67 complex Weigh a certain amount of Co(NO 3 ) 2 ⁇ 6H 2 O and 2-methylimidazole in a mixed solvent of 47 mL ethanol and 3 mL deionized water, and magnetically stir to form a uniform mixture , The concentration of Co(NO 3 ) 2 ⁇ 6H 2 O and 2-methylimidazole were adjusted to 0.1 mol/L and 0.8 mol/L, respectively. Put this mixed solution into the electrolytic cell, use Ag/AgCl as the reference electrode, platinum wire as the counter electrode, and indium tin oxide ITO as the working electrode. At a constant voltage of -5V, cyclic voltammetry scans for 100s, and the Fc/ZIF-67 The composite is electrodeposited on the surface of the indium tin oxide ITO electrode.
  • BPNSs/Fc/ZIF-67 complex Preparation of BPNSs/Fc/ZIF-67 complex: Weigh 10 mg of black phosphorus crystals and add 50 mL of 1-methyl-2-pyrrolidone, sonicate it in an ultrasonic cleaner for 1 hour, and then transfer it to a probe-type ultrasonic generator for 1 hour. , The product dispersion was centrifuged at 12000rpm for 15min, and the upper dispersion was centrifuged at 5000rpm for 15min. The prepared BPNSs dispersion was added dropwise to the surface of the Fc/ZIF-67 composite, and dried naturally to prepare the BPNSs/Fc/ZIF-67 composite on the surface of the indium tin oxide ITO electrode.
  • Preparation of the aptamer-BPNSs/Fc/ZIF-67 hybrid film immerse the BPNSs/Fc/ZIF-67/ITO film electrode in a phosphate water buffer containing 1 ⁇ M CD63 transmembrane protein corresponding to the single-stranded DNA aptamer, Incubate at 37°C for 30 minutes, take out the film electrode, and dry naturally, and prepare the aptamer BPNSs/Fc/ZIF-67 complex on the surface of the indium tin oxide ITO electrode, that is, the aptamer-BPNSs/Fc/ZIF-67 hybrid ⁇ The film.
  • hybrid thin film sensor the hybrid thin film is used as the working electrode, placed in the three-electrode system of the electrochemical workstation, phosphate water buffer is used as the electrolyte, and the exosomes extracted from breast cancer MCF-7 cells are added to determine Electrochemical square wave voltammetry curves at different concentrations of exosomes (as shown in Figure 2a).
  • the self-assembled bifunctional hybrid thin film material based on black phosphorus nanosheets and ferrocene-doped cobalt-based metal-organic framework composites involved in this embodiment has the same preparation method and detection principle as in Example 1.
  • Other specific preparation steps are as follows :
  • Preparation of Fc/ZIF-67 complex Weigh a certain amount of Co(NO 3 ) 2 ⁇ 6H 2 O and 2-methylimidazole in a mixed solvent of 47 mL ethanol and 3 mL deionized water, and magnetically stir to form a uniform mixture , The concentration of Co(NO 3 ) 2 ⁇ 6H 2 O and 2-methylimidazole were adjusted to 0.3mol/L and 1.2mol/L, respectively. Put this mixed solution into an electrolytic cell, use Ag/AgCl as the reference electrode, platinum wire as the counter electrode, and indium tin oxide ITO as the working electrode. Use a constant voltage of -8V and scan the cyclic voltammetry for 200s. The Fc/ZIF-67 The composite is electrodeposited on the surface of the indium tin oxide ITO electrode.
  • BPNSs/Fc/ZIF-67 complex Preparation of BPNSs/Fc/ZIF-67 complex: Weigh 20 mg of black phosphorus crystals and add 50 mL of 1-methyl-2-pyrrolidone, sonicate it in an ultrasonic cleaner for 3 hours, and then transfer it to a probe-type ultrasonic generator for 2 hours. , The product dispersion was centrifuged at 12000rpm for 15min, and the upper dispersion was centrifuged at 5000rpm for 15min. The prepared BPNSs dispersion was added dropwise to the surface of the Fc/ZIF-67 composite, and dried naturally to prepare the BPNSs/Fc/ZIF-67 composite on the surface of the indium tin oxide ITO electrode.
  • BPNSs/Fc/ZIF-67/ITO film electrode is immersed in phosphate water buffer containing 4 ⁇ M CD63 transmembrane protein corresponding to single-stranded DNA aptamer, Incubate at 37°C for 50 minutes, take out the film electrode, and dry naturally, prepare the aptamer BPNSs/Fc/ZIF-67 complex on the surface of the indium tin oxide ITO electrode, that is, the aptamer-BPNSs/Fc/ZIF-67 hybrid ⁇ The film.
  • hybrid thin film sensor the hybrid thin film is used as the working electrode, placed in the three-electrode system of the electrochemical workstation, phosphate water buffer is used as the electrolyte, and the exosomes extracted from breast cancer MCF-7 cells are added to determine Electrochemical square wave voltammetry curves at different exosomes concentrations.
  • the linear detection range of tumor exosomes concentration is 1.0 ⁇ 10 2 ⁇ 1.0 ⁇ 10 5 particles ⁇ L -1 , and the detection limit is 50 particles ⁇ L -1 .
  • the self-assembled bifunctional hybrid thin film material based on black phosphorus nanosheets and ferrocene-doped cobalt-based metal-organic framework composites involved in this embodiment has the same preparation method and detection principle as in Example 1.
  • Other specific preparation steps are as follows :
  • Preparation of Fc/ZIF-67 complex Weigh a certain amount of Co(NO 3 ) 2 ⁇ 6H 2 O and 2-methylimidazole in a mixed solvent of 47 mL ethanol and 3 mL deionized water, and magnetically stir to form a uniform mixture , The concentration of Co(NO 3 ) 2 ⁇ 6H 2 O and 2-methylimidazole were adjusted to 0.5 mol/L and 1.5 mol/L, respectively. Put this mixed solution into the electrolytic cell, use Ag/AgCl as the reference electrode, platinum wire as the counter electrode, and indium tin oxide ITO as the working electrode. With a constant voltage of -10V, cyclic voltammetry scans for 400s, and the Fc/ZIF-67 The composite is electrodeposited on the surface of the indium tin oxide ITO electrode.
  • BPNSs/Fc/ZIF-67 complex Preparation of BPNSs/Fc/ZIF-67 complex: Weigh 30 mg of black phosphorus crystals into 50 mL of 1-methyl-2-pyrrolidone, sonicate it in an ultrasonic cleaner for 5 hours, and then transfer it to a probe-type ultrasonic generator for 4 hours. , The product dispersion was centrifuged at 12000rpm for 15min, and the upper dispersion was centrifuged at 5000rpm for 15min. The prepared BPNSs dispersion was added dropwise to the surface of the Fc/ZIF-67 composite, and dried naturally to prepare the BPNSs/Fc/ZIF-67 composite on the surface of the indium tin oxide ITO electrode.
  • Preparation of aptamer-BPNSs/Fc/ZIF-67 hybrid film immerse the BPNSs/Fc/ZIF-67/ITO film electrode in a phosphate water buffer containing 8 ⁇ M CD63 transmembrane protein corresponding to single-stranded DNA aptamer, Incubate for 100 minutes at 37°C, take out the film electrode, and dry naturally, prepare the aptamer BPNSs/Fc/ZIF-67 complex on the surface of the indium tin oxide ITO electrode, that is, the aptamer-BPNSs/Fc/ZIF-67 hybrid ⁇ The film.
  • hybrid thin film sensor the hybrid thin film is used as the working electrode, placed in the three-electrode system of the electrochemical workstation, phosphate water buffer is used as the electrolyte, and the exosomes extracted from breast cancer MCF-7 cells are added to determine Electrochemical square wave voltammetry curves at different exosomes concentrations.
  • the linear detection range of tumor exosomes concentration is 1.0 ⁇ 10 3 ⁇ 1.0 ⁇ 10 6 particles ⁇ L -1 , and the detection limit is 80 particles ⁇ L -1 .

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Biotechnology (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Cell Biology (AREA)
  • Genetics & Genomics (AREA)
  • Microbiology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Nanotechnology (AREA)
  • Hospice & Palliative Care (AREA)
  • Oncology (AREA)
  • Materials Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Inorganic Chemistry (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

一种用于肿瘤外泌体自校准检测的双功能杂化薄膜的制备方法,基于黑磷纳米片BPNSs、适体和二茂铁Fc掺杂钴基金属有机骨架ZIF-67复合物在氧化铟锡ITO电极上简易自组装,构建双功能杂化薄膜即适体-BPNSs/Fc/ZIF-67/ ITO。亚甲基蓝MB标记的适体与CD63蛋白特异性结合,实现精准的蛋白俘获。该蛋白是乳腺癌MCF-7细胞外泌体携带的特定生物分子,实现对该肿瘤细胞外泌体的检测。以MB为响应信号,Fc为参比,构建肿瘤外泌体定量检测的自校准传感器。与现有技术相比,该方法操作便捷、灵敏度高、成本低、特异性好,可作为一种新的外泌体自校准检测方法,用于生物医学样品中外泌体的定量检测。

Description

用于肿瘤外泌体自校准检测的双功能杂化薄膜的制备方法 技术领域:
本发明属于功能杂化薄膜材料和肿瘤外泌体传感器的制备技术领域,具体涉及一种基于黑磷纳米片和二茂铁掺杂的钴基金属有机骨架复合物自组装的双功能杂化薄膜材料的制备方法,其制备的薄膜材料可用于CD63跨膜蛋白的精准俘获和乳腺癌外泌体的自校准检测。
背景技术:
外泌体是通过內溶体途径从多囊体中释放的尺寸为50~100纳米的细胞外囊泡,它从亲本细胞中携带了大量生物高分子,包括跨膜和胞质蛋白、mRNA、DNA和micro-RNA等。外泌体充当着介导细胞间信息的信使,在探测疾病尤其癌症相关的生理状态改变方面发挥了重要作用。近年来,外泌体作为一种有前景的生物标志物被广泛用于癌症的早期诊断,克服了癌症检测过程存在侵入式筛选的高成本和低敏感度的问题。当前,大量的文献资料报道了外泌体的定量检测,但现有的检测技术依然存在某些挑战,难以实现纳米级外泌体的直接和特异性分析。例如,流式细胞术检测受限于较弱的光散射,粒子追踪方法缺乏特异性。在疾病早期阶段,外泌体浓度较低,需要开发新的方法实现外泌体的高敏感检测。
当前用于外泌体检测的方法主要包括流式细胞术、纳米颗粒追踪分析、表面等离子共振、比色、发光和电化学分析等。例如,Zhu等采用表面等离子共振成像技术实现了对外泌体的定量检测(Ling Zhu,Kun Wang,Jian Cui,Huan Liu,Xiangli Bu,Huailei Ma,Weizhi Wang,He Gong,Christopher Lausted,Leroy Hood,Guang Yang,Zhiyuan Hu,Label-free quantitative detection of tumor-derived exosomes through surface plasmon resonance imaging,Analytical Chemistry,2014,86,8857-8864);Xia等基于DNA包封单臂碳纳米管构建了比色检测外泌体的方法(Yaokun Xia,Mengmeng Liu,Liangliang Wang,An Yan,Wenhui He,Mei Chen,Jianming Lan,Jiaoxing Xu,Lunhui Guan,Jinghua Chen,A visible and colorimetric aptasensor based on DNA-capped single-walled carbon nanotubes for detection of exosomes,Biosensors and Bioelectronics,2017,92,8–15)。李智洋等利用G-四连体-Hemin模拟过氧化酶催化H 2O 2反应产生信号,结合滚环扩增合成大量G-四连体进行信号放大,以实现外泌体的定量检测(李智洋,何农跃,黄蓉蓉.专利名称: 一种基于适配体与滚环扩增的外泌体检测方法.国家发明专利.公开号:CN109655512A);王国胜开发了集外泌体分离纯化和特异性外泌体半定量检测的一种产品,构建了基于外泌体的体外即时检测平台(王国胜.一种基于外泌体的体外即时检测平台及其检测方法.国家发明专利.公开号:CN108872564A)。
尽管有关外泌体定量检测的工作已有国内外文献和专利报道,但实现对纳米外泌体的直接和特异性、高灵敏及低成本的高效检测,依然是当前亟待解决的重要科学问题之一。基于此,本发明公开了一种基于黑磷纳米片BPNSs和二茂铁Fc掺杂的钴基金属有机骨架ZIF-67复合物在氧化铟锡ITO薄膜电极上简易自组装的双功能杂化薄膜材料BPNSs/Fc/ZIF-67的制备方法,该薄膜材料可用于CD63跨膜蛋白的精准俘获和乳腺癌MCF-7细胞外泌体的自校准检测。截止本专利申请提交之日为止,尚未检索到有关BPNSs/Fc/ZIF-67双功能杂化薄膜材料的制备,以及基于该薄膜材料用于肿瘤外泌体自校准检测的国内外文献和专利报道。
发明内容:
本发明的目的在于克服上述现有技术存在的问题,设计一种操作便捷、灵敏度高、成本较低、特异性好的肿瘤外泌体检测新方法。
为实现上述目的,本发明涉及的一种用于肿瘤外泌体自校准检测的双功能杂化薄膜,其制备方法包括以下步骤:
1.用于肿瘤外泌体自校准检测的双功能杂化薄膜的制备方法,其特征在于,该方法具体包括以下步骤:
(1)Fc/ZIF-67复合物的制备:称取一定量的Co(NO 3) 2·6H 2O和2-甲基咪唑,放置于47mL乙醇和3mL去离子水的混合溶剂中,磁力搅拌下形成均匀的混合液,Co(NO 3) 2·6H 2O和2-甲基咪唑的浓度分别调节至0.1~0.5mol/L和0.8~1.5mol/L。将此混合液加入电解槽中,以Ag/AgCl为参比电极,铂丝为对电极,氧化铟锡ITO为工作电极,以-5至-10V恒定电压,循环伏安扫描100~500s,将Fc/ZIF-67复合物电沉积在氧化铟锡ITO电极表面。
(2)BPNSs/Fc/ZIF-67复合物的制备:称取10~30mg黑磷晶体加入50mL的1-甲基-2-吡咯烷酮中,在超声波清洗机中超声1~6h后,转入探头式超声波发生器中超声1~4h,产物分散液在12000rpm下离心15min,取上层分散液在5000rpm下离心15min。将制得的BPNSs分散液,逐滴添加至Fc/ZIF-67复合 物表面,自然干燥,在氧化铟锡ITO电极表面制得BPNSs/Fc/ZIF-67复合物。
(3)适体-BPNSs/Fc/ZIF-67杂化薄膜的制备:将BPNSs/Fc/ZIF-67/ITO薄膜电极浸没在含有1~10μM的CD63跨膜蛋白对应单链DNA适体的磷酸盐水缓冲液中,在37℃下孵育30~120min,取出该薄膜电极,自然干燥,在氧化铟锡ITO电极表面制得适体BPNSs/Fc/ZIF-67复合物,即制得适体-BPNSs/Fc/ZIF-67杂化薄膜。
(4)杂化薄膜传感器的制备:以杂化薄膜为工作电极,置于电化学工作站的三电极体系中,以磷酸盐水缓冲液为电解液,加入从乳腺癌MCF-7细胞提取的外泌体,测定不同外泌体浓度下的电化学方波伏安曲线。以修饰在适体链上的亚甲基蓝MB为响应信号,掺杂在ZIF-67金属有机骨架内的二茂铁Fc为参比信号,以电流峰强度I Fc/I MB比值为自校准信号输出,拟合I Fc/I MB比值与外泌体浓度之间的线性关系,构建用于外泌体定量检测的自校准传感器。其中,肿瘤外泌体浓度的线性检测范围为1×10 2~1×10 6particles μL –1,检测限为50~100particles μL –1
本发明的效果是:报道了一种基于黑磷纳米片BPNSs、适体和二茂铁Fc掺杂钴基金属有机骨架ZIF-67复合物,在氧化铟锡ITO薄膜电极上简易自组装的双功能杂化薄膜材料,即适体-BPNSs/Fc/ZIF-67/ITO。亚甲基蓝MB标记的单链DNA适体与CD63跨膜蛋白发生适-配体特异性结合,实现对CD63跨膜蛋白的精准俘获。CD63跨膜蛋白是乳腺癌MCF-7细胞外泌体携带的特定生物高分子,可作为生物标志物,实现对乳腺癌MCF-7细胞外泌体的检测。以MB为响应信号,掺杂在ZIF-67内的二茂铁Fc为参比信号,以电流峰强度I Fc/I MB比值为自校准信号输出,拟合I Fc/I MB与外泌体浓度间的线性关系,构建用于肿瘤外泌体定量检测的自校准传感器。与现有技术相比,本发明方法操作便捷、灵敏度高、成本较低、特异性好,可作为一种新的外泌体自校准检测方法,用于生物医学样品中外泌体的定量检测。
附图说明:
图1为基于黑磷纳米片和二茂铁掺杂的钴基金属有机骨架复合物自组装的双功能杂化薄膜材料的制备,及其用于CD63跨膜蛋白的精准俘获和乳腺癌外泌体自校准检测的原理示意图;
图2(a)为不同外泌体浓度存在下,以该杂化薄膜材料为工作电极测定的电化 学方波伏安曲线;
图2(b)为不同外泌体浓度对应的二茂铁和亚甲基蓝的氧化还原电流峰强度比值I Fc/I MB,拟合不同I Fc/I MB比值与外泌体浓度之间的线性关系。
具体实施方式:
下面结合附图并通过具体实施例对本发明进行详细说明。
实施例1:
本实施例涉及的基于黑磷纳米片和二茂铁掺杂的钴基金属有机骨架复合物自组装的双功能杂化薄膜材料,其制备方法和检测原理的示意图如图1所示,具体制备步骤如下:
Fc/ZIF-67复合物的制备:称取一定量Co(NO 3) 2·6H 2O和2-甲基咪唑放置47mL乙醇和3mL去离子水的混合溶剂中,磁力搅拌形成均匀的混合液,Co(NO 3) 2·6H 2O和2-甲基咪唑的浓度分别调节至0.1mol/L和0.8mol/L。将此混合液加入电解槽中,以Ag/AgCl为参比电极,铂丝为对电极,氧化铟锡ITO为工作电极,以-5V恒定电压,循环伏安扫描100s,将Fc/ZIF-67复合物电沉积在氧化铟锡ITO电极表面。
BPNSs/Fc/ZIF-67复合物的制备:称取10mg黑磷晶体加入50mL的1-甲基-2-吡咯烷酮中,在超声波清洗机中超声1h后,转入探头式超声波发生器中超声1h,产物分散液在12000rpm下离心15min,取上层分散液在5000rpm下离心15min。将制得的BPNSs分散液,逐滴添加至Fc/ZIF-67复合物表面,自然干燥,在氧化铟锡ITO电极表面制得BPNSs/Fc/ZIF-67复合物。
适体-BPNSs/Fc/ZIF-67杂化薄膜的制备:将BPNSs/Fc/ZIF-67/ITO薄膜电极浸没在含有1μM的CD63跨膜蛋白对应单链DNA适体的磷酸盐水缓冲液中,在37℃下孵育30min,取出该薄膜电极,自然干燥,在氧化铟锡ITO电极表面制得适体BPNSs/Fc/ZIF-67复合物,即制得适体-BPNSs/Fc/ZIF-67杂化薄膜。
杂化薄膜传感器的制备:以杂化薄膜为工作电极,置于电化学工作站的三电极体系中,以磷酸盐水缓冲液为电解液,加入从乳腺癌MCF-7细胞提取的外泌体,测定不同外泌体浓度下的电化学方波伏安曲线(如图2a所示)。以修饰在适体链上的亚甲基蓝MB为响应信号,掺杂在ZIF-67金属有机骨架内的二茂铁Fc为参比信号,以电流峰强度I Fc/I MB比值为自校准信号输出,拟合I Fc/I MB比值与外泌体浓度之间的线性关系(如图2b所示),构建用于外泌体定量检测 的自校准传感器。肿瘤外泌体浓度线性检测范围1.3×10 2~2.6×10 5particles μL –1,检测限60particles μL –1
实施例2:
本实施例涉及的基于黑磷纳米片和二茂铁掺杂的钴基金属有机骨架复合物自组装的双功能杂化薄膜材料,其制备方法和检测原理同实施例1,其它具体制备步骤如下:
Fc/ZIF-67复合物的制备:称取一定量Co(NO 3) 2·6H 2O和2-甲基咪唑放置47mL乙醇和3mL去离子水的混合溶剂中,磁力搅拌形成均匀的混合液,Co(NO 3) 2·6H 2O和2-甲基咪唑的浓度分别调节至0.3mol/L和1.2mol/L。将此混合液加入电解槽中,以Ag/AgCl为参比电极,铂丝为对电极,氧化铟锡ITO为工作电极,以-8V恒定电压,循环伏安扫描200s,将Fc/ZIF-67复合物电沉积在氧化铟锡ITO电极表面。
BPNSs/Fc/ZIF-67复合物的制备:称取20mg黑磷晶体加入50mL的1-甲基-2-吡咯烷酮中,在超声波清洗机中超声3h后,转入探头式超声波发生器中超声2h,产物分散液在12000rpm下离心15min,取上层分散液在5000rpm下离心15min。将制得的BPNSs分散液,逐滴添加至Fc/ZIF-67复合物表面,自然干燥,在氧化铟锡ITO电极表面制得BPNSs/Fc/ZIF-67复合物。
适体-BPNSs/Fc/ZIF-67杂化薄膜的制备:将BPNSs/Fc/ZIF-67/ITO薄膜电极浸没在含有4μM的CD63跨膜蛋白对应单链DNA适体的磷酸盐水缓冲液中,在37℃下孵育50min,取出该薄膜电极,自然干燥,在氧化铟锡ITO电极表面制得适体BPNSs/Fc/ZIF-67复合物,即制得适体-BPNSs/Fc/ZIF-67杂化薄膜。
杂化薄膜传感器的制备:以杂化薄膜为工作电极,置于电化学工作站的三电极体系中,以磷酸盐水缓冲液为电解液,加入从乳腺癌MCF-7细胞提取的外泌体,测定不同外泌体浓度下的电化学方波伏安曲线。以修饰在适体链上的亚甲基蓝MB为响应信号,掺杂在ZIF-67金属有机骨架内的二茂铁Fc为参比信号,以电流峰强度I Fc/I MB比值为自校准信号输出,拟合I Fc/I MB比值与外泌体浓度之间的线性关系,构建用于外泌体定量检测的自校准传感器。肿瘤外泌体浓度线性检测范围1.0×10 2~1.0×10 5particles μL –1,检测限50particles μL –1
实施例3:
本实施例涉及的基于黑磷纳米片和二茂铁掺杂的钴基金属有机骨架复合物 自组装的双功能杂化薄膜材料,其制备方法和检测原理同实施例1,其它具体制备步骤如下:
Fc/ZIF-67复合物的制备:称取一定量Co(NO 3) 2·6H 2O和2-甲基咪唑放置47mL乙醇和3mL去离子水的混合溶剂中,磁力搅拌形成均匀的混合液,Co(NO 3) 2·6H 2O和2-甲基咪唑的浓度分别调节至0.5mol/L和1.5mol/L。将此混合液加入电解槽中,以Ag/AgCl为参比电极,铂丝为对电极,氧化铟锡ITO为工作电极,以-10V恒定电压,循环伏安扫描400s,将Fc/ZIF-67复合物电沉积在氧化铟锡ITO电极表面。
BPNSs/Fc/ZIF-67复合物的制备:称取30mg黑磷晶体加入50mL的1-甲基-2-吡咯烷酮中,在超声波清洗机中超声5h后,转入探头式超声波发生器中超声4h,产物分散液在12000rpm下离心15min,取上层分散液在5000rpm下离心15min。将制得的BPNSs分散液,逐滴添加至Fc/ZIF-67复合物表面,自然干燥,在氧化铟锡ITO电极表面制得BPNSs/Fc/ZIF-67复合物。
适体-BPNSs/Fc/ZIF-67杂化薄膜的制备:将BPNSs/Fc/ZIF-67/ITO薄膜电极浸没在含有8μM的CD63跨膜蛋白对应单链DNA适体的磷酸盐水缓冲液中,在37℃下孵育100min,取出该薄膜电极,自然干燥,在氧化铟锡ITO电极表面制得适体BPNSs/Fc/ZIF-67复合物,即制得适体-BPNSs/Fc/ZIF-67杂化薄膜。
杂化薄膜传感器的制备:以杂化薄膜为工作电极,置于电化学工作站的三电极体系中,以磷酸盐水缓冲液为电解液,加入从乳腺癌MCF-7细胞提取的外泌体,测定不同外泌体浓度下的电化学方波伏安曲线。以修饰在适体链上的亚甲基蓝MB为响应信号,掺杂在ZIF-67金属有机骨架内的二茂铁Fc为参比信号,以电流峰强度I Fc/I MB比值为自校准信号输出,拟合I Fc/I MB比值与外泌体浓度之间的线性关系,构建用于外泌体定量检测的自校准传感器。肿瘤外泌体浓度线性检测范围1.0×10 3~1.0×10 6particles μL –1,检测限80particles μL –1
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (1)

  1. 用于肿瘤外泌体自校准检测的双功能杂化薄膜的制备方法,其特征在于,该方法具体包括以下步骤:
    (1)二茂铁掺杂的钴基金属有机骨架Fc/ZIF-67复合物的制备:称取一定量的Co(NO 3) 2·6H 2O和2-甲基咪唑,放置于47mL乙醇和3mL去离子水的混合溶剂中,磁力搅拌下形成均匀的混合液,Co(NO 3) 2·6H 2O和2-甲基咪唑的浓度分别调节至0.1~0.5mol/L和0.8~1.5mol/L。将此混合液加入电解槽中,以Ag/AgCl为参比电极,铂丝为对电极,氧化铟锡ITO为工作电极,以-5至-10V恒定电压,循环伏安扫描100~500s,将Fc/ZIF-67复合物电沉积在氧化铟锡ITO电极表面。
    (2)黑磷纳米片和二茂铁掺杂的钴基金属有机骨架BPNSs/Fc/ZIF-67复合物的制备:称取10~30mg黑磷晶体加入50mL的1-甲基-2-吡咯烷酮中,在超声波清洗机中超声1~6h后,转入探头式超声波发生器中超声1~4h,产物分散液在12000rpm下离心15min,取上层分散液在5000rpm下离心15min。将制得的黑磷纳米片BPNSs分散液,逐滴添加至Fc/ZIF-67复合物表面,自然干燥,在氧化铟锡ITO电极表面制得BPNSs/Fc/ZIF-67复合物。
    (3)适体-BPNSs/Fc/ZIF-67杂化薄膜的制备:将BPNSs/Fc/ZIF-67/ITO薄膜电极浸没在含有1~10μM的CD63跨膜蛋白对应单链DNA适体的磷酸盐水缓冲液中,在37℃下孵育30~120min,取出该薄膜电极,自然干燥,在氧化铟锡ITO电极表面制得适体BPNSs/Fc/ZIF-67复合物,即制得适体-BPNSs/Fc/ZIF-67杂化薄膜。
    (4)杂化薄膜传感器的制备:以杂化薄膜为工作电极,置于电化学工作站的三电极体系中,以磷酸盐水缓冲液为电解液,加入从乳腺癌MCF-7细胞提取的外泌体,测定不同外泌体浓度下的电化学方波伏安曲线。以修饰在适体链上的亚甲基蓝MB为响应信号,掺杂在ZIF-67金属有机骨架内的二茂铁Fc为参比信号,以电流峰强度I Fc/I MB比值为自校准信号输出,拟合I Fc/I MB比值与外泌体浓度之间的线性关系,构建用于外泌体定量检测的自校准传感器。其中,肿瘤外泌体浓度的线性检测范围为1×10 2~1×10 6particles μL –1,检测限为50~100particles μL –1
PCT/CN2019/116519 2019-11-07 2019-11-08 用于肿瘤外泌体自校准检测的双功能杂化薄膜的制备方法 WO2021087945A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/051,782 US11105767B1 (en) 2019-11-07 2019-11-08 Method for preparing dual-functional hybrid thin-film for self-calibration detection of tumor-derived exosomes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911078972.1A CN110736779B (zh) 2019-11-07 2019-11-07 用于肿瘤外泌体自校准检测的双功能杂化薄膜的制备方法
CN201911078972.1 2019-11-07

Publications (1)

Publication Number Publication Date
WO2021087945A1 true WO2021087945A1 (zh) 2021-05-14

Family

ID=69272414

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/116519 WO2021087945A1 (zh) 2019-11-07 2019-11-08 用于肿瘤外泌体自校准检测的双功能杂化薄膜的制备方法

Country Status (3)

Country Link
US (1) US11105767B1 (zh)
CN (1) CN110736779B (zh)
WO (1) WO2021087945A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113567206A (zh) * 2021-07-20 2021-10-29 上海交通大学 基于金属有机骨架纳米材料的膜蛋白及膜相关蛋白提取方法
CN114563456A (zh) * 2022-03-04 2022-05-31 章毅 以MOFs探针对外泌体实施电化学检测的方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111337713B (zh) * 2020-03-11 2022-09-06 苏州大学 一种生物传感器的制备方法及外泌体检测方法
CN111366625B (zh) * 2020-05-07 2021-04-02 青岛大学 基于锌配位黑磷纳米片复合物与生物酶催化的比率电化学尿酸传感器的制备方法
CN112034172A (zh) * 2020-08-24 2020-12-04 军事科学院军事医学研究院环境医学与作业医学研究所 一种用于诺氟沙星快速检测的黑磷比色/光热双模式可视化免疫层析检测方法
CN113219180B (zh) * 2021-01-29 2022-05-13 厦门大学 一种外泌体pd-l1的研究方法
CN114113251A (zh) * 2021-11-16 2022-03-01 上海纳米技术及应用国家工程研究中心有限公司 一种稳定检测铵根离子的钴基电化学传感器的制备方法及其产品和应用
CN114561463B (zh) * 2021-12-03 2023-07-28 济南大学 一种基于滚环与杂交链式反应检测外泌体的生物传感器
CN114184662B (zh) * 2021-12-10 2023-11-03 安徽医科大学第二附属医院 一种外泌体分析用mof电化学传感器及其制备与应用
CN114295694B (zh) * 2022-01-03 2023-06-06 重庆医科大学 一种用于乳腺癌her-2检测的电化学发光适体传感器及其检测方法
CN114894871B (zh) * 2022-05-16 2024-01-16 安徽大学 一种高灵敏度亚硝酸还原酶生物电极的制备方法及应用
CN115109268B (zh) * 2022-08-01 2023-05-23 安徽科技学院 一种高效降解土霉素光催化材料的制备方法及其应用
CN115582145B (zh) * 2022-09-28 2024-02-02 陕西师范大学 Zif-67填充二茂铁衍生物纳米复合燃速催化剂

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017090050A1 (en) * 2015-11-29 2017-06-01 Ramot At Tel-Aviv University Ltd. Sensing electrode and method of fabricating the same
CN109133014A (zh) * 2018-06-13 2019-01-04 青岛大学 一种CoN3@N-C复合电催化剂的制备方法
CN109307700A (zh) * 2018-10-19 2019-02-05 海南师范大学 一种钴基金属有机框架材料/三维石墨烯纳米复合材料修饰电极测定芦丁的方法
CN109529064A (zh) * 2019-01-04 2019-03-29 北京大学深圳医院 可以实现肿瘤局部定点放射治疗的黑磷微泡药物载体及其制备方法
CN109813786A (zh) * 2019-03-13 2019-05-28 郑州轻工业学院 双金属-有机骨架材料、支架材料及其制备方法,电化学免疫传感器及其制备方法、应用
CN110108881A (zh) * 2019-04-30 2019-08-09 江苏大学 一种双功能生物传感器hrp@zif-8/dna的制备方法及其应用

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8932815B2 (en) * 2012-04-16 2015-01-13 Biological Dynamics, Inc. Nucleic acid sample preparation
EP3377904B1 (en) * 2015-11-20 2024-05-01 Duke University Urea biosensors and uses thereof
CN108872564A (zh) 2018-09-12 2018-11-23 杭州多泰科技有限公司 一种基于外泌体的体外即时检测平台及其检测方法
CN109239040B (zh) * 2018-10-09 2020-12-15 太原理工大学 一种基于适体链-黑磷纳米片荧光能量共振转移的砷离子检测方法
CN109655512A (zh) 2018-12-18 2019-04-19 南京鼓楼医院 一种基于适配体与滚环扩增的外泌体检测方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017090050A1 (en) * 2015-11-29 2017-06-01 Ramot At Tel-Aviv University Ltd. Sensing electrode and method of fabricating the same
CN109133014A (zh) * 2018-06-13 2019-01-04 青岛大学 一种CoN3@N-C复合电催化剂的制备方法
CN109307700A (zh) * 2018-10-19 2019-02-05 海南师范大学 一种钴基金属有机框架材料/三维石墨烯纳米复合材料修饰电极测定芦丁的方法
CN109529064A (zh) * 2019-01-04 2019-03-29 北京大学深圳医院 可以实现肿瘤局部定点放射治疗的黑磷微泡药物载体及其制备方法
CN109813786A (zh) * 2019-03-13 2019-05-28 郑州轻工业学院 双金属-有机骨架材料、支架材料及其制备方法,电化学免疫传感器及其制备方法、应用
CN110108881A (zh) * 2019-04-30 2019-08-09 江苏大学 一种双功能生物传感器hrp@zif-8/dna的制备方法及其应用

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113567206A (zh) * 2021-07-20 2021-10-29 上海交通大学 基于金属有机骨架纳米材料的膜蛋白及膜相关蛋白提取方法
CN114563456A (zh) * 2022-03-04 2022-05-31 章毅 以MOFs探针对外泌体实施电化学检测的方法

Also Published As

Publication number Publication date
US20210247350A1 (en) 2021-08-12
CN110736779A (zh) 2020-01-31
CN110736779B (zh) 2020-06-02
US11105767B1 (en) 2021-08-31

Similar Documents

Publication Publication Date Title
WO2021087945A1 (zh) 用于肿瘤外泌体自校准检测的双功能杂化薄膜的制备方法
JP6796231B2 (ja) Ti3C2二次元金属炭化物触媒に基づくルミノールの電気化学発光プローブを用いたバイオセンサー及びその製造方法
Liu et al. Functionalized graphene-based biomimetic microsensor interfacing with living cells to sensitively monitor nitric oxide release
Yang et al. Au doped poly-thionine and poly-m-Cresol purple: Synthesis and their application in simultaneously electrochemical detection of two lung cancer markers CEA and CYFRA21-1
Wang et al. Highly sensitive electrochemical immunosensor for the simultaneous detection of multiple tumor markers for signal amplification
Chen et al. Ultrasensitive ratiometric electrochemical immunoassay of N-terminal pro-B-type natriuretic peptide based on three-dimensional PtCoNi hollow multi-branches/ferrocene-grafted-ionic liquid and CoNC nanosheets
Yang et al. Electrochemical impedance immunosensor for sub-picogram level detection of bovine interferon gamma based on cylinder-shaped TiO2 nanorods
Zhou et al. Carbon nanospheres-promoted electrochemical immunoassay coupled with hollow platinum nanolabels for sensitivity enhancement
Han et al. Gold nanoparticles enhanced electrochemiluminescence of graphite-like carbon nitride for the detection of Nuclear Matrix Protein 22
CN110687182A (zh) 一种检测前列腺特异性抗原的电化学免疫传感器的制备方法
Fang et al. Dual-quenching electrochemiluminescence system based on novel acceptor CoOOH@ Au NPs for early detection of procalcitonin
CN107543851B (zh) 一种基于草酸银桥联三联吡啶钌纳米复合物的电化学发光传感器的制备方法及应用
CN110133082A (zh) 一种适体传感器用电极材料,电化学适体传感器及其制备方法
Chen et al. Dual-mode electrochemiluminescence and electrochemical sensor for alpha-fetoprotein detection in human serum based on vertically ordered mesoporous silica films
Liu et al. Detection of exosomes via an electrochemical biosensor based on C60-Au-Tb composite
Feng et al. A novel strategy for multiplexed immunoassay of tumor markers based on electrochemiluminescence coupled with cyclic voltammetry using graphene-polymer nanotags
CN106198699A (zh) 制备两种二抗共轭物及其用于同时检测甲胎蛋白和癌胚抗原的方法
Wang et al. Photoelectrochemical assay for the detection of circulating tumor cells based on aptamer-Ag 2 S nanocrystals for signal amplification
Deng et al. A novel conductive nanocomposite-based biosensor for ultrasensitive detection of microRNA-21 in serum, using methylene blue as mediator
CN108375612B (zh) 一种复合纳米材料电化学检测甲胎蛋白的方法
Jia et al. Visual analysis of Alzheimer disease biomarker via low-potential driven bipolar electrode
Wang et al. Construction of a competitive electrochemical immunosensor based on sacrifice of Prussian blue and its ultrasensitive detection of alpha-fetoprotein
Wang et al. Detection of two markers for pancreatic cancer (CEA, CA199) based on a nano-silicon sphere-cyclodextrin recognition platform
Zha et al. Responsive Nd-MOF nanorods based near-infrared photoelectrochemical cytosensor and real-time monitoring HClO releasing from cells and tumor
Si et al. Sensitive electrochemical detection of A549 exosomes based on DNA/ferrocene-modified single-walled carbon nanotube complex

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19952043

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19952043

Country of ref document: EP

Kind code of ref document: A1