WO2021086141A1 - 케스토스-함유 프락토올리고당의 제조방법 - Google Patents
케스토스-함유 프락토올리고당의 제조방법 Download PDFInfo
- Publication number
- WO2021086141A1 WO2021086141A1 PCT/KR2020/015097 KR2020015097W WO2021086141A1 WO 2021086141 A1 WO2021086141 A1 WO 2021086141A1 KR 2020015097 W KR2020015097 W KR 2020015097W WO 2021086141 A1 WO2021086141 A1 WO 2021086141A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- kestose
- weight
- fructooligosaccharide
- fraction
- conversion reaction
- Prior art date
Links
- ODEHMIGXGLNAKK-OESPXIITSA-N 6-kestotriose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)OC[C@@H]1[C@@H](O)[C@H](O)[C@](CO)(O[C@@H]2[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O2)O)O1 ODEHMIGXGLNAKK-OESPXIITSA-N 0.000 title claims abstract description 163
- 238000000034 method Methods 0.000 title claims abstract description 52
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical class OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 title abstract description 24
- 238000003860 storage Methods 0.000 claims abstract description 17
- FTSSQIKWUOOEGC-RULYVFMPSA-N fructooligosaccharide Chemical compound OC[C@H]1O[C@@](CO)(OC[C@@]2(OC[C@@]3(OC[C@@]4(OC[C@@]5(OC[C@@]6(OC[C@@]7(OC[C@@]8(OC[C@@]9(OC[C@@]%10(OC[C@@]%11(O[C@H]%12O[C@H](CO)[C@@H](O)[C@H](O)[C@H]%12O)O[C@H](CO)[C@@H](O)[C@@H]%11O)O[C@H](CO)[C@@H](O)[C@@H]%10O)O[C@H](CO)[C@@H](O)[C@@H]9O)O[C@H](CO)[C@@H](O)[C@@H]8O)O[C@H](CO)[C@@H](O)[C@@H]7O)O[C@H](CO)[C@@H](O)[C@@H]6O)O[C@H](CO)[C@@H](O)[C@@H]5O)O[C@H](CO)[C@@H](O)[C@@H]4O)O[C@H](CO)[C@@H](O)[C@@H]3O)O[C@H](CO)[C@@H](O)[C@@H]2O)[C@@H](O)[C@@H]1O FTSSQIKWUOOEGC-RULYVFMPSA-N 0.000 claims description 91
- 229940107187 fructooligosaccharide Drugs 0.000 claims description 91
- 235000000346 sugar Nutrition 0.000 claims description 81
- 238000000926 separation method Methods 0.000 claims description 65
- 239000007795 chemical reaction product Substances 0.000 claims description 46
- VAWYEUIPHLMNNF-OESPXIITSA-N 1-kestose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)OC[C@]1(O[C@@H]2[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O2)O)[C@@H](O)[C@H](O)[C@@H](CO)O1 VAWYEUIPHLMNNF-OESPXIITSA-N 0.000 claims description 43
- 108090000790 Enzymes Proteins 0.000 claims description 39
- 102000004190 Enzymes Human genes 0.000 claims description 39
- 238000000746 purification Methods 0.000 claims description 34
- 238000004519 manufacturing process Methods 0.000 claims description 28
- 239000007787 solid Substances 0.000 claims description 28
- 150000002500 ions Chemical class 0.000 claims description 26
- FLDFNEBHEXLZRX-DLQNOBSRSA-N Nystose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)OC[C@]1(OC[C@]2(O[C@@H]3[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O3)O)[C@H]([C@H](O)[C@@H](CO)O2)O)[C@@H](O)[C@H](O)[C@@H](CO)O1 FLDFNEBHEXLZRX-DLQNOBSRSA-N 0.000 claims description 24
- 150000001720 carbohydrates Chemical class 0.000 claims description 24
- 238000006243 chemical reaction Methods 0.000 claims description 23
- 238000006911 enzymatic reaction Methods 0.000 claims description 20
- 230000008569 process Effects 0.000 claims description 20
- FLDFNEBHEXLZRX-UHFFFAOYSA-N nystose Natural products OC1C(O)C(CO)OC1(CO)OCC1(OCC2(OC3C(C(O)C(O)C(CO)O3)O)C(C(O)C(CO)O2)O)C(O)C(O)C(CO)O1 FLDFNEBHEXLZRX-UHFFFAOYSA-N 0.000 claims description 14
- 239000000758 substrate Substances 0.000 claims description 14
- 241000228245 Aspergillus niger Species 0.000 claims description 13
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 claims description 12
- 239000008103 glucose Substances 0.000 claims description 12
- 238000002360 preparation method Methods 0.000 claims description 12
- 230000000694 effects Effects 0.000 claims description 11
- 238000004587 chromatography analysis Methods 0.000 claims description 7
- 244000005700 microbiome Species 0.000 claims description 7
- 240000006439 Aspergillus oryzae Species 0.000 claims description 6
- 235000002247 Aspergillus oryzae Nutrition 0.000 claims description 6
- 238000004042 decolorization Methods 0.000 claims description 6
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 claims description 5
- 239000003729 cation exchange resin Substances 0.000 claims description 5
- 241000235015 Yarrowia lipolytica Species 0.000 claims description 4
- 239000003957 anion exchange resin Substances 0.000 claims description 4
- 241000312489 Millerozyma Species 0.000 claims description 3
- 241000235042 Millerozyma farinosa Species 0.000 claims description 3
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 2
- 239000011574 phosphorus Substances 0.000 claims description 2
- 229910052698 phosphorus Inorganic materials 0.000 claims description 2
- 239000000203 mixture Substances 0.000 description 28
- 239000006188 syrup Substances 0.000 description 28
- 235000020357 syrup Nutrition 0.000 description 28
- GIUOHBJZYJAZNP-DVZCMHTBSA-N 1-kestose Natural products OC[C@@H]1O[C@](CO)(OC[C@]2(O[C@H]3O[C@H](CO)[C@@H](O)[C@H](O)[C@H]3O)O[C@@H](O)[C@@H](O)[C@@H]2O)[C@@H](O)[C@@H]1O GIUOHBJZYJAZNP-DVZCMHTBSA-N 0.000 description 24
- VAWYEUIPHLMNNF-UHFFFAOYSA-N kestotriose Natural products OC1C(O)C(CO)OC1(CO)OCC1(OC2C(C(O)C(O)C(CO)O2)O)C(O)C(O)C(CO)O1 VAWYEUIPHLMNNF-UHFFFAOYSA-N 0.000 description 24
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 18
- 239000000047 product Substances 0.000 description 16
- 229930091371 Fructose Natural products 0.000 description 12
- 229960002737 fructose Drugs 0.000 description 12
- 230000000052 comparative effect Effects 0.000 description 10
- 239000011347 resin Substances 0.000 description 10
- 229920005989 resin Polymers 0.000 description 10
- 238000001914 filtration Methods 0.000 description 9
- CHUGKEQJSLOLHL-UHFFFAOYSA-N 2,2-Bis(bromomethyl)propane-1,3-diol Chemical compound OCC(CO)(CBr)CBr CHUGKEQJSLOLHL-UHFFFAOYSA-N 0.000 description 8
- 108010051210 beta-Fructofuranosidase Proteins 0.000 description 8
- 238000010438 heat treatment Methods 0.000 description 8
- 235000011073 invertase Nutrition 0.000 description 8
- 239000011734 sodium Substances 0.000 description 8
- 230000002779 inactivation Effects 0.000 description 7
- 238000004811 liquid chromatography Methods 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- 239000005715 Fructose Substances 0.000 description 6
- 239000013078 crystal Substances 0.000 description 6
- 235000013305 food Nutrition 0.000 description 6
- 229920001542 oligosaccharide Polymers 0.000 description 6
- 150000002482 oligosaccharides Chemical class 0.000 description 6
- 238000003756 stirring Methods 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 229930006000 Sucrose Natural products 0.000 description 5
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 239000011550 stock solution Substances 0.000 description 5
- 239000005720 sucrose Substances 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 239000012071 phase Substances 0.000 description 4
- 238000001179 sorption measurement Methods 0.000 description 4
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- 206010020751 Hypersensitivity Diseases 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 3
- 208000026935 allergic disease Diseases 0.000 description 3
- 230000007815 allergy Effects 0.000 description 3
- 150000001450 anions Chemical class 0.000 description 3
- 239000006227 byproduct Substances 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 230000001965 increasing effect Effects 0.000 description 3
- 210000000936 intestine Anatomy 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- QNTKVQQLMHZOKP-NEJDVEAASA-N (2r,3r,4s,5s,6r)-2-[(2s,3s,4s,5r)-2-[[(2r,3s,4s,5r)-2-[[(2r,3s,4s,5r)-2-[[(2r,3s,4s,5r)-3,4-dihydroxy-2,5-bis(hydroxymethyl)oxolan-2-yl]oxymethyl]-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxymethyl]-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxymethyl]- Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)OC[C@]1(OC[C@]2(OC[C@]3(O[C@@H]4[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O4)O)[C@H]([C@H](O)[C@@H](CO)O3)O)[C@H]([C@H](O)[C@@H](CO)O2)O)[C@@H](O)[C@H](O)[C@@H](CO)O1 QNTKVQQLMHZOKP-NEJDVEAASA-N 0.000 description 2
- 206010003645 Atopy Diseases 0.000 description 2
- 241000894006 Bacteria Species 0.000 description 2
- 206010012438 Dermatitis atopic Diseases 0.000 description 2
- 239000004267 EU approved acidity regulator Substances 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 239000003463 adsorbent Substances 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 201000008937 atopic dermatitis Diseases 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 230000036039 immunity Effects 0.000 description 2
- 229940099472 immunoglobulin a Drugs 0.000 description 2
- 150000002584 ketoses Chemical class 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 230000002062 proliferating effect Effects 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- UHPMCKVQTMMPCG-UHFFFAOYSA-N 5,8-dihydroxy-2-methoxy-6-methyl-7-(2-oxopropyl)naphthalene-1,4-dione Chemical compound CC1=C(CC(C)=O)C(O)=C2C(=O)C(OC)=CC(=O)C2=C1O UHPMCKVQTMMPCG-UHFFFAOYSA-N 0.000 description 1
- 235000001674 Agaricus brunnescens Nutrition 0.000 description 1
- 241000234282 Allium Species 0.000 description 1
- 235000002732 Allium cepa var. cepa Nutrition 0.000 description 1
- 240000002234 Allium sativum Species 0.000 description 1
- 240000005528 Arctium lappa Species 0.000 description 1
- 235000003130 Arctium lappa Nutrition 0.000 description 1
- 235000008078 Arctium minus Nutrition 0.000 description 1
- 244000003416 Asparagus officinalis Species 0.000 description 1
- 235000005340 Asparagus officinalis Nutrition 0.000 description 1
- 241000228212 Aspergillus Species 0.000 description 1
- 241000186000 Bifidobacterium Species 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 244000298479 Cichorium intybus Species 0.000 description 1
- 235000007542 Cichorium intybus Nutrition 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 241000223218 Fusarium Species 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 108060003951 Immunoglobulin Proteins 0.000 description 1
- 108010042889 Inulosucrase Proteins 0.000 description 1
- -1 Kestose ion Chemical class 0.000 description 1
- 208000007976 Ketosis Diseases 0.000 description 1
- 240000008790 Musa x paradisiaca Species 0.000 description 1
- 241000235648 Pichia Species 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 235000021015 bananas Nutrition 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000013375 chromatographic separation Methods 0.000 description 1
- 235000013365 dairy product Nutrition 0.000 description 1
- 230000009849 deactivation Effects 0.000 description 1
- 206010012601 diabetes mellitus Diseases 0.000 description 1
- 235000015872 dietary supplement Nutrition 0.000 description 1
- 235000013399 edible fruits Nutrition 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 235000013373 food additive Nutrition 0.000 description 1
- 239000002778 food additive Substances 0.000 description 1
- BJHIKXHVCXFQLS-UYFOZJQFSA-N fructose group Chemical group OCC(=O)[C@@H](O)[C@H](O)[C@H](O)CO BJHIKXHVCXFQLS-UYFOZJQFSA-N 0.000 description 1
- 239000013538 functional additive Substances 0.000 description 1
- 235000004611 garlic Nutrition 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 235000012907 honey Nutrition 0.000 description 1
- 102000018358 immunoglobulin Human genes 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 230000000968 intestinal effect Effects 0.000 description 1
- 239000006210 lotion Substances 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- 239000005445 natural material Substances 0.000 description 1
- 230000001766 physiological effect Effects 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 235000021309 simple sugar Nutrition 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000013077 target material Substances 0.000 description 1
- 239000013076 target substance Substances 0.000 description 1
- 150000004044 tetrasaccharides Chemical class 0.000 description 1
- 238000004448 titration Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 150000004043 trisaccharides Chemical class 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P19/00—Preparation of compounds containing saccharide radicals
- C12P19/04—Polysaccharides, i.e. compounds containing more than five saccharide radicals attached to each other by glycosidic bonds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D15/00—Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
- B01D15/08—Selective adsorption, e.g. chromatography
- B01D15/10—Selective adsorption, e.g. chromatography characterised by constructional or operational features
- B01D15/18—Selective adsorption, e.g. chromatography characterised by constructional or operational features relating to flow patterns
- B01D15/1814—Selective adsorption, e.g. chromatography characterised by constructional or operational features relating to flow patterns recycling of the fraction to be distributed
- B01D15/1821—Simulated moving beds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D15/00—Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
- B01D15/08—Selective adsorption, e.g. chromatography
- B01D15/10—Selective adsorption, e.g. chromatography characterised by constructional or operational features
- B01D15/18—Selective adsorption, e.g. chromatography characterised by constructional or operational features relating to flow patterns
- B01D15/1814—Selective adsorption, e.g. chromatography characterised by constructional or operational features relating to flow patterns recycling of the fraction to be distributed
- B01D15/1821—Simulated moving beds
- B01D15/185—Simulated moving beds characterized by the components to be separated
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D15/00—Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
- B01D15/08—Selective adsorption, e.g. chromatography
- B01D15/26—Selective adsorption, e.g. chromatography characterised by the separation mechanism
- B01D15/36—Selective adsorption, e.g. chromatography characterised by the separation mechanism involving ionic interaction
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D15/00—Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
- B01D15/08—Selective adsorption, e.g. chromatography
- B01D15/26—Selective adsorption, e.g. chromatography characterised by the separation mechanism
- B01D15/36—Selective adsorption, e.g. chromatography characterised by the separation mechanism involving ionic interaction
- B01D15/361—Ion-exchange
- B01D15/362—Cation-exchange
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D15/00—Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
- B01D15/08—Selective adsorption, e.g. chromatography
- B01D15/26—Selective adsorption, e.g. chromatography characterised by the separation mechanism
- B01D15/36—Selective adsorption, e.g. chromatography characterised by the separation mechanism involving ionic interaction
- B01D15/361—Ion-exchange
- B01D15/363—Anion-exchange
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/24—Hydrolases (3) acting on glycosyl compounds (3.2)
- C12N9/2402—Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
- C12N9/2405—Glucanases
- C12N9/2408—Glucanases acting on alpha -1,4-glucosidic bonds
- C12N9/2431—Beta-fructofuranosidase (3.2.1.26), i.e. invertase
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P19/00—Preparation of compounds containing saccharide radicals
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P19/00—Preparation of compounds containing saccharide radicals
- C12P19/14—Preparation of compounds containing saccharide radicals produced by the action of a carbohydrase (EC 3.2.x), e.g. by alpha-amylase, e.g. by cellulase, hemicellulase
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y302/00—Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
- C12Y302/01—Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
- C12Y302/01026—Beta-fructofuranosidase (3.2.1.26), i.e. invertase
-
- C—CHEMISTRY; METALLURGY
- C13—SUGAR INDUSTRY
- C13K—SACCHARIDES OBTAINED FROM NATURAL SOURCES OR BY HYDROLYSIS OF NATURALLY OCCURRING DISACCHARIDES, OLIGOSACCHARIDES OR POLYSACCHARIDES
- C13K11/00—Fructose
-
- C—CHEMISTRY; METALLURGY
- C13—SUGAR INDUSTRY
- C13K—SACCHARIDES OBTAINED FROM NATURAL SOURCES OR BY HYDROLYSIS OF NATURALLY OCCURRING DISACCHARIDES, OLIGOSACCHARIDES OR POLYSACCHARIDES
- C13K13/00—Sugars not otherwise provided for in this class
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/24—Hydrolases (3) acting on glycosyl compounds (3.2)
- C12N9/2402—Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
Definitions
- the present invention relates to a method for producing high purity kestos-containing fructooligosaccharide with improved storage stability, and more particularly, to a purification process after preparation of high purity kestos-containing fructooligosaccharide, thereby improving storage stability of kestos. It relates to a manufacturing method characterized in that.
- Fructoligosaccharides are oligosaccharides in which one or more fructose is added in a chain to sugar, and the binding mode is that carbon 2 of fructose added to carbon 1 in the fructose residue portion of sugar is bonded and repeated.
- 1-3 molecules of fructose are ⁇ -(2>1) bound to sugar (sucrose), and 1-kestose (GF2), nystose (Nystose, GF3) and 1-F -Fructosyl nystose (1-F-Fructosyl nystose, GF4), etc.
- Fructooligosaccharide is a natural substance contained in vegetables, mushrooms, and fruits such as bananas, onions, asparagus, burdock, garlic, honey and chicory root, and has a long history of consumption.
- Fructoligosaccharide is a component produced from sugar, and its structure is similar to that of sugar, so the physicochemical properties of the two substances are similar. However, unlike sugar, fructooligosaccharide is indigestible, so its physiological properties are very different.
- fructooligosaccharides are metabolized by beneficial bacteria in the intestines to show various health functions.
- products containing fructooligosaccharides are recognized as foods that regulate the intestinal condition and foods that promote the absorption of minerals for specific health purposes. It has been classified as a food.
- 1-kestose immunoglobulin A (IgA) antibody enhances and suppresses production of immunoglobulin E (IgE) antibodies, proliferative activity of bifidobacteria in the intestine, and improvement of atopic dermatitis in infants Sex has been confirmed by human tests, and it is industrially required to efficiently produce 1-kestose for use as an allergy suppressing composition, allergy suppressing food, and allergy suppressant using 1-kestose.
- IgA 1-kestose immunoglobulin A
- IgE immunoglobulin E
- 1-kestose in the case of producing fructooligosaccharides containing a large amount of 1-kestose, nystos (GF3) or 1-F-fructofuranosylnistose (GF4), which is converted with 1-kestose, is 1-kestose. It is very difficult to separate and purify them as they have similar physical properties to toss. Therefore, for industrially efficient mass production, 1-kestose is selectively selected over nystos or 1-F-fructofuranosylnistos, which are by-products. There is a need for a method of producing an efficient 1-kestose by improving an enzyme that converts excessive amounts or a strain having such an enzyme.
- Fructofuranosidase derived from fungi an enzyme that produces fructooligosaccharide from sugar, has a high transfer activity and low isomer formation, but produces only 1-kestose plant-derived sugar (sucrose):
- the selectivity to produce oligosaccharides is not as high as sucrose fructosyl transferase (SST), and only a mixture of oligosaccharides having a polymerization degree of 2 to 6 can be prepared. Therefore, fructooligosaccharides are used as liquids or powders, and since they are amorphous mixtures, there are problems such as high moisture absorption and poor processing suitability compared to crystalline food materials such as sugar.
- fructooligosaccharides such as 1-kestose (trisaccharides, GF2), and nystose (tetrasaccharides, GF3), which have a single oligosaccharide component as a main component through high-purity sugar separation and purification.
- the maximum conversion rate of 1-kestose of the enzyme used in the manufacture of fructo-oligosaccharide is about 30%, and the reaction product contains about 25% of the by-product nythose and about 15% of the substrate sugar (sucrose). Therefore, there is still a need for fructofuranosidase that can be efficiently obtained in order to industrially produce a higher content of 1-kestose.
- fructofuranosidase or a mutant strain required for the production of fructo-oligosaccharides having high selectivity for 1-kestose production and improved composition of oligosaccharides, which are transition reaction products.
- the maximum conversion that can be obtained through a mutation having such a high 1-kestose production capacity is about 58% of kestose.
- the pH of the product is acidified during the storage period of fructooligosaccharide, but fructooligosaccharide is easily decomposed under acidic and heating conditions.
- acidity regulators such as organic salts are added to the product.
- food additives such as acidity regulators are mixed, the type of food should be labeled as other oligosaccharides. To improve this, it is necessary to improve the storage stability of the product by partially improving the manufacturing process of the product.
- An object of the present invention is to solve the conventional problems mentioned above, to prepare a fructooligosaccharide containing 1-kestose in a high purity of 85% by weight or more, and to improve the storage stability of the product, thereby making it efficient and economical. It is to provide a method for producing fructooligosaccharides containing phosphorus high purity kestos.
- the present invention contains high-purity kestose by controlling the content of 1-kestose and nystose produced through a conversion reaction and the content of sugar (sucrose) in the substrate during the process of producing a high content 1-kestose-containing fructooligosaccharide. It is to consider the optimum sugar composition range for separating saccharides, and storage stability can be improved through the ion purification process of the separated fructooligosaccharide containing high purity kestose.
- the high purity kestose of the present invention can be prepared using ⁇ -fructofuranosidase derived from N/GMO aspergillus niger.
- the kestose conversion step of the present invention can optionally prepare a fructooligosaccharide containing a high content of 1-kestose, and thus, nystos and/or fructo, which are impurities when obtaining a fructooligosaccharide fraction by separating raffinate. It is characterized in that the fructo-oligosaccharide fraction having a low content of furanocilnystos and a high content of kestose can be separated.
- nystos GF3
- 1-F-fructofuranosylnystos GF4
- GF2 1-kestose
- the kestose-containing fructooligosaccharide prepared according to the manufacturing method of the present invention has low water absorption and crystallinity due to the high 1-kestose content and the low nystose and 1-F-fructofuranocylinistose content. It has a characteristic that it is easy to store and distribute. In addition, it is effective in proliferating beneficial bacteria in the intestine, enhancing immunity, preventing atopy, and preventing diabetes, so it can be usefully applied as an additive to atopic prevention/immunity enhancing food supplements or functional lotions, especially as a functional additive when applied to infants' dairy foods. .
- An example of the present invention is the preparation of a kestose-containing fructooligosaccharide comprising the step of performing a kestose conversion reaction using a substrate containing sugar and an enzyme having kestose conversion activity or a microorganism producing the enzyme It's about the method.
- the kestose conversion step of the present invention can optionally prepare a fructooligosaccharide containing a high content of 1-kestose, and thus, nystos and/or fructo, which are impurities when obtaining a fructooligosaccharide fraction by separating raffinate. It is characterized in that the fructo-oligosaccharide fraction having a low content of furanocilnystos and a high content of kestose can be separated.
- the step of performing the kestose conversion reaction includes performing a kestose conversion reaction using a substrate containing sugar to produce kestose, an enzyme having kestose conversion activity, or a microorganism producing the enzyme. to be.
- the reaction substrate may include sugar, and in the group consisting of fructose, glucose, sugar, nysthose (GF3), and fructofuranosylnistose (GF4) in addition to kestose by using sugar as the reaction substrate.
- GF3 nysthose
- GF4 fructofuranosylnistose
- One or more selected types may be additionally generated.
- the step of performing the kestose conversion reaction includes 80 to 100% by weight, 80 to 99.99% by weight, 80 to 99.9% by weight, 80 to 99% by weight, 80 to 95% by weight of sugar based on the saccharide solid content of the reaction substrate.
- % 80 to 90% by weight, 85 to 100% by weight, 85 to 99.99% by weight, 85 to 99.9% by weight, 85 to 99% by weight, 85 to 95% by weight, 85 to 90% by weight, 90 to 100% by weight, 90 to 99.99% by weight, 90 to 99.9% by weight, 90 to 99% by weight, 90 to 95% by weight, 95 to 100% by weight, 95 to 99.99% by weight, 95 to 99.9% by weight, or 95 to 99% by weight It may be a conversion reaction using a reaction substrate.
- the enzyme having kestose conversion activity is an enzyme having an activity of converting fructooligosaccharide containing kestose from a substrate containing sugar, for example, Aspergillus niger strain, Pichia fly Nosa (Pichia farinose) strain, Yarrowia lipolytica (Yarrowia lipolytica), Millerojima farinose (Millerozyma farinose), and Aspergillus oryzae (Aspergillus oryzae) strain derived from at least one selected from the group consisting of strains. It could be an enzyme .
- it may be an Aspergillus niger SYG-K1 strain having an accession number KCTC13139BP, or an Aspergillus niger SYG-Neo1 strain having an accession number KCTC13140BP.
- Microorganisms that produce enzymes having the kestose conversion activity are Aspergillus niger strains, Pichia farinose strains, Yarrowia lipolytica, and Millerojima parinos. (Millerozyma farinose), and Aspergillus oryzae (Aspergillus oryzae) may be one or more selected from the group consisting of strains .
- it may be an Aspergillus niger SYG-K1 strain having an accession number KCTC13139BP, or an Aspergillus niger SYG-Neo1 strain having an accession number KCTC13140BP.
- the step of performing the kestose conversion reaction may be a reaction under a pH condition of 6 to 8 and/or a temperature condition of 40 to 70°C.
- the method for preparing a kestose-containing fructooligosaccharide according to an embodiment of the present invention may further include a step of terminating the kestose conversion reaction.
- the kestose conversion reaction is terminated by the terminating step, and a high purity and high content of kestose-containing fructooligosaccharide reaction product can be obtained.
- the step of terminating the kestose conversion reaction includes titrating to pH 7.6 or higher, pH 7.7 or higher, pH 7.8 or higher, pH 7.9 or higher, or pH 8 or higher. It may be to inactivate the microorganisms that produce it.
- the step of terminating the kestose conversion reaction includes heating to a temperature of 75° C. or higher, 76° C. or higher, 77° C. or higher, 78° C. or higher, 79° C. or higher, or 80° C. or higher. It may be to deactivate an enzyme or a microorganism that produces the enzyme.
- the sugar content of the reaction product is 15 to 35% by weight, 15 to 34% by weight, 15 to 33% by weight, 15 to 32% by weight, based on 100% by weight of the saccharide solid content of the reaction product.
- the step of terminating the kestose conversion reaction based on 100% by weight of the saccharide solid content of the reaction product, the content of nystose (GF3) of the reaction product is 5% by weight or less, less than 5% by weight, 4.5% by weight or less, 4% by weight. % Or less, 3.5% by weight or less, 3% by weight or less, 3% by weight or less, or 2% by weight or less may be to terminate the kestose conversion reaction.
- a time point for terminating the kestose conversion reaction may be appropriately selected by a person skilled in the art.
- the lower limit of the content of nystos of the reaction product is 0 weight. % Or more, more than 0% by weight, 0.01% by weight or more, 0.05% by weight or more, 0.1% by weight or more, 0.5% by weight or more, or 1% by weight or more, but is not limited thereto.
- the content of kestose (GF2) of the reaction product is 30% by weight or more, 35% by weight or more, 40% by weight or more, 45% by weight based on 100% by weight of the saccharide solid content of the reaction product.
- % Or more, 47% by weight or more, 48% by weight or more, 49% by weight or more, 50% by weight or more, 51% by weight or more, 52% by weight or more, 53% by weight or more, 54% by weight or more, 55% by weight or more, 56% by weight % Or more, 57% by weight or more, or 58% by weight or more may be to terminate the kestose conversion reaction.
- the time point for terminating the kestose conversion reaction may be appropriately selected by a person skilled in the art.
- the upper limit of the kestose content of the reaction product is 100 weight. % Or less, 99% or less, 98% or less, 97% or less, 96% or less, 95% or less, 90% or less, 85% or less, 80% or less, 70% or less, 65% or less % Or less, or 60% by weight or less, but is not limited thereto.
- the glucose content of the reaction product is 25% by weight or less, less than 25% by weight, 24% by weight or less, 23% by weight or less, based on 100% by weight of the saccharide solid content of the reaction product.
- the content is less than or equal to 20% by weight, less than or equal to 21%, less than or equal to 20%, less than or equal to 19%, less than or equal to 18%, less than or equal to 17%, or less than or equal to 16% by weight, the kestose conversion reaction may be terminated.
- the time point for terminating the kestose conversion reaction may be appropriately selected by a person skilled in the art, for example, the lower limit of the glucose content of the reaction product is 5% by weight or more. , 10% by weight or more, 15% by weight or more, or 16% by weight or more, but is not limited thereto.
- the kestose conversion reaction In the step of terminating the kestose conversion reaction, when the reaction product contains 15 to 35% by weight of sugar and 5% by weight or less of nitose based on 100% by weight of the saccharide solid content of the reaction product, the kestose conversion reaction May be terminating.
- the kestose conversion reaction when the reaction product contains 20 to 25% by weight of sugar and 4% by weight or less of nystose based on 100% by weight of the saccharide solid content of the reaction product, the kestose It may be to terminate the conversion reaction.
- the step of terminating the kestose conversion reaction based on 100% by weight of the saccharide solid content of the reaction product, compared to the total content of kestose (GF2) and nythose (GF3) of the reaction product.
- the weight percent ratio (%) is 10% or less, 9% or less, 8% or less, 7% or less, 6.5% or less, 5% or less, 4% or less, or 3.5% or less, the kestose conversion reaction may be terminated. have.
- the step of terminating the kestose conversion reaction includes the kestose-containing fructooligosaccharide fraction based on 100% by weight of the saccharide solid content of the kestose-containing fructooligosaccharide fraction obtained by separating from the kestose conversion reaction product.
- the weight percent ratio (%) of the nythose (GF3) content to the total content of tose (GF2) and nythose (GF3) is 15% or less, 14% or less, 13% or less, 12% or less, 11% or less, 10%
- the percentage ratio (%) of the content of nystus (GF3) to the total content of kestose (GF2) and nythose (GF3) may be calculated by Equation 1.
- the reaction product generated by termination of the Kestose conversion reaction is at least one selected from the group consisting of a decolorization process, a filtration process, an ion purification process, and a concentration process for decolorizing the conversion reaction product before performing the separation step of the reaction product. After passing through the step, it may be to obtain a kestose-containing fructooligosaccharide fraction using simulated moving bed (SMB) chromatography.
- SMB simulated moving bed
- a method for preparing a kestos-containing fructooligosaccharide according to an embodiment of the present invention is a separation step of obtaining a kestos-containing fructooligosaccharide fraction containing high purity kestos by using simulated moving bed (SMB) chromatography. It may be to further include.
- the separation step may be performed in one process. Alternatively, the separation step may be performed without including a concentration process in the previous step.
- the SMB chromatography separation process is an easy separation method for securing the stability of a material because there is no phase change in the separation process.
- chromatographic separation methods are widely used as liquid phase adsorption separation methods.
- the simulated moving bed adsorption separation method (simulated moving bed (SMB)) provides superior purity and productivity compared to conventional batch chromatography by separating continuously using a number of columns, and the advantage of using less solvent.
- SMB simulated moving bed
- the simulated moving bed (SMB) adsorption separation process is a process in which a mixture to be separated is injected and a raffinate and an extract are produced continuously.
- the basic principle of SMB is to simulate the countercurrent flow of the stationary and mobile phases and enable continuous separation by moving the positions between the columns at regular intervals. Materials that move quickly because of their weak affinity with the adsorbent move in the direction of the liquid phase and collect as extract, and substances that move slowly because of their strong affinity with the adsorbent move in the flow direction of the stationary bed and collect as raffinate.
- the columns are connected in series, the inlet consists of the mixture and the mobile phase, and the outlet consists of the desired extract and raffinate.
- the raffinate is also referred to as a raffinate, and in the product obtained by passing the raw material introduced in the separation process through the separation process, the target fraction containing the target material to be increased in the separation process, and the content removed or removed in the separation process. It includes a residual liquid containing a substance to be reduced, and the residual liquid is called a raffinate.
- the product obtained in the kestose conversion process is a mixture containing sugar as a raw material substrate and kestose as a product, and the fructooligosaccharide fraction in which the content of kestose as the target substance is increased while passing through a high-purity separation process.
- a residual liquid (rapinate) is obtained, and the residual liquid may contain reactive substances and by-products, and, for example, sugar, fructose, glucose, nystose, and the like may be included.
- the separation resin in the SMB a strong acid cation exchange resin to which a salt is added, which is widely used in the simple sugar separation process, is used, so the product obtained after performing the separation process contains metal ions.
- the cation exchange resin of the strong acid may be a cation exchange resin to which an active group of sodium, calcium, or potassium is attached.
- the separating step of obtaining the kestose-containing fructooligosaccharide fraction may be to separate the reaction product of the kestose conversion reaction having a high solid content, for example, a solid content of 70 to 80 Brix, or 75 to 80 Brix. It may be to obtain a kestos-containing fructooligosaccharide fraction by separating the reaction product having.
- the separation step is 80% by weight or more, 81% by weight or more, 82% by weight or more, 83% by weight or more, 84% by weight or more, 85% by weight or more, based on 100% by weight of the saccharide solid content of the fructooligosaccharide fraction. , 86% by weight or more, 87% by weight or more, 88% by weight or more, 89% by weight or more, 90% by weight or more, or 91% by weight or more may be to obtain a fructooligosaccharide fraction containing.
- the fructooligosaccharide The upper limit of the castose content of the fraction is 100% by weight or less, less than 100% by weight, 99.99% by weight or less, 99.9% by weight or less, 99% by weight or less, 98% by weight or less, 97% by weight or less, 96% by weight or less, or 95 It may be less than or equal to the weight %, but is not limited thereto.
- the separation step is 10% by weight or less, 9% by weight or less, 8% by weight or less, 7% by weight or less, 6% by weight or less, 5% by weight or less, based on 100% by weight of the saccharide solid content of the fructooligosaccharide fraction. Or, it may be to obtain a fructooligosaccharide fraction containing 4% by weight or less. At this time, even if the lower limit value of the nystose content of the fructooligosaccharide fraction is not specified, it will be clearly understood by those of ordinary skill in the art for the purpose of minimizing the nystose content of the fructooligosaccharide fraction.
- the fructooligosaccharide The lower limit of the nytose content of the fraction is 0% by weight or more, more than 0% by weight, 0.1% by weight or more, 0.2% by weight or more, 0.3% by weight or more, 0.4% by weight or more, 0.5% by weight or more, 0.6% by weight or more, 0.7% by weight % Or more, 0.8% by weight or more, 0.9% by weight or more, 1% by weight or more, 1.1% by weight or more, 1.2% by weight or more, 1.3% by weight or more, 1.4% by weight or more, 1.5% by weight or more, 1.6% by weight or more, 1.7% by weight % Or more, 1.8% by weight or more, 1.9% by weight or more, 2% by weight or more, 2.5% by weight or more, or 3% by weight or more, but is not limited thereto.
- the method for preparing a kestos-containing fructooligosaccharide according to an embodiment of the present invention may further include ion-purifying the kestos-containing fructooligosaccharide fraction.
- the ion purification step is a step of ion purification of the fructooligosaccharide fraction obtained in the high purity separation process using the SMB chromatograph.
- the ion purification step may be performed in one process.
- the ion purification may be performed by passing the fructooligosaccharide fraction through an ion purification tower.
- the ion purification tower may include an anion tower.
- the ion purification tower may further include at least one selected from the group consisting of a cation tower and a mixed bed column, and the fructooligosaccharide fraction may be passed through the anion tower last. .
- Example 6 of the present application the effect of ion purification on the physical properties of syrup containing high kestose was investigated, and it was found that the storage stability of syrup containing high kestose was improved when the rear column was set as an anion exchange resin column as in the ion purification MB-A. I could confirm.
- an example of the method for preparing Kestose of the present invention is to increase the pH of the reaction solution by installing a tower A or a tower A such as MB-A, MB-KA, and K-MB-A at the end. desirable. This is to prevent the decomposition of fructooligosaccharide substances such as kestos and nysthos during the manufacturing process.
- the pH of the fructooligosaccharide fraction may be pH 5 to 8, pH 5 to 7, pH 6 to 8, or pH 6 to 7.
- the fructooligosaccharide prepared by the method for producing a kestose-containing fructooligosaccharide according to an embodiment of the present invention may preferably have improved storage stability.
- the fructooligosaccharide content of the kestose-containing fructooligosaccharide is 30% or more, 40% or more, 50% or more, 60% or more, 70 of the fructooligosaccharide content measured immediately after preparation of the fructooligosaccharide fraction. % Or more, 80% or more, 90% or more, 91% or more, 92% or more, 93% or more, 94% or more, or 95% or more.
- the fructooligosaccharide content of the kestose-containing fructooligosaccharide may be the content of fructooligosaccharide after storage for 1 week, 2 weeks, 3 weeks, 4 weeks, 5 weeks, 6 weeks, or 7 weeks.
- the fructooligosaccharide containing kestose has a content of fructooligosaccharide at the time of 1, 2, 3, 4, 5, 6, or 7 weeks after manufacture, and the initial fructooligosaccharide 30% or more, 40% or more, 50% or more, 60% or more, 70% or more, 80% or more, 90% or more, 91% or more, 92% or more, 93% or more, 94% or more, or 95% or more of the content It can be preserved and stable.
- the pH is from pH 3.5 to 8, pH 3.5 to 7, pH 3.5 to 6, pH 3.5 to 5.5, pH 3.5 to 5, pH 4 to 8, pH 4 to 7, pH 4 to 6, pH 4 to 5.5, pH 4 to 5, pH 4.5 to 8, pH 4.5 to 7, pH 4.5 to 6, pH 4.5 to 5.5, or pH 4.5 to 5.
- the kestose-containing fructooligosaccharide is stored at a temperature of 30 to 50°C, 30 to 45°C, 35 to 50°C, 35 to 45°C, 40 to 50°C, or 40 to 45°C, for example, 45°C. Can be.
- the pH is adjusted to 7.6 or higher, for example, pH 8.0, and then heated at 75°C or higher, for example, 80°C for 2 hours to inactivate the enzyme.
- it may further include a step of treating at least one process selected from the group consisting of a decolorization process, an ion purification process, and a concentration process.
- a filtration process in which the activated carbon is treated with 0.5% to 1.0% of the solid content to remove impurities and lower the color value may be performed.
- Kestose is separated with high purity.
- the resin used at this time may be Na + type and Ca 2 + type resin.
- the separated kestose content may include 80% by weight or more of kestose (GF2), for example, from 85% to 95% by weight, based on 100% of the saccharide solids of the fructooligosaccharide fraction.
- GF2 kestose
- the ion tower of the high purity Kestose produced through SMB is a purification tower such as A, MB-A, K-MB-A, KA, MB-KA, etc. It passes through and has a pH of 5.0 to 8.0.
- the ion purification process is to improve storage stability after product production. After that, it is concentrated to 75% by weight through a concentration process and discharged as a product.
- powder can be prepared by using Spray Dry or Conveyor Vacuume Dry if necessary.
- the amount range of sugar, kestose, and nythose for separating high purity kestose during the kestose conversion reaction process is established, and the storage stability of the product is improved by improving ionic purification.
- FIG. 1 is a diagram showing an example of a typical SMB process.
- Kestose is a schematic diagram of a process for manufacturing Kestose according to an example of the present invention.
- the reaction was titrated to a pH of 7.6 or higher using 4N NaOH and heated at 80° C. for 2 hours to induce enzyme deactivation.
- the enzyme reaction product was prepared according to the solid content of 75% by weight through decolorization/filtration, purification, and concentration. Table 1 shows the sugar composition of the prepared syrup comparative sample 1-A.
- the enzyme inactivation was induced by titrating to a pH of 7.6 or higher using 4N NaOH in the enzyme reaction section in which the sugar content remained at 34% by weight and heating at 80° C. for 2 hours.
- the enzyme reaction product was prepared according to 75% by weight through decolorization/filtration, purification, and concentration. Table 2 shows the sugar composition of the prepared syrup test sample 1-1.
- GF3 nystose
- Test sample 1-2 Test sample 2-2 Test sample 3-2 Test sample 4-2 Test sample 5-2 - A-MB MB-A A-MB MB-A A-MB MB-A A-MB MB-A A-MB MB-A 0 4.52 6.91 4.48 6.89 4.61 6.92 4.49 6.97 4.57 6.85 One 4.38 6.47 4.32 6.41 4.44 6.55 4.38 6.61 4.32 6.42 2 4.21 6.13 4.21 6.04 4.28 6.11 4.24 6.23 4.16 6.19 3 4.14 5.97 4.04 5.82 4.16 5.92 4.11 6.02 4.05 5.95 4 3.78 5.67 3.82 5.58 3.83 5.58 3.76 5.68 3.94 5.61 5 3.56 5.31 3.49 5.24 3.52 5.26 3.48 5.31 3.86 5.22 6 3.41 5.06 3.37 4.91 3.39 4.89 3.36 5.02 3.45 4.98 7 3.28 4.81 3.22 4.68 3.14 4.75 3.21 4.80 3.34 4.73
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Genetics & Genomics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- General Chemical & Material Sciences (AREA)
- Sustainable Development (AREA)
- Medicinal Chemistry (AREA)
- Molecular Biology (AREA)
- Biomedical Technology (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Saccharide Compounds (AREA)
Abstract
본 발명은 케스토스-함유 프락토올리고당의 제조방법에 관한 것으로, 더욱 상세하게는 케스토스 함유량이 높고 저장안정성이 우수한 케스토스-함유 프락토올리고당의 제조방법에 관한 것이다.
Description
본 발명은 저장 안정성이 향상된 고순도 케스토스-함유 프락토올리고당의 제조방법에 관한 것으로, 더욱 상세하게는 고순도 케스토스-함유 프락토올리고당 제조 후 정제공정을 수행하여, 케스토스의 저장 안정성을 향상시키는 것을 특징으로 하는 제조방법에 관한 것이다.
프락토올리고당은 설탕에 1개 이상의 과당이 연쇄적으로 부가된 올리고당류이며, 그 결합양식은 설탕의 과당 잔기 부분에 있어서의 1번 탄소에 부가되는 과당의 2번 탄소가 결합해서 반복되는 것이다. 프락토올리고당의 종류로는 설탕 (수크로스)에 과당 1 내지 3분자가 β-(2>1)결합하여, 1-케스토스(Kestose, GF2), 니스토스(Nystose, GF3) 및 1-F-프락토퓨라노실니스토스(1-F-Fructosyl nystose, GF4) 등이 있다.
프락토올리고당은 바나나, 양파, 아스파라거스, 우엉, 마늘, 벌꿀, 치커리 뿌리 등과 같은 야채나 버섯, 과일류에 함유되어 있는 천연 물질로서 이미 섭취 역사가 오랜 물질이다. 프락토올리고당은 설탕으로부터 생성된 성분으로서 그 구조도 설탕과 유사하여 두 물질의 물리화학적 특성이 유사하게 나타난다. 하지만, 프락토올리고당은 설탕과 달리 난소화성이므로 그 생리적인 특성은 매우 다르다. 특히, 프락토올리고당은 장내 유익균에 의해 대사되어 다양한 건강 기능성을 나타낸다는 것이 입증되어, 일본에서는 프락토올리고당 함유 제품을 장의 상태를 조절하는 식품과 미네랄의 흡수를 촉진시키는 식품으로 인정하여 특정 보건용 식품으로 분류한 바 있다.
프락토올리고당 중, 특히 1-케스토스의 면역 글로불린 A(IgA) 항체의 증강 작용 및 면역 글로불린 E(IgE) 항체의 산생 억제 작용, 장 내 비피더스균의 증식 활성 작용 및 유아의 아토피성 피부염의 개선성에 대해서 사람 시험에 의해 확인되었으며, 1-케스토스를 이용한 알레르기 억제 조성물, 알레르기 억제 식품 및 알레르기 억제제로서 사용하기 위하여 1-케스토스를 효율적으로 생산하는 것이 산업적으로 요구되고 있다.
그러나, 1-케스토스를 다량 함유하는 프락토올리고당을 생산하는 경우, 1-케스토스와 함께 전환되는 니스토스 (GF3) 또는 1-F-프락토퓨라노실니스토스 (GF4)는 1-케스토스와 물리적 특성이 유사하여, 이들을 분리 및 정제하기 매우 까다로우며, 이에 산업적으로 효율적인 대량을 하기 위해서는 부산물인 니스토스 또는 1-F-프락토퓨라노실니스토스 보다 1-케스토스를 선택적으로 과량 전환하는 효소 또는 이러한 효소를 갖는 균주를 개량하여 효율적인 1-케스토스를 생산하는 방법이 요구된다.
설탕으로부터 프락토올리고당을 생산하는 효소인 곰팡이 유래의 프락토푸라노시다제는 전이 활성이 높고 이성체의 생성이 적은 특징을 갖지만, 1-케스토스 밖에 생성하지 않는 식물 유래의 설탕(수크로스):수크로스 프락토실 트랜스퍼라제(SST) 만큼 올리고당의 생성 선택성은 높지 않고, 중합도 2~6의 올리고당류의 혼합물 밖에 제조할 수 없다. 따라서, 프락토올리고당은 액체 혹은 분말로서 이용되고 있으며, 이들은 비결정성의 혼합물이기 때문에 설탕 등의 결정성의 식품 재료와 비교하면 습기 흡수성이 높고, 가공 적성이 떨어지는 등의 문제점이 있다.
고순도 당분리 및 정제를 통해서 단일 올리고당 성분을 주성분으로 하는 결정성 프락토올리고당, 예를 들면 1-케스토스(3당류, GF2), 니스토스(4당류, GF3)등을 얻을 수 있는 기술이 있으나, 프락토올리고당의 제조에 이용되고 있는 효소의 1-케스토스의 최대 전환율은 약 30%이며, 반응 생성물 안에는 부생성물인 니스토스가 약 25%, 기질인 설탕(수크로스)이 약 15% 포함되어 있기 때문에, 보다 고함량의 1-케스토스를 산업적으로 생산하기 위해 효율적으로 얻을 수 있는 프락토푸라노시다제가 여전히 요구되고 있다. 다시 말해서, 1-케스토스의 생성 선택성이 높고, 전이 반응 생성물인 올리고당의 조성이 개선된 프락토올리고당의 제조에 필요한 프락토푸라노시다제 또는 변이주를 사용해야 한다. 또한, 이러한 1-케스토스 고생산 능력을 갖는 돌연변이를 통해 얻을 수 있는 최대 전환율은 약 58%의 케스토스이다.
1-케스토스를 섭취하여 얻을 수 있는 기능성 중 하나인 유아의 아토피성 피부염 개선 효과를 위해서는 케스토스 100% 기준으로 2.5g을 1개월 이상 섭취해야 한다. 반면, 본 효소를 통해 제조한 케스토스 54% 시럽(75 중량%)을 이용할 경우에는 약 6.14g을 섭취해야 한다. 유아가 6.14g의 용량을 섭취하기에는 섭취량이 많을뿐더러, 성인의 프락토올리고당 일일 섭취 권장 기준인 2.5~15g에서 절반에 가까운 양을 유아에게 섭취 시켜야 하는 단점이 있다. 따라서 프락토올리고당 섭취량을 최소화 하면서 케스토스의 기능성을 줄 수 있는 방법으로 케스토스를 고순도로 분리하는 방법이 중요하다. 고순도 케스토스 분리 시 고함량 케스토스 시럽의 과당, 니스토스의 함유량에 따라서 고순도 케스토스에 영향을 준다. 따라서 효소 반응에서 고순도 케스토스를 분리하기에 최적인 당조성 범위를 조절할 필요가 있다.
또한 프락토올리고당은 저장 기간 중 제품의 pH가 산성화 진행되는데 프락토올리고당은 산성조건과 가열조건에서 쉽게 분해되는 특징이 있어 이를 방지하기 위해 제품에 유기염 등의 산도조절제를 첨가하고 있는 실정이다. 산도조절제와 같은 식품첨가물을 혼합하게 되면 식품의 유형은 기타올리고당으로 표시해야 한다. 이를 개선하기 위해 제품의 제조 공정을 일부 개선하여 제품의 저장 안정성을 향상 시킬 필요가 있다.
본 발명의 목적은 상기에서 언급한 종래의 문제점을 해결하기 위한 것으로서, 1-케스토스를 85 중량% 이상의 고순도로 함유하는 프락토올리고당 제조를 위한 것이고, 또한 제품의 저장 안정성을 개선하여 효율적이고 경제적인 고순도 케스토스 함유 프락토올리고당 제조방법을 제공하는 것이다.
본 발명은 고함량 1-케스토스 함유 프락토올리고당의 제조 공정 중, 전환 반응을 통해 생성되는 1-케스토스와 니스토스의 함량과, 기질의 설탕(수크로스) 함량을 조절하여 고순도 케스토스 함유 당류를 분리하기 위한 최적의 당조성 범위를 고찰하는 것이고, 분리된 고순도 케스토스 함유 프락토올리고당의 이온정제 공정을 통해 저장 안정성을 향상시킬 수 있다.
본 발명의 고순도 케스토스는 N/GMO aspergillus niger 유래의 β- fructofuranosidase를 이용하여 제조될 수 있다.
본 발명의 케스토스 전환 반응 단계는 선택적으로 높은 함량의 1-케스토스를 포함하는 프락토올리고당을 제조할 수 있어, 라피네이트를 분리하여 프락토올리고당 분획 수득 시 불순물인 니스토스 및/또는 프락토퓨라노실니스토스의 함량이 적고, 케스토스의 함량이 높은 프락토올리고당 분획을 분리할 수 있는 것을 특징으로 한다. 이와 관련하여, 종래 기술에 의하면, 프락토올리고당 중 니스토스 (GF3) 및/또는 1-F-프락토퓨라노실니스토스 (GF4)는 1-케스토스 (GF2)와 물리적 특징이 유사하여, 1-케스토스와 니스토스 및/또는 1-F-프락토퓨라노실니스토스를 분리 및/또는 정제하는 것이 매우 어려운 문제점이 있었으나 본 발명을 상기 문제점을 해결한 것이다.
또한, 본 발명의 제조방법에 따라 제조된 케스토스-함유 프락토올리고당은 높은 1-케스토스 함량 및 낮은 니스토스 및 1-F-프락토퓨라노실니스토스 함량으로 인해 흡수성이 낮고 결정성을 갖는 특성이 있어, 보관 및 유통이 용이하다. 뿐만 아니라 장내 유익균 증식, 면역 증강, 아토피 예방 및 당뇨 예방에 효과가 우수하여 아토피 예방/면역 강화 식품의 보조제 또는 기능성 로션 등에 첨가제로, 특히 영유아 유제품 식품 등에 적용할 경우 기능성 첨가제로서 유용하게 적용될 수 있다.
이하, 본 발명을 더욱 자세히 설명하고자 한다.
본 발명의 일 예는 설탕을 포함하는 기질과 케스토스 전환 활성을 가지는 효소 또는 상기 효소를 생산하는 미생물을 이용하여 케스토스 전환 반응을 수행하는 단계를 포함하는, 케스토스-함유 프락토올리고당의 제조방법에 관한 것이다.
본 발명의 케스토스 전환 반응 단계는 선택적으로 높은 함량의 1-케스토스를 포함하는 프락토올리고당을 제조할 수 있어, 라피네이트를 분리하여 프락토올리고당 분획 수득 시 불순물인 니스토스 및/또는 프락토퓨라노실니스토스의 함량이 적고, 케스토스의 함량이 높은 프락토올리고당 분획을 분리할 수 있는 것을 특징으로 한다.
상기 케스토스 전환 반응을 수행하는 단계는, 케스토스를 생산하기 위해 설탕을 포함하는 기질과, 케스토스 전환 활성을 가지는 효소 또는 상기 효소를 생산하는 미생물을 이용하여, 케스토스 전환 반응을 수행하는 단계이다. 이 때, 반응 기질은 설탕을 포함할 수 있으며, 설탕을 반응 기질로 하여 케스토스와 더불어 과당, 포도당, 설탕, 니스토스 (GF3), 및 프락토퓨라노실니스토스 (GF4)로 이루어지는 군에서 선택된 1종 이상이 추가적으로 생성될 수 있다.
상기 케스토스 전환 반응을 수행하는 단계는, 반응 기질의 당류 고형분 함량을 기준으로 설탕을 80 내지 100중량%, 80 내지 99.99중량%, 80 내지 99.9중량%, 80 내지 99중량%, 80 내지 95중량%, 80 내지 90중량%, 85 내지 100중량%, 85 내지 99.99중량%, 85 내지 99.9중량%, 85 내지 99중량%, 85 내지 95중량%, 85 내지 90중량%, 90 내지 100중량%, 90 내지 99.99중량%, 90 내지 99.9중량%, 90 내지 99중량%, 90 내지 95중량%, 95 내지 100중량%, 95 내지 99.99중량%, 95 내지 99.9중량%, 또는 95 내지 99중량% 포함하는 반응 기질을 이용하여 전환 반응하는 것일 수 있다.
상기 케스토스 전환 활성을 가지는 효소는, 설탕을 포함하는 기질로부터 케스토스를 함유하는 프락토올리고당을 전환하는 활성을 가지는 효소로, 예를 들어 아스페르길루스 니제르 (Aspergillus niger) 균주, 피키아 파리노사 (Pichia farinose) 균주, 야로이야 리폴리티카 (Yarrowia lipolytica), 밀레로지마 파리노사 (Millerozyma farinose), 및 아스페르길루스 오리제 (Aspergillus oryzae) 균주로 이루어지는 군에서 선택된 1종 이상에서 유래된 효소일 수 있다. 일예로, 기탁번호 KCTC13139BP를 가지는 아스페르길루스 니제르 SYG-K1 균주, 또는 기탁번호 KCTC13140BP를 가지는 아스페르길루스 니제르 SYG-Neo1 균주일 수 있다.
상기 케스토스 전환 활성을 가지는 효소를 생산하는 미생물은, 아스페르길루스 니제르 (Aspergillus niger) 균주, 피키아 파리노사 (Pichia farinose) 균주, 야로이야 리폴리티카 (Yarrowia lipolytica), 밀레로지마 파리노사 (Millerozyma farinose), 및 아스페르길루스 오리제 (Aspergillus oryzae) 균주로 이루어지는 군에서 선택된 1종 이상일 수 있다. 일예로, 기탁번호 KCTC13139BP를 가지는 아스페르길루스 니제르 SYG-K1 균주, 또는 기탁번호 KCTC13140BP를 가지는 아스페르길루스 니제르 SYG-Neo1 균주일 수 있다.
상기 케스토스 전환 반응을 수행하는 단계는 pH 6 내지 8의 pH 조건, 및/또는 40 내지 70℃의 온도 조건에서 반응하는 것일 수 있다.
본 발명의 일 예에 따른 케스토스-함유 프락토올리고당의 제조방법은, 케스토스 전환 반응을 종결하는 단계를 추가로 포함하는 것일 수 있다. 상기 종결하는 단계에 의해 케스토스 전환 반응은 종결되며, 고순도 및 고함량의 케스토스-함유 프락토올리고당 반응물을 얻을 수 있다.
상기 케스토스 전환 반응을 종결하는 단계는, pH 7.6 이상, pH 7.7 이상, pH 7.8 이상, pH 7.9 이상, 또는 pH 8 이상으로 적정하는 단계를 포함하여 상기 케스토스 전환 활성을 가지는 효소 또는 상기 효소를 생산하는 미생물을 실활하는 것일 수 있다.
상기 케스토스 전환 반응을 종결하는 단계는, 온도 75℃ 이상, 76℃ 이상, 77℃ 이상, 78℃ 이상, 79℃ 이상, 또는 80℃ 이상으로 가열하는 단계를 포함하여 상기 케스토스 전환 활성을 가지는 효소 또는 상기 효소를 생산하는 미생물을 실활하는 것일 수 있다.
상기 케스토스 전환 반응을 종결하는 단계는, 반응생성물의 당류 고형분 100중량%를 기준으로 반응생성물의 설탕 함량이 15 내지 35중량%, 15 내지 34중량%, 15 내지 33중량%, 15 내지 32중량%, 15 내지 31중량%, 15 내지 30중량%, 15 내지 29중량%, 15 내지 28중량%, 15 내지 27중량%, 15 내지 26중량%, 15 내지 25중량%, 15 내지 24중량%, 15 내지 23중량%, 15 내지 22중량%, 15 내지 21중량%, 16 내지 35중량%, 16 내지 34중량%, 16 내지 33중량%, 16 내지 32중량%, 16 내지 31중량%, 16 내지 30중량%, 16 내지 29중량%, 16 내지 28중량%, 16 내지 27중량%, 16 내지 26중량%, 16 내지 25중량%, 16 내지 24중량%, 16 내지 23중량%, 16 내지 22중량%, 16 내지 21중량%, 17 내지 35중량%, 17 내지 34중량%, 17 내지 33중량%, 17 내지 32중량%, 17 내지 31중량%, 17 내지 30중량%, 17 내지 29중량%, 17 내지 28중량%, 17 내지 27중량%, 17 내지 26중량%, 17 내지 25중량%, 17 내지 24중량%, 17 내지 23중량%, 17 내지 22중량%, 17 내지 21중량%, 18 내지 35중량%, 18 내지 34중량%, 18 내지 33중량%, 18 내지 32중량%, 18 내지 31중량%, 18 내지 30중량%, 18 내지 29중량%, 18 내지 28중량%, 18 내지 27중량%, 18 내지 26중량%, 18 내지 25중량%, 18 내지 24중량%, 18 내지 23중량%, 18 내지 22중량%, 18 내지 21중량%, 19 내지 35중량%, 19 내지 34중량%, 19 내지 33중량%, 19 내지 32중량%, 19 내지 31중량%, 19 내지 30중량%, 19 내지 29중량%, 19 내지 28중량%, 19 내지 27중량%, 19 내지 26중량%, 19 내지 25중량%, 19 내지 24중량%, 19 내지 23중량%, 19 내지 22중량%, 19 내지 21중량%, 20 내지 35중량%, 20 내지 34중량%, 20 내지 33중량%, 20 내지 32중량%, 20 내지 31중량%, 20 내지 30중량%, 20 내지 29중량%, 20 내지 28중량%, 20 내지 27중량%, 20 내지 26중량%, 20 내지 25중량%, 20 내지 24중량%, 20 내지 23중량%, 20 내지 22중량%, 또는 20 내지 21중량% 일 때 상기 케스토스 전환 반응을 종결하는 것일 수 있다.
상기 케스토스 전환 반응을 종결하는 단계는, 반응생성물의 당류 고형분 함량 100중량%를 기준으로 반응생성물의 니스토스 (GF3) 함량이 5중량% 이하, 5중량% 미만, 4.5중량% 이하, 4중량% 이하, 3.5중량% 이하, 3중량% 이하, 3중량% 미만, 또는 2중량% 이하일 때 상기 케스토스 전환 반응을 종결하는 것일 수 있다. 이 때, 상기 니스토스 함량의 하한값이 특정되지 않더라도 상기 케스토스 전환 반응을 종결하기 위한 시점을 통상의 기술자가 적절하게 선택할 수 있을 것이며, 예를 들어 상기 반응생성물의 니스토스 함량의 하한값은 0중량% 이상, 0중량% 초과, 0.01중량% 이상, 0.05중량% 이상, 0.1중량% 이상, 0.5중량% 이상, 또는 1중량% 이상일 수 있으나, 이에 제한되는 것은 아니다.
상기 케스토스 전환 반응을 종결하는 단계는, 반응생성물의 당류 고형분 함량 100중량%를 기준으로 반응생성물의 케스토스 (GF2) 함량이 30중량% 이상, 35중량% 이상, 40중량% 이상, 45중량% 이상, 47중량% 이상, 48중량% 이상, 49중량% 이상, 50중량% 이상, 51중량% 이상, 52중량% 이상, 53중량% 이상, 54중량% 이상, 55중량% 이상, 56중량% 이상, 57중량% 이상, 또는 58중량% 이상일 때 상기 케스토스 전환 반응을 종결하는 것일 수 있다. 이 때, 상기 케스토스 함량의 상한값이 특정되지 않더라도 상기 케스토스 전환 반응을 종결하기 위한 시점을 통상의 기술자가 적절하게 선택할 수 있을 것이며, 예를 들어 상기 반응생성물의 케스토스 함량의 상한값은 100중량% 미만, 99중량% 이하, 98중량% 이하, 97중량% 이하, 96중량% 이하, 95중량% 이하, 90중량% 이하, 85중량% 이하, 80중량% 이하, 70중량% 이하, 65중량% 이하, 또는 60중량% 이하일 수 있으나, 이에 제한되는 것은 아니다.
상기 케스토스 전환 반응을 종결하는 단계는, 반응생성물의 당류 고형분 함량 100중량%를 기준으로 반응생성물의 포도당 함량이 25중량% 이하, 25중량% 미만, 24중량% 이하, 23중량% 이하, 22중량% 이하, 21중량% 이하, 20중량% 이하, 19중량% 이하, 18중량% 이하, 17중량% 이하, 또는 16중량% 이하일 때 상기 케스토스 전환 반응을 종결하는 것일 수 있다. 이 때, 상기 포도당 함량의 하한값이 특정되지 않더라도 상기 케스토스 전환 반응을 종결하기 위한 시점을 통상의 기술자가 적절하게 선택할 수 있을 것이며, 예를 들어 상기 반응생성물의 포도당 함량의 하한값은 5중량% 이상, 10중량% 이상, 15중량% 이상, 또는 16중량% 이상일 수 있으나, 이에 제한되는 것은 아니다.
상기 케스토스 전환 반응을 종결하는 단계는, 반응생성물의 당류 고형분 함량 100중량%를 기준으로 상기 반응생성물이 설탕 15 내지 35중량% 및 니스토스 5중량% 이하를 포함할 때, 상기 케스토스 전환 반응을 종결하는 것일 수 있다. 또는, 상기 케스토스 전환 반응을 종결하는 단계는, 반응생성물의 당류 고형분 함량 100중량%를 기준으로 상기 반응생성물이 설탕 20 내지 25중량% 및 니스토스 4중량% 이하를 포함할 때, 상기 케스토스 전환 반응을 종결하는 것일 수 있다.
상기 케스토스 전환 반응을 종결하는 단계는, 반응생성물의 당류 고형분 함량 100중량%를 기준으로, 상기 반응생성물의 케스토스 (GF2) 및 니스토스 (GF3)의 합계 함량 대비 니스토스 (GF3) 함량의 중량 퍼센트 비율(%)이 10% 이하, 9% 이하, 8% 이하, 7% 이하, 6.5% 이하, 5% 이하, 4%이하, 또는 3.5% 이하일 때 상기 케스토스 전환 반응을 종결하는 것일 수 있다.
상기 케스토스 전환 반응을 종결하는 단계는, 케스토스 전환 반응생성물로부터 분리되어 얻어진 케스토스-함유 프락토올리고당 분획의 당류 고형분 함량 100중량%를 기준으로, 상기 케스토스-함유 프락토올리고당 분획의 케스토스 (GF2) 및 니스토스 (GF3)의 합계 함량 대비 니스토스 (GF3) 함량의 중량 퍼센트 비율(%)이 15% 이하, 14% 이하, 13% 이하, 12% 이하, 11% 이하, 10% 이하, 9% 이하, 8% 이하, 7% 이하, 또는 6% 이하가 되도록 상기 케스토스 전환 반응을 종결하는 것일 수 있다.
상기 케스토스 (GF2) 및 니스토스 (GF3)의 합계 함량 대비 니스토스 (GF3) 함량의 퍼센트 비율(%)은 수학식 1로 계산되는 것일 수 있다.
[수학식 1]
(니스토스 중량%) / {(케스토스 중량%) + (니스토스 중량%)} X 100(%)
상기 케스토스 전환 반응 종결로 생성되는 반응생성물은, 반응생성물의 분리단계를 수행하기 전에, 전환 반응물에 대해 탈색하는 탈색공정, 여과공정, 이온정제공정, 및 농축공정으로 이루어지는 군에서 선택된 1종 이상의 단계를 거친 뒤, 모사 이동층(SMB) 크로마토그래피를 이용하여 케스토스-함유 프락토올리고당 분획을 얻는 것일 수 있다.
본 발명의 일 예에 따른 케스토스-함유 프락토올리고당의 제조방법은, 모사 이동층(SMB) 크로마토그래피를 이용하여 고순도의 케스토스를 포함하는, 케스토스-함유 프락토올리고당 분획을 얻는 분리단계를 추가로 포함하는 것일 수 있다. 상기 분리단계는 하나의 공정으로 수행되는 것일 수 있다. 또는, 상기 분리단계는 이전 단계에서 농축 공정을 포함하지 않고 수행되는 것일 수 있다.
상기 SMB 크로마토그래피 분리 공정은 분리과정에서 상 변화가 없어 물질의 안정성 확보에 용이한 분리방법이다. 이러한 흡착 분리방법 중에서 액상 흡착 분리방법으로는 크로마토그래피 분리방법이 많이 사용되고 있다. 이 중, 모사 이동층 흡착 분리 방법(simulated moving bed, SMB)은 다수의 컬럼을 이용하여 연속적으로 분리함으로써 기존의 회분식 크로마토그라피에 비해 순도 및 생산성이 우수하고, 적은 용매의 사용이 가능하다는 장점을 지닌다. 상기 모사 이동층(SMB) 흡착 분리 공정은 분리대상 혼합물의 주입과 라피네이트 및 추출물의 생산이 연속적으로 이루어지는 공정이다.
SMB의 기본 원리는 칼럼 사이의 위치를 일정 시간 간격으로 움직임으로써 고정상과 이동상의 향류의 흐름을 모사하고 연속적인 분리를 가능하게 하는 것이다. 흡착제와 친화력이 약해서 빨리 움직이는 물질은 액상의 흐름 방향으로 움직여서 extract로 모이고 흡착제와 친화력이 강해서 느리게 움직이는 물질은 고정상의 흐름 방향으로 움직여서 라피네이트(raffinate)로 모인다. 칼럼은 연속적으로 연결되어 있으며 입구는 혼합물과 이동상, 출구는 목적 추출물(extract)과 라피네이트로 구성된다.
상기 라피네이트(raffinate)는 추잔액이라고도 하며, 분리공정에 투입된 원료가 분리공정을 통과하여 얻어지는 산물에는 분리공정으로 함량을 높이고자 하는 목적 물질을 포함하는 목적 분획과, 분리공정에서 제거 또는 함량을 감소하고자 하는 물질등을 포함하는 잔류액을 포함하며, 상기 잔류액을 라피네이트라고 한다. 본 발명의 일 예에서 케스토스 전환 반응 공정에서 얻어지는 산물은 원료 기질인 설탕과 생산물인 케스토스를 포함하는 혼합물이며, 고순도 분리공정을 거치면서 목적 물질인 케스토스의 함량이 증가된 프락토올리고당 분획과 잔류액 (라피네이트)를 얻으며, 상기 잔류액에는 반응기질과 부산물 등이 포함될 수 있으며, 예를 들어 설탕, 과당, 포도당, 니스토스 등이 포함될 수 있다.
상기 SMB에서 분리수지로서 단당 분리 공정에도 널리 사용되고 있는 염이 첨가된 강산의 양이온 교환수지를 사용하므로 분리공정을 수행 후 얻어지는 산물에는 금속이온이 포함된다. 상기 강산의 양이온 교환수지의 예는 나트륨 또는 칼슘, 칼륨 활성기가 부착된 양이온교환수지일 수 있다.
상기 케스토스-함유 프락토올리고당 분획을 얻는 분리단계는, 높은 고형분 함량을 가지는 케스토스 전환 반응의 반응생성물을 분리하는 것일 수 있으며, 예를 들어 70 내지 80 Brix, 또는 75 내지 80 Brix의 고형분 함량을 가지는 반응생성물을 분리하여 케스토스-함유 프락토올리고당 분획을 얻는 것일 수 있다.
상기 분리단계는, 프락토올리고당 분획의 당류 고형분 100중량%를 기준으로 케스토스를 80중량% 이상, 81중량% 이상, 82중량% 이상, 83중량% 이상, 84중량% 이상, 85중량% 이상, 86중량% 이상, 87중량% 이상, 88중량% 이상, 89중량% 이상, 90중량% 이상, 또는 91중량% 이상 포함하는 프락토올리고당 분획을 얻는 것일 수 있다. 이 때, 상기 프락토올리고당 분획의 케스토스 함량의 상한값이 특정되지 않더라도 고순도 케스토스 함유 프락토올리고당 분획을 얻고자 하는 목적 하에 통상의 기술자가 명확하게 이해할 수 있을 것이며, 예를 들어 상기 프락토올리고당 분획의 케스토스 함량의 상한값은 100중량% 이하, 100중량% 미만, 99.99중량% 이하, 99.9중량% 이하, 99중량% 이하, 98중량% 이하, 97중량% 이하, 96중량% 이하, 또는 95중량% 이하일 수 있으나, 이에 제한되는 것은 아니다.
상기 분리단계는, 프락토올리고당 분획의 당류 고형분 100중량%를 기준으로 니스토스를 10중량% 이하, 9중량% 이하, 8중량% 이하, 7중량% 이하, 6중량% 이하, 5중량% 이하, 또는 4중량% 이하 포함하는 프락토올리고당 분획을 얻는 것일 수 있다. 이 때, 상기 프락토올리고당 분획의 니스토스 함량의 하한값이 특정되지 않더라도 프락토올리고당 분획의 니스토스 함량을 최소화하기 위한 목적 하에 통상의 기술자가 명확하게 이해할 수 있을 것이며, 예를 들어 상기 프락토올리고당 분획의 니스토스 함량의 하한값은 0중량% 이상, 0중량% 초과, 0.1중량% 이상, 0.2중량% 이상, 0.3중량% 이상, 0.4중량% 이상, 0.5중량% 이상, 0.6중량% 이상, 0.7중량% 이상, 0.8중량% 이상, 0.9중량% 이상, 1중량% 이상, 1.1중량% 이상, 1.2중량% 이상, 1.3중량% 이상, 1.4중량% 이상, 1.5중량% 이상, 1.6중량% 이상, 1.7중량% 이상, 1.8중량% 이상, 1.9중량% 이상, 2중량% 이상, 2.5중량% 이상, 또는 3중량% 이상일 수 있으나, 이에 제한되는 것은 아니다.
본 발명의 일 예에 따른 케스토스-함유 프락토올리고당의 제조방법은, 케스토스-함유 프락토올리고당 분획을 이온정제하는 단계를 추가로 포함할 수 있다. 상기 이온정제하는 단계는, 상기 SMB 크로마토그리패를 이용한 고순도 분리공정에서 얻어진 프락토올리고당 분획을 이온정제하는 단계이다. 상기 이온정제하는 단계는 하나의 공정으로 수행되는 것일 수 있다.
상기 이온정제하는 단계는 상기 프락토올리고당 분획이 이온정제탑을 통과하여 수행되는 것일 수 있다. 상기 이온정제탑은 음이온탑을 포함하는 것일 수 있다. 일 예로서, 상기 이온정제탑은 양이온탑 및 혼합상(mixed bed)탑으로 이루어지는 군에서 선택된 1종 이상을 추가로 포함하며, 상기 프락토올리고당 분획은 상기 음이온탑을 마지막으로 통과하는 것일 수 있다. 본원 실시예 6에서 이온정제가 케스토스 고함유 시럽의 물성에 미치는 영향을 고찰하였으며, 이온정제 MB-A와 같이 후탑을 음이온교환수지탑으로 설정할 경우 케스토스 고함유 시럽의 저장안정성이 향상되는 것을 확인할 수 있었다. 구체적으로, 더욱 바람직하게는 본 발명의 케스토스 제조방법의 일예는, K-A탑 또는 MB-A, MB-K-A, K-MB-A와 같이 A탑을 마지막에 설치하여 반응액의 pH를 높이는 것이 바람직하다. 이는 제조과정 중에 케스토스 및 니스토스와 같은 프락토올리고당 물질들이 분해가 되는 것을 막기 위함이다.
상기 이온정제하는 단계 후 상기 프락토올리고당 분획의 pH는 pH 5 내지 8, pH 5 내지 7, pH 6 내지 8, 또는 pH 6 내지 7 일 수 있다.
본 발명의 일 예에 따른 케스토스 함유 프락토올리고당의 제조방법에 의해 제조된 프락토올리고당은 바람직하게는 보관 안정성이 향상된 것일 수 있다. 예를 들어, 상기 케스토스 함유 프락토올리고당의 프락토올리고당 함량은, 상기 프락토올리고당 분획의 제조 직후 측정된 프락토올리고당 함량의 30% 이상, 40% 이상, 50% 이상, 60% 이상, 70% 이상, 80% 이상, 90% 이상, 91% 이상, 92% 이상, 93% 이상, 94% 이상, 또는 95% 이상일 수 있다. 상기 케스토스 함유 프락토올리고당의 프락토올리고당 함량은 1주, 2주, 3주, 4주, 5주, 6주, 또는 7주 보관 후의 프락토올리고당 함량일 수 있다. 구체적으로, 상기 케스토스 함유 프락토올리고당은, 제조 후 1주, 2주, 3주, 4주, 5주, 6주, 또는 7주 경과한 시점에서의 프락토올리고당 함량이, 초기 프락토올리고당 함량의 30% 이상, 40% 이상, 50% 이상, 60% 이상, 70% 이상, 80% 이상, 90% 이상, 91% 이상, 92% 이상, 93% 이상, 94% 이상, 또는 95% 이상 보존하여 안정한 것일 수 있다.
또는, 상기 케스토스 함유 프락토올리고당의 7주 동안 보관 후 pH가 pH 3.5 내지 8, pH 3.5 내지 7, pH 3.5 내지 6, pH 3.5 내지 5.5, pH 3.5 내지 5, pH 4 내지 8, pH 4 내지 7, pH 4 내지 6, pH 4 내지 5.5, pH 4 내지 5, pH 4.5 내지 8, pH 4.5 내지 7, pH 4.5 내지 6, pH 4.5 내지 5.5, 또는 pH 4.5 내지 5 일 수 있다. 이 때, 상기 케스토스 함유 프락토올리고당은 30 내지 50℃, 30 내지 45℃, 35 내지 50℃, 35 내지 45℃, 40 내지 50℃, 또는 40 내지 45℃, 일예로 45℃ 온도에서 보관되는 것일 수 있다.
구체적으로, 55 중량% 농도의 설탕 수용액을 기질로 하여 40 내지 70℃의 온도, 예를 들면 55℃ 온도로 가온 후, pH6 내지 8, 예를 들면 pH 6.5 ~ 7.0 으로 적정 후 β- fructofuranosidase를 첨가하여 효소반응을 수행한다.
이후 케스토스 함량이 30 중량% 이상으로 생성 시 pH를 7.6 이상, 일 예로 pH 8.0으로 적정한 후 75 ℃ 이상, 예를 들면 80℃ 온도에서 2시간 가온하여 효소를 불활성화 한다. 상기 케스토스 전환 반응의 반응생성물의 분리단계를 수행하기 전에, 탈색공정, 이온정제공정, 및 농축공정로 이루어지는 군에서 선택된 1종 이상의 공정을 처리하는 단계를 추가로 포함할 수 있다.
예를 들면, 상기 케스토스 전환 반응의 반응생성물에 대해, 활성탄을 고형분 대비 0.5 % ~ 1.0% 처리하여 불순물을 제거하고 색가를 낮추는 여과공정(탈색공정)을 수행할 수 있다. 상기 여과공정을 거친 후 이온정제를 진행할 수 있으며 일반적인 이온정제 공정인 K(양이온교환수지)-A(음이온교환수지)-MB(Mixed Bed: K:A=1:2)를 통과할 수도 있으나, 더욱 바람직하게는 본 발명의 케스토스 제조방법의 일예는, K-A탑 또는 MB-A, MB-K-A, K-MB-A와 같이 A탑을 마지막에 설치하여 반응액의 pH를 높이는 것이 바람직하다. 이는 제조과정 중에 케스토스 및 니스토스와 같은 프락토올리고당 물질들이 분해가 되는 것을 막기 위함이다. 이후 농축을 통해 70 내지 80중량%로 Brix를 맞출 수 있다.
상기 공정을 거친 크로마토그래피 고순도 분리 공정인 SMB (simulated moving bed)를 이용한 분리공정을 수행하여, 케스토스를 고순도로 분리한다. 이때 사용되는 수지는 Na+타입과 Ca2+타입 수지를 사용할 수 있다. 분리된 케스토스 함량은 상기 프락토올리고당 분획의 당류 고형분 100%를 기준으로 케스토스 (GF2)를 80중량% 이상, 예를 들면 85 중량%에서 95 중량% 까지 포함될 수 있다. 고순도 분리된 케스토스는 다시 이온정제공정을 수행할 수 있으며, 구체적으로 SMB를 거쳐서 나온 고순도 케스토스의 이온탑은 A, MB-A, K-MB-A, K-A, MB-K-A 등의 정제탑을 통과하여 pH 5.0~8.0 의 pH를 가지게 된다. 상기 이온정제 공정은 제품 생산 후 저장 안정성을 향상시키기 위함이다. 이후 농축 공정을 통해 75 중량%로 농축되어 제품으로 배출된다. 상황에 따라서 분말로 필요시에는 Spray Dry 또는 Conveyor Vacuume Dry를 이용하여 분말을 제조할 수 있다.
본 발명에 의하면, 고순도 케스토스의 제조 방법의 제조 공정 중 케스토스 전환 반응공정 중 고순도 케스토스 분리를 위한 설탕, 케스토스, 니스토스 햠량 범위를 확립하고, 이온정제를 개선하여 제품의 저장 안정성을 향상 시킴으로서 생산성과 효율성이 향상된 제조 방법을 제공하는 것이 가능하게 된다.
도 1은 일반적인 SMB 공정의 일예를 나타내는 도면이다.
도 2는 본 발명의 일 예에 따른 케스토스 제조 공정을 도식화한 것이다.
도 3은 SMB 크로마토그래피를 통해 고순도 분리 후 고순도 케스토스 분획의 HPLC 분석 결과이다.
본 발명을 하기 실시예에 의해 더 상세하게 설명된다. 다만, 하기의 실시예는 본 발명의 바람직한 실시예일뿐, 본 발명은 이에 한정되지 않는다.
비교예 1: 프락토올리고당 시럽의 제조
당화조에 55℃ 가온된 물을 45 ton 투입 후, 설탕 55 Ton을 첨가하여 1시간 내지 2시간 교반을 통해 설탕 결정을 완전히 녹였다. 이후 pH를 6.5 내지 7.0으로 적정 후 종래의 프락토올리고당 제조 효소인 아스페르길루스(Aspergillus) 속 또는 푸사륨(Fusarium) 속 미생물 유래 β-프럭토퓨라노시다제 (β-fructofuranosidase)를 첨가하여 50 내지 60℃의 온도에서 24시간 내지 48시간 반응시켰다.
이후 반응이 완료된 시점에서 4N NaOH를 이용하여 pH 7.6 이상으로 적정과 동시에 80℃ 온도로 2시간 가온하여 효소 실활을 유도했다. 효소 실활이 완료된 시점에서 효소 반응물을 탈색/여과, 정제, 및 농축을 통해 고형분 함량 75 중량%로 맞추어 제조했다. 제조가 완료된 시럽 비교시료 1-A의 당조성을 표 1에 나타내었다.
이후 Na+ type 분리수지가 충진되어 있는 SMB를 이용하여 고순도 분리를 진행하였다. 고순도 분리 후의 얻어진 시럽 비교시료 1-B의 당조성을 아래 분석 조건의 액체크로마토그라피(HPLC)로 분석하여 표 1에 나타내었다. 고순도 분리 후의 케스토스 함량은 약 34 중량% 이었다. 따라서, 범용적으로 사용하고 있는 종래의 프락토올리고당 제조 효소로는 고순도 케스토스 생산이 어렵다는 것을 확인할 수 있었다.
<분석조건>
컬럼: Shodex Asahipak BH2P-50 4E
주입량: 10 ul
유속: 1ml/min
컬럼온도: 30℃
이동상: Acetonitrile 70%
당조성(중량%) | 과당 | 포도당 | 설탕 | GF2 | GF3 | GF4 | FOS |
비교시료 1-A | 5.44 | 25.82 | 13.47 | 26.76 | 25.12 | 3.39 | 55.27 |
비교시료 1-B | 0.30 | 0.36 | 2.81 | 33.81 | 51.6 | 11.12 | 96.53 |
실시예 1: 케스토스 고함유 시럽 제조 (1)
당화조에 55℃ 가온된 물을 45kg 투입 후 설탕 55kg 첨가하여 1시간 내지 2시간 교반을 통해 설탕 결정을 완전히 녹였다. 이후 pH를 6.5 내지 7.0으로 적정 후 케스토스 고함유 시럽 제조 효소인 기탁번호 KCTC 13139BP 아스페르길루스 니제르 (Aspergillus niger) 유래의 β-프럭토퓨라노시다제 (β-fructofuranosidase)를 첨가하여 50~60℃의 온도에서 24시간 내지 48시간 반응시켰다.
이때, 설탕 함량이 34 중량% 남아있는 효소 반응 구간에서 4N NaOH를 이용하여 pH 7.6 이상으로 적정과 동시에 80℃로 2시간 가온 시켜 효소 실활을 유도하였다. 효소 실활이 완료된 시점에서 효소 반응물을 탈색/여과, 정제, 농축을 통해 75 중량%로 맞추어 제조했다. 제조가 완료된 시럽 시험시료 1-1의 당조성을 표 2에 나타내었다.
이후 Na+ type 분리수지가 충진되어 있는 SMB를 이용하여 고순도 분리를 진행하였다. 효소 반응 후, 고순도 분리 후의 얻어진 시험시료 1-2의 당조성은 비교예 1과 동일한 조건으로 액체크로마토그라피(HPLC)를 이용하여 분석하였고 표 2에 나타내었다. 고순도 분리 후의 케스토스는 약 81 중량%를 나타내었다. 따라서, 케스토스 85% 이상을 분리하기 위해서는 분리 전 원액의 설탕 함량이 34중량%를 초과하여 높으면 어렵다는 것을 확인하였다.
당조성(%) | 과당 | 포도당 | 설탕 | GF2 | GF3 | GF4 | FOS |
시험시료 1-1 | 1.02 | 15.13 | 34.84 | 47.43 | 1.58 | 0.0 | 49.01 |
시험시료 1-2 | 0.11 | 0.0 | 13.83 | 81.25 | 3.81 | 0 | 86.06 |
실시예 2: 케스토스 고함유 시럽 제조 (2)
당화조에 55℃ 가온된 물을 45kg 투입 후 설탕 55kg 첨가하여 1시간~2시간 교반을 통해 설탕 결정을 완전히 녹였다. 이후 pH를 6.5~7.0으로 적정 후 케스토스 고함유 시럽 제조 효소인 실시예 1과 동일한 아스페르길루스 니제르 (Aspergillus niger) 유래의 β-프럭토퓨라노시다제 (β-fructofuranosidase)를 첨가하여 50~60℃의 온도에서 24시간~48시간 반응시켰다.
이때, 설탕 함량 30 중량%이 남아있는 효소 반응 구간에서 4N NaOH를 이용하여 pH 7.6 이상으로 적정과 동시에 80℃로 2시간 가온 시켜 효소 실활을 유도했다. 효소 실활이 완료된 시점에서 효소 반응물을 탈색/여과, 정제, 농축을 통해 75 중량%로 맞추어 제조했다. 제조가 완료된 시럽 시험시료 2-1의 당조성을 표 3에 나타내었다.
이후 Na+ type 분리수지가 충진되어 있는 SMB를 이용하여 고순도 분리를 진행하였다. 효소 반응 후, 고순도 분리 후 얻어진 시럽 시험시료 2-2의 당조성은 비교예 1과 동일한 조건으로 액체크로마토그라피(HPLC)를 이용하여 분석하였고 표 3에 나타내었다. 고순도 분리 후의 케스토스는 약 85 중량%를 나타내었다. 케스토스 85% 이상을 분리하기 위해서는 분리 전 원액의 설탕 함량이 30중량% 이하여야 함을 확인하였다.
당조성(%) | 과당 | 포도당 | 설탕 | GF2 | GF3 | GF4 | FOS |
시험시료2-1 | 0.99 | 16.53 | 30.0 | 50.80 | 1.68 | 0.0 | 52.17 |
시험시료2-2 | 0.15 | 0.0 | 9.61 | 85.12 | 5.12 | 0 | 90.24 |
실시예 3: 케스토스 고함유 시럽 제조 (3)
당화조에 55℃ 가온된 물을 45kg 투입 후 설탕 55kg 첨가하여 1시간~2시간 교반을 통해 설탕 결정을 완전히 녹였다. 이후 pH를 6.5~7.0으로 적정 후 케스토스 고함유 시럽 제조 효소인 실시예 1과 동일한 아스페르길루스 니제르 (Aspergillus niger) 유래의 β-프럭토퓨라노시다제 (β-fructofuranosidase)를 첨가하여 50~60℃ 의 온도에서 24시간~48시간 반응시켰다.
이때, 설탕 함량 26 중량%이 남아있는 효소 반응 구간에서 4N NaOH를 이용하여 pH 7.6 이상으로 적정과 동시에 80℃로 2시간 가온 시켜 효소 실활을 유도했다. 효소 실활이 완료된 시점에서 효소 반응물을 탈색/여과, 정제, 농축을 통해 75 중량%로 맞추어 제조했다. 제조가 완료된 시럽 시험시료 3-1의 당조성을 표 4에 나타내었다.
이후 Na+ type 분리수지가 충진되어 있는 SMB를 이용하여 고순도 분리를 진행하였다. 효소 반응 후, 고순도 분리 후 얻어진 시럽 시험시료 3-2의 당조성은 비교예 1과 동일한 조건으로 액체크로마토그라피(HPLC)를 이용하여 분석하였고 표 4에 나타내었다. 고순도 분리 후의 케스토스는 약 88 중량%를 나타내었다. 케스토스 85% 이상, 예를 들어 88중량% 이상을 분리하기 위해서는 분리 전 원액의 설탕 함량이 30 중량% 이하여야 함을 확인하였다.
당조성(%) | 과당 | 포도당 | 설탕 | GF2 | GF3 | GF4 | FOS |
시험시료3-1 | 0.63 | 17.75 | 26.34 | 53.54 | 1.74 | 0.0 | 55.28 |
시험시료3-2 | 0.11 | 0.0 | 5.45 | 88.53 | 5.91 | 0 | 94.44 |
실시예 4: 케스토스 고함유 시럽 제조 (4)
당화조에 55℃ 가온된 물을 45kg 투입 후 설탕 55kg 첨가하여 1시간~2시간 교반을 통해 설탕 결정을 완전히 녹였다. 이후 pH를 6.5~7.0으로 적정 후 케스토스 고함유 시럽 제조 효소인 실시예 1과 동일한 아스페르길루스 니제르 (Aspergillus niger) 유래의 β-프럭토퓨라노시다제 (β-fructofuranosidase)를 첨가하여 50~60℃의 온도에서 24시간~48시간 반응시켰다.
이때, 설탕 함량 20 중량%이 남아있는 효소 반응 구간에서 4N NaOH를 이용하여 pH 7.6 이상으로 적정과 동시에 80℃로 2시간 가온 시켜 효소 실활을 유도했다. 효소 실활이 완료된 시점에서 효소 반응물을 탈색/여과, 정제, 농축을 통해 75 중량%로 맞추어 제조했다. 제조가 완료된 시럽 시험시료 4-1의 당조성을 표 5에 나타내었다.
이후 Na+ type 분리수지가 충진되어 있는 SMB를 이용하여 고순도 분리를 진행하였다. 효소 반응 후, 고순도 분리 후 얻어진 시럽 시험시료 4-2의 당조성은 비교예 1과 동일한 조건으로 액체크로마토그라피(HPLC)를 이용하여 분석하였고 표 5에 나타내었다. 고순도 분리 후의 케스토스는 약 91 중량%를 나타내었다. 케스토스 90% 이상을 분리하기 위해서는 분리 전 원액의 설탕 함량이 25 중량% 이하여야 함을 확인할 수 있었다.
당조성(%) | 과당 | 포도당 | 설탕 | GF2 | GF3 | GF4 | FOS |
시험시료4-1 | 1.05 | 18.83 | 20.72 | 56.48 | 2.91 | 0.0 | 59.39 |
시험시료4-2 | 0.0 | 0.0 | 1.88 | 91.25 | 6.87 | 0 | 98.12 |
실시예 5: 케스토스 고함유 시럽 제조 (5)
당화조에 55℃ 가온된 물을 45kg 투입 후 설탕 55kg 첨가하여 1시간~2시간 교반을 통해 설탕 결정을 완전히 녹였다. 이후 pH를 6.5~7.0으로 적정 후 케스토스 고함유 시럽 제조 효소인 실시예 1과 동일한 Aspergillus niger 유래의 β-fructofuranosidase를 첨가하여 50~60℃의 온도에서 24시간~48시간 반응시켰다.
이때 설탕 함량 15 중량%이 남아있는 효소 반응 구간에서 4N NaOH를 이용하여 pH 7.6 이상으로 적정과 동시에 80℃로 2시간 가온 시켜 효소 실활을 유도했다. 효소 실활이 완료된 시점에서 효소 반응물을 탈색/여과, 정제, 농축을 통해 75 중량%로 맞추어 제조했다. 제조가 완료된 시럽 시험시료 5-1의 당조성을 표 6에 나타내었다.
이후 Na+ type 분리수지가 충진되어 있는 SMB를 이용하여 고순도 분리를 진행하였다. 효소 반응 후, 고순도 분리 후 얻어진 시럽 시험시료 5-2의 당조성은 비교예 1과 동일한 조건으로 액체크로마토그라피(HPLC)를 이용하여 분석하였고 표 6에 나타내었다. 고순도 분리 후의 케스토스는 약 88 중량%를 나타내었다. 케스토스 85% 이상을 분리하기 위해서는 분리 전 원액의 설탕 함량 약 15 중량% 범위도 문제가 없지만, 니스토스 (GF3)의 함량 증가에 의해 고순도 케스토스 분리에 영향이 있는 것을 확인하였다. 따라서 설탕 이외에도 니스토스 (GF3) 함량도 케스토스 분리에 영향을 주며, 케스토스 90% 이상을 분리하기 위해서는 효소 반응 후 GF3가 5% 이하로 관리하는 것이 더욱 바람직할 것이라고 판단되었다.
당조성(%) | 과당 | 포도당 | 설탕 | GF2 | GF3 | GF4 | FOS |
시험시료5-1 | 1.15 | 20.93 | 15.29 | 58.29 | 4.34 | 0.0 | 62.63 |
시험시료5-2 | 0.0 | 0.0 | 1.25 | 88.63 | 10.12 | 0 | 96.75 |
실시예 6: 고순도 케스토스 이온정제
이온정제가 케스토스 고함유 시럽의 물성에 미치는 영향을 알아보기 위해, 실시예 1 내지 5 에서 고순도 분리 후 얻어진 케스토스 고함유 시럽들을 일부 취하여, 이온정제 MB-A 또는 A-MB로 나누어 정제하였다. 이후 농축 공정을 통해 75 Brix로 농축하였고, 45℃ 가혹조건에서 1, 2, 3, 4, 5, 6, 7주차에 각각 측정하였다. 프락토올리고당의 함량을 분석하기 위해 액체크로마토그라피를 이용하여 당 조성을 분석하였고 표 7에 나타내었다. 또한 제품을 30Bx로 희석하여 pH meter를 이용하여 제품의 pH를 분석하였고 표 8에 나타내었다.
보관주차 | 시험시료 1-2 | 시험시료 2-2 | 시험시료 3-2 | 시험시료 4-2 | 시험시료 5-2 | |||||
- | A-MB | MB-A | A-MB | MB-A | A-MB | MB-A | A-MB | MB-A | A-MB | MB-A |
0 | 86.06 | 86.06 | 90.24 | 90.24 | 94.44 | 94.44 | 98.12 | 98.12 | 96.75 | 96.75 |
1 | 83.12 | 86.03 | 87.65 | 90.21 | 90.56 | 94.40 | 94.51 | 98.06 | 93.66 | 96.71 |
2 | 80.63 | 86.01 | 83.58 | 90.18 | 86.14 | 94.38 | 90.32 | 98.01 | 89.41 | 96.65 |
3 | 68.22 | 85.00 | 77.32 | 90.06 | 78.05 | 94.06 | 83.65 | 97.56 | 80.62 | 96.34 |
4 | 57.63 | 84.16 | 65.82 | 89.64 | 69.54 | 93.02 | 72.41 | 96.66 | 69.66 | 95.64 |
5 | 46.82 | 83.51 | 51.27 | 88.74 | 57.56 | 91.86 | 60.32 | 95.53 | 58.96 | 94.53 |
6 | 34.52 | 82.86 | 38.68 | 87.52 | 43.43 | 90.91 | 45.63 | 94.46 | 43.75 | 93.46 |
7 | 25.40 | 82.45 | 24.80 | 86.12 | 26.50 | 89.66 | 27.30 | 93.54 | 27.94 | 92.21 |
7주차/0주차 | 29.5% | 95.8% | 27.5% | 95.4% | 28.1% | 94.9% | 27.8% | 95.3% | 28.9% | 95.3% |
보관주차 | 시험시료 1-2 | 시험시료 2-2 | 시험시료 3-2 | 시험시료 4-2 | 시험시료 5-2 | |||||
- | A-MB | MB-A | A-MB | MB-A | A-MB | MB-A | A-MB | MB-A | A-MB | MB-A |
0 | 4.52 | 6.91 | 4.48 | 6.89 | 4.61 | 6.92 | 4.49 | 6.97 | 4.57 | 6.85 |
1 | 4.38 | 6.47 | 4.32 | 6.41 | 4.44 | 6.55 | 4.38 | 6.61 | 4.32 | 6.42 |
2 | 4.21 | 6.13 | 4.21 | 6.04 | 4.28 | 6.11 | 4.24 | 6.23 | 4.16 | 6.19 |
3 | 4.14 | 5.97 | 4.04 | 5.82 | 4.16 | 5.92 | 4.11 | 6.02 | 4.05 | 5.95 |
4 | 3.78 | 5.67 | 3.82 | 5.58 | 3.83 | 5.58 | 3.76 | 5.68 | 3.94 | 5.61 |
5 | 3.56 | 5.31 | 3.49 | 5.24 | 3.52 | 5.26 | 3.48 | 5.31 | 3.86 | 5.22 |
6 | 3.41 | 5.06 | 3.37 | 4.91 | 3.39 | 4.89 | 3.36 | 5.02 | 3.45 | 4.98 |
7 | 3.28 | 4.81 | 3.22 | 4.68 | 3.14 | 4.75 | 3.21 | 4.80 | 3.34 | 4.73 |
표 7 및 표 8에서 알 수 있듯이, MB-A와 같이 후탑을 음이온수지탑으로 맞출 시 제품의 저장안정성이 향상되는 것을 확인할 수 있었고, 종래의 방법으로 생산 시 프락토올리고당의 분해가 빠른 속도로 진행됨을 알 수 있었다.
Claims (22)
- 설탕을 포함하는 기질과 케스토스 전환 활성을 가지는 효소 또는 상기 효소를 생산하는 미생물을 이용하여 케스토스 전환 반응을 수행하는 단계;상기 케스토스 전환 반응을 종결하는 단계; 및모사 이동층(SMB) 크로마토그래피를 이용하여 상기 케스토스 전환 반응의 반응생성물로부터 케스토스-함유 프락토올리고당 분획을 얻는 분리단계를 포함하는,케스토스-함유 프락토올리고당의 제조방법.
- 제1항에 있어서, 상기 케스토스 전환 반응을 수행하는 단계는, 상기 설탕을 포함하는 기질의 당류 고형분 함량을 기준으로, 80 내지 100중량%의 설탕을 포함하는 기질을 이용하여 수행되는 것인, 제조방법.
- 제1항에 있어서, 상기 케스토스 전환 반응을 종결하는 단계는, 상기 반응생성물의 당류 고형분 함량 100중량%를 기준으로 설탕 함량이 15 내지 35중량% 일 때 상기 케스토스 전환 반응을 종결하는 것인, 제조방법.
- 제1항에 있어서, 상기 케스토스 전환 반응을 종결하는 단계는, 상기 반응생성물의 당류 고형분 함량 100중량%를 기준으로 니스토스 함량이 0.01 내지 5중량% 일 때 상기 케스토스 전환 반응을 종결하는 것인, 제조방법.
- 제1항에 있어서, 상기 분리단계는, 상기 프락토올리고당 분획의 당류 고형분 100중량%를 기준으로 케스토스 (GF-2)를 80중량% 이상 포함하는 프락토올리고당 분획을 얻는 것인, 제조방법.
- 제1항에 있어서, 상기 분리단계는, 상기 프락토올리고당 분획의 당류 고형분 100중량%를 기준으로 케스토스 (GF2)를 90중량% 이상 포함하는 프락토올리고당 분획을 얻는 것인, 제조방법.
- 제1항에 있어서, 상기 분리단계는, 상기 프락토올리고당 분획의 당류 고형분 100중량%를 기준으로 니스토스 (GF3)를 10중량% 이하로 포함하는 프락토올리고당 분획을 얻는 것인, 제조방법.
- 제1항에 있어서, 상기 케스토스 전환 반응을 종결하는 단계는, 상기 반응생성물의 당류 고형분 함량을 기준으로 15 내지 35중량%의 설탕, 30 내지 60중량%의 케스토스, 및 0.01 내지 5중량%의 니스토스를 포함하는 반응생성물을 생산하는 것이고,상기 분리하는 단계는, 상기 프락토올리고당 분획의 당류 고형분 100%를 기준으로 케스토스 (GF2)를 80중량% 이상 포함하는 프락토올리고당 분획을 얻는 것인, 제조방법.
- 제8항에 있어서, 상기 케스토스 전환 반응을 종결하는 단계는, 상기 반응생성물의 당류 고형분 100%를 기준으로 25중량% 미만의 포도당을 포함하는 효소 반응물을 생산하는 것인, 제조방법.
- 제1항에 있어서, 상기 분리단계는 70 내지 80 Brix의 고형분 함량을 가지는 상기 케스토스 전환 반응생성물에 적용되는 것인, 제조방법
- 제1항에 있어서, 상기 프락토올리고당 분획을 이온정제하는 단계를 추가로 포함하는, 제조방법.
- 제13항에 있어서, 상기 이온정제하는 단계는 상기 프락토올리고당 분획이 이온정제탑을 통과하여 수행되는 것이며, 상기 이온정제탑은 음이온교환수지탑을 포함하는 것인, 제조방법.
- 제14항에 있어서, 상기 이온정제탑은 양이온교환수지탑 및 혼합상(mixed bed)탑으로 이루어지는 군에서 선택된 1종 이상을 추가로 포함하며, 상기 프락토올리고당 분획은 상기 음이온교환수지탑을 마지막으로 통과하는 것인, 제조방법.
- 제13항에 있어서, 상기 이온정제하는 단계를 수행한 후 얻어지는 프락토올리고당 분획의 pH는 5 내지 8인, 제조방법.
- 제1항에 있어서, 상기 케스토스 함유 프락토올리고당은 제조 후 45℃에서 7주 동안 보관 후 pH가 3.5 내지 8인 특성을 갖는 것인, 제조방법.
- 제1항에 있어서, 상기 케스토스 함유 프락토올리고당의 프락토올리고당 함량은, 상기 프락토올리고당 분획의 제조 직후 측정된 프락토올리고당 함량의 30% 이상인, 제조방법.
- 제1항에 있어서, 상기 케스토스 전환 반응을 수행하는 단계는, pH 6 내지 8 및 40 내지 70℃의 온도에서 수행되는 것인, 제조방법.
- 제1항에 있어서, 상기 케스토스 전환 반응을 종결하는 단계는,반응 pH를 7.6 이상으로 적정하는 단계, 및반응온도를 75 ℃ 이상으로 설정하는 단계로 이루어지는 군에서 선택된 1종 이상을 포함하는 것인, 제조방법.
- 제1항에 있어서, 상기 케스토스 전환 반응의 반응생성물의 분리단계를 수행하기 전에, 탈색공정, 이온정제공정, 및 농축공정로 이루어지는 군에서 선택된 1종 이상의 공정을 처리하는 단계를 추가로 포함하는 것인, 제조방법.
- 제1항에 있어서, 상기 케스토스 전환 활성을 가지는 효소는 아스페르길루스 니제르 (Aspergillus niger) 균주, 피키아 파리노사 (Pichia farinose) 균주, 야로이야 리폴리티카 (Yarrowia lipolytica), 밀레로지마 파리노사 (Millerozyma farinose), 및 아스페르길루스 오리제 (Aspergillus oryzae) 균주로 이루어지는 군에서 선택된 1종 이상에서 유래된 효소인, 제조방법.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202080081964.7A CN114746558A (zh) | 2019-10-31 | 2020-10-30 | 用于制备含蔗果三糖的低聚果糖的方法 |
EP20882874.9A EP4053289A4 (en) | 2019-10-31 | 2020-10-30 | METHOD FOR PRODUCING FROCTOLIGOSACCHARIDES CONTAINING KESTOSE |
US17/772,721 US20220411838A1 (en) | 2019-10-31 | 2020-10-30 | Method for preparing kestose-containing fructooligosaccharides |
JP2022525221A JP7483878B2 (ja) | 2019-10-31 | 2020-10-30 | ケストース含有フラクトオリゴ糖の製造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020190138215A KR102402632B1 (ko) | 2019-10-31 | 2019-10-31 | 케스토스-함유 프락토올리고당 제조방법 |
KR10-2019-0138215 | 2019-10-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021086141A1 true WO2021086141A1 (ko) | 2021-05-06 |
Family
ID=75715484
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2020/015097 WO2021086141A1 (ko) | 2019-10-31 | 2020-10-30 | 케스토스-함유 프락토올리고당의 제조방법 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20220411838A1 (ko) |
EP (1) | EP4053289A4 (ko) |
JP (1) | JP7483878B2 (ko) |
KR (1) | KR102402632B1 (ko) |
CN (1) | CN114746558A (ko) |
WO (1) | WO2021086141A1 (ko) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102666581B1 (ko) * | 2022-12-30 | 2024-05-16 | 주식회사 삼양사 | 결정형 케스토스 |
EP4434352A1 (en) * | 2023-03-24 | 2024-09-25 | Pcas | Fructo-oligosaccharides and method for preparation thereof |
WO2024200380A1 (en) * | 2023-03-24 | 2024-10-03 | Pcas | Fructo-oligosaccharides and method for preparation thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1793385A (zh) * | 2005-12-28 | 2006-06-28 | 暨南大学 | 一种大蒜低聚果糖的生产方法 |
KR20150056795A (ko) * | 2012-09-18 | 2015-05-27 | 센트로 데 인제니에리아 제네티카 와이 바이오테크놀로지아 | 1-케스토스를 얻기 위한 방법 |
KR101628769B1 (ko) * | 2015-11-06 | 2016-06-09 | ㈜네오크레마 | 프락토올리고당이 포함된 혼합 당 조성물의 제조 방법 |
KR20180078065A (ko) * | 2016-12-29 | 2018-07-09 | 주식회사 삼양사 | 프락토올리고당 생산 방법 |
KR20180122987A (ko) * | 2018-11-06 | 2018-11-14 | 주식회사 삼양사 | 고함량 1-케스토스 함유 프락토올리고당 생산 방법 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ATE260291T1 (de) * | 1995-12-11 | 2004-03-15 | Meiji Seika Co | Kristalline 1-kestose und verfahren zu ihrer herstellung |
JP2000232878A (ja) * | 1999-02-12 | 2000-08-29 | Hokuren Federation Of Agricult Coop:The | フラクトシル転移酵素、並びに該酵素を用いた1−ケストース及びニストースの分別製造方法 |
JP4274505B2 (ja) * | 1999-11-30 | 2009-06-10 | オルガノ株式会社 | 糖液の精製法及び装置 |
WO2005085447A1 (ja) * | 2004-03-04 | 2005-09-15 | Meiji Seika Kaisha, Ltd. | β-フルクトフラノシダーゼ変異体 |
CN103333934A (zh) * | 2013-06-17 | 2013-10-02 | 量子高科(中国)生物股份有限公司 | 一种甘蔗低聚果糖制品的制备方法 |
CN104878056B (zh) * | 2015-04-27 | 2019-01-18 | 量子高科(中国)生物股份有限公司 | 一种生产高纯度低聚果糖的方法 |
KR101918648B1 (ko) * | 2016-12-29 | 2018-11-14 | 주식회사 삼양사 | 고함량 1-케스토스 함유 프락토올리고당 생산 방법 |
-
2019
- 2019-10-31 KR KR1020190138215A patent/KR102402632B1/ko active IP Right Grant
-
2020
- 2020-10-30 WO PCT/KR2020/015097 patent/WO2021086141A1/ko unknown
- 2020-10-30 US US17/772,721 patent/US20220411838A1/en active Pending
- 2020-10-30 EP EP20882874.9A patent/EP4053289A4/en active Pending
- 2020-10-30 JP JP2022525221A patent/JP7483878B2/ja active Active
- 2020-10-30 CN CN202080081964.7A patent/CN114746558A/zh active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1793385A (zh) * | 2005-12-28 | 2006-06-28 | 暨南大学 | 一种大蒜低聚果糖的生产方法 |
KR20150056795A (ko) * | 2012-09-18 | 2015-05-27 | 센트로 데 인제니에리아 제네티카 와이 바이오테크놀로지아 | 1-케스토스를 얻기 위한 방법 |
KR101628769B1 (ko) * | 2015-11-06 | 2016-06-09 | ㈜네오크레마 | 프락토올리고당이 포함된 혼합 당 조성물의 제조 방법 |
KR20180078065A (ko) * | 2016-12-29 | 2018-07-09 | 주식회사 삼양사 | 프락토올리고당 생산 방법 |
KR20180122987A (ko) * | 2018-11-06 | 2018-11-14 | 주식회사 삼양사 | 고함량 1-케스토스 함유 프락토올리고당 생산 방법 |
Non-Patent Citations (1)
Title |
---|
See also references of EP4053289A4 * |
Also Published As
Publication number | Publication date |
---|---|
JP7483878B2 (ja) | 2024-05-15 |
KR102402632B1 (ko) | 2022-05-26 |
EP4053289A4 (en) | 2024-01-17 |
CN114746558A (zh) | 2022-07-12 |
EP4053289A1 (en) | 2022-09-07 |
US20220411838A1 (en) | 2022-12-29 |
KR20210052100A (ko) | 2021-05-10 |
JP2023500272A (ja) | 2023-01-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021086141A1 (ko) | 케스토스-함유 프락토올리고당의 제조방법 | |
US5478732A (en) | Process for the preparation of long-chain inulin with inulinase | |
WO2016064087A1 (ko) | D-사이코스 결정을 제조하는 방법 | |
CN104262413B (zh) | 一种无水海藻糖的制备方法 | |
JP2016000039A (ja) | 超高純度ガラクトオリゴ糖を製造する方法 | |
EP2569440B1 (en) | Process for the recovery of betaine from molasses | |
CA1333779C (en) | Method for producing galactooligosaccharide | |
EP0109009B1 (de) | Verfahren zur Herstellung von 1-0-alpha-D-Glucopyranosido-D-fructose | |
CN101037454A (zh) | 一种柱式离子交换法水解菊芋制备低聚果糖的方法 | |
US9896410B2 (en) | Process for the recovery of betaine from molasses | |
CN103074397A (zh) | 以甘蔗汁制备低聚果糖的方法 | |
CN107217080B (zh) | 一种利用固定化酶制备菊芋低聚果糖的方法 | |
Shibanuma et al. | Partial acid hydrolysis of corn fiber for the production of L-arabinose | |
CN101090906B (zh) | 二果糖二酐ⅲ晶体的制备方法 | |
KR102004944B1 (ko) | 고함량 1-케스토스 함유 프락토올리고당 생산 방법 | |
CN110643656A (zh) | 一种以原糖为原料制备低聚果糖的方法 | |
EP4053288A1 (en) | Improved method for manufacturing allulose | |
WO2015080501A1 (ko) | 커피추출후 잔여물로부터 타가토스를 제조하는 방법 | |
KR101933957B1 (ko) | 친수성 유기용매를 이용한 프룩토스 및 타가토스 혼합 조성물로부터 타가토스의 결정화 정제방법 | |
CN112450425A (zh) | 一种月饼糖浆及其制备方法 | |
JP2860489B2 (ja) | 食品素材、ビフイズス菌増殖促進剤およびそれらの製造方法 | |
JP2009044996A (ja) | 発酵乳添加剤 | |
Lum Nde | The production of potentially prebiotic oligosaccharides by Leucosporidium scottii Y-1450 | |
CN115109810A (zh) | 一种低聚果糖及其制备方法 | |
CN102618599A (zh) | 高纯度低聚果糖的多级膜分离纯化方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20882874 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022525221 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2020882874 Country of ref document: EP Effective date: 20220531 |