WO2021085525A1 - 測定装置、測定システム、測定方法およびプログラム - Google Patents

測定装置、測定システム、測定方法およびプログラム Download PDF

Info

Publication number
WO2021085525A1
WO2021085525A1 PCT/JP2020/040593 JP2020040593W WO2021085525A1 WO 2021085525 A1 WO2021085525 A1 WO 2021085525A1 JP 2020040593 W JP2020040593 W JP 2020040593W WO 2021085525 A1 WO2021085525 A1 WO 2021085525A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
intensity
signal
frequency spectrum
light
Prior art date
Application number
PCT/JP2020/040593
Other languages
English (en)
French (fr)
Inventor
啓介 戸田
翔吾 松永
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to US17/770,823 priority Critical patent/US20220378304A1/en
Priority to CN202080073557.1A priority patent/CN114585302A/zh
Priority to JP2021553680A priority patent/JPWO2021085525A1/ja
Priority to EP20881000.2A priority patent/EP4053511A4/en
Publication of WO2021085525A1 publication Critical patent/WO2021085525A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/026Measuring blood flow
    • A61B5/0261Measuring blood flow using optical means, e.g. infrared light
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/026Measuring blood flow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/026Measuring blood flow
    • A61B5/0285Measuring or recording phase velocity of blood waves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7253Details of waveform analysis characterised by using transforms
    • A61B5/7257Details of waveform analysis characterised by using transforms using Fourier transforms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • G01F1/661Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters using light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • G01F1/663Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters by measuring Doppler frequency shift
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F25/00Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume
    • G01F25/10Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume of flowmeters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/02Operational features
    • A61B2560/0223Operational features of calibration, e.g. protocols for calibrating sensors
    • A61B2560/0228Operational features of calibration, e.g. protocols for calibrating sensors using calibration standards
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence

Definitions

  • This disclosure relates to measuring devices, measuring systems, measuring methods and programs.
  • a device for quantitatively measuring the state of fluid flow for example, a device for measuring the flow rate and flow velocity of a fluid by using an optical method such as a laser blood flow meter is known (for example, Patent No. 5806390). See the description in the Gazette).
  • the measuring device measuring system, measuring method and program are disclosed.
  • the measuring device includes a light emitting unit, a light receiving unit, an extraction unit, and a processing unit.
  • the light emitting unit irradiates an object to be irradiated with a fluid flowing inside with light.
  • the light receiving unit receives interference light including light scattered by the object to be irradiated and outputs a signal corresponding to the intensity of the interference light.
  • the extraction unit extracts a DC component of the signal output from the light receiving unit as the signal strength changes with time.
  • the processing unit Based on the signal output from the light receiving unit, performs processing including correction using a value related to the signal strength of the DC component and calculation of a frequency spectrum for a time change of the signal strength. The calculated value related to the state of the fluid flow is calculated.
  • the measuring device includes a light emitting unit, a light receiving unit, an extraction unit, and a processing unit.
  • the light emitting unit irradiates an object to be irradiated with a fluid flowing inside with light.
  • the light receiving unit receives interference light including light scattered by the object to be irradiated and outputs a signal corresponding to the intensity of the interference light.
  • the extraction unit extracts a DC component of the signal output from the light receiving unit as the signal strength changes with time.
  • the processing unit calculates a frequency spectrum for a time change of signal strength based on the signal output from the light receiving unit, and a value related to the signal strength based on the frequency spectrum and a value related to the signal strength of the DC component.
  • a quantitative value related to the state of the flow of the fluid is calculated by the calculation using and.
  • the measurement system includes a light emitting unit, a light receiving unit, an extraction unit, and a processing unit.
  • the light emitting unit irradiates an object to be irradiated with a fluid flowing inside with light.
  • the light receiving unit receives interference light including light scattered by the object to be irradiated and outputs a signal corresponding to the intensity of the interference light.
  • the extraction unit extracts a DC component of the signal output from the light receiving unit as the signal strength changes with time.
  • the processing unit Based on the signal output from the light receiving unit, performs processing including correction using a value related to the signal strength of the DC component and calculation of a frequency spectrum for a time change of the signal strength. The calculated value related to the state of the fluid flow is calculated.
  • the measurement system includes a light emitting unit, a light receiving unit, an extraction unit, and a processing unit.
  • the light emitting unit irradiates an object to be irradiated with a fluid flowing inside with light.
  • the light receiving unit receives interference light including light scattered by the object to be irradiated and outputs a signal corresponding to the intensity of the interference light.
  • the extraction unit extracts a DC component of the signal output from the light receiving unit as the signal strength changes with time.
  • the processing unit calculates a frequency spectrum for a time change of signal strength based on the signal output from the light receiving unit, and a value related to the signal strength based on the frequency spectrum and a value related to the signal strength of the DC component.
  • a quantitative value related to the state of the flow of the fluid is calculated by the calculation using and.
  • One aspect of the measurement method includes a first step, a second step, and a third step.
  • the first step while irradiating an object to be irradiated with a fluid flowing inside by a light emitting unit, the light receiving unit receives interference light including light scattered by the object to be irradiated and the intensity of the interference light. Outputs a signal according to.
  • the extraction unit extracts the DC component of the signal output from the light receiving unit in the first step with respect to the time change of the signal intensity.
  • the processing unit uses the value related to the signal strength of the DC component extracted by the extraction unit in the second step based on the signal output from the light receiving unit in the first step.
  • the calculated value related to the state of the flow of the fluid is calculated by performing the processing including the correction and the calculation of the frequency spectrum for the time change of the signal strength.
  • Another aspect of the measuring method includes a first step, a second step, and a third step.
  • the first step while irradiating an object to be irradiated with a fluid flowing inside by a light emitting unit, the light receiving unit receives interference light including light scattered by the object to be irradiated and the intensity of the interference light. Outputs a signal according to.
  • the extraction unit extracts the DC component of the signal output from the light receiving unit in the first step with respect to the time change of the signal intensity.
  • the processing unit calculates a frequency spectrum for a time change in signal intensity based on the signal output from the light receiving unit in the first step, and a value related to the signal intensity based on the frequency spectrum. And the value related to the signal strength of the DC component extracted by the extraction unit in the second step are calculated to calculate the quantitative value related to the state of the flow of the fluid.
  • One aspect of the program is a program that is executed by a processing unit included in the measuring device to cause the measuring device to function as one aspect of the measuring device or another aspect of the measuring device.
  • FIG. 1 is a block diagram showing an example of a schematic configuration of the measuring device according to the first embodiment.
  • FIG. 2 is a diagram schematically showing an example of a cross section of a part of the measuring device according to the first embodiment.
  • FIG. 3A shows an example of a frequency spectrum related to interference light from an object to be irradiated in which a fluid having a flow quantitative value of a relatively small value Vq1 flows inside when the intensity of the irradiation light is the first intensity.
  • the curve Ln1 shown, the curve Ln2 showing an example of the frequency spectrum related to the interference light from the irradiated object in which the fluid flowing inside the fluid having a relatively medium flow quantification value, and the value Vq3 having a relatively large flow quantification value are shown.
  • FIG. 3B is a diagram showing an example of a DC component of the signal intensity related to the interference light from the irradiated object through which the fluid flows inside when the intensity of the irradiation light is the first intensity.
  • FIG. 4A shows that when the intensity of the irradiation light is the second intensity lower than the first intensity, the fluid having a relatively small flow quantitative value Vq1 is reflected in the interference light from the irradiated object flowing inside.
  • Curve Ln11 showing an example of the frequency spectrum
  • curve Ln12 showing an example of the frequency spectrum related to the interference light from the irradiated object in which the fluid having a relatively medium flow quantification value Vq2, and the flow quantification value.
  • curve Ln13 which shows an example of the frequency spectrum which concerns on the interference light from the irradiated object which the fluid which has a relatively large value Vq3 flows inside.
  • FIG. 4B shows an example of a DC component of the signal intensity related to the interference light from the irradiated object through which the fluid flows inside when the intensity of the irradiation light is the second intensity lower than the first intensity. It is a figure which shows.
  • FIG. 5A shows a curve Ln21 showing an example of a frequency spectrum calculated when the intensity of the irradiation light is the first intensity when the quantitative flow value is set to a predetermined value, and the intensity of the irradiation light is the first intensity.
  • the curve Ln22 showing an example of the frequency spectrum calculated when the second intensity is smaller than the second intensity, and the example of the frequency spectrum calculated when the intensity of the irradiation light is the third intensity lower than the second intensity are shown. It is a figure which shows the curve Ln23, respectively.
  • Line Ln31 showing an example of the relationship between the flow quantitative value and the reference flow calculated value when the intensity of the irradiation light is the first intensity, and the second intensity of the irradiation light is lower than the first intensity.
  • Line Ln32 showing an example of the relationship between the flow quantitative value and the reference flow calculated value in the case of intensity, the flow quantitative value and the reference flow calculated value in the case where the intensity of the irradiation light is the third intensity lower than the second intensity. It is a figure which shows line Ln33 which shows an example of the relation of. FIG.
  • FIG. 6A shows a curve Ln41 showing an example of the corrected frequency spectrum calculated when the intensity of the irradiation light is the first intensity when the quantitative flow value is set to a predetermined value, and the intensity of the irradiation light.
  • the curve Ln42 showing an example of the corrected frequency spectrum calculated when the second intensity is smaller than the first intensity, and the third intensity calculated when the intensity of the irradiation light is lower than the second intensity. It is a figure which shows the curve Ln43 which shows an example of the frequency spectrum after correction, respectively.
  • FIG. 6B shows a line Ln51 showing an example of the relationship between the flow quantitative value and the corrected flow calculated value when the intensity of the irradiation light is the first intensity, and the intensity of the irradiation light is lower than the first intensity.
  • Line Ln52 showing an example of the relationship between the flow quantitative value and the corrected flow calculated value when the second intensity is used, and the flow quantitative value and correction when the intensity of the irradiation light is a third intensity lower than the second intensity. It is a figure which shows the line Ln53 which shows an example of the relationship with the later flow calculation value, respectively.
  • FIG. 7A is a flow chart showing an example of operation in the measuring device according to the first embodiment.
  • FIG. 7B is a flow chart showing a first example of a flow calculation value calculation process in the measuring device according to the first embodiment.
  • FIG. 8 is a flow chart showing a second example of the flow calculation value calculation process in the measuring device according to the first embodiment.
  • FIG. 9 is a flow chart showing a third example of the flow calculation value calculation process in the measuring device according to the first embodiment.
  • FIG. 10 is a block diagram showing an example of a schematic configuration of the measuring device according to the second embodiment.
  • FIG. 11 is a block diagram showing an example of a schematic configuration of the measuring device according to the third embodiment.
  • FIG. 12 is a block diagram showing an example of a schematic configuration of the measurement system according to the fourth embodiment.
  • FIG. 13A shows a curve Ln61 showing an example of a frequency spectrum calculated when the concentration of particles in the fluid is the first concentration when the quantitative flow value is set to the reference value Q0, and the concentration of particles in the fluid is Curve Ln62 showing an example of the frequency spectrum calculated when the second concentration is lower than the first concentration, and the frequency spectrum calculated when the concentration of particles in the fluid is the third concentration lower than the second concentration. It is a figure which shows the curve Ln63 which shows an example, respectively.
  • FIG. 13B shows a curve Ln71 showing an example of the corrected frequency spectrum calculated when the concentration of particles in the fluid is the first concentration when the quantitative flow value is set to the reference value Q0, and particles in the fluid.
  • Curve Ln72 showing an example of the corrected frequency spectrum calculated when the concentration of is a second concentration lower than the first concentration, when the concentration of particles in the fluid is a third concentration lower than the second concentration. It is a figure which shows the curve Ln73 which shows an example of the calculated frequency spectrum after correction, respectively.
  • FIG. 14A shows an example of a frequency spectrum related to interference light from an irradiated object in which a fluid having a flow rate setting value of a relatively small value Q1 flows inside when the intensity of the laser light is the first intensity.
  • the curve Ln101 shown the curve Ln102 showing an example of the frequency spectrum related to the interference light from the irradiated object in which the fluid flowing inside the fluid having a relatively medium flow rate set value, and the value Q3 having a relatively large flow rate set value. It is a figure which shows the curve Ln103 which shows an example of the frequency spectrum which concerns on the interference light from the irradiated object which fluid flows inside.
  • FIG. 14B is a diagram showing an example of the relationship between the flow rate set value and the flow rate calculated value when the intensity of the laser light is the first intensity.
  • the curve Ln201 showing an example, the curve Ln202 showing an example of the frequency spectrum related to the interference light from the irradiated object in which the fluid flowing inside the fluid having a relatively medium flow rate setting value Q2, and the flow rate setting value are relatively
  • the curve Ln203 which shows an example of the frequency spectrum which concerns on the interference light from the irradiated object which the fluid which has a large value Q3 flows inside.
  • FIG. 16A shows a curve Ln301 showing an example of a frequency spectrum calculated when the intensity of the laser beam is the first intensity when the flow rate set value is set to the reference value Q0, and the intensity of the laser beam is the first.
  • An example of a curve Ln302 showing an example of a frequency spectrum calculated when the second intensity is smaller than the intensity, and an example of a frequency spectrum calculated when the intensity of the laser beam is a third intensity lower than the second intensity. It is a figure which shows each of the shown curve Ln303.
  • FIG. 16B shows a line Ln401 showing an example of the relationship between the flow rate set value and the flow rate calculation value when the laser beam intensity is the first intensity, and the second intensity in which the laser beam intensity is lower than the first intensity.
  • Line Ln402 showing an example of the relationship between the flow rate set value and the flow rate calculated value in the case of, and the relationship between the flow rate set value and the flow rate calculated value when the intensity of the laser beam is the third intensity lower than the second intensity. It is a figure which shows line Ln403 which shows an example, respectively.
  • a device for quantitatively measuring the state of fluid flow for example, a device for measuring at least one of the flow rate and the flow velocity of a fluid using an optical method such as a laser blood flow meter is known.
  • This laser blood flow meter calculates the blood flow of the living body based on, for example, the change in the wavelength of the laser light caused by the Doppler shift that occurs when the laser light radiated to the living body from the laser as a light emitting element is scattered. be able to.
  • a living body when a living body is irradiated with a laser beam of frequency fo, it scatters due to the flow of blood in blood vessels (movement of blood cells, which are scatterers), and forms other fixed tissues (skin tissue and blood vessels). Scattered light is generated by scattering by (such as tissue).
  • the diameter of blood cells is, for example, about several micrometers ( ⁇ m) to about 10 ⁇ m.
  • the frequency f of the scattered light generated by scattering by the blood cells, which is a scattering body is the moving speed of the blood cells, which is a scattering body, as compared with the frequency fo of the scattered light generated by scattering by other fixed tissues.
  • the frequency fo + ⁇ f is changed by ⁇ f due to the Doppler shift corresponding to.
  • This modulation frequency ⁇ f is represented by the following equation (1), where V is the velocity of blood flow, ⁇ is the angle of incidence of the laser beam on the fluid, and ⁇ is the wavelength of the laser beam.
  • ⁇ f (2V ⁇ cos ⁇ ) / ⁇ ... (1).
  • the difference frequency ⁇ f can be observed as an optical beat (groan) due to mutual interference between the scattered light of the frequency fo scattered by the fixed tissue and the scattered light of the frequency fo + ⁇ f scattered by the moving blood cells.
  • the signal (received signal) obtained by receiving these two types of scattered light includes a signal corresponding to the optical beat generated by mutual interference of these two types of scattered light (also referred to as an optical beat signal). ) Is included.
  • the difference frequency ⁇ f corresponding to the frequency of the optical beat is much smaller than the frequency f of the original light.
  • the original light having a wavelength of 780 nm is light having a frequency of about 400 terahertz (THz), which exceeds the response speed that can be detected by a normal light receiving element.
  • the frequency of the optical beat also referred to as the optical beat frequency
  • ⁇ f depends on the moving speed of blood cells, but is, for example, about several kilohertz (kHz) to several tens of kHz, and a normal light receiving element responds sufficiently. It is included in the frequency band that can be detected.
  • the signal (light receiving signal) obtained by receiving the scattered light of the frequency fo scattered by the fixed tissue and the scattered light of the frequency fo + ⁇ f scattered by the moving blood cells by using the light receiving element can be obtained. It shows a waveform in which an intensity modulation signal having an optical beat frequency ⁇ f is superimposed on a DC (DC) component signal (DC signal). Then, the blood flow rate can be calculated by analyzing the optical beat signal having the frequency ⁇ f.
  • DC DC
  • the frequency spectrum P (f) is calculated for the light receiving signal detected by the light receiving element by using an operation such as Fourier transform (FFT).
  • FFT Fourier transform
  • the weighted frequency spectrum (also referred to as a weighted frequency spectrum) P (f) ⁇ f is calculated.
  • the weighted frequency spectrum P (f) ⁇ f is integrated at a frequency in a predetermined range to calculate the first calculated value ( ⁇ ⁇ P (f) ⁇ f ⁇ df).
  • the first calculated value ( ⁇ ⁇ P (f) ⁇ f ⁇ df) is integrated with the frequency spectrum P (f) for frequencies in a predetermined range.
  • the blood flow rate of the living body by a predetermined calculation using the average frequency fm.
  • a predetermined calculation for example, a calculation in which the average frequency fm is divided by a second calculated value ( ⁇ P (f) df) and multiplied by a constant is applied.
  • the value calculated by dividing the average frequency fm by the second calculated value ( ⁇ P (f) df) is calculated as a calculated value (also referred to as a flow rate calculated value) corresponding to the flow rate.
  • a laser blood flow meter is used to measure the flow rate Q of the fluid when flowing a fluid in which light scattering bodies of about several ⁇ m are dispersed in a transparent tubular body as a flow path.
  • the flow rate also referred to as a flow rate set value
  • the flow rate set values are increased in the order of Q1, Q2, and Q3, and the frequency spectra P (f) related to the optical beat signal are used for each flow rate set values Q1, Q2, and Q3 using a laser blood flow meter.
  • the weighted frequency spectrum P (f) ⁇ f, the average frequency fm, and the calculated flow rate are calculated.
  • the average frequency f1m is calculated from the frequency spectrum P (f) shown by the curve Ln101 drawn by the thick solid line in FIG. 14A.
  • the average frequency f2m is calculated from the frequency spectrum P (f) shown by the curve Ln102 drawn by the thick alternate long and short dash line in FIG. 14 (a).
  • the average frequency f3m is calculated from the frequency spectrum P (f) shown by the curve Ln103 drawn by the thick alternate long and short dash line in FIG. 14 (a).
  • the flow rate calculation value calculated by using the flow rate setting values Q1, Q2, Q3 and the average frequencies f1m, f2m, and f3m, respectively. If v1, v2, and v3 have a proportional relationship, the flow rate of the fluid is correctly calculated by a predetermined calculation using the average frequency fm.
  • the intensity of the laser light irradiating the living body may decrease due to an increase in the temperature of the laser, aged deterioration of the laser, or the like.
  • the intensity of the laser beam is reduced from the first intensity to the second intensity.
  • the intensity of the light receiving signal output from the light receiving element uniformly decreases as the intensity of the laser light decreases.
  • the frequency spectrum P (f) shown by the curve Ln201 drawn by the thick solid line in FIG. 15 is obtained.
  • the frequency spectrum P (f) shown by the curve Ln202 drawn by the thick alternate long and short dash line in FIG. 15 is obtained.
  • the frequency spectrum P (f) shown by the curve Ln203 drawn by the thick alternate long and short dash line in FIG. 15 is obtained.
  • the signal intensity for each frequency corresponds to the decrease in the intensity of the laser light with respect to the frequency spectrum P (f) shown in FIG. 14 (a). Is uniformly decreasing.
  • the intensity of the laser light intentionally emitted from the laser is set to the first intensity, the first intensity, and the second intensity, assuming that the flow rate set value is constant at Q0, which is the reference value (also referred to as the reference set value).
  • FIG. 16A shows an example of the results of calculating the frequency spectrum P (f) for each of 0.5 and 0.25, which is the third intensity.
  • the frequency spectrum P (f) calculated when the intensity of the laser light is the first intensity is shown by the curve Ln301 drawn by a thick solid line, and the intensity of the laser light is the second intensity.
  • the frequency spectrum P (f) calculated in a certain case is indicated by the curve Ln302 drawn by a thick single-point chain line, and the frequency spectrum P (f) calculated when the intensity of the laser beam is the third intensity is thick. It is shown by the curve Ln303 drawn by the dotted line.
  • the intensity of the signal for each frequency in the frequency spectrum P (f) decreases as the intensity of the laser light decreases.
  • the flow rate set value and the flow rate calculated value The proportional relationship of is different depending on the intensity of the laser beam.
  • the flow rate set value and the flow rate calculated value have a proportional relationship shown by the line Ln401 drawn by the thick solid line in FIG. 16B.
  • the intensity of the laser light is the second intensity
  • the flow rate set value and the flow rate calculated value have a proportional relationship shown by the line Ln402 drawn by the thick alternate long and short dash line in FIG. 16 (b).
  • the intensity of the laser light is the third intensity
  • the flow rate set value and the flow rate calculated value have a proportional relationship shown by the line Ln403 drawn by the thick alternate long and short dash line in FIG. 16 (b). Therefore, for example, even if the flow rate Q of the fluid is calculated from the calculated flow rate value, the flow rate Q of different fluids is calculated according to the intensity of the laser beam, and the measurement accuracy of the flow rate Q may decrease.
  • the factor that uniformly lowers the intensity of the light receiving signal output from the light receiving element is the intensity of light (also referred to as irradiation light) such as laser light emitted from the light emitting element to the living body. It is not limited to the decrease in.
  • Other factors that reduce the strength include, for example, the thickness, inner diameter and material of the tubular body constituting the flow path, the concentration of particles in the fluid and the absorption rate of light, the position between the light emitting element, the tubular body and the light receiving element, and The relationship of posture can be considered.
  • the above problem is not limited to the measuring device for measuring the flow rate of the fluid, and is common to the measuring device for measuring the quantitative value related to the state of the flow of the fluid including at least one of the flow rate and the flow velocity of the fluid.
  • the inventors of the present disclosure have created a technique capable of improving the measurement accuracy of a device for quantitatively measuring the state of fluid flow.
  • the measuring device 1 is, for example, in a state of flow of a fluid 2b flowing inside 2i of an object (also referred to as a flow path component) 2a constituting a flow path.
  • the flow path component 2a may include, for example, a tubular object (also referred to as a tubular body) such as a blood vessel in a living body or a pipe of various devices.
  • the quantitative value (also referred to as the quantitative value or the flow quantitative value) Vq relating to the flow state of the fluid 2b may include, for example, at least one of the flow rate and the flow velocity.
  • Flow rate is the amount of fluid that passes through the flow path per unit time.
  • the amount of fluid can be expressed, for example, by volume or mass.
  • Flow velocity is the speed of fluid flow in the flow path. The speed of flow can be expressed as the distance traveled by the fluid per unit time.
  • the measuring device 1 according to the first embodiment can quantitatively measure the flow state of the fluid 2b by utilizing, for example, the Doppler effect of light.
  • the Doppler effect of light for example, when the light is scattered by the fluid 2b in response to the irradiation of the fluid 2b with light, the frequency of the light corresponding to the moving speed of the fluid 2b is caused by the Doppler effect according to the flow of the fluid 2b. Shift (also called Doppler shift) occurs.
  • the measuring device 1 according to the first embodiment can measure the flow quantitative value Vq related to the flow state of the fluid 2b by utilizing this Doppler shift.
  • Various configurations of the measuring device 1 described later can be manufactured by using a well-known or known method as appropriate.
  • the fluid 2b as an object whose flow state is quantitatively measured is, for example, a substance in which the fluid 2b itself scatters light or a substance that scatters light (scattering substance). It also includes those that flow an object that scatters light (also called a scatterer). Specifically, for example, water, blood, ink for a printer, a gas containing a scatterer such as powder, or the like is applied to the fluid 2b as the object to be measured.
  • the "flow rate of the scatterer or the scatterer” may be regarded as the "flow rate of the fluid", or the "scatterer or the scatterer”.
  • the "flow velocity of the fluid” may be regarded as the "fluid flow velocity".
  • the measuring device 1 includes, for example, a sensor unit 10 and a control unit 20. Further, the measuring device 1 includes, for example, a connecting portion (connector portion) 30.
  • the sensor unit 10 includes, for example, a light emitting unit 11 and a light receiving unit 12.
  • the light emitting unit 11 can irradiate an object (also referred to as an irradiated object) 2 through which the fluid 2b flows inside 2i with light (also referred to as irradiation light) L1.
  • the irradiated object 2 includes at least an object (flow path component) 2a that constitutes a flow path such as a tubular body, and a fluid 2b that flows through the flow path.
  • object flow path component
  • light having a predetermined wavelength corresponding to the fluid 2b as the object to be measured is applied to the irradiation light L1.
  • the wavelength of the irradiation light L1 is set to about 600 nanometers (nm) to 900 nm.
  • the wavelength of the light applied to the object to be irradiated 2 is set to about 700 nm to 1000 nm.
  • a semiconductor laser element such as a vertical cavity surface emitting laser (VCSEL: Vertical Cavity Surface Emitting LASER) is applied to the light emitting unit 11.
  • VCSEL Vertical Cavity Surface Emitting LASER
  • the intensity of the irradiation light L1 may decrease due to an increase in temperature and deterioration over time in the semiconductor laser element.
  • the light receiving unit 12 can receive, for example, the interference light L2 including the light scattered by the irradiated object 2 among the irradiation light L1. Then, the light receiving unit 12 can convert the received light into an electric signal according to the intensity of the light, for example. In other words, the light receiving unit 12 can receive, for example, the interference light L2 including the light scattered by the irradiated object 2 and output a signal corresponding to the intensity of the interference light L2.
  • the interfering light L2 that can be received by the light receiving unit 12 is scattered light from the irradiated object 2 that does not cause Doppler shift from an object (also referred to as a stationary object) that is stationary around the fluid 2b.
  • the stationary object includes an object (flow path component) 2a such as skin and a blood vessel.
  • the stationary object includes an object (flow path component) 2a or the like that constitutes a flow path of the fluid 2b such as a pipe.
  • the tubing may be made of, for example, a translucent material.
  • glass or a polymer resin is applied to the material having translucency.
  • the change in the intensity of the interference light L2 with the passage of time is the difference between the frequency of the scattered light that does not cause the Doppler shift and the frequency of the scattered light that has caused the Doppler shift ( It can show the beat of the frequency corresponding to ⁇ f (also called the difference frequency). Therefore, for example, the signal corresponding to the intensity of the interference light L2 output from the light receiving unit 12 contains a component of a signal (also referred to as a beat signal or an optical beat signal) corresponding to the beat in the time change of the intensity of the interference light L2. Can include.
  • a light receiving unit 12 having an ability (also referred to as time resolution) capable of following a beat in a time change of the intensity of the interference light L2 is applied.
  • the wavelength of light that can be received by the light receiving unit 12 can be set according to measurement conditions such as the wavelength of the irradiation light L1 and the speed range of the fluid 2b.
  • Various photodiodes such as silicon (Si) photodiodes, gallium arsenide (GaAs) photodiodes, indium gallium arsenide (InGaAs) photodiodes, and germanium (Ge) photodiodes are applied to the light receiving unit 12. ..
  • the sensor unit 10 may further have a package 13.
  • the package 13 accommodates the light emitting unit 11 and the light receiving unit 12.
  • the measuring device 1 has a substrate (also referred to as a mounting substrate) 1s on which the sensor unit 10, the control unit 20, and the connecting unit 30 are mounted.
  • a substrate also referred to as a mounting substrate
  • the package 13 of the sensor unit 10 is located on the mounting board 1s.
  • Each of the space between the sensor unit 10 and the control unit 20 and between the control unit 20 and the connection unit 30 is in a state of being electrically connected by, for example, the mounting substrate 1s.
  • Package 13 has, for example, a cubic or rectangular parallelepiped outer shape.
  • the package 13 has, for example, a first recess R1 and a second recess R2 that are open upward, respectively.
  • the light emitting portion 11 is mounted on the first recess R1.
  • the light receiving portion 12 is mounted on the second recess R2.
  • the irradiation light L1 emitted from the light emitting unit 11 irradiates the object to be irradiated 2 through the opening of the first recess R1.
  • the interference light L2 from the irradiated object 2 is received by the light receiving unit 12 through the opening of the second recess R2.
  • a laminate of wiring boards made of, for example, a ceramic material or an organic material is applied to the package 13.
  • a ceramic material or an organic material is applied to the package 13.
  • an aluminum oxide sintered body or a mullite sintered body is applied to the ceramic material.
  • an epoxy resin or a polyimide resin is applied to the organic material.
  • a translucent cover member 14 may be positioned so as to cover the openings of the first recess R1 and the second recess R2 in the package 13. . If such a configuration is adopted, for example, a state in which the light emitting portion 11 is sealed in the first recess R1 of the package 13 and a state in which the light receiving portion 12 is sealed in the second recess R2 of the package 13 are realized. Can be done. For example, a glass plate or the like is applied to the cover member 14.
  • the control unit 20 can control the measuring device 1, for example.
  • the control unit 20 has a plurality of electronic components including, for example, an active element such as a transistor or a diode and a passive element such as a capacitor.
  • the connection unit 30 can electrically connect the control unit 20 and the external device, for example.
  • a plurality of electronic components are integrated to form one or more integrated circuits (ICs) or large-scale integrated circuits (LSIs), or a plurality of ICs or LSIs are further integrated to form.
  • ICs integrated circuits
  • LSIs large-scale integrated circuits
  • various functional units including the control unit 20 and the connection unit 30 can be configured.
  • a plurality of electronic components constituting the control unit 20 and the connection unit 30 are in a state of being mounted on the mounting board 1s. As a result, for example, the package 13 and the control unit 20 are electrically connected, and the control unit 20 and the connection unit 30 are electrically connected.
  • the control unit 20 includes, for example, a signal processing unit 21 and an information processing unit 22.
  • the signal processing unit 21 can perform various processing on the electric signal received from the light receiving unit 12, for example.
  • Various processes include, for example, a process of converting an electric signal into a voltage value, a process of separating an alternating current (AC) component and a direct current (DC) component of an electric signal, a process of amplifying the strength of the electric signal, and an analog signal. It may include processing for converting to a digital signal. Therefore, for example, the signal processing unit 21 functions as a portion (also referred to as an extraction unit) 21a for extracting a DC component of the signal output from the light receiving unit 12 with time change of the signal intensity (also referred to as signal intensity).
  • a portion also referred to as an extraction unit
  • the signal processing unit 21 may have a function as, for example, a portion (also referred to as an amplification unit) 21b capable of amplifying a signal.
  • the amplification unit 21b may amplify the signal of the AC component (also referred to as an AC signal) after dividing the electric signal output from the light receiving unit 12 in the extraction unit 21a into a DC component and an AC component.
  • the various processes performed by the signal processing unit 21 include, for example, a process of converting an electric signal into a voltage value and a process of separating the AC component and the DC component of the electric signal (also referred to as AC-DC separation process).
  • the process of amplifying an AC signal, the process of converting an analog signal into a digital signal, and the like are included.
  • the signal processing unit 21 includes, for example, a current-voltage conversion circuit (IV conversion circuit), an AC-DC separation circuit (AC-DC decoupling circuit) as an extraction unit 21a, and an AC amplifier circuit (AC) as an amplifier unit 21b. It may have circuits such as an amplifier circuit) and an analog-to-digital conversion circuit (AD conversion circuit).
  • the extraction unit 21a can extract the AC component and the DC component of the signal output from the light receiving unit 12 with respect to the time change of the signal intensity.
  • the signal processing unit 21 for example, after the amplification unit 21b amplifies the signal output from the light receiving unit 12, the extraction unit 21a separates the AC component and the DC component of the electric signal, thereby forming the AC component and the DC component.
  • the DC component may be extracted.
  • the signal processing unit 21 performs, for example, processing such as AC-DC separation processing, amplification processing, and AD conversion processing on the analog electric signal received from the light receiving unit 12, and then provides information.
  • a digital signal can be output toward the processing unit 22.
  • the information processing unit 22 has, for example, an arithmetic processing unit 22a and a storage unit 22b.
  • the arithmetic processing unit 22a has, for example, a processor as an electric circuit.
  • a processor may be, for example, one or more processors, controllers, microprocessors, microcontrollers, application specific integrated circuits (ASICs), digital signal processing devices, programmable logic devices, or combinations of these devices or any configuration, or the like. Can include a combination of known devices or configurations of.
  • the storage unit 22b has, for example, an immediate call storage device (RAM) and a read-only memory (ROM).
  • the storage unit 22b is in a state of storing, for example, the firmware including the program PG1.
  • the arithmetic processing unit 22a can execute one or more data arithmetic or data processing according to the firmware stored in the storage unit 22b, for example.
  • the arithmetic processing unit 22a can execute the program PG1 to realize various functions of the measuring device 1.
  • the information processing unit 22 can control the operation of the light emitting unit 11 and the light receiving unit 12, for example.
  • the frequency and signal intensity of the electric signal output from the light receiving unit 12 depend on the Doppler effect of light. Therefore, for example, the frequency spectrum P (f) showing the relationship between the frequency of the electric signal and the signal strength changes according to the flow quantitative value (flow rate or flow velocity) Vq of the fluid 2b. Therefore, the information processing unit 22 is for quantitatively measuring the flow state of the fluid 2b based on the electric signal output from the light receiving unit 12 and processed by the signal processing unit 21, for example, by the arithmetic processing unit 22a. You can perform operations.
  • the arithmetic processing unit 22a calculates a power spectrum (also referred to as a frequency spectrum) P (f) indicating a distribution related to the signal strength for each frequency with respect to the time change of the signal strength with respect to the signal output from the light receiving unit 12. be able to.
  • the arithmetic processing unit 22a can calculate the frequency spectrum P (f) with respect to the time change of the intensity of the signal output from the light receiving unit 12, for example.
  • the arithmetic processing unit 22a determines, for example, the time of the signal strength of the AC signal obtained by the AC-DC separation processing and the amplification processing in the signal processing unit 21 for the signal output from the light receiving unit 12.
  • the frequency spectrum P (f) for the change over time (time change) can be calculated.
  • the frequency spectrum P (f) is obtained, for example, by analyzing the time change of the intensity of the AC signal output from the signal processing unit 21 by using an operation such as Fourier transform.
  • the frequency range in the frequency spectrum P (f) can be set, for example, based on the sampling rate in the AD conversion circuit.
  • the arithmetic processing unit 22a is indicated by the curve Ln1 drawn by the thick solid line in FIG. 3A.
  • Such a frequency spectrum P (f) can be calculated.
  • the arithmetic processing unit 22a is indicated by the curve Ln2 drawn by the thick alternate long and short dash line in FIG. 3 (a).
  • Such a frequency spectrum P (f) can be calculated.
  • the arithmetic processing unit 22a is shown by the curve Ln3 drawn by the thick alternate long and short dash line in FIG. 3 (a).
  • Frequency spectrum P (f) can be calculated.
  • the arithmetic processing unit 22a can acquire, for example, a DC signal obtained by the AC-DC separation processing and the amplification processing in the signal processing unit 21 for the signal output from the light receiving unit 12.
  • the arithmetic processing unit 22a can obtain, for example, the average value of the signal strength of the DC signal within a predetermined time, the signal strength of the DC signal at a specific timing, and the like as the signal strength Pd of the DC component.
  • the intensity of the irradiation light L1 is the first intensity
  • the frequency spectra P (f) of FIG. 3 (a) and the signal intensity Pd of the DC component of FIG. 3 (b) can be obtained. ..
  • the intensity of the irradiation light L1 is a second intensity lower than the first intensity.
  • the quantitative flow rate (flow rate or flow velocity) Vq of the fluid 2b is a relatively small value Vq1
  • the frequency spectrum P (f) calculated by the arithmetic processing unit 22a is shown in FIG. 4 (a). It becomes as shown by the curve Ln11 drawn by the thick solid line of.
  • the quantitative flow rate (flow rate or flow velocity) Vq of the fluid 2b is a relatively medium value Vq2
  • the frequency spectrum P (f) calculated by the arithmetic processing unit 22a is a thick one point in FIG. 4A.
  • the curve Ln12 drawn by the chain line For example, if the quantitative flow rate (flow rate or flow velocity) Vq of the fluid 2b is a relatively large value Vq3, the frequency spectrum P (f) calculated by the arithmetic processing unit 22a is the thick alternate long and short dash line in FIG. 4 (a). It becomes as shown by the curve Ln13 drawn by. Further, the signal of the DC component obtained by the arithmetic processing unit 22a is, for example, as shown by the line Ln14 drawn by the thick solid line in FIG. 4B.
  • the intensity of the irradiation light L1 decreases from the first intensity to the second intensity
  • the intensity of the interference light L2 received by the light receiving unit 12 decreases. ..
  • the signal intensity in the frequency spectrum P (f) is uniformly reduced.
  • the signal intensity Pd of the DC component obtained by the arithmetic processing unit 22a is also the signal of the frequency spectrum P (f). It decreases as well as the strength.
  • the arithmetic processing unit 22a uses, for example, a value (also referred to as a D value) Vd related to the signal intensity Pd of the DC component with respect to the frequency spectrum P (f) related to the AC component of the signal output from the light receiving unit 12. It is possible to calculate the calculated value (also referred to as the flow calculated value) F related to the flow state of the fluid 2b by performing the process including the correction.
  • Flow conditions can include, for example, at least one of flow rate and flow rate.
  • the arithmetic processing unit 22a first calculates the frequency spectrum (also referred to as the first frequency spectrum) P1 (f) related to the AC component of the signal output from the light receiving unit 12, and the first frequency.
  • the signal intensity for each frequency in the spectrum P1 (f) is corrected by using the value (D value) Vd related to the signal intensity Pd of the DC component.
  • the corrected frequency spectrum (also referred to as the second frequency spectrum) P2 (f) is calculated.
  • the arithmetic processing unit 22a calculates the calculated value (flow calculated value) F related to the flow state of the fluid 2b based on the second frequency spectrum P2 (f).
  • the correction process using the value (D value) Vd related to the signal strength Pd of the DC component for example, division using the D value Vd is adopted.
  • the uniform decrease in the intensity of the signal output from the light receiving unit 12 can be offset by the DC component that decreases with this uniform decrease.
  • a correction process using the D value Vd for example, a calculation of dividing the first frequency spectrum P1 (f) by the D value Vd is adopted.
  • a numerical value of the signal strength Pd of the DC component to the mth power (m is a predetermined positive number) is applied to the D value Vd.
  • the following equation (3) holds.
  • 1.3 is applied to the exponentiation m having the signal strength Pd as the base.
  • the calculation of the flow calculation value F based on the second frequency spectrum P2 (f) can be performed as follows, for example.
  • the weighted frequency spectrum (also referred to as the third frequency spectrum) P2 (f) ⁇ f is calculated.
  • the first integrated value ( ⁇ ⁇ P2 (f) ⁇ f ⁇ df) is calculated by integrating the third frequency spectrum P2 (f) ⁇ f at a frequency in a predetermined range.
  • the second integrated value ( ⁇ P2 (f) df) is calculated by integrating the second frequency spectrum P2 (f) at a frequency in a predetermined range.
  • the value corresponding to the average frequency fm at the difference frequency ⁇ f is calculated by dividing the first integral value by the second integral value, and this value is further divided by the second integral value ( ⁇ P2 (f) df). Therefore, the flow calculation value F is calculated.
  • the second division of the second integrated value ( ⁇ P2 (f) df) is for correcting, for example, the attenuation of the amplification factor with respect to the increase in frequency in the amplification unit 21b.
  • the intermediate frequency is, for example, the frequency at the boundary where the integral value of the intensity calculated from the low frequency side and the integral value of the intensity calculated from the high frequency side of the second frequency spectrum P2 (f) have a predetermined ratio. Is applied.
  • the predetermined ratio is set to, for example, 1: 1.
  • the measuring device 1 is set to a predetermined value while setting a quantitative value (flow quantitative value) Vq relating to the flow state of the fluid 2b flowing in the transparent tube as the flow path constituent portion 2a by a pump or the like.
  • the intensity of the irradiation light L1 is 1, which is the first intensity, 0.5, which is half the intensity of the first intensity (also referred to as the second intensity), and half the intensity of the second intensity (also referred to as the third intensity). It is assumed that each case is set to 0.25. In this case, for example, if the intensity of the irradiation light L1 is the first intensity, the first frequency spectrum P1 (f) shown by the curve Ln21 drawn by the thick solid line in FIG. 5A can be obtained.
  • the intensity of the irradiation light L1 is the second intensity
  • the first frequency spectrum P1 (f) shown by the curve Ln22 drawn by the thick alternate long and short dash line in FIG. 5 (a) is obtained. can get.
  • the intensity of the irradiation light L1 is the third intensity
  • the first frequency spectrum P1 (f) shown by the curve Ln23 drawn by the thick two-dot chain line in FIG. 5 (a) is obtained. can get.
  • the intensity of the first frequency spectrum P1 (f) decreases as the intensity of the irradiation light L1 decreases.
  • the flow calculation value (also referred to as the reference flow calculation value) Fo as a reference example is calculated while changing the flow quantitative value Vq without performing the correction processing using the D value Vd. Is assumed.
  • the reference flow calculation value Fo is calculated according to the following equation (5).
  • equation (5) for example, one or more of multiplication by multiplying at least one of the denominator and the molecule on the right side or the entire right side by an appropriate coefficient, calculation for exponentiation, addition or subtraction of constants, and the like. Calculations may be made. Further, in the equation (5), instead of the second division by the integrated value ⁇ P1 (f), for example, a calculation of dividing by a specific value related to the signal strength of the frequency spectrum P1 (f) may be performed. Good.
  • the intensity of the irradiation light L1 is the first intensity
  • the relationship between the quantitative flow value shown by the line Ln31 drawn by the thick solid line in FIG. 5B and the calculated reference flow value Fo can be obtained. ..
  • the intensity of the irradiation light L1 is the second intensity
  • the relationship between the flow quantitative value indicated by the line Ln32 drawn by the thick alternate long and short dash line in FIG. 5B and the reference flow calculation value Fo can be obtained. Be done.
  • the intensity of the irradiation light L1 is the third intensity
  • the relationship between the flow quantitative value shown by the line Ln33 drawn by the thick two-dot chain line in FIG. 5B and the reference flow calculation value Fo can be obtained. Be done.
  • the proportional relationship between the quantitative flow value and the calculated reference flow value Fo differs depending on the intensity of the irradiation light L1.
  • the first frequency spectrum P1 (f) is corrected by using the D value Vd, so that the corrected frequency spectrum (second).
  • Frequency spectrum) P2 (f) is calculated.
  • the second frequency spectrum P2 (f) of the irradiation light L1 is compared with the first frequency spectrum P1 (f) shown in FIG. 5A.
  • the frequency spectrum is close to the same regardless of the intensity.
  • the curve Ln41 drawn by the thick solid line in FIG. 6A shows the second frequency spectrum P2 (f) obtained when the intensity of the irradiation light L1 is the first intensity.
  • FIG. 6A shows the second frequency spectrum P2 (f) obtained when the intensity of the irradiation light L1 is the second intensity.
  • the curve Ln43 drawn by the thick two-dot chain line in FIG. 6A shows the second frequency spectrum P2 (f) obtained when the intensity of the irradiation light L1 is the third intensity.
  • the flow calculation value F calculated according to the above equation (4) is proportional to the flow quantitative value shown in FIG. 5B and the reference flow calculation value Fo.
  • the flow quantitative value and the flow calculation value F show a proportional relationship close to the same regardless of the intensity of the irradiation light L1.
  • the line Ln51 drawn by the thick solid line in FIG. 6B shows the relationship between the flow quantitative value and the flow calculation value F when the intensity of the irradiation light L1 is the first intensity.
  • FIG. 6B shows the relationship between the flow quantitative value and the flow calculation value F when the intensity of the irradiation light L1 is the second intensity.
  • the line Ln53 drawn by the thick two-dot chain line in FIG. 6B shows the relationship between the flow quantitative value and the flow calculation value F when the intensity of the irradiation light L1 is the third intensity.
  • the D value Vd relating to the intensity of the DC component for the signal output from the light receiving unit 12
  • the relationship between the calculated flow value F and the actual flow state of the fluid 2b is less likely to fluctuate.
  • the arithmetic processing unit 22a can calculate, for example, a quantitative value (flow quantitative value) Vq related to the flow state of the fluid 2b based on the flow calculation value F calculated as described above. For example, the arithmetic processing unit 22a calculates a quantitative value (flow quantitative value) Vq related to the flow of the fluid 2b based on the flow calculation value F and the calibration data (also referred to as a calibration curve) prepared in advance. can do.
  • the calibration data relating to the flow rate of the fluid 2b is prepared in advance, the flow rate of the fluid 2b is calculated based on the flow calculation value F and the calibration curve relating to the flow rate as the flow quantitative value Vq. Can be done.
  • the flow velocity of the fluid 2b is calculated based on the flow calculation value F and the calibration curve relating to the flow velocity as the flow quantitative value Vq. obtain. Thereby, for example, at least one of the flow rate and the flow velocity of the fluid 2b can be calculated.
  • the intensity of the signal output from the light receiving unit 12 is uniformly reduced, for example, between the calculated flow value F and the actual flow state of the fluid 2b.
  • the relationship in is less likely to fluctuate. Thereby, for example, the measurement accuracy in the measuring device 1 can be improved.
  • the calibration data may be stored in a storage unit 22b or the like in advance before measuring the flow quantitative value Vq of the fluid 2b, for example.
  • the calibration data may be stored, for example, in the form of a function expression or in the form of a table.
  • the calibration data is prepared by, for example, calculating the flow calculation value F by the measuring device 1 for the fluid 2b with the fluid 2b flowing in the flow path component 2a as the measurement target with the known flow quantitative value Vq. Can be done.
  • the calculation of the flow calculation value F by the measuring device 1 is performed by the light emitting unit 11 irradiating the irradiated object 2 with the irradiation light L1 and the light receiving unit 12 interfering light L2 including the light scattered by the irradiated object 2.
  • the calculation of the flow calculation value F by the arithmetic processing unit 22a is performed by the light emitting unit 11 irradiating the irradiated object 2 with the irradiation light L1 and the light receiving unit 12 interfering light L2 including the light scattered by the irradiated object 2.
  • the flow calculation value F is calculated by the measuring device 1 for the fluid 2b flowing in the flow path component 2a with the known flow quantitative value Vq, and the known flow quantitative value Vq and the flow calculation value F are used.
  • Calibration data can be derived based on the relationship of. Specifically, for example, an arithmetic expression (calibration curve) using the flow calculation value F as a parameter can be derived as calibration data.
  • the calibration curve is represented by the equation (6) having coefficients a and b and a constant c, where y is the quantitative flow value Vq and x is the calculated flow value F.
  • the flow calculation value F is calculated as a value x1 for the fluid 2b flowing in the flow path component 2a with a known flow quantitative value Vq, and the flow quantitative value Vq is a known value y2.
  • the flow calculation value F is calculated as a value x2 for the fluid 2b flowing in the path component 2a, and the flow calculation value F is for the fluid 2b flowing in the flow path component 2a with a known flow quantitative value Vq of y3. If is calculated as the value x3, the following equations (7), (8) and (9) are obtained.
  • y1 a ⁇ x1 2 + b ⁇ x1 + c ⁇ ⁇ ⁇ (7)
  • y2 a ⁇ x2 2 + b ⁇ x2 + c ⁇ ⁇ ⁇ (8)
  • y3 a ⁇ x3 2 + b ⁇ x3 + c ... (9).
  • the coefficient a, the coefficient b, and the constant c are calculated from the equations (7), (8), and (9). Then, by substituting the coefficient a, the coefficient b, and the constant c calculated here into the equation (6), the calibration data showing the calibration curve can be obtained.
  • the function formula showing the calibration curve is represented by, for example, a polynomial containing nth-order (n is a natural number of 2 or more) terms in which the flow quantitative value Vq is y and the flow calculation value F is a variable x. It may be what is done.
  • the function expression indicating the calibration line may have at least one term of a logarithmic term and a power term for the variable x related to the flow calculation value F, for example.
  • FIG. 7 (a) and 7 (b) are flow charts showing an example of the operation of the measuring device 1. This operation can be realized, for example, by executing the program PG1 in the arithmetic processing unit 22a and controlling the operation of the measuring device 1 by the control unit 20.
  • steps SP4 from step SP1 in FIG. 7A the flow quantitative value Vq related to the flow state of the fluid 2b can be calculated.
  • step SP1 of FIG. 7A the light emitting unit 11 irradiates the irradiated object 2 in which the fluid 2b is flowing inside 2i, while the light receiving unit 12 irradiates the irradiated object 2 with the interference light including the light scattered by the irradiated object 2.
  • a step (also referred to as a first step) of receiving L2 and outputting a signal corresponding to the intensity of the interference light L2 is executed.
  • step SP2 the signal processing unit 21 executes a step (also referred to as a second step) of processing the signal output from the light receiving unit 12 in step SP1.
  • the extraction unit 21a of the signal processing unit 21 extracts the DC component of the signal output from the light receiving unit 12 in step SP1 with respect to the time change of the signal intensity. Extraction of the DC component is realized by separating the AC component and the DC component in the signal output from the light receiving unit 12 by, for example, an AC-DC separation process.
  • the signal processing unit 21 performs various processing such as amplification processing and AD conversion processing by the amplification unit 21b in addition to the AC-DC separation processing for extracting the DC component from the signal output from the light receiving unit 12. May be applied.
  • the amplification unit 21b may amplify the AC signal of the AC component after dividing the electric signal output from the light receiving unit 12 in the extraction unit 21a into a DC component and an AC component. Further, for example, after the amplification unit 21b amplifies the signal output from the light receiving unit 12, the extraction unit 21a may separate the AC component and the DC component of the electric signal. Then, each signal obtained by the processing in the signal processing unit 21 is appropriately input to the information processing unit 22.
  • step SP3 the arithmetic processing unit 22a uses the value (D value) Vd related to the signal intensity Pd of the DC component extracted by the extraction unit 21a in step SP2 based on the signal output from the light receiving unit 12 in step SP1.
  • the step of calculating the flow calculation value F (also referred to as the third step) is executed by performing the processing including the correction and the calculation of the frequency spectrum.
  • the processes of step SP31 to step SP33 in FIG. 7B are executed in order.
  • step SP31 the arithmetic processing unit 22a calculates the distribution (first frequency spectrum) P1 (f) related to the signal intensity for each frequency with respect to the time change of the intensity of the signal output from the light receiving unit 12 in step SP1.
  • the arithmetic processing unit 22a calculates the first frequency spectrum P1 (f) for the AC signal obtained by the processing by the signal processing unit 21 in step SP2.
  • the arithmetic processing unit 22a has a D value Vd related to the signal intensity Pd of the DC component extracted by the extraction unit 21a in step SP2 with respect to the signal intensity of the first frequency spectrum P1 (f) calculated in step SP31. Performs correction processing using. Here, for example, division using the D value Vd is performed. Specifically, for example, the arithmetic processing unit 22a sets the first frequency spectrum P1 (f) to the mth power of the signal intensity Pd of the DC component (m is a predetermined positive number) so as to follow the above equation (3). ) Is divided by the numerical value. As a result, the second frequency spectrum P2 (f) as the corrected frequency spectrum is calculated.
  • step SP33 the arithmetic processing unit 22a calculates the flow calculation value F based on the second frequency spectrum P2 (f) calculated in step SP32.
  • the third frequency spectrum P2 (f) ⁇ f obtained by the arithmetic processing unit 22a weighting the second frequency spectrum P2 (f) with the frequency f so as to follow the above equation (4).
  • the first integral value ( ⁇ ⁇ P2 (f) ⁇ f ⁇ df) is calculated for.
  • the second integral value ( ⁇ P2 (f) df) is calculated for the second frequency spectrum P2 (f).
  • the value corresponding to the average frequency fm at the difference frequency ⁇ f is obtained. calculate.
  • the flow calculation value F is calculated by further dividing this value by the second integral value ( ⁇ P2 (f) df).
  • ⁇ P2 (f) df the second integral value
  • a calculation may be performed by dividing by a specific value related to the signal strength of the second frequency spectrum ⁇ P2 (f).
  • the first frequency spectrum P1 (f) is corrected by using the D value Vd related to the signal strength of the DC component for the signal output from the light receiving unit 12.
  • the D value Vd related to the signal strength of the DC component for the signal output from the light receiving unit 12.
  • step SP4 the arithmetic processing unit 22a calculates the flow quantitative value Vq based on the flow calculation value F calculated in step SP3.
  • the flow quantitative value Vq includes at least one of the flow rate and the flow velocity of the fluid 2b.
  • step SP3 the processes of step SP31A to step SP33A in FIG. 8 may be executed in order.
  • the arithmetic processing unit 22a sets a value (D value) Vd related to the signal strength Pd of the DC component with respect to the signal strength of the AC component among the signal strengths included in the signal output from the light receiving unit 12.
  • the correction used may be performed at least, a frequency spectrum (also referred to as a third frequency spectrum) related to the signal intensity of the corrected AC component may be calculated, and the flow calculation value F may be calculated based on the third frequency spectrum.
  • the arithmetic processing unit 22a relates to the signal intensity Pd of the DC component extracted by the extraction unit 21a in step SP2 with respect to the intensity of at least the AC component contained in the signal output from the light receiving unit 12 in step SP1.
  • the correction process using the value (D value) Vd is performed.
  • the arithmetic processing unit 22a divides, for example, the intensity of the AC signal obtained in step SP2 by the D value Vd related to the signal intensity Pd of the DC component obtained in step SP2, and the AC signal corrected by calculation.
  • a numerical value of the signal strength Pd of the DC component to the mth power (m is a predetermined positive number) is applied to the D value Vd.
  • one or more calculations such as multiplication by appropriately multiplying each value by a coefficient and exponentiation may be performed.
  • step SP32A the arithmetic processing unit 22a calculates the frequency spectrum (third frequency spectrum) P (f) with respect to the time change of the intensity of the corrected AC signal obtained in step SP31A.
  • step SP33A the arithmetic processing unit 22a calculates the flow calculation value F related to the flow state of the fluid 2b in the inner 2i of the irradiated object 2 based on the third frequency spectrum P (f) calculated in step SP32A. ..
  • ⁇ ⁇ P (f) ⁇ f ⁇ df) is calculated
  • the second integral value ( ⁇ P (f) df) is calculated for the third frequency spectrum P (f) calculated in step SP32A.
  • the value corresponding to the average frequency fm at the difference frequency ⁇ f is obtained.
  • the flow calculation value F is calculated by calculating and further dividing this value by the second integral value ( ⁇ P (f) df).
  • ⁇ P (f) df the second integral value
  • a calculation may be performed by dividing by a specific value related to the signal strength of the third frequency spectrum.
  • the signal output from the light receiving unit 12 is corrected by using the D value Vd related to the intensity of the DC component in the signal output from the light receiving unit 12.
  • the D value Vd related to the intensity of the DC component in the signal output from the light receiving unit 12.
  • step SP3 for example, the processes of step SP31B to step SP33B in FIG. 9 may be executed in order.
  • the arithmetic processing unit 22a calculates a frequency spectrum (also referred to as a fourth frequency spectrum) for a time change in signal intensity based on the signal output from the light receiving unit 12, and uses this fourth frequency spectrum as the frequency spectrum.
  • the flow calculation value F may be calculated by performing an operation including correction using the value (D value) Vd related to the signal strength Pd of the DC component.
  • step SP31B the arithmetic processing unit 22a calculates the frequency spectrum (fourth frequency spectrum) P (f) with respect to the time change of the intensity of the signal output from the light receiving unit 12 in step SP1.
  • the arithmetic processing unit 22a calculates the fourth frequency spectrum P (f) for the AC signal obtained by the processing by the signal processing unit 21 in step SP2.
  • step SP32B and step SP33B the value (D) related to the signal intensity Pd of the DC component extracted by the extraction unit 21a in step SP2 based on the fourth frequency spectrum P (f) calculated in step SP31B by the arithmetic processing unit 22a.
  • the flow calculation value F is calculated by performing an operation including correction using Vd.
  • the arithmetic processing unit 22a calculates a provisional flow calculation value Fp using the fourth frequency spectrum P (f) calculated in step SP31B.
  • ⁇ ⁇ P (f) ⁇ f ⁇ df) is calculated
  • the second integral value ( ⁇ P (f) df) is calculated for the fourth frequency spectrum P (f) calculated in step SP31B.
  • a tentative flow calculation value Fp is calculated by calculating a value and further dividing this value by the second integral value ( ⁇ P (f) df).
  • ⁇ P (f) df the second integral value
  • a calculation may be performed by dividing by a specific value related to the signal strength of the fourth frequency spectrum.
  • step SP33B the arithmetic processing unit 22a used the D value Vd related to the signal strength Pd of the DC component extracted by the extraction unit 21a in step SP2 with respect to the provisional flow calculation value Fp calculated in step SP32B. Perform correction processing.
  • the arithmetic processing unit 22a uses, for example, the provisional flow calculation value Fp calculated in step SP32B to the 2m power of the signal strength Pd of the DC component extracted by the extraction unit 21a in step SP2 (m is a predetermined positive number). ) Is divided by the numerical value of) to calculate the flow calculation value F.
  • one or more calculations such as multiplication by appropriately multiplying by a coefficient, exponentiation, and addition or subtraction of constants may be performed.
  • the intensity of the DC component for the signal output from the light receiving unit 12 is used. Correction is performed using the D value Vd.
  • the relationship between the calculated flow value F and the actual flow state of the fluid 2b fluctuates. It becomes difficult.
  • the measurement accuracy in the measuring device 1 can be easily improved.
  • the measuring device 1 includes, for example, correction and calculation of a frequency spectrum using a value (D value) Vd related to a signal intensity Pd of a DC component based on a signal output from a light receiving unit 12.
  • D value a value related to a signal intensity Pd of a DC component based on a signal output from a light receiving unit 12.
  • the flow calculation value F is calculated.
  • the measurement accuracy in the measuring device 1 can be easily improved.
  • the measuring device 1 may have an input unit 50 or an output unit 60, for example, as shown in FIG.
  • the input unit 50 can be connected to the control unit 20 via, for example, the connection unit 30.
  • the input unit 50 can input various conditions (also referred to as measurement conditions) related to the measurement of the flow quantitative value Vq in the measuring device 1 to the control unit 20 in response to the operation of the user.
  • the measurement conditions include, for example, a frequency range in the frequency spectrum calculated by the arithmetic processing unit 22a.
  • an operation unit such as a keyboard, a mouse, a touch panel or a switch, or a microphone unit capable of inputting by voice is applied to the input unit 50.
  • the user can easily set desired measurement conditions.
  • the convenience of the measuring device 1 can be improved.
  • the measurement conditions include, for example, the amount or intensity of the irradiation light L1 emitted by the light emitting unit 11, the period in which the light receiving unit 12 outputs a signal, the sampling rate in AD conversion, the calculation formula related to the calibration data, and the coefficient of this calculation formula. Alternatively, it may include coefficients and exponents in division or subtraction.
  • the input unit 50 may be able to input various information regarding the fluid 2b, such as the viscosity, the concentration, or the size of the scatterer in the fluid 2b.
  • the output unit 60 can be connected to the control unit 20 via, for example, the connection unit 30.
  • the output unit 60 may include, for example, a display unit that visually outputs various information regarding the measurement of the flow quantitative value Vq, or a speaker that audibly outputs various information regarding the measurement of the flow quantitative value Vq. It may include a part.
  • a liquid crystal display or a touch panel is applied to the display unit.
  • the input unit 50 includes a touch panel
  • the input unit 50 and the display unit of the output unit 60 may be realized by one touch panel. As a result, for example, the number of constituent members of the measuring device 1 can be reduced, and the measuring device 1 can be downsized and easy to manufacture.
  • the display unit can visually display the measurement conditions, the frequency spectrum, the flow calculation value F as the measurement result, the flow quantitative value Vq, or the like
  • the user can use the flow quantitative value Vq.
  • Various information about the measurement can be easily recognized.
  • the user may be able to change the output mode of various information in the output unit 60 via the input unit 50.
  • the change of the output mode may include, for example, a change of the display format or a change of the displayed information.
  • the user can easily recognize various information regarding the measurement of the flow quantitative value Vq.
  • the convenience of the measuring device 1 can be improved.
  • the measuring device 1 may further include an external control unit 70, for example, as shown in FIG.
  • the external control unit 70 may include a computer such as a microcomputer (microcomputer), for example.
  • the external control unit 70 holds measurement conditions such as the amount or intensity of the irradiation light L1, the period in which the light receiving unit 12 outputs a signal, and the sampling rate in AD conversion, and inputs these measurement conditions to the control unit 20. It may be possible. As a result, for example, the number of items to be processed by the arithmetic processing unit 22a is reduced, and the processing speed of the control unit 20 can be improved.
  • the measurement conditions for example, the same conditions as those related to the measurement of the flow quantitative value Vq in the measuring device 1 which can be input by the input unit 50 are applied.
  • the external control unit 70 may be capable of controlling the input unit 50 and the output unit 60, for example. In this case, for example, the number of portions having various functions controlled by the control unit 20 (also referred to as functional units) is reduced, and the processing speed of the control unit 20 can be improved. Further, the external control unit 70 may have various other functional units composed of, for example, a plurality of electronic components. For example, a pressure gauge or a thermometer is applied to various other functional parts. As a result, for example, the degree of freedom in design of the measuring device 1 can be improved, and the convenience of the measuring device 1 can be improved.
  • Communication between the external control unit 70, the control unit 20, the input unit 50, and the output unit 60 may be realized by either a wired method or a wireless method.
  • communication between the control unit 20 and the external control unit 70 for example, communication according to an arbitrary communication standard is applied. Any communication standard includes, for example, IIC (Inter Integrated Circuit), SPI (Serial Peripheral Interface), UART (Universal Asynchronous Receiver Transmitter), and the like.
  • the sensor unit 10, the signal processing unit 21, and the external control unit 70 may be able to directly communicate with each other.
  • the measuring device 1 may not have the control unit 20, and the external control unit 70 may have the function of the control unit 20.
  • the delay of the signal generated between the control unit 20 and the external control unit 70 can be eliminated by the direct communication between the sensor unit 10 and the external control unit 70.
  • the processing speed of the measuring device 1 can be improved.
  • the convenience of the measuring device 1 can be improved.
  • the measurement system 200 may be adopted in which all the parts or at least two or more parts constituting the measuring device 1 are connected to each other so as to be communicable with each other.
  • the measurement system 200 according to the fourth embodiment includes a light emitting unit 11, a light receiving unit 12, a signal processing unit 21 including an extraction unit 21a, and an information processing unit 22 including an arithmetic processing unit 22a. I have.
  • the processing unit 22 is connected to the processing unit 22 so as to be communicable.
  • the predetermined exponent m in the above formula (3) is appropriately changed according to, for example, a factor (intensity lowering factor) in which the strength of the signal output from the light receiving unit 12 is uniformly lowered. May be done.
  • Factors for reducing the intensity include, for example, the intensity of the irradiation light L1 described above, the thickness of the flow path component 2a constituting the flow path of the fluid 2b, the inner diameter and material, the concentration of particles in the fluid 2b, and the light absorption rate.
  • the relationship between the position and the orientation of the light emitting unit 11, the flow path constituent unit 2a, and the light receiving unit 12 can be mentioned.
  • the measuring device 1 while setting a quantitative value (flow quantitative value) Vq relating to the flow state of the fluid 2b flowing in the transparent tube as the flow path constituent portion 2a by a pump or the like to a predetermined value.
  • the concentration of the particles in the fluid 2b was set to 10 as the first concentration, 7 as the second concentration which is 70% of the first concentration, and 3 as the third concentration which is 30% of the first concentration. Assume each case. In this case, for example, if the concentration of the particles in the fluid 2b is the first concentration, the first frequency spectrum P1 (f) shown by the curve Ln61 drawn by the thick solid line in FIG. 13A can be obtained.
  • the concentration of the particles in the fluid 2b is the second concentration
  • the first frequency spectrum P1 (f) shown by the curve Ln62 drawn by the thick alternate long and short dash line in FIG. 13A can be obtained.
  • the concentration of the particles in the fluid 2b is the third concentration
  • the first frequency spectrum P1 (f) shown by the curve Ln63 drawn by the thick two-dot chain line in FIG. 13A can be obtained.
  • the intensity of the first frequency spectrum P1 (f) decreases as the concentration of particles in the fluid 2b decreases.
  • the frequency spectrum after correction (second frequency spectrum) is calculated by dividing the first frequency spectrum P1 (f) by the D value Vd related to the signal intensity Pd of the DC component. Calculate P2 (f).
  • the second frequency spectrum P2 (f) is the fluid 2b as compared with the first frequency spectrum P1 (f) shown in FIG. 13 (a).
  • the frequency spectrum is close to the same regardless of the density of the particles in.
  • the curve Ln71 drawn by the thick solid line in FIG. 13B shows the second frequency spectrum P2 (f) obtained when the concentration of particles in the fluid 2b is the first concentration.
  • the curve Ln72 drawn by the thick alternate long and short dash line in FIG. 13B shows the second frequency spectrum P2 (f) obtained when the concentration of particles in the fluid 2b is the second concentration.
  • the curve Ln73 drawn by the thick two-dot chain line in FIG. 13B shows the second frequency spectrum P2 (f) obtained when the concentration of particles in the fluid 2b is the third concentration.
  • the strength lowering factor is the concentration of particles in the fluid 2b
  • the predetermined exponentiation m is set to 2.
  • the predetermined exponent m may be determined based on, for example, an experimental actual measurement result using the measuring device 1 at a specific timing, or may be determined based on a simulation. Specific timings include the timing before shipment of the measuring device 1, the timing of maintenance of the measuring device 1, and the like.
  • a method of determining a predetermined exponent m based on the experimental measurement result for example, the following method can be considered.
  • a signal output from the light receiving unit 12 is set to a constant predetermined value, which is a quantitative value (flow quantitative value) Vq related to the flow state of the fluid 2b flowing in the transparent tube as the flow path component 2a by a pump or the like.
  • a numerical value related to a specific strength lowering factor that uniformly lowers the strength of the above is set in order to a plurality of reference values, and measurement is performed by the measuring device 1.
  • the first frequency spectrum P1 (f) for the AC component of the signal output from the light receiving unit 12 is calculated, and the DC of the signal output from the light receiving unit 12 is calculated.
  • a predetermined exponent m is determined from the combination of the first frequency spectrum P1 (f) and the intensity Pd of the DC component obtained for each of the plurality of reference values.
  • the arithmetic processing unit 22a calculates, for example, a frequency spectrum P (f) for a time change in signal intensity with respect to the signal output from the light receiving unit 12, and a value based on this frequency spectrum P (f).
  • the value (D value) Vd related to the signal strength Pd of the DC component may be calculated to calculate the flow quantitative value Vq. Even if such a configuration is adopted, for example, the measurement accuracy in the measuring device 1 can be improved.
  • the value based on the frequency spectrum P (f) may be, for example, the flow calculation value F calculated in each of the above embodiments.
  • the value based on the frequency spectrum P (f) may be, for example, a flow calculation value F as a value related to the intensity based on the frequency spectrum P (f).
  • the calculated flow value F is, for example, an integral value of the frequency spectrum P (f) at a frequency in a predetermined range, a specific frequency component, a specific intensity, or two or more of these values. It may be a combination of values.
  • an integrated value ( ⁇ P (f) df) calculated for the frequency spectrum P (f) is applied to the integrated value at a frequency in a predetermined range.
  • the intensity of a predetermined frequency in the frequency spectrum P (f) is applied to the specific frequency component.
  • a predetermined frequency for example, a constant frequency, an intermediate frequency in the frequency spectrum P (f), or the like is applied.
  • the intermediate frequency for example, the frequency at the boundary where the integrated value of the intensity calculated from the low frequency side and the integrated value of the intensity calculated from the high frequency side of the frequency spectrum P (f) is a predetermined ratio is applied. Will be done.
  • the predetermined ratio is set to, for example, 1: 1.
  • the maximum value of the intensity in the frequency spectrum P (f) is applied to the specific intensity.
  • the sum of the integrated value and the specific frequency component, or the sum or difference between the specific frequency component and the specific intensity can be considered.
  • the arithmetic processing unit 22a flows based on the flow calculation value F, the value (D value) Vd related to the signal strength Pd of the DC component, and the calibration data (calibration curve) prepared in advance.
  • the quantitative value Vq can be calculated.
  • the fluid is based on the flow calculation value F, the D value Vd, and the calibration curve relating to the flow rate as the flow quantitative value Vq.
  • the flow rate of 2b can be calculated.
  • the fluid 2b is based on the flow calculation value F, the D value Vd, and the calibration curve relating to the flow velocity as the flow quantitative value Vq.
  • Flow velocity can be calculated.
  • at least one of the flow rate and the flow velocity of the fluid 2b can be calculated.
  • the measurement accuracy in the measuring device 1 can be improved.
  • the calibration data may be stored in a storage unit 22b or the like in advance before measuring the flow quantitative value Vq of the fluid 2b, for example.
  • the calibration data may be stored, for example, in the form of a function expression or in the form of a table.
  • the calibration data is, for example, a measuring device for the fluid 2b, targeting the fluid 2b flowing in the flow path component 2a with a known flow quantitative value Vq while switching the strength lowering factor between a plurality of states. It can be prepared by calculating the flow calculation value F according to 1. At this time, the calculation of the flow calculation value F by the measuring device 1 is performed by the light emitting unit 11 irradiating the irradiated object 2 with the irradiation light L1 and the light receiving unit 12 interfering light L2 including the light scattered by the irradiated object 2. And the calculation of the flow calculation value F by the arithmetic processing unit 22a.
  • the flow calculation value F is calculated by the measuring device 1 for the fluid 2b flowing in the flow path component 2a with the known flow quantitative value Vq, and the known flow quantitative value Vq and the flow calculation value F are used.
  • D value Vd, and calibration data can be derived based on the relationship.
  • an arithmetic expression (calibration curve) having a flow calculation value F as a parameter and a coefficient that changes according to the D value Vd can be derived as calibration data.
  • the equation (10) has a flow quantitative value Vq as y, a flow calculation value F as x, and coefficients a (z), b (z) and a variable c (z) that change according to z as the D value Vd.
  • the D value Vd may be, for example, the same value as the signal strength Pd of the DC component, or may be a value that has been calculated by multiplying the signal strength Pd of the DC component by a coefficient.
  • the coefficient a (z) is defined by the following equation (11) using, for example, the coefficients a1, b1 and the constant c1.
  • the coefficient b (z) is defined by, for example, the following equation (12) using the coefficients a2, b2 and the constant c2.
  • the variable c (z) is defined by, for example, the following equation (13) using the coefficients a3, b3 and the constant c3.
  • a (z) a1 ⁇ z 2 + b1 ⁇ z + c1 ⁇ ⁇ ⁇ (11)
  • b (z) a2 x z 2 + b2 x z + c2 ...
  • c (z) a3 ⁇ z 2 + b3 ⁇ z + c3 ... (13).
  • the six coefficients a1, b1, a2, b2, a3, b3 and the three constants c1, c2, c3 can be set, for example, as follows.
  • the D value Vd related to the signal intensity Pd of the DC component is set to the first D value Vd1, and the flow quantitative value Vq is a known value y1 in the flow path component 2a.
  • the flow calculation value F is calculated as a value x1 for the fluid 2b flowing in the flow path, and the flow calculation value F is calculated as a value x2 for the fluid 2b flowing in the flow path component 2a with the flow quantitative value Vq as a known value y2. If the flow calculation value F is calculated as the value x3 for the fluid 2b flowing in the flow path component 2a with the flow quantitative value Vq being a known value y3, the following equations (14) to (16) can be obtained. can get.
  • the D value Vd is set to the second D value Vd2, and the fluid 2b flowing in the flow path component 2a with the flow quantitative value Vq is a known value y4.
  • the flow calculation value F is calculated as a value x4, the flow calculation value Vq is a known value y5, and the flow calculation value F is calculated as a value x5 for the fluid 2b flowing in the flow path component 2a. If the flow calculation value F is calculated as the value x6 for the fluid 2b flowing in the flow path component 2a with the known value y6, the equation (22) can be obtained from the following equation (20).
  • Vd2 a1 x Vd2 2 + b1 x Vd2 + c1 ...
  • b (Vd2) a2 x Vd2 2 + b2 x Vd2 + c2 ...
  • c (Vd2) a3 ⁇ Vd2 2 + b3 ⁇ Vd2 + c3 ... (25).
  • the D value Vd is set to the second D value Vd3, and the fluid 2b flowing in the flow path component 2a with the flow quantitative value Vq having a known value y7 is targeted.
  • the flow calculation value F is calculated as a value x7
  • the flow calculation value Vq is a known value y8
  • the flow calculation value F is calculated as a value x8 for the fluid 2b flowing in the flow path component 2a. If the flow calculation value F is calculated as the value x9 for the fluid 2b flowing in the flow path component 2a with the known value y9, the equation (28) can be obtained from the following equation (26).
  • y7 a (Vd3) ⁇ x7 2 + b (Vd3) ⁇ x7 + c (Vd3) ...
  • y8 a (Vd3) ⁇ x8 2 + b (Vd3) ⁇ x8 + c (Vd3) ...
  • y9 a (Vd3) ⁇ x9 2 + b (Vd3) ⁇ x9 + c (Vd3) ... (28).
  • the function formula showing the calibration curve is represented by a polynomial including a term of order M (M is a natural number of 2 or more), for example, where the flow quantitative value Vq is y and the flow calculation value F is x as a variable. It may be what is done.
  • the function formula that defines the coefficient and the variable in the function formula showing the calibration line is represented by, for example, a majority term including an Nth order (N is a natural number of 2 or more) with the D value Vd as the variable z. It may be what is done.
  • the function expression showing the calibration line may have, for example, at least one term of a logarithmic term and a power term for the variable x related to the flow calculation value F, and a coefficient that does not change with the D value Vd. You may have. Further, the function expression that defines the coefficient in the function expression indicating the calibration line may have at least one term of a logarithmic term and a power term for the variable z related to the D value Vd, for example. It may have a coefficient that does not change depending on the D value Vd. In other words, for example, the flow quantitative value Vq may be calculated by an operation based on the flow calculation value F and the coefficient that changes according to the D value Vd. In other words, for example, the arithmetic processing unit 22a calculates the flow quantitative value Vq based on the flow calculation value F and the coefficient corresponding to the value (D value) Vd related to the signal strength Pd of the DC component. May be good.
  • the arithmetic processing unit 22a has, for example, processed the signal output from the light receiving unit 12 by the signal processing unit 21, and then the frequency spectrum of the signal including the AC component and the DC component. P (f) may be calculated. Even in this case, the arithmetic processing unit 22a can calculate the frequency spectrum P (f) related to the AC component of the signal output from the light receiving unit 12.
  • a value corresponding to the average frequency fm is used, but the present invention is not limited to this.
  • a specific value related to the frequency with respect to the frequency spectrum P (f) may be applied.
  • the specific value related to the frequency for example, the integral value of the intensity calculated from the low frequency side and the integral value of the intensity calculated from the high frequency side of the frequency spectrum P (f) are a predetermined ratio.
  • the frequency of the boundary is applied.
  • the predetermined ratio is set to, for example, 1: 1.
  • a frequency related to any intensity in the frequency range including the frequency showing the maximum value of the frequency spectrum P (f) may be applied.
  • a frequency having a maximum intensity value with respect to the frequency spectrum P (f) may be applied to the specific value related to the frequency.
  • the specific value related to the frequency includes, for example, the frequency related to any of the slopes in the frequency range including the frequency in which the absolute value of the slope of the change in intensity of the frequency spectrum P (f) shows the minimum value. May be applied.
  • a frequency may be applied in which the absolute value of the slope of the change in intensity with respect to the frequency spectrum P (f) is the minimum value.
  • the arithmetic processing unit 22a does not have to calculate the flow quantitative value Vq based on, for example, the flow calculation value F.
  • the user can grasp the change in the flow state of the fluid 2b based on the change in the flow calculation value F. Therefore, for example, the measurement accuracy in the measuring device 1 can be improved.
  • At least a part of the functions of the arithmetic processing unit 22a may be configured by hardware such as a dedicated electronic circuit, for example.
  • Measuring device 2 Irradiated object 2a Flow path component 2b Fluid 2i Internal 10 Sensor unit 11 Light emitting unit 12 Light receiving unit 20 Control unit 21 Signal processing unit 21a Extraction unit 21b Amplification unit 22 Information processing unit 22a Calculation processing unit 22b Storage unit 30 Connection unit 50 Input unit 60 Output unit 70 External control unit 200 Measurement system L1 Irradiation light L2 Interference light PG1 Program

Abstract

測定装置は、発光部と、受光部と、抽出部と、処理部と、を備える。発光部は、内部で流体が流れる被照射物に光を照射する。受光部は、被照射物で散乱した光を含む干渉光を受光して該干渉光の強度に応じた信号を出力する。抽出部は、受光部から出力された信号について信号強度の時間変化における直流成分を抽出する。処理部は、受光部から出力された信号に基づいて、直流成分の信号強度に係る値を用いた補正および信号強度の時間変化についての周波数スペクトルの算出を含む処理を行うことで、流体の流れの状態に係る計算値を算出する。

Description

測定装置、測定システム、測定方法およびプログラム
 本開示は、測定装置、測定システム、測定方法およびプログラムに関する。
 流体の流れの状態を定量的に測定する装置としては、例えば、レーザー血流計などの光学的な手法を用いて流体の流量および流速を測定する装置が知られている(例えば、特許第5806390号公報の記載を参照)。
 測定装置、測定システム、測定方法およびプログラムが開示される。
 測定装置の一態様は、発光部と、受光部と、抽出部と、処理部と、を備える。前記発光部は、内部で流体が流れる被照射物に光を照射する。前記受光部は、前記被照射物で散乱した光を含む干渉光を受光して該干渉光の強度に応じた信号を出力する。前記抽出部は、前記受光部から出力された信号について信号強度の時間変化における直流成分を抽出する。前記処理部は、前記受光部から出力された信号に基づいて、前記直流成分の信号強度に係る値を用いた補正および信号強度の時間変化についての周波数スペクトルの算出を含む処理を行うことで、前記流体の流れの状態に係る計算値を算出する。
 測定装置の他の一態様は、発光部と、受光部と、抽出部と、処理部と、を備える。前記発光部は、内部で流体が流れる被照射物に光を照射する。前記受光部は、前記被照射物で散乱した光を含む干渉光を受光して該干渉光の強度に応じた信号を出力する。前記抽出部は、前記受光部から出力された信号について信号強度の時間変化における直流成分を抽出する。前記処理部は、前記受光部から出力された信号に基づいて、信号強度の時間変化についての周波数スペクトルを算出し、該周波数スペクトルに基づく信号強度に係る値と前記直流成分の信号強度に係る値とを用いた演算によって、前記流体の流れの状態に係る定量値を算出する。
 測定システムの一態様は、発光部と、受光部と、抽出部と、処理部と、を備える。前記発光部は、内部で流体が流れる被照射物に光を照射する。前記受光部は、前記被照射物で散乱した光を含む干渉光を受光して該干渉光の強度に応じた信号を出力する。前記抽出部は、前記受光部から出力された信号について信号強度の時間変化における直流成分を抽出する。前記処理部は、前記受光部から出力された信号に基づいて、前記直流成分の信号強度に係る値を用いた補正および信号強度の時間変化についての周波数スペクトルの算出を含む処理を行うことで、前記流体の流れの状態に係る計算値を算出する。
 測定システムの他の一態様は、発光部と、受光部と、抽出部と、処理部と、を備える。前記発光部は、内部で流体が流れる被照射物に光を照射する。前記受光部は、前記被照射物で散乱した光を含む干渉光を受光して該干渉光の強度に応じた信号を出力する。前記抽出部は、前記受光部から出力された信号について、信号強度の時間変化における直流成分を抽出する。前記処理部は、前記受光部から出力された信号に基づいて、信号強度の時間変化についての周波数スペクトルを算出し、該周波数スペクトルに基づく信号強度に係る値と前記直流成分の信号強度に係る値とを用いた演算によって、前記流体の流れの状態に係る定量値を算出する。
 測定方法の一態様は、第1工程と、第2工程と、第3工程と、を有する。前記第1工程において、発光部によって内部で流体が流れている被照射物に光を照射しながら、受光部によって前記被照射物で散乱した光を含む干渉光を受光して該干渉光の強度に応じた信号を出力する。前記第2工程において、抽出部によって、前記第1工程において前記受光部から出力された信号について、信号強度の時間変化における直流成分を抽出する。前記第3工程において、処理部によって、前記第1工程において前記受光部から出力された信号に基づいて、前記第2工程において前記抽出部で抽出された前記直流成分の信号強度に係る値を用いた補正および信号強度の時間変化についての周波数スペクトルの算出を含む処理を行うことで、前記流体の流れの状態に係る計算値を算出する。
 測定方法の他の一態様は、第1工程と、第2工程と、第3工程と、を有する。前記第1工程において、発光部によって内部で流体が流れている被照射物に光を照射しながら、受光部によって前記被照射物で散乱した光を含む干渉光を受光して該干渉光の強度に応じた信号を出力する。前記第2工程において、抽出部によって、前記第1工程において前記受光部から出力された信号について、信号強度の時間変化における直流成分を抽出する。前記第3工程において、処理部によって、前記第1工程において前記受光部から出力された信号に基づいて、信号強度の時間変化についての周波数スペクトルを算出し、該周波数スペクトルに基づく信号強度に係る値と前記第2工程において前記抽出部で抽出された前記直流成分の信号強度に係る値とを用いた演算によって、前記流体の流れの状態に係る定量値を算出する。
 プログラムの一態様は、測定装置に含まれる処理部によって実行されることで、前記測定装置を、上記測定装置の一態様または上記測定装置の他の一態様として機能させる、プログラムである。
図1は、第1実施形態に係る測定装置の概略的な構成の一例を示すブロック図である。 図2は、第1実施形態に係る測定装置の一部の断面の一例を模式的に示す図である。 図3(a)は、照射光の強度が第1強度である場合において、流れ定量値が比較的小さな値Vq1である流体が内部を流れる被照射物からの干渉光に係る周波数スペクトルの一例を示す曲線Ln1、流れ定量値が比較的中程度の値Vq2である流体が内部を流れる被照射物からの干渉光に係る周波数スペクトルの一例を示す曲線Ln2、および流れ定量値が比較的大きな値Vq3である流体が内部を流れる被照射物からの干渉光に係る周波数スペクトルの一例を示す曲線Ln3、をそれぞれ示す図である。図3(b)は、照射光の強度が第1強度である場合において、流体が内部を流れる被照射物からの干渉光に係る信号強度のうちの直流成分の一例を示す図である。 図4(a)は、照射光の強度が第1強度よりも低い第2強度である場合において、流れ定量値が比較的小さな値Vq1である流体が内部を流れる被照射物からの干渉光に係る周波数スペクトルの一例を示す曲線Ln11、流れ定量値が比較的中程度の値Vq2である流体が内部を流れる被照射物からの干渉光に係る周波数スペクトルの一例を示す曲線Ln12、および流れ定量値が比較的大きな値Vq3である流体が内部を流れる被照射物からの干渉光に係る周波数スペクトルの一例を示す曲線Ln13、をそれぞれ示す図である。図4(b)は、照射光の強度が第1強度よりも低い第2強度である場合において、流体が内部を流れる被照射物からの干渉光に係る信号強度のうちの直流成分の一例を示す図である。 図5(a)は、流れ定量値を所定値とした際に、照射光の強度が第1強度である場合に算出される周波数スペクトルの一例を示す曲線Ln21、照射光の強度が第1強度よりも小さな第2強度である場合に算出される周波数スペクトルの一例を示す曲線Ln22、および照射光の強度が第2強度よりも低い第3強度である場合に算出される周波数スペクトルの一例を示す曲線Ln23、をそれぞれ示す図である。図5(b)は、照射光の強度が第1強度である場合における流れ定量値と参考流れ計算値との関係の一例を示す線Ln31、照射光の強度が第1強度よりも低い第2強度である場合における流れ定量値と参考流れ計算値との関係の一例を示す線Ln32、照射光の強度が第2強度よりも低い第3強度である場合における流れ定量値と参考流れ計算値との関係の一例を示す線Ln33、をそれぞれ示す図である。 図6(a)は、流れ定量値を所定値とした際に、照射光の強度が第1強度である場合に算出される補正後の周波数スペクトルの一例を示す曲線Ln41、照射光の強度が第1強度よりも小さな第2強度である場合に算出される補正後の周波数スペクトルの一例を示す曲線Ln42、および照射光の強度が第2強度よりも低い第3強度である場合に算出される補正後の周波数スペクトルの一例を示す曲線Ln43、をそれぞれ示す図である。図6(b)は、照射光の強度が第1強度である場合における流れ定量値と補正後の流れ計算値との関係の一例を示す線Ln51、照射光の強度が第1強度よりも低い第2強度である場合における流れ定量値と補正後の流れ計算値との関係の一例を示す線Ln52、照射光の強度が第2強度よりも低い第3強度である場合における流れ定量値と補正後の流れ計算値との関係の一例を示す線Ln53、をそれぞれ示す図である。 図7(a)は、第1実施形態に係る測定装置における動作の一例を示す流れ図である。図7(b)は、第1実施形態に係る測定装置における流れ計算値の算出処理の第1例を示す流れ図である。 図8は、第1実施形態に係る測定装置における流れ計算値の算出処理の第2例を示す流れ図である。 図9は、第1実施形態に係る測定装置における流れ計算値の算出処理の第3例を示す流れ図である。 図10は、第2実施形態に係る測定装置の概略的な構成の一例を示すブロック図である。 図11は、第3実施形態に係る測定装置の概略的な構成の一例を示すブロック図である。 図12は、第4実施形態に係る測定システムの概略的な構成の一例を示すブロック図である。 図13(a)は、流れ定量値を基準値Q0とした際に、流体における粒子の濃度が第1濃度である場合に算出される周波数スペクトルの一例を示す曲線Ln61、流体における粒子の濃度が第1濃度よりも低い第2濃度である場合に算出される周波数スペクトルの一例を示す曲線Ln62、流体における粒子の濃度が第2濃度よりも低い第3濃度である場合に算出される周波数スペクトルの一例を示す曲線Ln63、をそれぞれ示す図である。図13(b)は、流れ定量値を基準値Q0とした際に、流体における粒子の濃度が第1濃度である場合に算出される補正後の周波数スペクトルの一例を示す曲線Ln71、流体における粒子の濃度が第1濃度よりも低い第2濃度である場合に算出される補正後の周波数スペクトルの一例を示す曲線Ln72、流体における粒子の濃度が第2濃度よりも低い第3濃度である場合に算出される補正後の周波数スペクトルの一例を示す曲線Ln73、をそれぞれ示す図である。 図14(a)は、レーザー光の強度が第1強度である場合において、流量設定値が比較的小さな値Q1である流体が内部を流れる被照射物からの干渉光に係る周波数スペクトルの一例を示す曲線Ln101、流量設定値が比較的中程度の値Q2である流体が内部を流れる被照射物からの干渉光に係る周波数スペクトルの一例を示す曲線Ln102、および流量設定値が比較的大きな値Q3である流体が内部を流れる被照射物からの干渉光に係る周波数スペクトルの一例を示す曲線Ln103、をそれぞれ示す図である。図14(b)は、レーザー光の強度が第1強度である場合において、流量設定値と流量計算値との関係の一例を示す図である。 図15は、レーザー光の強度が第1強度よりも低い第2強度である場合において、流量設定値が比較的小さな値Q1である流体が内部を流れる被照射物からの干渉光に係る周波数スペクトルの一例を示す曲線Ln201、流量設定値が比較的中程度の値Q2である流体が内部を流れる被照射物からの干渉光に係る周波数スペクトルの一例を示す曲線Ln202、および流量設定値が比較的大きな値Q3である流体が内部を流れる被照射物からの干渉光に係る周波数スペクトルの一例を示す曲線Ln203、をそれぞれ示す図である。 図16(a)は、流量設定値を基準値Q0とした際に、レーザー光の強度が第1強度である場合に算出される周波数スペクトルの一例を示す曲線Ln301、レーザー光の強度が第1強度よりも小さな第2強度である場合に算出される周波数スペクトルの一例を示す曲線Ln302、およびレーザー光の強度が第2強度よりも低い第3強度である場合に算出される周波数スペクトルの一例を示す曲線Ln303、をそれぞれ示す図である。図16(b)は、レーザー光の強度が第1強度である場合における流量設定値と流量計算値との関係の一例を示す線Ln401、レーザー光の強度が第1強度よりも低い第2強度である場合における流量設定値と流量計算値との関係の一例を示す線Ln402、レーザー光の強度が第2強度よりも低い第3強度である場合における流量設定値と流量計算値との関係の一例を示す線Ln403、をそれぞれ示す図である。
 流体の流れの状態を定量的に測定する装置として、例えば、レーザー血流計などの光学的な手法を用いて流体の流量および流速の少なくとも一方を測定する装置が知られている。このレーザー血流計は、例えば、発光素子としてのレーザーから生体に照射されたレーザー光が散乱する際に生ずるドップラーシフトに起因したレーザー光の波長の変化に基づいて、生体の血流量を算出することができる。
 具体的には、周波数foのレーザー光が生体に照射されると、血管内における血液の流れ(散乱体である血球などの移動)による散乱と、他の固定組織(皮膚組織および血管を形成している組織など)による散乱と、によってそれぞれ散乱光が発生する。血球の径は、例えば、数マイクロメートル(μm)から10μm程度である。このとき、散乱体である血球での散乱で生じた散乱光の周波数fは、他の固定組織での散乱で生じた散乱光の周波数foと比較して、散乱体である血球などの移動速度に対応したドップラーシフトによってΔfだけ変化した周波数fo+Δfとなっている。この変調周波数Δfは、血流の速度をVとし、流体に対するレーザー光の入射角度をθとし、レーザー光の波長をλとすると、下記の式(1)で示される。
  Δf=(2V×cosθ)/λ ・・・(1)。
 ここでは、固定組織で散乱された周波数foの散乱光と、移動する血球で散乱された周波数fo+Δfの散乱光と、の相互干渉によって、差周波Δfが光ビート(うなり)として観測され得る。換言すれば、これらの2種類の散乱光を受光することで得られる信号(受光信号)には、これらの2種類の散乱光の相互干渉によって生ずる光ビートに対応する信号(光ビート信号ともいう)の成分が含まれる。
 ここで、光ビートの周波数に対応する差周波Δfは、元の光の周波数fよりも非常に小さい。例えば、780nmの波長の元の光は、周波数が400テラヘルツ(THz)程度の光であり、通常の受光素子で検出が可能である応答速度を超えている。これに対して、光ビートの周波数(光ビート周波数ともいう)Δfは、血球の移動速度に依存するものの、例えば、数キロヘルツ(kHz)から数十kHz程度であり、通常の受光素子が十分応答して検出することが可能である周波数帯域に含まれる。このため、受光素子を用いて、固定組織で散乱された周波数foの散乱光と、移動する血球で散乱された周波数fo+Δfの散乱光と、を受光することで得られる信号(受光信号)は、直流(DC)成分の信号(DC信号)に光ビート周波数Δfの強度変調信号が重畳されたような波形を示す。そして、周波数Δfの光ビート信号を解析することで、血流量を算出することができる。
 例えば、まず、受光素子によって検出された受光信号についてフーリエ変換(FFT)などの演算を用いて周波数スペクトルP(f)を算出する。次に、この周波数スペクトルP(f)に周波数fの重み付けを行うことで、重み付け後の周波数スペクトル(重み付け周波数スペクトルともいう)P(f)×fを算出する。次に、重み付け周波数スペクトルP(f)×fについて、所定の範囲の周波数で積分を行って、第1の計算値(∫{P(f)×f}df)を算出する。次に、下記の式(2)で示されるように、第1の計算値(∫{P(f)×f}df)を、周波数スペクトルP(f)を所定の範囲の周波数について積分を行うことで算出される第2の計算値(∫P(f)df)で除することで、光ビート周波数Δfにおける平均周波数fmを算出する。
  fm=∫{P(f)×f}df/{∫P(f)df} ・・・(2)。
 そして、平均周波数fmを用いた所定の計算で、生体の血流量を算出することが考えられる。所定の計算としては、例えば、平均周波数fmに対して、第2の計算値(∫P(f)df)で除するとともに定数を乗じる計算などが適用される。ここで、平均周波数fmを第2の計算値(∫P(f)df)で除することで算出される値は、流量に対応する計算値(流量計算値ともいう)として算出される。
 ここで、例えば、流路としての透明な管状体内において、数μm程度の光散乱体が分散している流体を流す際に、レーザー血流計を用いて流体の流量Qを測定する構成を想定する。この構成では、例えば、ポンプなどで流路を流れる流体の流量(流量設定値ともいう)を設定することが可能であるものとする。ここでは、例えば、流量設定値をQ1、Q2、Q3の順に増加させ、各流量設定値Q1,Q2,Q3について、レーザー血流計を用いて、光ビート信号に係る周波数スペクトルP(f)、重み付け周波数スペクトルP(f)×f、平均周波数fmおよび流量計算値を算出する場合を想定する。この場合には、例えば、流量設定値がQ1の際には、図14(a)の太い実線で描かれた曲線Ln101で示される周波数スペクトルP(f)から平均周波数f1mが算出される。流量設定値がQ2の際には、図14(a)の太い一点鎖線で描かれた曲線Ln102で示される周波数スペクトルP(f)から平均周波数f2mが算出される。流量設定値がQ3の際には、図14(a)の太い二点鎖線で描かれた曲線Ln103で示される周波数スペクトルP(f)から平均周波数f3mが算出される。
 ここでは、例えば、仮に、図14(b)の太い実線で示されるように、流量設定値Q1,Q2,Q3と、平均周波数f1m,f2m,f3mをそれぞれ用いた計算で算出される流量計算値v1,v2,v3と、が比例関係を有していれば、平均周波数fmを用いた所定の計算で、流体の流量が正しく算出される。
 ところで、例えば、レーザーの温度の上昇、レーザーの経年劣化などに起因して、生体に照射するレーザー光の強度が低下する場合がある。ここでは、レーザー光の強度が第1強度から第2強度に低下したものとする。この場合には、レーザー光の強度の低下に応じて、受光素子から出力される受光信号の強度が一様に低下する。例えば、流量設定値がQ1の際には、図15の太い実線で描かれた曲線Ln201で示される周波数スペクトルP(f)が得られる。例えば、流量設定値がQ2の際には、図15の太い一点鎖線で描かれた曲線Ln202で示される周波数スペクトルP(f)が得られる。例えば、流量設定値がQ3の際には、図15の太い二点鎖線で描かれた曲線Ln203で示される周波数スペクトルP(f)が得られる。図15で示された周波数スペクトルP(f)においては、図14(a)で示された周波数スペクトルP(f)に対して、レーザー光の強度の低下に応じて、周波数ごとの信号の強度が一様に低下している。
 ここで、例えば、流量設定値を基準値(基準設定値ともいう)であるQ0で一定として、意図的にレーザーから発せられるレーザー光の強度を、第1強度である1、第2強度である0.5および第3強度である0.25とした場合について、それぞれ周波数スペクトルP(f)を算出した結果の一例を図16(a)に示している。図16(a)では、レーザー光の強度が第1強度である場合に算出される周波数スペクトルP(f)が太い実線で描かれた曲線Ln301で示され、レーザー光の強度が第2強度である場合に算出される周波数スペクトルP(f)が太い一点鎖線で描かれた曲線Ln302で示され、レーザー光の強度が第3強度である場合に算出される周波数スペクトルP(f)が太い二点鎖線で描かれた曲線Ln303で示されている。図16(a)で示されるように、レーザー光の強度の低下に応じて、周波数スペクトルP(f)における周波数ごとの信号の強度が低下する。このように、レーザー光の強度の低下に応じて、周波数スペクトルP(f)における周波数ごとの信号の強度が低下すると、図16(b)で示されるように、流量設定値と流量計算値との比例関係が、レーザー光の強度ごとに異なるものとなる。具体的には、レーザー光の強度が第1強度であれば、流量設定値と流量計算値とが、図16(b)の太い実線で描かれた線Ln401で示される比例関係を有する。レーザー光の強度が第2強度であれば、流量設定値と流量計算値とが、図16(b)の太い一点鎖線で描かれた線Ln402で示される比例関係を有する。レーザー光の強度が第3強度であれば、流量設定値と流量計算値とが、図16(b)の太い二点鎖線で描かれた線Ln403で示される比例関係を有する。このため、例えば、流量計算値から流体の流量Qを算出しても、レーザー光の強度に応じて、異なる流体の流量Qが算出されることとなり、流量Qの測定精度が低下し得る。
 ここで、受光素子から出力される受光信号の強度が一様に低下する要因(強度低下要因ともいう)は、発光素子から生体に照射されるレーザー光などの光(照射光ともいう)の強度の低下だけに限られない。他の強度低下要因としては、例えば、流路を構成する管状体の厚さ、内径および材質、流体における粒子の濃度および光の吸収率、発光素子と管状体と受光素子との間における位置および姿勢の関係などが考えられる。
 そして、上記の問題は、流体の流量を測定する測定装置に限られず、流体の流量および流速の少なくとも一方を含む流体の流れの状態に係る定量値を測定する測定装置一般に共通する。
 そこで、本開示の発明者らは、流体の流れの状態を定量的に測定する装置について、測定精度を向上させることができる技術を創出した。
 これについて、以下、第1実施形態から第6実施形態について図面を参照しつつ説明する。図面においては同様な構成および機能を有する部分に同じ符号が付されており、下記説明では重複説明が省略される。図面は模式的に示されたものである。
 <1.第1実施形態>
 <1-1.測定装置>
 図1および図2で示されるように、第1実施形態に係る測定装置1は、例えば、流路を構成する物体(流路構成部ともいう)2aの内部2iを流れる流体2bの流れの状態を定量的に測定することができる。ここで、流路構成部2aは、例えば、生体内の血管または各種装置の配管などの管状の物体(管状体ともいう)を含み得る。流体2bの流れの状態に係る定量的な値(定量値とも流れ定量値ともいう)Vqは、例えば、流量および流速のうちの少なくとも一方の値を含み得る。流量は、単位時間あたりに流路を通過する流体の量である。流体の量は、例えば、体積または質量で表され得る。流速は、流路における流体の流れの速さである。流れの速さは、単位時間あたりに流体が進む距離で表され得る。
 第1実施形態に係る測定装置1は、例えば、光のドップラー効果を利用して流体2bの流れの状態を定量的に測定することができる。ここで、例えば、流体2bに対する光の照射に応じて、その光が流体2bで散乱を生じる場合には、流体2bの流れに応じたドップラー効果によって、流体2bの移動速度に応じた光の周波数のシフト(ドップラーシフトともいう)が生じる。第1実施形態に係る測定装置1は、このドップラーシフトを利用して、流体2bの流れの状態に係る流れ定量値Vqを測定することができる。後述する測定装置1の各種構成は、適宜周知あるいは公知の方法を用いて製造され得る。
 ここで、流れの状態が定量的に測定される対象物(被測定物ともいう)としての流体2bは、例えば、その流体2b自体が光を散乱するもの、または光を散乱する物質(散乱物質ともいう)もしくは光を散乱する物体(散乱体ともいう)を流動させるものを含む。具体的には、この被測定物としての流体2bには、例えば、水、血液、プリンター用のインク、または粉体などの散乱体を含む気体などが適用される。ここで、例えば、散乱物質または散乱体が流体に追従して流動する場合には、「散乱物質または散乱体の流量」を「流体の流量」とみなしてもよいし、「散乱物質または散乱体の流速」を「流体の流速」とみなしてもよい。
 図1および図2で示されるように、第1実施形態に係る測定装置1は、例えば、センサー部10と、制御部20と、を備えている。また、測定装置1は、例えば、接続部(コネクタ部)30を備えている。
 センサー部10は、例えば、発光部11と、受光部12と、を有する。
 発光部11は、例えば、内部2iで流体2bが流れる物体(被照射物ともいう)2に光(照射光ともいう)L1を照射することができる。被照射物2は、少なくとも管状体などの流路を構成する物体(流路構成部)2aと、流路を流れる流体2bと、を含む。照射光L1には、例えば、被測定物としての流体2bに応じた所定の波長の光が適用される。例えば、流体2bが血液である場合には、照射光L1の波長は、600ナノメートル(nm)から900nm程度に設定される。また、例えば、流体2bがプリンター用のインクである場合には、被照射物2に照射される光の波長は、700nmから1000nm程度に設定される。発光部11には、例えば、垂直共振器面発光レーザー(VCSEL:Vertical Cavity Surface Emitting LASER)などの半導体レーザー素子が適用される。ここでは、例えば、半導体レーザー素子における温度の上昇および経年劣化などに起因して、照射光L1の強度が低下する場合がある。
 受光部12は、例えば、照射光L1のうち、被照射物2で散乱した光を含む干渉光L2を受光することができる。そして、受光部12は、例えば、受光した光を光の強度に応じた電気信号に変換することができる。換言すれば、受光部12は、例えば、被照射物2で散乱した光を含む干渉光L2を受光して、この干渉光L2の強度に応じた信号を出力することができる。受光部12が受光することができる干渉光L2は、被照射物2からの散乱光のうち、流体2bの周囲で静止している物体(静止物体ともいう)からのドップラーシフトを生じていない散乱光と、流体2bからのシフト量がΔfであるドップラーシフトを生じた散乱光と、によって生じる干渉光を含む。ここで、例えば、流体2bが血管内を流れる血液である場合には、静止物体は、皮膚および血管などの物体(流路構成部)2aを含む。例えば、流体2bが配管内を流れるインクである場合には、静止物体は、配管などの流体2bの流路を構成する物体(流路構成部)2aなどを含む。この場合には、配管は、例えば、透光性を有する材料によって構成され得る。透光性を有する材料には、例えば、ガラスまたはポリマー樹脂などが適用される。
 ここで、例えば、時間の経過に対する干渉光L2の強度の変化(時間変化ともいう)は、ドップラーシフトを生じていない散乱光の周波数と、ドップラーシフトを生じた散乱光の周波数と、の差(差周波ともいう)Δfに対応する周波数のうなりを示し得る。このため、例えば、受光部12から出力される干渉光L2の強度に応じた信号は、干渉光L2の強度の時間変化におけるうなりに対応する信号(うなり信号とも光ビート信号ともいう)の成分を含み得る。受光部12には、例えば、干渉光L2の強度の時間変化におけるうなりに追従することができる能力(時間分解能ともいう)を有するものが適用される。受光部12が受光することができる光の波長は、例えば、照射光L1の波長および流体2bの速度の範囲などの測定条件に応じて設定され得る。受光部12には、例えば、シリコン(Si)フォトダイオード、ガリウムヒ素(GaAs)フォトダイオード、ヒ化インジウムガリウム(InGaAs)フォトダイオード、またはゲルマニウム(Ge)フォトダイオードなどの各種のフォトダイオードが適用される。
 また、センサー部10は、さらにパッケージ13を有していてもよい。パッケージ13は、発光部11および受光部12を収容するものである。図2の例では、測定装置1は、センサー部10、制御部20および接続部30が実装された状態で位置している基板(実装基板ともいう)1sを有する。実装基板1sには、例えば、プリント基板などが適用される。ここでは、センサー部10のパッケージ13が実装基板1s上に位置している。センサー部10と制御部20との間および制御部20と接続部30との間のそれぞれは、例えば、実装基板1sによって電気的に接続されている状態にある。
 パッケージ13は、例えば、立方体状または直方体状の外形を有する。パッケージ13は、例えば、上方に向けてそれぞれ開口している第1凹部R1および第2凹部R2を有する。第1凹部R1には、発光部11が実装された状態で位置している。第2凹部R2には、受光部12が実装された状態で位置している。ここで、例えば、発光部11から発せられる照射光L1は、第1凹部R1の開口を介して被照射物2に照射される。また、例えば、被照射物2からの干渉光L2は、第2凹部R2の開口を介して受光部12によって受光される。パッケージ13には、例えば、セラミック材料または有機材料などで構成されている配線基板の積層体が適用される。セラミック材料には、例えば、酸化アルミニウム質焼結体またはムライト質焼結体などが適用される。有機材料には、例えば、エポキシ樹脂またはポリイミド樹脂などが適用される。
 また、例えば、図2で示されるように、パッケージ13のうちの第1凹部R1および第2凹部R2のそれぞれの開口を覆うように、透光性を有するカバー部材14が位置していてもよい。このような構成が採用されれば、例えば、パッケージ13の第1凹部R1内において発光部11が密閉された状態、およびパッケージ13の第2凹部R2内において受光部12が密閉された状態が実現され得る。カバー部材14には、例えば、ガラス板などが適用される。
 制御部20は、例えば、測定装置1を制御することができる。制御部20は、例えば、トランジスタもしくはダイオードなどの能動素子およびコンデンサなどの受動素子などを含む複数の電子部品を有する。接続部30は、例えば、制御部20と外部装置とを電気的に接続することができる。ここでは、例えば、複数の電子部品を集積して、1つ以上の集積回路(IC)または大規模集積回路(LSI)などを形成したり、複数のICまたはLSIなどをさらに集積して形成したりすることで、制御部20および接続部30を含む各種機能部が構成され得る。制御部20および接続部30を構成する複数の電子部品は、実装基板1s上に実装されている状態にある。これにより、例えば、パッケージ13と制御部20とが電気的に接続されているとともに、制御部20と接続部30とが電気的に接続されている状態にある。
 制御部20は、例えば、信号処理部21と、情報処理部22と、を有する。
 信号処理部21は、例えば、受光部12から受信した電気信号に対して種々の処理を行うことができる。種々の処理には、例えば、電気信号を電圧値に変換する処理、電気信号の交流(AC)成分と直流(DC)成分とを分離する処理、電気信号の強度を増幅する処理およびアナログ信号をデジタル信号に変換する処理などが含まれ得る。このため、信号処理部21は、例えば、受光部12から出力された信号について、信号の強度(信号強度ともいう)の時間変化におけるDC成分を抽出する部分(抽出部ともいう)21aとしての機能を有する。また、信号処理部21は、例えば、信号を増幅することが可能である部分(増幅部ともいう)21bとしての機能を有していてもよい。増幅部21bは、例えば、抽出部21aにおいて受光部12から出力された電気信号をDC成分とAC成分とに分けた後にAC成分の信号(AC信号ともいう)を増幅してもよい。この場合には、信号処理部21で行われる種々の処理には、例えば、電気信号を電圧値に変換する処理、電気信号のAC成分とDC成分とを分離する処理(AC-DC分離処理ともいう)、およびAC信号を増幅する処理、ならびにアナログ信号をデジタル信号に変換する処理などが含まれる。
 信号処理部21は、例えば、電流-電圧変換回路(I-V変換回路)、抽出部21aとしての交流-直流分離回路(AC-DCデカップリング回路)、増幅部21bとしての交流増幅回路(AC増幅回路)およびアナログ-デジタル変換回路(AD変換回路)などの回路を有し得る。この場合には、例えば、抽出部21aは、受光部12から出力された信号について、信号強度の時間変化におけるAC成分およびDC成分を抽出することができる。ここで、信号処理部21では、例えば、増幅部21bが受光部12から出力された信号を増幅した後に、抽出部21aが電気信号のAC成分とDC成分とを分離することで、AC成分およびDC成分を抽出してもよい。上記のようにして、信号処理部21は、例えば、受光部12から受信したアナログの電気信号に対して、AC-DC分離処理、増幅処理およびAD変換処理などの処理を施した上で、情報処理部22に向けて、デジタル信号を出力することができる。
 情報処理部22は、例えば、演算処理部22aと、記憶部22bと、を有する。
 演算処理部22aは、例えば、電気回路としてのプロセッサを有する。プロセッサは、例えば、1つ以上のプロセッサ、コントローラ、マイクロプロセッサ、マイクロコントローラ、特定用途向け集積回路(ASIC)、デジタル信号処理装置、プログラマブルロジックデバイス、またはこれらのデバイスもしくは任意の構成の組み合わせ、あるいは他の既知のデバイスもしくは構成の組み合わせを含み得る。
 記憶部22bは、例えば、即時呼び出し記憶装置(RAM)および読み出し専用メモリ(ROM)などを有する。記憶部22bは、例えば、プログラムPG1を含むファームウェアを記憶している状態にある。演算処理部22aは、例えば、記憶部22bに記憶されたファームウェアに従って、1つ以上のデータの演算またはデータ処理を実行することができる。換言すれば、例えば、演算処理部22aがプログラムPG1を実行することで、測定装置1の各種機能を実現することができる。これにより、情報処理部22は、例えば、発光部11および受光部12の動作を制御することができる。
 ところで、例えば、受光部12から出力される電気信号の周波数および信号強度は、光のドップラー効果に依存する。このため、例えば、電気信号の周波数と信号強度との関係を示す周波数スペクトルP(f)は、流体2bの流れ定量値(流量または流速)Vqに応じて変化する。そこで、情報処理部22は、例えば、演算処理部22aによって、受光部12から出力されて信号処理部21で処理された電気信号に基づいて流体2bの流れの状態を定量的に測定するための演算を実行することができる。
 演算処理部22aは、例えば、受光部12から出力された信号について、信号強度の時間変化についての周波数ごとの信号強度に係る分布を示すパワースペクトル(周波数スペクトルともいう)P(f)を算出することができる。換言すれば、演算処理部22aは、例えば、受光部12から出力された信号の強度の時間変化について周波数スペクトルP(f)を算出することができる。具体的には、演算処理部22aは、例えば、受光部12から出力された信号を対象とした信号処理部21におけるAC-DC分離処理および増幅処理で得たAC信号について、信号強度の時間の経過に対する変化(時間変化)についての周波数スペクトルP(f)を算出することができる。周波数スペクトルP(f)は、例えば、信号処理部21から出力されるAC信号の強度の時間変化について、フーリエ変換などの演算を用いた解析がなされることで得られる。周波数スペクトルP(f)における周波数の範囲は、例えば、AD変換回路におけるサンプリングレートに基づいて設定され得る。
 ここでは、例えば、流体2bの流れ定量値(流量または流速)Vqが比較的小さな値Vq1であれば、演算処理部22aは、図3(a)の太い実線で描かれた曲線Ln1で示されるような周波数スペクトルP(f)を算出することができる。例えば、流体2bの流れ定量値(流量または流速)Vqが比較的中程度の値Vq2であれば、演算処理部22aは、図3(a)の太い一点鎖線で描かれた曲線Ln2で示されるような周波数スペクトルP(f)を算出することができる。例えば、流体2bの流れ定量値(流量または流速)Vqが比較的大きな値Vq3であれば、演算処理部22aは、図3(a)の太い二点鎖線で描かれた曲線Ln3で示されるような周波数スペクトルP(f)を算出することができる。図3(a)で示されるように、流体2bの流れ定量値Vqが増加すると、周波数スペクトルP(f)の形状は、周波数の変化に対して信号強度がなだらかに増減するようになる。また、演算処理部22aは、例えば、受光部12から出力された信号を対象とした信号処理部21におけるAC-DC分離処理および増幅処理で得たDC信号を取得することができる。ここでは、例えば、図3(b)の太い実線で描かれた線Ln4で示されるようなDC成分の信号を得ることができる。演算処理部22aは、例えば、所定の時間内におけるDC信号の信号強度の平均値、および特定のタイミングにおけるDC信号の信号強度などを、DC成分の信号強度Pdとして得ることができる。ここでは、例えば、照射光L1の強度が第1強度である場合に、図3(a)の周波数スペクトルP(f)および図3(b)のDC成分の信号強度Pdが得られるものとする。
 ここで、例えば、仮に照射光L1の強度が第1強度よりも低い第2強度である場合を想定する。この場合には、例えば、流体2bの流れ定量値(流量または流速)Vqが比較的小さな値Vq1であれば、演算処理部22aで算出される周波数スペクトルP(f)は、図4(a)の太い実線で描かれた曲線Ln11で示されるようなものとなる。例えば、流体2bの流れ定量値(流量または流速)Vqが比較的中程度の値Vq2であれば、演算処理部22aで算出される周波数スペクトルP(f)は、図4(a)の太い一点鎖線で描かれた曲線Ln12で示されるようなものとなる。例えば、流体2bの流れ定量値(流量または流速)Vqが比較的大きな値Vq3であれば、演算処理部22aで算出される周波数スペクトルP(f)は、図4(a)の太い二点鎖線で描かれた曲線Ln13で示されるようなものとなる。また、演算処理部22aで得られるDC成分の信号は、例えば、図4(b)の太い実線で描かれた線Ln14で示されるようなものとなる。
 ここでは、流体2bの流れ定量値Vqが同一であっても、照射光L1の強度が第1強度から第2強度へ低下すると、受光部12で受光される干渉光のL2の強度が低下する。これにより、例えば、図3(a)および図4(a)で示されるように、周波数スペクトルP(f)における信号の強度が一様に低下する。また、この場合には、例えば、図3(b)および図4(b)で示されるように、演算処理部22aで得られるDC成分の信号強度Pdも、周波数スペクトルP(f)の信号の強度と同様に低下する。
 <<流れ計算値の算出>>
 演算処理部22aは、例えば、受光部12から出力された信号についてのAC成分に係る周波数スペクトルP(f)に対して、DC成分の信号強度Pdに係る値(D値ともいう)Vdを用いた補正を含む処理を行い、流体2bの流れの状態に係る計算値(流れ計算値ともいう)Fを算出することができる。流れの状態には、例えば、流量および流速の少なくとも一方が含まれ得る。
 第1実施形態では、演算処理部22aは、まず、受光部12から出力された信号についてのAC成分に係る周波数スペクトル(第1周波数スペクトルともいう)P1(f)を算出し、この第1周波数スペクトルP1(f)における周波数ごとの信号強度に対して、DC成分の信号強度Pdに係る値(D値)Vdを用いた補正の処理を行う。これにより、補正後の周波数スペクトル(第2周波数スペクトルともいう)P2(f)が算出される。そして、演算処理部22aは、第2周波数スペクトルP2(f)に基づいて流体2bの流れの状態に係る計算値(流れ計算値)Fを算出する。
 ここで、DC成分の信号強度Pdに係る値(D値)Vdを用いた補正の処理としては、例えば、D値Vdを用いた除算が採用される。ここでは、例えば、D値Vdを用いた除算によって、受光部12から出力される信号の強度の一様な低下を、この一様な低下とともに低下するDC成分によって相殺することができる。具体的には、D値Vdを用いた補正の処理として、例えば、第1周波数スペクトルP1(f)を、D値Vdで除する計算が採用される。D値Vdには、例えば、DC成分の信号強度Pdのm乗(mは所定の正の数)の数値が適用される。この場合には、次の式(3)が成立する。信号強度Pdを底とする冪(べき)指数mには、例えば、1.3が適用される。
  P2(f)=P1(f)/(Pd) ・・・(3)。
 この式(3)では、例えば、右辺の分母および分子の少なくとも一方もしくは右辺に全体に対して、適宜係数を乗じる乗算、冪乗を行う計算および定数の加算もしくは減算などのうちの1つ以上の計算が施されてもよい。
 また、ここで、第2周波数スペクトルP2(f)に基づく流れ計算値Fの算出は、例えば、次のようにして行われ得る。第2周波数スペクトルP2(f)に周波数fの重み付けを行うことで、重み付け後の周波数スペクトル(第3周波数スペクトルともいう)P2(f)×fを算出する。次に、第3周波数スペクトルP2(f)×fについて、所定の範囲の周波数で積分を行うことで、第1積分値(∫{P2(f)×f}df)を算出する。また、第2周波数スペクトルP2(f)について、所定の範囲の周波数で積分を行うことで、第2積分値(∫P2(f)df)を算出する。そして、第1積分値を第2積分値で除することで差周波Δfにおける平均周波数fmに相当する値を算出し、この値をさらに第2積分値(∫P2(f)df)で除することで、流れ計算値Fを算出する。この場合には、次の式(4)が成立する。ここでは、2回目の第2積分値(∫P2(f)df)の除算は、例えば、増幅部21bにおける周波数の増加に対する増幅率の減衰を補正するためのものである。
  F=∫{P2(f)×f}df/〔∫P2(f)df〕 ・・・(4)。
 この式(4)では、例えば、右辺の分母および分子の少なくとも一方もしくは右辺の全体に対して、適宜係数を乗じる乗算、冪乗を行う計算および定数の加算もしくは減算などのうちの1つ以上の計算が施されてもよい。また、ここでは、2回目の第2積分値(∫P2(f)df)の除算の代わりに、例えば、第2周波数スペクトルP2(f)の信号強度に係る特定の値で除する計算が行われてもよい。信号強度に係る特定の値には、例えば、信号強度の最大値、特定の周波数における信号強度、および中間の周波数における信号強度などが適用される。中間の周波数には、例えば、第2周波数スペクトルP2(f)について低周波数側から算出される強度の積分値と高周波数側から算出される強度の積分値とが所定の比率となる境界の周波数が適用される。所定の比率は、例えば、1:1などに設定される。
 ここで、例えば、ポンプなどで流路構成部2aとしての透明チューブ内を流れる流体2bの流れの状態に係る定量的な値(流れ定量値)Vqを所定の値に設定しつつ、測定装置1で、照射光L1の強度を、第1強度である1、第1強度の半分の強度(第2強度ともいう)である0.5および第2強度の半分の強度(第3強度ともいう)である0.25としたそれぞれの場合を想定する。この場合には、例えば、照射光L1の強度が第1強度であれば、図5(a)の太い実線で描かれた曲線Ln21で示される第1周波数スペクトルP1(f)が得られる。また、測定装置1では、例えば、照射光L1の強度が第2強度であれば、図5(a)の太い1点鎖線で描かれた曲線Ln22で示される第1周波数スペクトルP1(f)が得られる。また、測定装置1では、例えば、照射光L1の強度が第3強度であれば、図5(a)の太い2点鎖線で描かれた曲線Ln23で示される第1周波数スペクトルP1(f)が得られる。ここでは、図5(a)で示されるように、照射光L1の強度の低下に応じて、第1周波数スペクトルP1(f)の強度が低下する。
 ここで、例えば、仮に、流れ定量値Vqを変更しつつ、D値Vdを用いた補正の処理を行うことなく、参考例としての流れ計算値(参考流れ計算値ともいう)Foを算出する場合を想定する。ここでは、次の式(5)に従って、参考流れ計算値Foが算出される。
  Fo=∫{P1(f)×f}df/〔∫P1(f)df〕 ・・・(5)。
 この式(5)でも、例えば、右辺の分母および分子の少なくとも一方もしくは右辺の全体に対して、適宜係数を乗じる乗算、冪乗を行う計算および定数の加算もしくは減算などのうちの1つ以上の計算が施されてもよい。また、式(5)では、2回目の積分値∫P1(f)による除計の代わりに、例えば、周波数スペクトルP1(f)の信号強度に係る特定の値で除する計算が行われてもよい。
 ここでは、例えば、照射光L1の強度が第1強度であれば、図5(b)の太い実線で描かれた線Ln31で示される流れ定量値と参考流れ計算値Foとの関係が得られる。また、例えば、照射光L1の強度が第2強度であれば、図5(b)の太い1点鎖線で描かれた線Ln32で示される流れ定量値と参考流れ計算値Foとの関係が得られる。また、例えば、照射光L1の強度が第3強度であれば、図5(b)の太い2点鎖線で描かれた線Ln33で示される流れ定量値と参考流れ計算値Foとの関係が得られる。図5(b)で示されるように、流れ定量値と参考流れ計算値Foとの比例関係が、照射光L1の強度ごとに異なるものとなる。
 これに対して、第1実施形態に係る測定装置1では、例えば、第1周波数スペクトルP1(f)を、D値Vdを用いた補正の処理を行うことで、補正後の周波数スペクトル(第2周波数スペクトル)P2(f)を算出する。ここでは、図6(a)で示されるように、第2周波数スペクトルP2(f)は、図5(a)で示された第1周波数スペクトルP1(f)と比較して、照射光L1の強度にかかわらず同一に近い周波数スペクトルとなる。例えば、図6(a)の太い実線で描かれた曲線Ln41は、照射光L1の強度が第1強度である場合に得られる第2周波数スペクトルP2(f)を示す。例えば、図6(a)の太い1点鎖線で描かれた曲線Ln42は、照射光L1の強度が第2強度である場合に得られる第2周波数スペクトルP2(f)を示す。例えば、図6(a)の太い2点鎖線で描かれた曲線Ln43は、照射光L1の強度が第3強度である場合に得られる第2周波数スペクトルP2(f)を示す。
 そして、図6(b)で示されるように、上記の式(4)に従って算出される流れ計算値Fは、図5(b)で示された流れ定量値と参考流れ計算値Foとの比例関係と比較して、照射光L1の強度にかかわらず流れ定量値と流れ計算値Fとが同一に近い比例関係を示す。例えば、図6(b)の太い実線で描かれた線Ln51は、照射光L1の強度が第1強度である場合における流れ定量値と流れ計算値Fとの関係を示す。例えば、図6(b)の太い1点鎖線で描かれた線Ln52は、照射光L1の強度が第2強度である場合における流れ定量値と流れ計算値Fとの関係を示す。例えば、図6(b)の太い2点鎖線で描かれた線Ln53は、照射光L1の強度が第3強度である場合における流れ定量値と流れ計算値Fとの関係を示す。
 このようにして、例えば、受光部12から出力される信号の強度が一様に低下するような場合であっても、受光部12から出力される信号についてのDC成分の強度に係るD値Vdを用いた補正を行うことで、流れ計算値Fと実際の流体2bの流れの状態との間における関係が変動しにくくなる。
 <<流れ定量値の算出>>
 演算処理部22aは、例えば、上記のように算出した流れ計算値Fに基づいて、流体2bの流れの状態に係る定量値(流れ定量値)Vqを算出することができる。例えば、演算処理部22aは、流れ計算値Fと、予め準備された検量データ(検量線ともいう)と、に基づいて、流体2bの流れに係る定量的な値(流れ定量値)Vqを算出することができる。ここで、例えば、流体2bの流量に係る検量データが予め準備されていれば、流れ計算値Fと、流れ定量値Vqとしての流量に係る検量線と、に基づいて、流体2bの流量が算出され得る。また、例えば、流体2bの流速に係る検量データが予め準備されていれば、流れ計算値Fと、流れ定量値Vqとしての流速に係る検量線と、に基づいて、流体2bの流速が算出され得る。これにより、例えば、流体2bの流量および流速のうちの少なくとも一方が算出され得る。ここでは、上述したように、例えば、受光部12から出力される信号の強度が一様に低下するような場合であっても、流れ計算値Fと実際の流体2bの流れの状態との間における関係が変動しにくくなる。これにより、例えば、測定装置1における測定精度を向上させることができる。
 検量データは、例えば、流体2bの流れ定量値Vqを測定する前に、予め記憶部22bなどに記憶されていればよい。検量データは、例えば、関数式の形式で記憶されていてもよいし、テーブルの形式で記憶されていてもよい。
 ここで、検量データは、例えば、流体2bについて、既知の流れ定量値Vqで流路構成部2a内を流れる流体2bを測定の対象として測定装置1によって流れ計算値Fの算出を行うことで準備され得る。このとき、測定装置1による流れ計算値Fの算出は、発光部11による被照射物2に向けた照射光L1の照射と、受光部12による被照射物2で散乱した光を含む干渉光L2の受光と、演算処理部22aによる流れ計算値Fの算出と、を行うものである。ここでは、例えば、既知の流れ定量値Vqで流路構成部2a内を流れる流体2bを対象として測定装置1によって流れ計算値Fを算出し、既知の流れ定量値Vqと、流れ計算値Fと、の関係に基づいて検量データが導出され得る。具体的には、例えば、流れ計算値Fを媒介変数とする演算式(検量線)が検量データとして導出され得る。
 例えば、流れ定量値Vqをyとし、流れ計算値Fをxとして、係数a、bおよび定数cを有する式(6)によって検量線が表される場合を想定する。
  y=a×x+b×x+c ・・・(6)。
 ここで、例えば、流れ定量値Vqが既知の値y1で流路構成部2a内を流れる流体2bを対象として流れ計算値Fが値x1と算出され、流れ定量値Vqが既知の値y2で流路構成部2a内を流れる流体2bを対象として流れ計算値Fが値x2と算出され、流れ定量値Vqが既知の値y3で流路構成部2a内を流れる流体2bを対象として流れ計算値Fが値x3と算出されれば、次の式(7)、式(8)および式(9)が得られる。
  y1=a×x1+b×x1+c ・・・(7)
  y2=a×x2+b×x2+c ・・・(8)
  y3=a×x3+b×x3+c ・・・(9)。
 ここで、式(7)、式(8)および式(9)から、係数a、係数bおよび定数cが算出される。そして、ここで算出された係数a、係数bおよび定数cを式(6)に代入すれば、検量線を示す検量データが得られる。
 ここで、検量線を示す関数式は、例えば、流れ定量値Vqをyとし、流れ計算値Fを変数であるxとした、n次(nは2以上の自然数)の項を含む多項式で表されるものであってもよい。検量線を示す関数式は、例えば、流れ計算値Fに係る変数xについての対数の項および冪乗の項の少なくとも1つの項を有していてもよい。
 <1-2.測定装置の動作>
 次に、測定装置1の動作について、一例を挙げて説明する。図7(a)および図7(b)は、測定装置1の動作の一例を示す流れ図である。この動作は、例えば、演算処理部22aにおいてプログラムPG1が実行されることで、制御部20によって測定装置1の動作が制御されることで実現され得る。ここでは、図7(a)のステップSP1からステップSP4が実行されることで、流体2bの流れの状態に係る流れ定量値Vqが算出され得る。
 図7(a)のステップSP1では、発光部11が内部2iで流体2bが流れている被照射物2に光を照射しながら、受光部12が被照射物2で散乱した光を含む干渉光L2を受光してこの干渉光L2の強度に応じた信号を出力する工程(第1工程ともいう)を実行する。
 ステップSP2では、信号処理部21が、ステップSP1において受光部12から出力された信号に対する処理を行う工程(第2工程ともいう)を実行する。例えば、信号処理部21の抽出部21aが、ステップSP1において受光部12から出力された信号について、信号強度の時間変化におけるDC成分を抽出する。DC成分の抽出は、例えば、AC-DC分離処理によって、受光部12から出力された信号におけるAC成分とDC成分とを分離することで実現される。ここでは、信号処理部21は、受光部12から出力される信号に対して、DC成分を抽出するためのAC-DC分離処理以外に、増幅部21bによる増幅処理およびAD変換処理などの各種処理を施してもよい。例えば、増幅部21bは、抽出部21aにおいて受光部12から出力された電気信号をDC成分とAC成分とに分けた後にAC成分のAC信号を増幅してもよい。また、例えば、増幅部21bが受光部12から出力された信号を増幅した後に、抽出部21aが電気信号のAC成分とDC成分とを分離してもよい。そして、信号処理部21における処理で得られた各信号は、適宜情報処理部22に入力される。
 ステップSP3では、演算処理部22aが、ステップSP1において受光部12から出力された信号に基づいて、ステップSP2において抽出部21aが抽出したDC成分の信号強度Pdに係る値(D値)Vdを用いた補正および周波数スペクトルの算出を含む処理を行うことで、流れ計算値Fを算出する工程(第3工程ともいう)を実行する。このステップSP3では、例えば、図7(b)のステップSP31からステップSP33の処理が順に実行される。
 ステップSP31では、演算処理部22aが、ステップSP1において受光部12から出力された信号の強度の時間変化について周波数ごとの信号強度に係る分布(第1周波数スペクトル)P1(f)を算出する。ここでは、例えば、演算処理部22aが、ステップSP2において信号処理部21による処理で得られたAC信号について第1周波数スペクトルP1(f)を算出する。
 ステップSP32では、演算処理部22aが、ステップSP31において算出した第1周波数スペクトルP1(f)の信号強度に対して、ステップSP2において抽出部21aが抽出したDC成分の信号強度Pdに係るD値Vdを用いた補正の処理を行う。ここでは、例えば、D値Vdを用いた除算を行う。具体的には、例えば、演算処理部22aが、上記の式(3)に従うように、第1周波数スペクトルP1(f)を、DC成分の信号強度Pdのm乗(mは所定の正の数)の数値で除する計算を行う。これにより、補正後の周波数スペクトルとしての第2周波数スペクトルP2(f)を算出する。
 ステップSP33では、演算処理部22aが、ステップSP32において算出した第2周波数スペクトルP2(f)に基づいて、流れ計算値Fを算出する。ここでは、例えば、演算処理部22aが、上記の式(4)に従うように、第2周波数スペクトルP2(f)に周波数fの重み付けを行うことで得られる第3周波数スペクトルP2(f)×fについて第1積分値(∫{P2(f)×f}df)を算出する。第2周波数スペクトルP2(f)について第2積分値(∫P2(f)df)を算出する。ここで、第1積分値(∫{P2(f)×f}df)を第2積分値(∫P2(f)df)で除することで、差周波Δfにおける平均周波数fmに相当する値を算出する。この値をさらに第2積分値(∫P2(f)df)で除することで、流れ計算値Fを算出する。この計算を行う際には、各値に対して、例えば、適宜係数を乗じる乗算、冪乗を行う計算および定数の加算もしくは減算などのうちの1つ以上の計算を施してもよい。また、2回目の第2積分値による除算の代わりに、例えば、第2周波数スペクトル∫P2(f)の信号強度に係る特定の値で除する計算が行われてもよい。
 ここでは、例えば、第1周波数スペクトルP1(f)に対して、受光部12から出力される信号についてのDC成分の信号強度に係るD値Vdを用いた補正を行う。これにより、例えば、受光部12から出力される信号の強度が一様に低下するような場合であっても、流れ計算値Fと実際の流体2bの流れの状態との間における関係が変動しにくくなる。その結果、例えば、測定装置1における測定精度が容易に向上し得る。
 ステップSP4では、演算処理部22aが、ステップSP3において算出した流れ計算値Fに基づいて、流れ定量値Vqを算出する。流れ定量値Vqは、流体2bの流量および流速のうちの少なくとも一方を含む。
 ところで、上記のステップSP3では、例えば、図8のステップSP31AからステップSP33Aの処理が順に実行されてもよい。ここでは、例えば、演算処理部22aが、受光部12から出力された信号に含まれる信号強度のうち、AC成分の信号強度に対してDC成分の信号強度Pdに係る値(D値)Vdを用いた補正を少なくとも行い、補正後のAC成分の信号強度に係る周波数スペクトル(第3周波数スペクトルともいう)を算出し、この第3周波数スペクトルに基づいて流れ計算値Fを算出してもよい。
 ステップSP31Aでは、演算処理部22aが、ステップSP1において受光部12から出力された信号に含まれる少なくともAC成分の強度に対して、ステップSP2において抽出部21aが抽出したDC成分の信号強度Pdに係る値(D値)Vdを用いた補正の処理を行う。ここでは、演算処理部22aが、例えば、ステップSP2で得られたAC信号の強度を、ステップSP2で得られたDC成分の信号強度Pdに係るD値Vdで除する計算によって補正後のAC信号を得る。D値Vdには、例えば、DC成分の信号強度Pdのm乗(mは所定の正の数)の数値が適用される。この計算を行う際には、例えば、各値に対して、適宜係数を乗じる乗算および冪乗を行う計算などのうちの1つ以上の計算を施してもよい。
 ステップSP32Aでは、演算処理部22aが、ステップSP31Aにおいて得た補正後のAC信号の強度の時間変化について周波数スペクトル(第3周波数スペクトル)P(f)を算出する。
 ステップSP33Aでは、演算処理部22aが、ステップSP32Aにおいて算出した第3周波数スペクトルP(f)に基づいて、被照射物2の内部2iにおける流体2bの流れの状態に係る流れ計算値Fを算出する。ここでは、例えば、演算処理部22aが、ステップSP32Aで算出した第3周波数スペクトルP(f)に周波数fの重み付けを行うことで得られる重み付け周波数スペクトルP(f)×fについて第1積分値(∫{P(f)×f}df)を算出するとともに、ステップSP32Aで算出した第3周波数スペクトルP(f)について第2積分値(∫P(f)df)を算出する。ここで、第1積分値(∫{P(f)×f}df)を第2積分値(∫P(f)df)で除することで、差周波Δfにおける平均周波数fmに相当する値を算出し、この値をさらに第2積分値(∫P(f)df)で除することで、流れ計算値Fを算出する。この計算を行う際には、各値に対して、例えば、適宜係数を乗じる乗算、冪乗を行う計算および定数の加算もしくは減算などのうちの1つ以上の計算を施してもよい。また、2回目の第2積分値による除算の代わりに、例えば、第3周波数スペクトルの信号強度に係る特定の値で除する計算が行われてもよい。
 ここでは、例えば、受光部12から出力される信号に対して受光部12から出力される信号におけるDC成分の強度に係るD値Vdを用いた補正を行う。これにより、例えば、受光部12から出力される信号の強度が一様に低下するような場合であっても、流れ計算値Fと実際の流体2bの流れの状態との間における関係が変動しにくくなる。その結果、例えば、測定装置1における測定精度が容易に向上し得る。
 また、上記のステップSP3では、例えば、図9のステップSP31BからステップSP33Bの処理が順に実行されてもよい。ここでは、例えば、演算処理部22aが、受光部12から出力された信号に基づいて、信号強度の時間変化についての周波数スペクトル(第4周波数スペクトルともいう)を算出し、この第4周波数スペクトルに基づいてDC成分の信号強度Pdに係る値(D値)Vdを用いた補正を含む演算を行うことで流れ計算値Fを算出してもよい。
 ステップSP31Bでは、演算処理部22aが、ステップSP1において受光部12から出力された信号の強度の時間変化について周波数スペクトル(第4周波数スペクトル)P(f)を算出する。ここでは、例えば、演算処理部22aが、ステップSP2において信号処理部21による処理で得られたAC信号について第4周波数スペクトルP(f)を算出する。
 ステップSP32BおよびステップSP33Bでは、演算処理部22aが、ステップSP31Bにおいて算出した第4周波数スペクトルP(f)に基づいて、ステップSP2において抽出部21aが抽出したDC成分の信号強度Pdに係る値(D値)Vdを用いた補正を含む演算を行うことで、流れ計算値Fを算出する。
 具体的には、例えば、ステップSP32Bでは、演算処理部22aが、ステップSP31Bにおいて算出した第4周波数スペクトルP(f)を用いて、仮の流れ計算値Fpを算出する。ここでは、例えば、演算処理部22aが、ステップSP31Bで算出した第4周波数スペクトルP(f)に周波数fの重み付けを行うことで得られる重み付け周波数スペクトルP(f)×fについて第1積分値(∫{P(f)×f}df)を算出するとともに、ステップSP31Bで算出した第4周波数スペクトルP(f)について第2積分値(∫P(f)df)を算出する。ここで、第1積分値(∫{P(f)×f}df)を第2積分値(∫P(f)df)で除することで、差周波Δfにおける仮の平均周波数fmpに相当する値を算出し、この値をさらに第2積分値(∫P(f)df)で除することで、仮の流れ計算値Fpを算出する。この計算を行う際には、各値に対して、例えば、適宜係数を乗じる乗算、冪乗を行う計算および定数の加算もしくは減算などのうちの1つ以上の計算を施してもよい。また、2回目の第2積分値による除算の代わりに、例えば、第4周波数スペクトルの信号強度に係る特定の値で除する計算が行われてもよい。
 例えば、ステップSP33Bでは、演算処理部22aが、ステップSP32Bにおいて算出した仮の流れ計算値Fpに対して、ステップSP2において抽出部21aが抽出したDC成分の信号強度Pdに係るD値Vdを用いた補正の処理を行う。ここでは、演算処理部22aが、例えば、ステップSP32Bで算出した仮の流れ計算値Fpを、ステップSP2において抽出部21aが抽出したDC成分の信号強度Pdの2m乗(mは所定の正の数)の数値で除する計算によって、流れ計算値Fを算出する。この計算を行う際には、各値に対して、例えば、適宜係数を乗じる乗算、冪乗を行う計算および定数の加算もしくは減算などのうちの1つ以上の計算を施してもよい。
 ここでは、例えば、受光部12から出力される信号に含まれるAC成分に係る第4周波数スペクトルから流れ計算値Fを算出する際に、受光部12から出力される信号についてのDC成分の強度に係るD値Vdを用いた補正を行う。これにより、例えば、受光部12から出力される信号の強度が一様に低下するような場合であっても、流れ計算値Fと実際の流体2bの流れの状態との間における関係が変動しにくくなる。その結果、例えば、測定装置1における測定精度が容易に向上し得る。
 <1-3.第1実施形態のまとめ>
 第1実施形態に係る測定装置1は、例えば、受光部12から出力される信号に基づいて、DC成分の信号強度Pdに係る値(D値)Vdを用いた補正および周波数スペクトルの算出を含む処理を行うことで、流れ計算値Fの算出を行う。これにより、例えば、受光部12から出力される信号の強度が一様に低下するような場合であっても、流れ計算値Fと実際の流体2bの流れの状態との間における関係が変動しにくくなる。その結果、例えば、測定装置1における測定精度が容易に向上し得る。
 <2.他の実施形態>
 本開示は上述の第1実施形態に限定されるものではなく、本開示の要旨を逸脱しない範囲において種々の変更および改良などが可能である。
 <2-1.第2実施形態>
 上記第1実施形態において、測定装置1は、例えば、図10で示されるように、入力部50を有していてもよいし、出力部60を有していてもよい。
 入力部50は、例えば、接続部30を介して制御部20に接続され得る。入力部50は、例えば、ユーザの動作に応答して、測定装置1における流れ定量値Vqの測定に関する種々の条件(測定条件ともいう)を制御部20に入力することができる。測定条件は、例えば、演算処理部22aで算出される周波数スペクトルにおける周波数の範囲などを含む。入力部50には、例えば、キーボード、マウス、タッチパネルまたはスイッチなどの操作部あるいは音声による入力が可能なマイク部などが適用される。これにより、例えば、ユーザは、所望の測定条件を容易に設定することができる。その結果、例えば、測定装置1の利便性が向上し得る。また、測定条件は、例えば、発光部11が発する照射光L1の光量もしくは強度、受光部12が信号を出力する周期、AD変換におけるサンプリングレート、検量データに係る演算式およびこの演算式の係数、あるいは除算または減算における係数および冪指数などを含んでいてもよい。また、入力部50は、例えば、流体2bにおける粘度、濃度または散乱体の大きさなど、流体2bに関する種々の情報を入力することができてもよい。
 出力部60は、例えば、接続部30を介して制御部20に接続され得る。出力部60は、例えば、流れ定量値Vqの測定に関する種々の情報を可視的に出力する表示部を含んでいてもよいし、流れ定量値Vqの測定に関する種々の情報を可聴的に出力するスピーカ部を含んでいてもよい。表示部には、例えば、液晶ディスプレイまたはタッチパネルなどが適用される。入力部50がタッチパネルを含む場合には、入力部50と出力部60の表示部とが1つのタッチパネルで実現されてもよい。これにより、例えば、測定装置1の構成部材が減り、測定装置1の小型化および製造の容易化が図られ得る。ここで、例えば、表示部が、測定条件、周波数スペクトルまたは測定結果としての流れ計算値Fもしくは流れ定量値Vqなどを可視的に表示することが可能であれば、ユーザは、流れ定量値Vqの測定に関する種々の情報を容易に認識することができる。ここで、例えば、ユーザが、入力部50を介して出力部60における種々の情報の出力態様を変更させることが可能であってもよい。出力態様の変更には、例えば、表示形式の変更または表示される情報の切り替えなどが含まれ得る。これにより、例えば、ユーザは、流れ定量値Vqの測定に関する種々の情報を容易に認識することができる。その結果、例えば、測定装置1の利便性が向上し得る。
 <2-2.第3実施形態>
 上記各実施形態において、測定装置1は、例えば、図11で示されるように、外部制御部70をさらに有していてもよい。外部制御部70は、例えば、マイクロコンピュータ(マイコン)などのコンピュータを含み得る。
 外部制御部70は、例えば、照射光L1の光量もしくは強度、受光部12が信号を出力する周期およびAD変換におけるサンプリングレートなどの測定条件を保持しており、この測定条件を制御部20に入力可能であってもよい。これにより、例えば、演算処理部22aにおいて処理する項目が少なくなり、制御部20における処理速度を向上させることができる。ここで、測定条件には、例えば、入力部50によって入力され得る、測定装置1における流れ定量値Vqの測定に関する種々の条件と同一のものが適用される。
 また、外部制御部70は、例えば、入力部50および出力部60の制御を行うことが可能であってもよい。この場合には、例えば、制御部20が制御する種々の機能を有する部分(機能部ともいう)の数が少なくなり、制御部20の処理速度を向上させることができる。また、外部制御部70は、例えば、複数の電子部品によって構成された種々の他の機能部を有していてもよい。種々の他の機能部には、例えば、圧力計または温度計などが適用される。これにより、例えば、測定装置1における設計の自由度が向上し、測定装置1の利便性が向上し得る。
 外部制御部70と、制御部20、入力部50および出力部60と、の間における通信は、有線および無線の何れの方式で実現されてもよい。制御部20と外部制御部70との間における通信は、例えば、任意の通信規格に準じた通信が適用される。任意の通信規格は、例えば、IIC(Inter Integrated Circuit)、SPI(Serial Peripheral Interface)、またはUART(Universal Asynchronous Receiver Transmitter)などを含む。
 ここで、例えば、センサー部10および信号処理部21と外部制御部70とが、直接的に通信可能であってもよい。この場合には、例えば、測定装置1が、制御部20を有することなく、外部制御部70が制御部20の機能を有していてもよい。ここでは、例えば、センサー部10と外部制御部70とが、直接通信を行うことで、制御部20と外部制御部70との間で生じる信号の遅延が解消され得る。これにより、例えば、測定装置1の処理速度を向上させることができる。その結果、例えば、測定装置1の利便性が向上し得る。
 <2-3.第4実施形態>
 上記各実施形態において、測定装置1を構成する全ての部分または少なくとも2つ以上の部分が、相互に通信可能に接続された、測定システム200が採用されてもよい。例えば、図12で示されるように、第4実施形態に係る測定システム200は、発光部11、受光部12、抽出部21aを含む信号処理部21および演算処理部22aを含む情報処理部22を備えている。図12の例では、例えば、発光部11と受光部12との間、発光部11と情報処理部22との間、受光部12と信号処理部21との間、および信号処理部21と情報処理部22との間のそれぞれが通信可能に接続されている状態にある。
 <2-4.第5実施形態>
 上記各実施形態において、上記の式(3)における所定の冪指数mは、例えば、受光部12から出力される信号の強度が一様に低下する要因(強度低下要因)に応じて、適宜変更されてもよい。強度低下要因としては、例えば、上述した照射光L1の強度、流体2bの流路を構成する流路構成部2aの厚さ、内径および材質、流体2bにおける粒子の濃度および光の吸収率、ならびに発光部11と流路構成部2aと受光部12との間における位置および姿勢の関係などが挙げられる。
 ここで、例えば、ポンプなどで流路構成部2aとしての透明チューブ内を流れる流体2bの流れの状態に係る定量的な値(流れ定量値)Vqを所定の値に設定しつつ、測定装置1で、流体2bにおける粒子の濃度を、第1濃度としての10、第1濃度の7割である第2濃度としての7、および第1濃度の3割である第3濃度としての3とした、それぞれの場合を想定する。この場合には、例えば、流体2bにおける粒子の濃度が第1濃度であれば、図13(a)の太い実線で描かれた曲線Ln61で示される第1周波数スペクトルP1(f)が得られる。また、例えば、流体2bにおける粒子の濃度が第2濃度であれば、図13(a)の太い1点鎖線で描かれた曲線Ln62で示される第1周波数スペクトルP1(f)が得られる。また、例えば、流体2bにおける粒子の濃度が第3濃度であれば、図13(a)の太い2点鎖線で描かれた曲線Ln63で示される第1周波数スペクトルP1(f)が得られる。ここでは、図13(a)で示されるように、流体2bにおける粒子の濃度の低下に応じて、第1周波数スペクトルP1(f)の強度が低下する。
 これに対して、測定装置1において、例えば、第1周波数スペクトルP1(f)を、DC成分の信号強度Pdに係るD値Vdで除する計算によって、補正後の周波数スペクトル(第2周波数スペクトル)P2(f)を算出する。この場合には、図13(b)で示されるように、第2周波数スペクトルP2(f)は、図13(a)で示された第1周波数スペクトルP1(f)と比較して、流体2bにおける粒子の濃度にかかわらず同一に近い周波数スペクトルとなる。例えば、図13(b)の太い実線で描かれた曲線Ln71は、流体2bにおける粒子の濃度が第1濃度である場合に得られる第2周波数スペクトルP2(f)を示す。例えば、図13(b)の太い1点鎖線で描かれた曲線Ln72は、流体2bにおける粒子の濃度が第2濃度である場合に得られる第2周波数スペクトルP2(f)を示す。例えば、図13(b)の太い2点鎖線で描かれた曲線Ln73は、流体2bにおける粒子の濃度が第3濃度である場合に得られる第2周波数スペクトルP2(f)を示す。
 このようなケースでは、例えば、強度低下要因が、流体2bにおける粒子の濃度であり、所定の冪指数mは、2に設定される。
 所定の冪指数mは、例えば、特定のタイミングにおいて測定装置1を用いた実験的な実測結果に基づいて決定してもよいし、シミュレーションに基づいて決定してもよい。特定のタイミングとしては、測定装置1の出荷前のタイミング、または測定装置1のメンテナンスのタイミングなどが挙げられる。実験的な実測結果に基づいて所定の冪指数mを決定する方法としては、例えば、次のような方法が考えられる。例えば、ポンプなどで流路構成部2aとしての透明チューブ内を流れる流体2bの流れの状態に係る定量的な値(流れ定量値)Vqを一定の所定値とし、受光部12から出力される信号の強度が一様に低下する特定の強度低下要因に係る数値を複数の基準値に順に設定して、測定装置1によって計測を行う。このとき、例えば、複数の基準値のそれぞれについて、受光部12から出力される信号のAC成分についての第1周波数スペクトルP1(f)をそれぞれ算出するとともに、受光部12から出力される信号のDC成分における強度Pdを取得する。ここで複数の基準値についてそれぞれ得られる、第1周波数スペクトルP1(f)とDC成分の強度Pdとの組み合わせから、所定の冪指数mを決定する。
 <2-5.第6実施形態>
 上記各実施形態において、演算処理部22aは、例えば、受光部12から出力された信号について信号強度の時間変化についての周波数スペクトルP(f)を算出し、この周波数スペクトルP(f)に基づく値と、DC成分の信号強度Pdに係る値(D値)Vdと、を用いた演算によって、流れ定量値Vqを算出してもよい。このような構成が採用されても、例えば、測定装置1における測定精度を向上させることができる。
 ここで、周波数スペクトルP(f)に基づく値は、例えば、上記各実施形態で算出される流れ計算値Fであってもよい。また、周波数スペクトルP(f)に基づく値は、例えば、周波数スペクトルP(f)に基づく強度に係る値としての流れ計算値Fであってもよい。この場合には、流れ計算値Fは、例えば、周波数スペクトルP(f)についての、所定の範囲の周波数における積分値、特定の周波数成分、特定の強度またはこれらの値のうちの2つ以上の値の組み合わせであってもよい。所定の範囲の周波数における積分値には、例えば、周波数スペクトルP(f)について算出される積分値(∫P(f)df)が適用される。特定の周波数成分には、例えば、周波数スペクトルP(f)における所定の周波数の強度が適用される。所定の周波数には、例えば、一定の周波数、および周波数スペクトルP(f)における中間の周波数などが適用される。中間の周波数には、例えば、周波数スペクトルP(f)について低周波数側から算出される強度の積分値と高周波数側から算出される強度の積分値とが所定の比率となる境界の周波数が適用される。所定の比率は、例えば、1:1などに設定される。特定の強度には、例えば、周波数スペクトルP(f)における強度の最大値などが適用される。2つ以上の値の組み合わせとしては、例えば、積分値と特定の周波数成分との和、あるいは特定の周波数成分と特定の強度との和または差などが考えられる。
 ここでは、例えば、演算処理部22aは、流れ計算値Fと、DC成分の信号強度Pdに係る値(D値)Vdと、予め準備された検量データ(検量線)と、に基づいて、流れ定量値Vqを算出することができる。ここで、例えば、流体2bの流量に係る検量データが予め準備されていれば、流れ計算値Fと、D値Vdと、流れ定量値Vqとしての流量に係る検量線と、に基づいて、流体2bの流量が算出され得る。また、例えば、流体2bの流速に係る検量データが予め準備されていれば、流れ計算値Fと、D値Vdと、流れ定量値Vqとしての流速に係る検量線と、に基づいて、流体2bの流速が算出され得る。これにより、流体2bの流量および流速のうちの少なくとも一方が算出され得る。ここでは、上述したように、例えば、受光部12から出力される信号の強度が一様に低下するような場合であっても、流れ計算値Fと実際の流体2bの流れの状態との間における関係が変動しにくくなる。これにより、例えば、測定装置1における測定精度を向上させることができる。
 検量データは、例えば、流体2bの流れ定量値Vqを測定する前に、予め記憶部22bなどに記憶されていればよい。検量データは、例えば、関数式の形式で記憶されていてもよいし、テーブルの形式で記憶されていてもよい。
 ここで、検量データは、例えば、流体2bについて、強度低下要因を複数の状態の間で切り替えつつ、既知の流れ定量値Vqで流路構成部2a内を流れる流体2bを測定の対象として測定装置1によって流れ計算値Fの算出を行うことで準備され得る。このとき、測定装置1による流れ計算値Fの算出は、発光部11による被照射物2に向けた照射光L1の照射と、受光部12による被照射物2で散乱した光を含む干渉光L2の受光と、演算処理部22aによる流れ計算値Fの算出と、を行うものである。ここでは、例えば、既知の流れ定量値Vqで流路構成部2a内を流れる流体2bを対象として測定装置1によって流れ計算値Fを算出し、既知の流れ定量値Vqと、流れ計算値Fと、D値Vdと、の関係に基づいて検量データが導出され得る。具体的には、例えば、流れ計算値Fを媒介変数とし、D値Vdに応じて変化する係数を有する演算式(検量線)が検量データとして導出され得る。
 例えば、流れ定量値Vqをyとし、流れ計算値Fをxとし、D値Vdとしてのzに応じて変化する係数a(z)、b(z)および変数c(z)を有する式(10)によって検量線が表される場合を想定する。D値Vdは、例えば、DC成分の信号強度Pdと同一の値であってもよいし、DC成分の信号強度Pdに係数を乗じる乗算などの計算が施された値であってもよい。
  y=a(z)×x+b(z)×x+c(z) ・・・(10)。
 ここで、係数a(z)は、例えば、係数a1、b1および定数c1を用いた次の式(11)で規定される。係数b(z)は、例えば、係数a2、b2および定数c2を用いた次の式(12)で規定される。変数c(z)は、例えば、係数a3、b3および定数c3を用いた次の式(13)で規定される。
  a(z)=a1×z+b1×z+c1 ・・・(11)
  b(z)=a2×z+b2×z+c2 ・・・(12)
  c(z)=a3×z+b3×z+c3 ・・・(13)。
 ここで、6つの係数a1、b1、a2、b2、a3、b3および3つの定数c1、c2、c3は、例えば、次のようにして設定され得る。
 例えば、強度低下要因を第1の状態とすることでDC成分の信号強度Pdに係るD値Vdを第1のD値Vd1とし、流れ定量値Vqが既知の値y1で流路構成部2a内を流れる流体2bを対象として流れ計算値Fが値x1と算出され、流れ定量値Vqが既知の値y2で流路構成部2a内を流れる流体2bを対象として流れ計算値Fが値x2と算出され、流れ定量値Vqが既知の値y3で流路構成部2a内を流れる流体2bを対象として流れ計算値Fが値x3と算出されれば、次の式(14)から式(16)が得られる。
  y1=a(Vd1)×x1+b(Vd1)×x1+c(Vd1)・・・(14)
  y2=a(Vd1)×x2+b(Vd1)×x2+c(Vd1)・・・(15)
  y3=a(Vd1)×x3+b(Vd1)×x3+c(Vd1)・・・(16)。
 ここで、式(14)、式(15)および式(16)に基づいて、D値Vdが第1のD値Vd1である場合における係数a(Vd1)、係数b(Vd1)および変数c(Vd1)が算出される。そして、次の式(17)から式(19)が得られる。
  a(Vd1)=a1×Vd1+b1×Vd1+c1 ・・・(17)
  b(Vd1)=a2×Vd1+b2×Vd1+c2 ・・・(18)
  c(Vd1)=a3×Vd1+b3×Vd1+c3 ・・・(19)。
 また、例えば、強度低下要因を第2の状態とすることでD値Vdを第2のD値Vd2とし、流れ定量値Vqが既知の値y4で流路構成部2a内を流れる流体2bを対象として流れ計算値Fが値x4と算出され、流れ定量値Vqが既知の値y5で流路構成部2a内を流れる流体2bを対象として流れ計算値Fが値x5と算出され、流れ定量値Vqが既知の値y6で流路構成部2a内を流れる流体2bを対象として流れ計算値Fが値x6と算出されれば、次の式(20)から式(22)が得られる。
  y4=a(Vd2)×x4+b(Vd2)×x4+c(Vd2)・・・(20)
  y5=a(Vd2)×x5+b(Vd2)×x5+c(Vd2)・・・(21)
  y6=a(Vd2)×x6+b(Vd2)×x6+c(Vd2)・・・(22)。
 ここで、式(20)、式(21)および式(22)に基づいて、D値Vdが第2のD値Vd2である場合における係数a(Vd2)、係数b(Vd2)および変数c(Vd2)が算出される。そして、次の式(23)から式(25)が得られる。
  a(Vd2)=a1×Vd2+b1×Vd2+c1 ・・・(23)
  b(Vd2)=a2×Vd2+b2×Vd2+c2 ・・・(24)
  c(Vd2)=a3×Vd2+b3×Vd2+c3 ・・・(25)。
 また、例えば、強度低下要因を第3の状態とすることでD値Vdを第2のD値Vd3とし、流れ定量値Vqが既知の値y7で流路構成部2a内を流れる流体2bを対象として流れ計算値Fが値x7と算出され、流れ定量値Vqが既知の値y8で流路構成部2a内を流れる流体2bを対象として流れ計算値Fが値x8と算出され、流れ定量値Vqが既知の値y9で流路構成部2a内を流れる流体2bを対象として流れ計算値Fが値x9と算出されれば、次の式(26)から式(28)が得られる。
  y7=a(Vd3)×x7+b(Vd3)×x7+c(Vd3)・・・(26)
  y8=a(Vd3)×x8+b(Vd3)×x8+c(Vd3)・・・(27)
  y9=a(Vd3)×x9+b(Vd3)×x9+c(Vd3)・・・(28)。
 ここで、式(26)、式(27)および式(28)に基づいて、D値Vdが第3のD値Vd3である場合における係数a(Vd3)、係数b(Vd3)および変数c(Vd3)が算出される。そして、次の式(29)から式(31)が得られる。
  a(Vd3)=a1×Vd3+b1×Vd3+c1 ・・・(29)
  b(Vd3)=a2×Vd3+b2×Vd3+c2 ・・・(30)
  c(Vd3)=a3×Vd3+b3×Vd3+c3 ・・・(31)。
 ここで、式(17)から式(19)、式(23)から式(25)および式(29)から式(31)から、6つの係数a1、b1、a2、b2、a3、b3および3つの定数c1、c2、c3が算出される。そして、ここで算出された6つの係数a1、b1、a2、b2、a3、b3および3つの定数c1、c2、c3を、3つの式(11)から式(13)に代入すれば、式(10)から式(13)で規定される演算式(検量線)を示す検量データが得られる。
 ここで、検量線を示す関数式は、例えば、流れ定量値Vqをyとし、流れ計算値Fを変数であるxとした、M次(Mは2以上の自然数)の項を含む多項式で表されるものであってもよい。また、検量線を示す関数式における係数および変数を規定する関数式は、例えば、D値Vdを変数であるzとした、N次(Nは2以上の自然数)の項を含む多数項で表されるものであってもよい。検量線を示す関数式は、例えば、流れ計算値Fに係る変数xについての対数の項および冪乗の項の少なくとも1つの項を有していてもよいし、D値Vdによって変化しない係数を有していてもよい。また、検量線を示す関数式における係数を規定する関数式は、例えば、D値Vdに係る変数zについての対数の項および冪乗の項の少なくとも1つの項を有していてもよいし、D値Vdによって変化しない係数を有していてもよい。換言すれば、例えば、流れ計算値FとD値Vdに応じて変化する係数とに基づく演算によって流れ定量値Vqを算出するものであればよい。さらに換言すれば、例えば、演算処理部22aは、流れ計算値Fと、DC成分の信号強度Pdに係る値(D値)Vdに応じた係数とに基づいて、流れ定量値Vqを算出してもよい。
 <3.その他>
 上記各実施形態において、演算処理部22aは、例えば、受光部12から出力された信号に対して信号処理部21において処理が施された後に、AC成分とDC成分とを含む信号について、周波数スペクトルP(f)を算出してもよい。この場合であっても、演算処理部22aは、受光部12から出力された信号についてのAC成分に係る周波数スペクトルP(f)を算出することができる。
 上記第1実施形態から上記第5実施形態においては、例えば、流れ計算値Fの算出において、平均周波数fmに相当する値を用いたが、これに限られない。例えば、平均周波数fmに相当する値の代わりに、周波数スペクトルP(f)についての周波数に係る特定の値が適用されてもよい。周波数に係る特定の値には、例えば、周波数スペクトルP(f)についての、低周波数側から算出される強度の積分値と高周波数側から算出される強度の積分値とが所定の比率となる境界の周波数が適用される。所定の比率は、例えば、1:1などに設定される。また、周波数に係る特定の値には、例えば、周波数スペクトルP(f)についての、強度が最大値を示す周波数を含む周波数の範囲における何れかの強度に係る周波数が適用されてもよい。ここで、周波数に係る特定の値には、例えば、周波数スペクトルP(f)についての、強度が最大値を示す周波数が適用されてもよい。また、周波数に係る特定の値には、例えば、周波数スペクトルP(f)についての、強度の変化の傾きの絶対値が最小値を示す周波数を含む周波数の範囲における何れかの傾きに係る周波数が適用されてもよい。ここで、周波数に係る特定の値には、例えば、周波数スペクトルP(f)についての強度の変化の傾きの絶対値が最小値を示す周波数が適用されてもよい。
 上記第1実施形態から上記第5実施形態において、演算処理部22aは、例えば、流れ計算値Fに基づいて流れ定量値Vqを算出しなくてもよい。このような構成によっても、例えば、ユーザは、流れ計算値Fの変化に基づいて、流体2bの流れの状態の変化を把握することができる。このため、例えば、測定装置1における測定精度を向上させることができる。
 上記各実施形態において、演算処理部22aの機能の少なくとも一部の機能は、例えば、専用の電子回路などのハードウェアで構成されてもよい。
 上記各実施形態および各種変形例をそれぞれ構成する全部または一部を、適宜、矛盾しない範囲で組み合わせ可能であることは、言うまでもない。
1 測定装置
2 被照射物
2a 流路構成部
2b 流体
2i 内部
10 センサー部
11 発光部
12 受光部
20 制御部
21 信号処理部
21a 抽出部
21b 増幅部
22 情報処理部
22a 演算処理部
22b 記憶部
30 接続部
50 入力部
60 出力部
70 外部制御部
200 測定システム
L1 照射光
L2 干渉光
PG1 プログラム

Claims (13)

  1.  内部で流体が流れる被照射物に光を照射する発光部と、
     前記被照射物で散乱した光を含む干渉光を受光して該干渉光の強度に応じた信号を出力する受光部と、
     前記受光部から出力された信号について信号強度の時間変化における直流成分を抽出する抽出部と、
     前記受光部から出力された信号に基づいて、前記直流成分の信号強度に係る値を用いた補正および信号強度の時間変化についての周波数スペクトルの算出を含む処理を行うことで、前記流体の流れの状態に係る計算値を算出する処理部と、を備える、測定装置。
  2.  請求項1に記載の測定装置であって、
     前記補正は、前記直流成分の信号強度に係る値を用いた除算を含む、測定装置。
  3.  請求項1または請求項2に記載の測定装置であって、
     前記処理部は、前記受光部から出力された信号に基づいて、信号強度の時間変化についての第1周波数スペクトルを算出するとともに、該第1周波数スペクトルにおける信号強度に対して前記直流成分の信号強度に係る値を用いた補正を行うことで補正後の第2周波数スペクトルを算出し、該第2周波数スペクトルに基づいて前記計算値を算出する、測定装置。
  4.  請求項1または請求項2に記載の測定装置であって、
     前記処理部は、前記受光部から出力された信号に含まれる信号強度のうち、交流成分の信号強度に対して前記直流成分の信号強度に係る値を用いた補正を少なくとも行い、補正後の交流成分の信号強度に係る第3周波数スペクトルを算出し、該第3周波数スペクトルに基づいて前記計算値を算出する、測定装置。
  5.  請求項1または請求項2に記載の測定装置であって、
     前記処理部は、前記受光部から出力された信号に基づいて、信号強度の時間変化についての第4周波数スペクトルを算出し、該第4周波数スペクトルに基づいて前記直流成分の信号強度に係る値を用いた補正を含む演算を行うことで前記計算値を算出する、測定装置。
  6.  請求項1から請求項5の何れか1つの請求項に記載の測定装置であって、
     前記処理部は、前記計算値に基づいて、前記流体の流れの状態に係る定量値を算出する、測定装置。
  7.  請求項6に記載の測定装置であって、
     前記処理部は、前記計算値と前記直流成分の信号強度に係る値に応じた係数とに基づいて、前記定量値を算出する、測定装置。
  8.  内部で流体が流れる被照射物に光を照射する発光部と、
     前記被照射物で散乱した光を含む干渉光を受光して該干渉光の強度に応じた信号を出力する受光部と、
     前記受光部から出力された信号について信号強度の時間変化における直流成分を抽出する抽出部と、
     前記受光部から出力された信号に基づいて、信号強度の時間変化についての周波数スペクトルを算出し、該周波数スペクトルに基づく信号強度に係る値と前記直流成分の信号強度に係る値とを用いた演算によって、前記流体の流れの状態に係る定量値を算出する処理部と、を備える、測定装置。
  9.  内部で流体が流れる被照射物に光を照射する発光部と、
     前記被照射物で散乱した光を含む干渉光を受光して該干渉光の強度に応じた信号を出力する受光部と、
     前記受光部から出力された信号について信号強度の時間変化における直流成分を抽出する抽出部と、
     前記受光部から出力された信号に基づいて、前記直流成分の信号強度に係る値を用いた補正および信号強度の時間変化についての周波数スペクトルの算出を含む処理を行うことで、前記流体の流れの状態に係る計算値を算出する処理部と、を備える、測定システム。
  10.  内部で流体が流れる被照射物に光を照射する発光部と、
     前記被照射物で散乱した光を含む干渉光を受光して該干渉光の強度に応じた信号を出力する受光部と、
     前記受光部から出力された信号について信号強度の時間変化における直流成分を抽出する抽出部と、
     前記受光部から出力された信号に基づいて、信号強度の時間変化についての周波数スペクトルを算出し、該周波数スペクトルに基づく信号強度に係る値と前記直流成分の信号強度に係る値とを用いた演算によって、前記流体の流れの状態に係る定量値を算出する処理部と、を備える、測定システム。
  11.  発光部によって内部で流体が流れている被照射物に光を照射しながら、受光部によって前記被照射物で散乱した光を含む干渉光を受光して該干渉光の強度に応じた信号を出力する第1工程と、
     抽出部によって、前記第1工程において前記受光部から出力された信号について、信号強度の時間変化における直流成分を抽出する第2工程と、
     処理部によって、前記第1工程において前記受光部から出力された信号に基づいて、前記第2工程において前記抽出部で抽出された前記直流成分の信号強度に係る値を用いた補正および信号強度の時間変化についての周波数スペクトルの算出を含む処理を行うことで、前記流体の流れの状態に係る計算値を算出する第3工程と、を有する、測定方法。
  12.  発光部によって内部で流体が流れている被照射物に光を照射しながら、受光部によって前記被照射物で散乱した光を含む干渉光を受光して該干渉光の強度に応じた信号を出力する第1工程と、
     抽出部によって、前記第1工程において前記受光部から出力された信号について、信号強度の時間変化における直流成分を抽出する第2工程と、
     処理部によって、前記第1工程において前記受光部から出力された信号に基づいて、信号強度の時間変化についての周波数スペクトルを算出し、該周波数スペクトルに基づく信号強度に係る値と前記第2工程において前記抽出部で抽出された前記直流成分の信号強度に係る値とを用いた演算によって、前記流体の流れの状態に係る定量値を算出する第3工程と、を有する、測定方法。
  13.  測定装置に含まれる処理部によって実行されることで、前記測定装置を、請求項1から請求項8の何れか1つの請求項に記載の測定装置として機能させる、プログラム。
PCT/JP2020/040593 2019-10-31 2020-10-29 測定装置、測定システム、測定方法およびプログラム WO2021085525A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/770,823 US20220378304A1 (en) 2019-10-31 2020-10-29 Measurement device and non-transitory computer-readable recording medium
CN202080073557.1A CN114585302A (zh) 2019-10-31 2020-10-29 测定装置、测定系统、测定方法以及程序
JP2021553680A JPWO2021085525A1 (ja) 2019-10-31 2020-10-29
EP20881000.2A EP4053511A4 (en) 2019-10-31 2020-10-29 MEASURING DEVICE, MEASURING SYSTEM, MEASURING METHOD AND PROGRAM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-198577 2019-10-31
JP2019198577 2019-10-31

Publications (1)

Publication Number Publication Date
WO2021085525A1 true WO2021085525A1 (ja) 2021-05-06

Family

ID=75716310

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/040593 WO2021085525A1 (ja) 2019-10-31 2020-10-29 測定装置、測定システム、測定方法およびプログラム

Country Status (5)

Country Link
US (1) US20220378304A1 (ja)
EP (1) EP4053511A4 (ja)
JP (1) JPWO2021085525A1 (ja)
CN (1) CN114585302A (ja)
WO (1) WO2021085525A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022255327A1 (ja) * 2021-05-31 2022-12-08 京セラ株式会社 測定装置、処理方法及びプログラム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS586390B2 (ja) 1977-10-14 1983-02-04 富士電機株式会社 制御整流回路における故障検出装置
JP2008278993A (ja) * 2007-05-09 2008-11-20 Nippon Telegr & Teleph Corp <Ntt> 生体情報測定装置
WO2013153664A1 (ja) * 2012-04-13 2013-10-17 パイオニア株式会社 流体評価装置及び方法
JP2017187359A (ja) * 2016-04-05 2017-10-12 日本電信電話株式会社 流体測定装置
WO2019146762A1 (ja) * 2018-01-26 2019-08-01 京セラ株式会社 流体測定装置、流体測定方法、及びプログラム

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7039925B2 (ja) * 2017-10-26 2022-03-23 セイコーエプソン株式会社 生体解析装置
JP6805118B2 (ja) * 2017-12-12 2020-12-23 日本電信電話株式会社 流体測定装置
JP7330170B2 (ja) * 2018-03-28 2023-08-21 京セラ株式会社 流量流速算出装置および流量流速センサ装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS586390B2 (ja) 1977-10-14 1983-02-04 富士電機株式会社 制御整流回路における故障検出装置
JP2008278993A (ja) * 2007-05-09 2008-11-20 Nippon Telegr & Teleph Corp <Ntt> 生体情報測定装置
WO2013153664A1 (ja) * 2012-04-13 2013-10-17 パイオニア株式会社 流体評価装置及び方法
JP2017187359A (ja) * 2016-04-05 2017-10-12 日本電信電話株式会社 流体測定装置
WO2019146762A1 (ja) * 2018-01-26 2019-08-01 京セラ株式会社 流体測定装置、流体測定方法、及びプログラム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022255327A1 (ja) * 2021-05-31 2022-12-08 京セラ株式会社 測定装置、処理方法及びプログラム

Also Published As

Publication number Publication date
EP4053511A4 (en) 2023-10-18
EP4053511A1 (en) 2022-09-07
CN114585302A (zh) 2022-06-03
JPWO2021085525A1 (ja) 2021-05-06
US20220378304A1 (en) 2022-12-01

Similar Documents

Publication Publication Date Title
US20130231871A1 (en) Multifunctional breath analyzer
WO2021085525A1 (ja) 測定装置、測定システム、測定方法およびプログラム
WO2020203637A1 (ja) 測定装置、測定システム、測定方法およびプログラム
CN104568057B (zh) 一种适于导波雷达的回波信号调节方法及装置
JP2022085336A (ja) 測定装置、測定システム、測定方法、プログラムおよび測定装置の校正方法
WO2022059663A1 (ja) 測定装置、測定システム、プログラムおよび測定装置の校正方法
WO2022004650A1 (ja) 測定モジュールおよび測定装置
JP4719713B2 (ja) 生体情報測定装置
WO2019082688A1 (ja) 計測装置、及び計測方法
JP4611001B2 (ja) 血液レオロジー測定装置
JP5392919B2 (ja) 生体情報計測装置及び生体情報計測方法
WO2020121944A1 (ja) 測定装置、測定システムおよび測定方法
EP4220187A1 (en) Measuring device, measuring system, measuring method, and program
JP2022070650A (ja) 測定装置、測定システム、測定方法及びプログラム
WO2023210208A1 (ja) 成分濃度推定システム及び成分濃度推定方法
JP7332789B2 (ja) 計測システム、計測モジュール、計測処理装置、及び計測方法
JP7019962B2 (ja) 流体解析装置、血流解析装置および流体解析方法
WO2022255327A1 (ja) 測定装置、処理方法及びプログラム
JP2018192182A (ja) 測定装置及び測定方法
JP6996224B2 (ja) 血流解析装置、血流解析方法およびプログラム
WO2020090840A1 (ja) 流量算出装置
JP4714017B2 (ja) 生体センサ
Melinda et al. ECG and NIBP Simulators in One Device Display on TFT Nextion
JP2008125609A (ja) 生体情報算出装置及び生体情報算出方法
CN105433954A (zh) 一种无创血糖检测设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20881000

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021553680

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020881000

Country of ref document: EP

Effective date: 20220531