WO2020203637A1 - 測定装置、測定システム、測定方法およびプログラム - Google Patents

測定装置、測定システム、測定方法およびプログラム Download PDF

Info

Publication number
WO2020203637A1
WO2020203637A1 PCT/JP2020/013640 JP2020013640W WO2020203637A1 WO 2020203637 A1 WO2020203637 A1 WO 2020203637A1 JP 2020013640 W JP2020013640 W JP 2020013640W WO 2020203637 A1 WO2020203637 A1 WO 2020203637A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
frequency
intensity
light
measuring device
Prior art date
Application number
PCT/JP2020/013640
Other languages
English (en)
French (fr)
Inventor
翔吾 松永
啓介 戸田
広繁 伊藤
直樹 堀之内
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to CN202080022677.9A priority Critical patent/CN113597536A/zh
Priority to JP2021511916A priority patent/JP7386849B2/ja
Priority to EP20782573.8A priority patent/EP3951327A4/en
Priority to US17/599,019 priority patent/US20220039675A1/en
Publication of WO2020203637A1 publication Critical patent/WO2020203637A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/026Measuring blood flow
    • A61B5/0261Measuring blood flow using optical means, e.g. infrared light
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/026Measuring blood flow
    • A61B5/0285Measuring or recording phase velocity of blood waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • G01F1/661Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters using light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • G01F1/663Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters by measuring Doppler frequency shift
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • G01F15/14Casings, e.g. of special material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F25/00Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume
    • G01F25/10Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume of flowmeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • G01P5/26Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring the direct influence of the streaming fluid on the properties of a detecting optical wave

Definitions

  • This disclosure relates to measuring devices, measuring systems, measuring methods and programs.
  • a measuring device for quantitatively measuring the state of fluid flow for example, a device for measuring the flow rate and flow velocity of a fluid using an optical method such as a laser blood flow meter is known (for example, Masaki Goma). , Outside 6 people, "Development of small laser blood flow sensor” PIONEER R & D, VOL.21, No. 1, 2012, p.30-37 and JP-A-2016-27337).
  • the measuring device measuring system, measuring method and program are disclosed.
  • the measuring device includes a light emitting unit, a light receiving unit, an amplification unit, and an arithmetic processing unit.
  • the light emitting unit irradiates an object to be irradiated with a fluid flowing inside with light.
  • the light receiving unit receives interference light including light scattered by the object to be irradiated and outputs a signal corresponding to the intensity of the interference light.
  • the amplification unit amplifies the signal output from the light receiving unit.
  • the arithmetic processing unit calculates a first frequency spectrum related to the signal strength for each frequency with respect to the time change of the strength of the signal amplified by the amplification unit, and includes division using the first value and the second value.
  • the calculated value related to the state of the flow of the fluid is calculated by the calculation.
  • the first value is a value related to a frequency based on the first frequency spectrum.
  • the second value is a value related to the intensity based on the first frequency spectrum.
  • the measuring device includes a light emitting unit, a light receiving unit, and an arithmetic processing unit.
  • the light emitting unit irradiates an object to be irradiated with a fluid flowing inside with light.
  • the light receiving unit receives interference light including light scattered by the object to be irradiated and outputs a signal corresponding to the intensity of the interference light.
  • the arithmetic processing unit calculates the first distribution of the signal intensity for each frequency with respect to the time change of the intensity of the signal output from the light receiving unit.
  • the arithmetic processing unit uses the first A value related to the first signal strength in the first A frequency range of the first distribution to obtain the second A value related to the second signal strength in the second A frequency range of the first distribution.
  • a calculated value related to the flow state of the fluid is calculated by an operation including division by dividing.
  • the first A frequency range includes the first A frequency in which the signal strength of the first distribution shows the maximum value.
  • the second A frequency range includes a second A frequency having a minimum signal strength in a frequency range higher than the first A frequency range in the first distribution.
  • the measurement system includes a light emitting unit, a light receiving unit, an amplification unit, and an arithmetic processing unit.
  • the light emitting unit irradiates an object to be irradiated with a fluid flowing inside with light.
  • the light receiving unit receives interference light including light scattered by the object to be irradiated and outputs a signal corresponding to the intensity of the interference light.
  • the amplification unit amplifies the signal output from the light receiving unit.
  • the arithmetic processing unit calculates a first frequency spectrum related to the signal strength for each frequency with respect to the time change of the strength of the signal amplified by the amplification unit, and includes division using the first value and the second value.
  • the calculated value related to the state of the flow of the fluid is calculated by the calculation.
  • the first value is a value related to a frequency based on the first frequency spectrum.
  • the second value is a value related to the intensity based on the first frequency spectrum.
  • the measurement system includes a light emitting unit, a light receiving unit, and an arithmetic processing unit.
  • the light emitting unit irradiates an object to be irradiated with a fluid flowing inside with light.
  • the light receiving unit receives interference light including light scattered by the object to be irradiated and outputs a signal corresponding to the intensity of the interference light.
  • the arithmetic processing unit calculates the first distribution of the signal intensity for each frequency with respect to the time change of the intensity of the signal output from the light receiving unit.
  • the arithmetic processing unit uses the first A value related to the first signal strength in the first A frequency range of the first distribution to obtain the second A value related to the second signal strength in the second A frequency range of the first distribution.
  • a calculated value related to the flow state of the fluid is calculated by an operation including division by dividing.
  • the first A frequency range includes the first A frequency in which the signal strength of the first distribution shows the maximum value.
  • the second A frequency range includes a second A frequency having a minimum signal strength in a frequency range higher than the first A frequency range in the first distribution.
  • One aspect of the measurement method includes a first step, a second step, and a third step.
  • the first step while irradiating an object to be irradiated with a fluid flowing inside by a light emitting unit, the light receiving unit receives interference light including light scattered by the object to be irradiated and the intensity of the interference light. Outputs a signal according to.
  • the amplification unit amplifies the signal output from the light receiving unit in the first step.
  • the arithmetic processing unit calculates the first frequency spectrum related to the signal strength for each frequency with respect to the time change of the signal strength amplified by the amplification unit in the second step, and the first value and the first value.
  • a calculated value related to the state of the flow of the fluid is calculated by an operation including division using two values.
  • the first value is a value related to a frequency based on the first frequency spectrum.
  • the second value is a value related to the intensity based on the first frequency spectrum.
  • One aspect of the measurement method includes a first step A and a second step A.
  • the first step A while irradiating an object to be irradiated with a fluid flowing inside by a light emitting unit, the light receiving unit receives interference light including light scattered by the object to be irradiated and the intensity of the interference light. Outputs a signal according to.
  • the arithmetic processing unit calculates the first distribution of the signal intensity for each frequency with respect to the time change of the intensity of the signal output from the light receiving unit in the first A step.
  • the second signal in the second A frequency range of the first distribution is determined by the arithmetic processing unit according to the first A value related to the first signal strength in the first A frequency range of the first distribution.
  • a calculated value related to the flow state of the fluid is calculated by a calculation including division by dividing the second A value related to the strength.
  • the first A frequency range includes the first A frequency in which the signal strength of the first distribution shows the maximum value.
  • the second A frequency range includes a second A frequency having a minimum signal strength in a frequency range higher than the first A frequency range in the first distribution.
  • One aspect of the program is a program that causes the measuring device to function as one aspect of the measuring device by being executed by a processing unit included in the measuring device.
  • FIG. 1 is a block diagram showing an example of a schematic configuration of the measuring device according to the first embodiment and the second embodiment.
  • FIG. 2 is a diagram schematically showing an example of a partial cross section of the measuring apparatus according to the first embodiment and the second embodiment.
  • FIG. 3 shows a curve Ln1 showing an example of a frequency spectrum related to interference light from an object to be irradiated in which a fluid having a relatively small flow quantification value Q1 and a value Q2 having a relatively medium flow quantification value.
  • FIG. 4 is a diagram showing an example of the relationship between the flow quantitative value and the flow calculated value.
  • FIG. 5A is a diagram showing a first example of the first value.
  • FIG. 5B is a diagram showing a second example of the first value.
  • FIG. 6A is a diagram showing a first example of the second value.
  • FIG. 6B is a diagram showing a second example of the second value.
  • FIG. 7 (a) and 7 (b) are flow charts showing an example of the operation in the measuring device according to the first embodiment.
  • FIG. 8A is a diagram showing an example of a frequency spectrum of interference light calculated by the measuring device according to the second embodiment when the fluid flow is small.
  • FIG. 8B is a diagram showing an example of a frequency spectrum of interference light calculated by the measuring device according to the first embodiment when the fluid flow is large.
  • FIG. 9 is a diagram showing an example of the relationship between the flow quantitative value and the flow calculated value.
  • 10 (a) and 10 (b) are flow charts showing an example of operation in the measuring device according to the second embodiment.
  • FIG. 11A is a diagram showing an example of a frequency spectrum of interference light acquired by the measuring device when the flow of fluid is stopped.
  • FIG. 11A is a diagram showing an example of a frequency spectrum of interference light acquired by the measuring device when the flow of fluid is stopped.
  • FIG. 11B is a diagram showing an example of a frequency spectrum of interference light acquired by the measuring device when a fluid is flowing.
  • FIG. 11C is a diagram showing an example of a frequency spectrum in which the noise component is reduced.
  • FIG. 12 is a block diagram showing an example of a schematic configuration of the measuring device according to the third embodiment.
  • FIG. 13 is a block diagram showing an example of a schematic configuration of the measuring device according to the fourth embodiment.
  • FIG. 14 is a block diagram showing an example of a schematic configuration of the measurement system according to the fifth embodiment.
  • FIG. 15A shows a weighted frequency spectrum and an average frequency related to the interference light from the irradiated object through which the fluid having the flow rate setting values Q1, Q2, and Q3 obtained by the measuring device according to the first reference example, respectively.
  • FIG. 15B is a diagram showing an ideal example of the relationship between the flow rate set value and the calculated average frequency in the measuring device according to the first reference example.
  • FIG. 16 is a diagram showing an example of the relationship between the amplification factor and the frequency of the received signal in the amplifier circuit.
  • FIG. 17A shows a weighted frequency spectrum and an average frequency related to the interference light from the irradiated object through which the fluid having the flow rate setting values Q1, Q2, and Q3 obtained by the measuring device according to the first reference example, respectively. It is a figure which shows an example.
  • FIG. 17B is a diagram showing an example of the relationship between the flow rate set value and the calculated average frequency in the measuring device according to the reference example.
  • FIG. 18 is a diagram showing a frequency spectrum of interference light obtained by the measuring device according to the second reference example.
  • FIG. 19 is a diagram showing the relationship between the calculated value and the set value related to the flow rate calculated by the measuring device according to the second reference example.
  • a measuring device for quantitatively measuring the state of fluid flow for example, a device for measuring at least one of a fluid flow rate and a flow velocity by using an optical method such as a laser blood flow meter is known.
  • This laser blood flow meter can calculate the blood flow of a living body based on, for example, a change in the wavelength of the laser light caused by the Doppler shift that occurs when the laser light irradiated to the living body is scattered.
  • a living body when a living body is irradiated with laser light of frequency fo, it scatters due to the flow of blood in blood vessels (movement of blood cells, which are scatterers), and forms other fixed tissues (skin tissue and blood vessels). Scattered light is generated by scattering by (such as tissue).
  • the diameter of blood cells is, for example, about several micrometers ( ⁇ m) to about 10 ⁇ m.
  • the frequency f of the scattered light generated by scattering by the blood cells which are the scattering bodies is the moving speed of the blood cells which are the scattering bodies and the like as compared with the frequency fo of the scattered light generated by the scattering by other fixed tissues.
  • the frequency fo + ⁇ f is changed by ⁇ f due to the Doppler shift corresponding to.
  • This modulation frequency ⁇ f is represented by the following equation (1), where V is the velocity of blood flow, ⁇ is the angle of incidence of the laser beam on the fluid, and ⁇ is the wavelength of the laser beam.
  • ⁇ f (2V ⁇ cos ⁇ ) / ⁇ ... (1).
  • the difference frequency ⁇ f can be observed as an optical beat (groan) by mutual interference between the scattered light of the frequency fo scattered by the fixed tissue and the scattered light of the frequency fo + ⁇ f scattered by the moving blood cells.
  • the signal (received signal) obtained by receiving these two types of scattered light includes a signal corresponding to an optical beat generated by mutual interference of these two types of scattered light (also referred to as an optical beat signal). ) Is included.
  • the difference frequency ⁇ f corresponding to the frequency of the optical beat is much smaller than the frequency f of the original light.
  • the original light having a wavelength of 780 nm is light having a frequency of about 400 terahertz (THz), which exceeds the response speed that can be detected by a normal light receiving element.
  • the frequency of the optical beat also referred to as the optical beat frequency
  • ⁇ f depends on the moving speed of blood cells, but is, for example, about several kilohertz (kHz) to several tens of kHz, and a normal light receiving element responds sufficiently. It is included in the frequency band that can be detected.
  • the signal (light receiving signal) obtained by receiving the scattered light of the frequency fo scattered by the fixed tissue and the scattered light of the frequency fo + ⁇ f scattered by the moving blood cells by using the light receiving element can be obtained. It shows a waveform in which an intensity modulation signal having an optical beat frequency ⁇ f is superimposed on a DC component signal (DC signal). Then, the blood flow rate can be calculated by analyzing the optical beat signal having the frequency ⁇ f.
  • the frequency spectrum P (f) is calculated for the light receiving signal detected by the light receiving element by using an operation such as Fourier transform (FFT).
  • FFT Fourier transform
  • the weighted frequency spectrum (also referred to as a weighted frequency spectrum) P (f) ⁇ f is calculated.
  • the weighted frequency spectrum P (f) ⁇ f is integrated in a predetermined frequency range to calculate the first calculated value ( ⁇ ⁇ P (f) ⁇ f ⁇ df).
  • the first calculated value ( ⁇ f ⁇ P (f) df) is integrated with the frequency spectrum P (f) over a predetermined frequency range.
  • the average frequency fm is calculated by dividing by the calculated second calculated value ( ⁇ P (f) df). Then, it is conceivable to calculate the blood flow rate of the living body by multiplying the average frequency fm by a predetermined constant.
  • a laser blood flow meter is used to measure the flow rate Q of the fluid when flowing a fluid in which a light scattering body of about several ⁇ m is dispersed in a transparent tube as a flow path. ..
  • the flow rate set values are increased in the order of Q1, Q2, and Q3, and the frequency spectra P (f) related to the optical beat signal are used for each flow rate set values Q1, Q2, and Q3 using a laser blood flow meter. It is assumed that the weighted frequency spectrum P (f) ⁇ f, the average frequency fm, and the flow rate Q of the fluid are calculated.
  • the average frequency fm1 is calculated from the weighted frequency spectrum P (f) ⁇ f shown by the curve Ln101 drawn by the thick solid line in FIG. 15 (a).
  • the average frequency fm2 is calculated from the weighted frequency spectrum P (f) ⁇ f shown by the curve Ln102 drawn by the thick alternate long and short dash line in FIG. 15 (a).
  • the average frequency fm3 is calculated from the weighted frequency spectrum P (f) ⁇ f shown by the curve Ln103 drawn by the thick broken line in FIG. 15A.
  • the average frequency fm The flow rate Q of the fluid can be calculated correctly by the calculation of multiplying by a predetermined multiplier.
  • the light receiving signal output from the light receiving element is weak. Therefore, in the laser blood flow meter, for example, after amplifying the received signal by the amplifier circuit, the frequency spectrum P (f), the weighted frequency spectrum P (f) ⁇ f, the average frequency fm, and the flow rate of the fluid related to the optical beat signal. It is assumed that Q will be calculated.
  • the amplification factor of the received light signal in the amplifier circuit depends on the frequency of the received light signal, as shown by the curve Ln104 drawn by the thick solid line in FIG. Specifically, in an amplifier circuit, as the frequency of the received signal increases, the amplification factor of the signal strength decreases. As a result, for example, when the flow rate setting value is increased, the frequency components constituting the received light signal are shifted to the high frequency side, but the components on the high frequency side in the weighted frequency spectrum P (f) ⁇ f are attenuated. As a result, for example, the average frequency of the frequency spectrum P (f) calculated using the weighted frequency spectrum P (f) ⁇ f may not increase in proportion to the increase in the flow rate set value.
  • the flow rate set value is increased in the order of value Q1, value Q2, and value Q3.
  • the average frequency fm1 is calculated from the weighted frequency spectrum P (f) ⁇ f shown by the curve Ln201 drawn by the thick solid line in FIG. 17 (a).
  • the average frequency fm2 is calculated from the weighted frequency spectrum P (f) ⁇ f shown by the curve Ln202 drawn by the thick alternate long and short dash line in FIG. 17 (a).
  • the average frequency fm3 is calculated from the weighted frequency spectrum P (f) ⁇ f shown by the curve Ln203 drawn by the thick broken line in FIG. 17 (a).
  • the flow rate set value is in the range A101 of a relatively small value, the flow rate set value and the average frequency are in a proportional relationship, but the flow rate set value is If it is in the range A102 of a relatively large value, the relationship between the flow rate set value and the average frequency does not show a proportional relationship.
  • the relationship between the flow rate set value and the average frequency which are in an ideal proportional relationship, is shown by a thin two-dot chain line. Specifically, if the flow rate set value is in the range A102 of a relatively large value, the calculated increase rate of the average frequency fm decreases with respect to the increase rate of the flow rate set value.
  • the average frequency obtained by the laser blood flow meter may not increase in proportion to the increase in the flow rate set value.
  • the flow rate Q of the fluid may not be calculated correctly by the calculation of multiplying the average frequency fm by a predetermined multiplier.
  • the frequency spectrum P (f) of the living body is calculated by using an operation such as Fourier transform (FFT) for a signal component corresponding to the beat signal light included in the light receiving signal detected by the light receiving element.
  • Blood flow is calculated.
  • the blood flow rate can be calculated by multiplying the value (also referred to as the flow rate calculation value) Q4 calculated according to the equation (3) by predetermined coefficients L, K, and the like.
  • the integral calculation represented by the equation (3) is performed for the frequency f in the range of 0 kilohertz (kHz) to 500 kHz.
  • a laser blood flow meter is used to measure the flow rate of a fluid when a fluid in which light scattering bodies of about several ⁇ m are dispersed is flown in a transparent tube as a flow path.
  • the frequency spectrum related to the beat signal obtained by using a laser blood flow meter is calculated.
  • the flow rate of the fluid flowing through the flow path also referred to as the flow rate set value
  • the flow rate setting value is a relatively small value Qa, a frequency spectrum as drawn by the thick solid line L101 in FIG. 18 can be obtained.
  • the flow rate set value is a relatively large value Qb
  • a frequency spectrum as drawn by the thick broken line L102 in FIG. 18 can be obtained.
  • the signal strength of the low frequency component decreases and the signal strength of the high frequency component increases as the flow rate set value increases.
  • the signal intensity of the high frequency component in the frequency spectrum is unlikely to increase significantly depending on, for example, the influence of environmental noise and the rate-determining rate of the received signal in the microcomputer (microcomputer) depending on the sampling frequency.
  • the calculated flow rate value (flow rate calculated value) calculated based on the frequency spectrum related to the received light signal obtained by the laser blood flow meter and the calculation of the above equation (3).
  • it may not increase in proportion to the increase in the flow rate set value. For example, as shown in FIG. 19, if the flow rate set value is in the relatively low range A201, the flow rate set value is relatively high even if the relationship between the flow rate set value and the flow rate calculated value shows linearity. In the range A202, the relationship between the flow rate set value and the flow rate calculated value may not show linearity.
  • the flow rate calculated value increases in proportion to the increase in the flow rate set value, but if the flow rate set value is relatively high, the flow rate calculated value with respect to the increase in the flow rate set value.
  • the amount of increase in the flow rate gradually decreases, and the flow rate calculation value does not increase in proportion to the increase in the flow rate set value.
  • Each of the above-mentioned problems is not limited to the measuring device for measuring the flow rate of the fluid, and is common to the measuring device for measuring the quantitative value related to the state of the flow of the fluid including at least one of the flow rate and the flow velocity of the fluid.
  • the present inventors have created a technique capable of improving the measurement accuracy of a measuring device that quantitatively measures the state of fluid flow.
  • the measuring device 1 is, for example, in a state of flow of a fluid 2b flowing inside 2i of an object (also referred to as a flow path component) 2a constituting a flow path.
  • the flow path component 2a may include, for example, a tubular object (also referred to as a tubular body) such as a blood vessel in a living body or a pipe of various devices.
  • a quantitative value also referred to as a flow quantitative value
  • indicating the flow state of the fluid 2b may include, for example, at least one of a flow rate and a flow velocity.
  • the flow rate is the amount of fluid passing through the flow path per unit time.
  • the amount of fluid can be expressed, for example, by volume or mass.
  • Flow velocity is the speed of fluid flow in the flow path. The speed of flow can be expressed as the distance traveled by the fluid per unit time.
  • the measuring device 1 according to the first embodiment can quantitatively measure the flow state of the fluid 2b by utilizing, for example, the Doppler effect of light.
  • the Doppler effect of light for example, when the light is scattered by the fluid 2b in response to the irradiation of the fluid 2b with light, the frequency of the light corresponding to the moving speed of the fluid 2b is caused by the Doppler effect according to the flow of the fluid 2b. Shift (also called Doppler shift) occurs.
  • the measuring device 1 according to the first embodiment can measure a flow quantitative value indicating a state of flow of the fluid 2b by utilizing this Doppler shift.
  • Various configurations of the measuring device 1 described later can be manufactured by using a well-known or known method as appropriate.
  • the fluid 2b as an object whose flow state is quantitatively measured is, for example, a substance in which the fluid 2b itself scatters light or a substance that scatters light (scattering substance). It also includes those that flow an object that scatters light (also called a scatterer). Specifically, for example, water, blood, ink for a printer, a gas containing a scattering material such as powder, or the like is applied to the fluid 2b as the object to be measured.
  • the "flow rate of the scatterer or the scatterer” may be regarded as the "flow rate of the fluid” or the "scatterer or the scatterer”.
  • the flow velocity of the fluid may be regarded as the flow velocity of the fluid.
  • the measuring device 1 includes, for example, a sensor unit 10, a signal processing unit 20, and a control unit 30. Further, the measuring device 1 includes a connecting portion (connector portion) 40.
  • the sensor unit 10 has, for example, a light emitting unit 11 and a light receiving unit 12.
  • the light emitting unit 11 can irradiate, for example, light L1 on an object (also referred to as an irradiated object) 2 in which a fluid 2b flows inside 2i.
  • the irradiated object 2 includes at least an object (flow path component) 2a that constitutes a flow path such as a tubular body, and a fluid 2b that flows through the flow path.
  • object flow path component
  • light having a predetermined wavelength corresponding to the fluid 2b as the object to be measured is applied to the light L1 that the light emitting unit 11 irradiates to the object 2 to be irradiated.
  • the wavelength of the light L1 irradiated to the irradiated object 2 is set to about 600 nanometers (nm) to 900 nm. Further, for example, when the fluid 2b is an ink for a printer, the wavelength of the light applied to the irradiated object 2 is set to about 700 nm to 1000 nm.
  • a semiconductor laser element such as a vertical cavity surface emitting laser (VCSEL: Vertical Cavity Surface Emitting LASER) is applied to the light emitting unit 11.
  • VCSEL Vertical Cavity Surface Emitting LASER
  • the light receiving unit 12 can receive, for example, the interference light L2 including the light scattered by the irradiated object 2 among the light L1 irradiated from the light emitting unit 11 to the irradiated object 2. Then, the light receiving unit 12 can convert the received light into an electric signal according to the intensity of the light, for example. In other words, the light receiving unit 12 can receive, for example, the interference light L2 including the light scattered by the irradiated object 2 and output a signal corresponding to the intensity of the interference light L2.
  • the interference light L2 that can be received by the light receiving unit 12 is scattered light from the irradiated object 2 that does not cause Doppler shift from an object (also referred to as a stationary object) that is stationary around the fluid 2b.
  • the stationary object includes skin, blood vessels, and the like.
  • the stationary object includes an object (flow path component) 2a or the like that constitutes the flow path of the fluid 2b such as the pipe.
  • the pipe may be constructed of, for example, a translucent material. For example, glass or a polymer resin is applied to the material having translucency.
  • the change in the intensity of the interference light L2 with the passage of time is the difference between the frequency of the scattered light that does not cause the Doppler shift and the frequency of the scattered light that causes the Doppler shift (also referred to as the time change). It can show the beat of the frequency corresponding to ⁇ f (also called the difference frequency). Therefore, for example, the signal corresponding to the intensity of the interference light L2 output from the light receiving unit 12 contains a component of a signal (also referred to as a beat signal or an optical beat signal) corresponding to the beat in the time change of the intensity of the interference light L2. Can include.
  • a light receiving unit 12 having an ability (also referred to as time resolution) capable of following a beat of the intensity of the interference light L2 over time is applied.
  • the wavelength of light that can be received by the light receiving unit 12 can be set according to measurement conditions such as, for example, the wavelength of the light L1 emitted from the light emitting unit 11 to the object 2 to be irradiated and the range of the velocity of the fluid 2b.
  • photodiodes such as silicon (Si) photodiodes, gallium arsenide (GaAs) photodiodes, indium gallium arsenide (InGaAs) photodiodes, and germanium (Ge) photodiodes are applied to the light receiving unit 12. ..
  • the sensor unit 10 may further have a package 13.
  • the package 13 houses the light emitting unit 11 and the light receiving unit 12.
  • the measuring device 1 has a substrate (also referred to as a mounting substrate) 1s in which the sensor unit 10, the signal processing unit 20, the control unit 30, and the connecting unit 40 are located in a mounted state.
  • a printed circuit board or the like is applied to the mounting board 1s.
  • the package 13 of the sensor unit 10 is located on the mounting board 1s. For example, between the sensor unit 10 and the signal processing unit 20, between the signal processing unit 20 and the control unit 30, between the sensor unit 10 and the control unit 30, and between the control unit 30 and the connection unit 40, for example. , It is in a state of being electrically connected by the mounting board 1s.
  • Package 13 has, for example, a cubic or rectangular parallelepiped outer shape.
  • the package 13 has, for example, a first recess R1 and a second recess R2 that are open upward, respectively.
  • the light emitting portion 11 is mounted on the first recess R1.
  • the light receiving portion 12 is mounted on the second recess R2.
  • the light L1 emitted from the light emitting unit 11 irradiates the object to be irradiated 2 through the opening of the first recess R1.
  • the interference light L2 from the irradiated object 2 is received by the light receiving unit 12 through the opening of the second recess R2.
  • a laminate of wiring boards made of, for example, a ceramic material or an organic material is applied to the package 13.
  • an aluminum oxide sintered body or a mullite sintered body is applied to the ceramic material.
  • an epoxy resin or a polyimide resin is applied to the organic material.
  • a translucent cover member 14 may be positioned so as to cover the openings of the first recess R1 and the second recess R2 in the package 13. . If such a configuration is adopted, for example, a state in which the light emitting portion 11 is sealed in the first recess R1 of the package 13 and a state in which the light receiving portion 12 is sealed in the second recess R2 of the package 13 are realized. Can be done. A glass plate or the like is applied to the cover member 14.
  • the signal processing unit 20 can perform various processing on the electric signal received from the light receiving unit 12, for example.
  • the various processes may include, for example, a process of converting an electric signal into a voltage value, a process of amplifying the strength of the electric signal, a process of converting an analog signal into a digital signal, and the like. Therefore, the signal processing unit 20 has a function as, for example, a portion (also referred to as an amplification unit) 20a capable of amplifying the signal output from the light receiving unit 12.
  • the signal processing unit 20 can realize the function as the amplifier unit 20a by having an amplifier circuit, for example.
  • the amplification factor of the signal in the amplification unit 20a can be set from, for example, 3 decibels (dB) to 150 dB.
  • the frequency at which the amplification factor of the signal begins to be attenuated in the amplification unit 20a can be set to, for example, 500 kHz.
  • the amplification unit 20a may amplify the signal in two steps or three steps or more, for example.
  • the electric signal output from the light receiving unit 12 includes, for example, a direct current (DC) component and an alternating current (AC) component. Therefore, for example, the signal processing unit 20 may divide the electric signal output from the light receiving unit 12 into a DC component and an AC component, and then the amplification unit 20a may amplify the signal of the AC component.
  • various processes performed by the signal processing unit 20 include, for example, a process of converting an electric signal into a voltage value, a process of separating an alternating current (AC) component and a direct current (DC) component of the electric signal, and the like. And a process of amplifying an AC signal, a process of converting an analog signal into a digital signal, and the like.
  • the signal processing unit 20 has a plurality of electronic components including, for example, an active element such as a transistor or a diode and a passive element such as a capacitor.
  • the signal processing unit 20 includes, for example, a current-voltage conversion circuit (IV conversion circuit), an AC-DC separation circuit (AC-DC decoupling circuit), an AC amplifier circuit (AC amplifier circuit), and an analog-digital conversion circuit (AC amplifier circuit). It may have a circuit such as an AD conversion circuit).
  • the signal processing unit 20 performs processing such as amplification processing and AD conversion processing on the analog electric signal received from the light receiving unit 12, and then sends a digital signal to the control unit 30. Can be output.
  • the control unit 30 can control the measuring device 1, for example.
  • the control unit 30 has a plurality of electronic components including, for example, an active element such as a transistor or a diode and a passive element such as a capacitor.
  • the connection unit 40 can electrically connect the control unit 30 and the external device, for example.
  • the signal processing unit 20, the control unit 30, and the connection unit 40 are formed.
  • Various functional units including the above can be configured.
  • various functional units including a signal processing unit 20, a control unit 30, and a connection unit 40 may be configured.
  • a plurality of electronic components constituting the signal processing unit 20, the control unit 30, and the connection unit 40 are, for example, mounted on the mounting board 1s.
  • the package 13 and the signal processing unit 20 are electrically connected
  • the package 13 and the control unit 30 are electrically connected
  • the control unit 30 and the connection unit 40 are electrically connected. is there.
  • the control unit 30 has, for example, an arithmetic processing unit 30a and a storage unit 30b.
  • the arithmetic processing unit 30a has, for example, a processor as an electric circuit.
  • a processor may be, for example, one or more processors, controllers, microprocessors, microcontrollers, application specific integrated circuits (ASICs), digital signal processing devices, programmable logic devices, or combinations of these devices or any configuration, or the like. Can include a combination of known devices or configurations of.
  • the storage unit 30b has, for example, an immediate call storage device (RAM) and a read-only memory (ROM).
  • the storage unit 30b is in a state of storing, for example, the firmware including the program PG1.
  • the arithmetic processing unit 30a can execute one or more data arithmetic or data processing according to the firmware stored in the storage unit 30b.
  • the arithmetic processing unit 30a can execute the program PG1 to realize various functions of the measuring device 1.
  • the control unit 30 can control the operation of the light emitting unit 11, for example.
  • the frequency and intensity (also referred to as signal intensity) of the electric signal output from the light receiving unit 12 depend on the Doppler effect of light. Therefore, for example, the frequency spectrum showing the relationship between the frequency of the electric signal and the signal strength changes according to the flow rate quantitative value (flow rate or flow velocity) of the fluid 2b. Therefore, the control unit 30 calculates, for example, to quantitatively measure the flow state of the fluid 2b based on the electric signal output from the light receiving unit 12 and amplified by the signal processing unit 20 by the arithmetic processing unit 30a. Can be executed.
  • the arithmetic processing unit 30a has, for example, a distribution relating to the signal intensity for each frequency with respect to the change (time change) with respect to the passage of time regarding the signal strength obtained by the amplification unit 20a amplifying the signal output from the light receiving unit 12. Can be calculated.
  • the time change of the intensity of the signal output from the signal processing unit 20 is analyzed by using an operation such as Fourier transform.
  • a power spectrum also referred to as a first frequency spectrum
  • the frequency range in the first frequency spectrum can be set based on, for example, the sampling rate in the AD conversion circuit.
  • the arithmetic processing unit 30a when the quantitative flow value (flow rate or flow velocity) of the fluid 2b is a relatively small value Q1, the arithmetic processing unit 30a is as shown by the curve Ln1 drawn by the thick solid line in FIG.
  • the first frequency spectrum can be calculated.
  • the quantitative flow rate (flow rate or flow velocity) of the fluid 2b is a relatively medium value Q2
  • the arithmetic processing unit 30a is as shown by the curve Ln2 drawn by the thick alternate long and short dash line in FIG.
  • the first frequency spectrum can be calculated.
  • the arithmetic processing unit 30a has a th-order as shown by the curve Ln3 drawn by the thick two-dot chain line in FIG.
  • One frequency spectrum can be calculated.
  • the shape of the first frequency spectrum P (f) gradually increases or decreases in signal intensity with respect to a change in frequency.
  • the arithmetic processing unit 30a has a first value (also referred to as a first value) V1 related to the frequency and a second value (also referred to as a second value) V2 related to the signal strength based on the first frequency spectrum. Can be recognized. Then, the calculation processing unit 30a performs a calculation including division using the first value V1 and the second value V2, for example, to calculate a calculated value (flow) relating to the flow state of the fluid 2b flowing through the inside 2i of the irradiated object 2. Vc (also called a calculated value) can be calculated. For example, the flow calculation value Vc is calculated by the following equation (4), the first value V1, and the second value V2. In this case, for example, the division using the first value V1 and the second value V2 includes the calculation of dividing the first value V1 by the second value V2.
  • Flow conditions can include, for example, at least one of flow rate and flow rate.
  • Vc V1 / V2 ... (4).
  • the flow calculation value is set by the measuring device 1. It is assumed that Vc is calculated. In this case, as shown in FIG. 4, the calculated flow value Vc may tend to increase in proportion to the increase in the quantitative flow value.
  • the average frequency of the first frequency spectrum tends not to increase in proportion to the increase in the quantitative flow value.
  • the frequency components constituting the first frequency spectrum are shifted to the high frequency side, but the components on the high frequency side in the first frequency spectrum tend to be attenuated. Is shown.
  • the rate of increase of the first value V1 related to the frequency based on the first frequency spectrum tends to be lower than the rate of increase of the flow quantitative value.
  • the second value V2 related to the intensity based on the first frequency spectrum tends to decrease as the flow quantitative value increases, similar to the rate of increase of the first value V1. Therefore, for example, when the flow calculation value Vc using the above equation (4) is calculated using these tendencies, the rate of increase of the first value V1 with respect to the rate of increase of the flow quantitative value decreases, and the flow quantitative value
  • the calculated flow value Vc is obtained by offsetting the decrease of the second value V2 with respect to the increase of.
  • the calculated flow value Vc may tend to increase in proportion to the increase in the quantitative flow value.
  • the relationship between the flow quantitative value and the flow calculation value Vc can show linearity from a range where the flow quantitative value is relatively low to a relatively high range.
  • FIG. 4 for comparison, the relationship between the flow rate set value and the flow calculation value (average frequency) shown in FIG. 17 (b) is shown by a thin two-dot chain line.
  • a specific value related to the frequency for the first frequency spectrum can be applied to the first value V1 related to the frequency based on the first frequency spectrum.
  • the first value V1 relating to the frequency based on the first frequency spectrum relates to, for example, the frequency of the frequency spectrum (also referred to as the second frequency spectrum) calculated by performing various calculations on the first frequency spectrum.
  • Specific values may be applied.
  • a specific value related to the intensity for the first frequency spectrum can be applied to the second value V2 related to the intensity based on the first frequency spectrum.
  • a specific value related to the intensity for the second frequency spectrum may be applied to the second value V2 related to the intensity based on the first frequency spectrum.
  • a weighting operation (also referred to as a weighting operation) using a frequency with respect to the first frequency spectrum can be applied to various operations.
  • the arithmetic processing unit 30a can calculate the weighted spectrum (second frequency spectrum) by performing a weighting operation for multiplying the intensity of each frequency in the first frequency spectrum by the corresponding frequency. it can.
  • the first value V1 is, for example, a value (also referred to as a first integrated value) obtained by calculating the integral relating to the intensity on the low frequency side for any of the frequency spectra of the first frequency spectrum and the second frequency spectrum.
  • a boundary frequency also referred to as a boundary frequency
  • a value also referred to as a second integrated value obtained by calculating the integral relating to the intensity on the high frequency side is a predetermined ratio can be applied.
  • the arithmetic processing unit 30a has the integrated value (first integrated value) Ar1 of the signal strength on the frequency side lower than the frequency fc and the integrated value Ar1 of the frequency spectrum.
  • the integrated value (second integrated value) Ar2 of the signal strength on the high frequency side of the frequency fc is calculated.
  • FIG. 5A an example of the frequency spectrum is shown by a curve Ln10 drawn by a thick alternate long and short dash line.
  • the arithmetic processing unit 30a recognizes the frequency f at which the first integrated value Ar1 and the second integrated value Ar2 have a predetermined ratio as the boundary frequency.
  • the arithmetic processing unit 30a adopts the frequency f as the boundary frequency as the first value V1.
  • the predetermined ratio can be set so that the ratio of the first integral value Ar1 and the second integral value Ar2 is a predetermined ratio between 2: 3 and 3: 2.
  • a predetermined ratio may be set so that the ratio of the first integral value Ar1 and the second integral value Ar2 is 1: 1.
  • the first value V1 is, for example, a frequency (also referred to as the first frequency) in which the intensity of any of the first frequency spectrum and the second frequency spectrum shows the maximum value (also referred to as the first maximum intensity) Pmax.
  • a frequency related to any intensity (also referred to as first intensity) in the frequency range including fp1 (also referred to as first frequency range) A1 may be applied.
  • the first frequency range A1 can be set to a range of a predetermined width based on the first frequency fp1 at which the intensity of the frequency spectrum shows the maximum value Pmax, for example, as shown in FIG. 5 (b). .. In FIG.
  • the first frequency range A1 can be set to, for example, a range having a predetermined width centered on the first frequency fp1.
  • the first intensity may be, for example, a value 0.8 times or more the first maximum intensity Pmax, or a value 0.9 times or more the first maximum intensity Pmax.
  • the arithmetic processing unit 30a recognizes the first frequency fp1 whose signal strength shows the maximum value Pmax in the frequency spectrum, as shown in FIG. 5B.
  • the arithmetic processing unit 30a adopts the frequency related to the first intensity in the first frequency range A1 including the first frequency fp1 as the first value V1.
  • the first intensity is the first maximum intensity Pmax
  • the first intensity can be easily obtained. Therefore, the flow quantitative value and the flow calculated value Vc are set from a small value to a large value. Relationships can easily approach proportional relationships. As a result, for example, the measurement accuracy in the measuring device 1 can be easily improved.
  • the frequency related to the first intensity is the first frequency fp1.
  • the arithmetic processing unit 30a recognizes the first frequency fp1 whose signal intensity shows the maximum value Pmax in the frequency spectrum, as shown in FIG. 5 (b). Then, for example, the arithmetic processing unit 30a adopts this first frequency fp1 as the first value V1.
  • the first value V1 is, for example, a frequency (also referred to as a second frequency) in which the absolute value of the slope of the change in intensity for any of the first frequency spectrum and the second frequency spectrum shows the minimum value.
  • a frequency related to any inclination (also referred to as a first inclination) in the frequency range including fp2 (also referred to as a second frequency range) A2 can be applied.
  • the slope of the change in intensity in the frequency spectrum for example, the ratio of the change in signal strength to the change in frequency is adopted.
  • the second frequency range A2 has a predetermined width with reference to the second frequency fp2 showing the minimum value (for example, 0) of the absolute value of the slope of the intensity, for example, as shown in FIG.
  • the second frequency range A2 can be set to, for example, a range having a predetermined width centered on the second frequency fp2.
  • a slope having an absolute value of a predetermined value or less is applied to the first slope.
  • the arithmetic processing unit 30a recognizes the second frequency fp2 in which the absolute value of the slope of the signal intensity shows the minimum value in the frequency spectrum, as shown in FIG. 5 (b). Then, for example, the arithmetic processing unit 30a adopts the frequency related to the first inclination in the second frequency range A2 including the second frequency fp2 as the first value V1.
  • the flow quantitative value is defined as the flow quantitative value from a small value to a large value.
  • the relationship with the flow calculation value Vc can easily approach the proportional relationship.
  • the measurement accuracy in the measuring device 1 can be easily improved.
  • the frequency related to the first slope is the second frequency fp2.
  • the arithmetic processing unit 30a recognizes the second frequency fp2 in which the absolute value of the slope of the change in signal strength shows the minimum value in the frequency spectrum. Then, for example, the arithmetic processing unit 30a adopts the second frequency fp2 as the first value V1.
  • the first value V1 is, for example, the frequency between the frequency fo of the light L1 irradiated by the light emitting unit 11 on the irradiated object 2 and the frequency of the interference light L2 including the light scattered by the irradiated object 2.
  • a shift amount also referred to as a frequency shift amount
  • ⁇ f can be applied.
  • the signal corresponding to the intensity of the interference light L2 output from the light receiving unit 12 includes a component of an optical beat signal having a frequency corresponding to the frequency shift amount ⁇ f.
  • the first frequency spectrum is, for example, a power spectrum showing a distribution related to the signal intensity for each frequency with respect to the time change of the intensity of the signal output from the light receiving unit 12 and then amplified by the amplification unit 20a. Therefore, the frequency shift amount ⁇ f can be estimated based on, for example, the first frequency spectrum. Therefore, for example, the frequency shift amount ⁇ f is an example of a value related to the frequency based on the first frequency spectrum.
  • the frequency shift amount ⁇ f is, for example, the average value (also referred to as the average frequency) fm of the frequency for the first frequency spectrum, and the width of the frequency range (first frequency) indicating the intensity equal to or higher than the specific value in the first frequency spectrum. Any of (also called width) can be applied.
  • the relationship between the flow quantitative value and the flow calculation value Vc can approach a proportional relationship from a small value to a large value.
  • the measurement accuracy in the measuring device 1 can be improved.
  • the average frequency fm corresponds to the frequency of the optical beat signal corresponding to the frequency shift amount ⁇ f.
  • the average frequency fm is, for example, an integral value of the intensity with respect to the second frequency spectrum P (f) ⁇ f obtained by weighting the frequency f to the first frequency spectrum P (f) ( ⁇ ⁇ P (f) ⁇ . It can be calculated by dividing f ⁇ df) by the integral value of the intensity ( ⁇ P (f) df) for the first frequency spectrum P (f).
  • the arithmetic processing unit 30a calculates the second frequency spectrum P (f) ⁇ f by weighting the first frequency spectrum P (f) with the frequency f. Next, for example, the arithmetic processing unit 30a regarding the integrated value of the intensity ( ⁇ ⁇ P (f) ⁇ f ⁇ df) for the second frequency spectrum P (f) ⁇ f and the first frequency spectrum P (f). The integral value of the intensity of ( ⁇ P (f) df) and is calculated.
  • the arithmetic processing unit 30a sets the integrated value ( ⁇ ⁇ P (f) ⁇ f ⁇ df) of the intensity for the second frequency spectrum P (f) ⁇ f with respect to the first frequency spectrum P (f).
  • the average frequency fm is calculated by dividing by the integral value of the intensity of ( ⁇ P (f) df).
  • the arithmetic processing unit 30a adopts this average frequency fm as the first value V1.
  • the first frequency width is a quantitative value (flow quantitative value) indicating the state of flow of the fluid 2b flowing through the inside 2i of the flow path constituent portion 2a, similarly to the average frequency fm. Has a strong correlation.
  • the first frequency width in the first frequency spectrum can be used as a value corresponding to the frequency shift amount ⁇ f.
  • a value based on the maximum value Pmax of the intensity of the first frequency spectrum is applied to the specific value for defining the first frequency width.
  • a value halved of the maximum value Pmax of the intensity of the first frequency spectrum is applied to the specific value.
  • a so-called full width at half maximum may be adopted as the first frequency width.
  • the arithmetic processing unit 30a calculates the first frequency width. Then, for example, the arithmetic processing unit 30a adopts this first frequency width as the first value V1.
  • the first value V1 for example, the above-mentioned boundary frequency
  • the frequency related to the first intensity, the frequency related to the first gradient, or the frequency shift amount ⁇ f is multiplied by a coefficient or raised to the power.
  • the value related to the frequency calculated by performing one or more calculations such as the calculation for performing the above may be adopted.
  • the first value V1 for example, the value related to any one of the above-mentioned boundary frequency, the frequency related to the first intensity, the frequency related to the first slope, and the frequency shift amount ⁇ f is adopted. May be good.
  • a value related to at least one of the above-mentioned boundary frequency, the frequency related to the first intensity, the frequency related to the first slope, and the frequency shift amount ⁇ f may be applied to the first value V1. .. Even if such a configuration is adopted, for example, the relationship between the quantitative flow value and the calculated flow value Vc can approach a proportional relationship from a small value to a large value. As a result, for example, the measurement accuracy in the measuring device 1 can be improved.
  • the first value V1 for example, the sum of two or more values of the above-mentioned boundary frequency, the frequency related to the first intensity, the frequency related to the first slope, and the frequency shift amount ⁇ f may be adopted. Good.
  • second value V2 For the second value V2, for example, an integral value (also referred to as a third integral value) obtained by calculating the integral for any of the frequency spectra of the first frequency spectrum and the second frequency spectrum can be applied.
  • the arithmetic processing unit 30a may calculate the third integrated value by calculating the integrated value of the intensity ( ⁇ P (f) df) for the first frequency spectrum P (f). ..
  • the integral value of the intensity ( ⁇ P (f) df) for the first frequency spectrum P (f) tends to decrease as the flow set value increases. Shown.
  • the arithmetic processing unit 30a may calculate the second frequency spectrum P (f) ⁇ f by weighting the first frequency spectrum P (f) with the frequency f.
  • the arithmetic processing unit 30a calculates the third integrated value by calculating the integrated value of the intensity ( ⁇ ⁇ P (f) ⁇ f ⁇ df) for the second frequency spectrum P (f) ⁇ f.
  • the integration of the frequency spectrum for calculating the third integral value may be performed, for example, for a predetermined frequency range.
  • the range of predetermined frequencies can be set below a certain preset frequency in the frequency spectrum.
  • the specific frequency may be preset, for example, according to the amplification characteristics of the amplifier circuit, or may be set to the first frequency fp1 at which the intensity of the frequency spectrum shows the maximum value Pmax.
  • the second value V2 is, for example, a frequency range (third frequency range) including the first frequency fp1 having an intensity of maximum value Pmax for any of the first frequency spectrum and the second frequency spectrum.
  • the second intensity in A3 (also referred to as) can be applied.
  • the third frequency range A3 can be set to a range of a predetermined width based on the first frequency fp1 at which the intensity of the frequency spectrum shows the maximum value Pmax, for example, as shown in FIG. 6 (b). ..
  • FIG. 6B an example of the frequency spectrum is shown by a curve Ln10 drawn by a thick alternate long and short dash line.
  • the third frequency range A3 can be set to, for example, a frequency range equal to or lower than the first frequency fp1.
  • the arithmetic processing unit 30a recognizes the first frequency fp1 whose signal strength shows the maximum value Pmax in the frequency spectrum, as shown in FIG. 6B.
  • the arithmetic processing unit 30a adopts the second intensity in the third frequency range A3 including the first frequency fp1 as the second value V2.
  • the second intensity is the first maximum intensity Pmax
  • the second intensity can be easily obtained. Therefore, the flow quantitative value and the flow calculated value Vc are set from a small value to a large value. Relationships can easily approach proportional relationships.
  • the measurement accuracy in the measuring device 1 can be easily improved.
  • the second intensity has a maximum value of Pmax.
  • the arithmetic processing unit 30a recognizes the maximum value Pmax of the signal strength in the frequency spectrum as shown in FIG. 6B. Then, for example, the arithmetic processing unit 30a adopts this maximum value Pmax as the second value V2.
  • the second value V2 for example, one or more calculations such as a calculation for multiplying the above-mentioned third integral value or the second intensity by a coefficient or a powering are performed.
  • the value related to the calculated strength may be adopted.
  • a value related to any one of the above-mentioned third integral value and the second intensity may be adopted.
  • a value related to at least one of the above-mentioned third integral value and the second intensity may be applied to the second value V2. Even if such a configuration is adopted, for example, the relationship between the quantitative flow value and the calculated flow value Vc can approach a proportional relationship from a small value to a large value. As a result, for example, the measurement accuracy in the measuring device 1 can be improved.
  • the second value V2 for example, the sum of the above-mentioned third integral value and the second intensity may be adopted.
  • the arithmetic processing unit 30a can calculate, for example, a quantitative value (flow quantitative value) indicating the flow state of the fluid 2b based on the calculated flow calculation value Vc.
  • the arithmetic processing unit 30a has a quantitative value (flow quantitative value) related to the flow of the fluid 2b based on the calculated flow calculated value Vc and the calibration data (also referred to as a calibration curve) prepared in advance.
  • the calibration data also referred to as a calibration curve
  • the flow rate of the fluid 2b is calculated based on the flow calculation value Vc and the calibration curve relating to the flow rate as the flow quantitative value. obtain.
  • the flow velocity of the fluid 2b can be calculated based on the flow calculation value Vc and the calibration curve relating to the flow velocity as the flow quantitative value. .. Thereby, at least one of the flow rate and the flow velocity of the fluid 2b can be calculated.
  • the flow calculation value Vc may tend to increase in proportion to the increase of the flow quantitative value. Thereby, for example, the measurement accuracy in the measuring device 1 can be improved.
  • the calibration data may be stored in a storage unit 30b or the like in advance before measuring the flow quantitative value of the fluid 2b, for example.
  • the calibration data may be stored, for example, in the form of a function expression or in the form of a table.
  • the calibration data is prepared, for example, by calculating the flow calculation value Vc by the measuring device 1 for the fluid 2b with the fluid 2b flowing in the flow path component 2a as the measurement target with a known flow quantitative value. obtain.
  • the calculation of the flow calculation value Vc by the measuring device 1 is the irradiation of the light L1 toward the irradiated object 2 by the light emitting unit 11 and the interference light L2 including the light scattered by the irradiated object 2 by the light receiving unit 12.
  • the light reception and the calculation of the flow calculation value Vc by the arithmetic processing unit 30a are performed.
  • the flow calculation value Vc is calculated by the measuring device 1 for the fluid 2b flowing in the flow path component 2a with the known flow quantitative value, and the known flow quantitative value and the calculated flow calculation value Vc are calculated.
  • the calibration data can be derived based on the relationship between. Specifically, for example, an arithmetic expression (calibration curve) using the flow calculation value Vc as a parameter can be derived as calibration data.
  • the calibration curve is represented by the equation (5) having a coefficient a and a constant b, where y is the quantitative flow value and x is the calculated flow value.
  • the flow calculation value y1 is calculated for the fluid 2b flowing in the flow path constituent unit 2a with the known flow quantitative value x1, and the fluid 2b flowing in the flow path constituent unit 2a with the known flow quantitative value x2. If the flow calculation value y2 is calculated for the above, the equations (6) and (7) are obtained.
  • y1 ax1 + b ... (6)
  • y2 ax2 + b ... (7).
  • the coefficient a and the constant b are calculated from the equations (6) and (7). Then, by substituting the calculated coefficient a and the constant b into the equation (5), calibration data showing the calibration curve can be obtained.
  • the function formula showing the calibration curve is represented by a polynomial including a term of degree n (n is a natural number of 2 or more), for example, where the quantitative flow value is y and the calculated flow value is x, which is a variable. It may be a thing.
  • the function formula showing the calibration curve may have at least one term of a logarithmic term and a power term for the variable x of the flow calculation value, for example.
  • FIG. 7 (a) and 7 (b) are flow charts showing an example of the operation of the measuring device 1. This operation can be realized, for example, by executing the program PG1 in the arithmetic processing unit 30a and controlling the operation of the measuring device 1 by the control unit 30.
  • steps SP1 to SP4 in FIG. 7A a flow quantitative value indicating the flow state of the fluid 2b can be calculated.
  • step SP1 of FIG. 7A the light emitting unit 11 irradiates the irradiated object 2 in which the fluid 2b is flowing inside 2i, while the light receiving unit 12 irradiates the irradiated object 2 with the interference light including the light scattered by the irradiated object 2.
  • a step (also referred to as a first step) of receiving L2 and outputting a signal corresponding to the intensity of the interference light L2 is executed.
  • step SP2 the amplification unit 20a of the signal processing unit 20 executes a step (also referred to as a second step) of amplifying the signal output from the light receiving unit 12 in step SP1.
  • the signal processing unit 20 may perform various processing such as AD conversion processing other than the amplification of the signal strength on the signal output from the light receiving unit 12.
  • the signal processed by the signal processing unit 20 is input to the control unit 30.
  • the control unit 30 acquires information related to the time change of the signal according to the intensity of the interference light L2 from the irradiated object 2.
  • step SP3 the arithmetic processing unit 30a of the control unit 30 determines the fluid 2b in the internal 2i of the irradiated object 2 based on the time change of the intensity of the signal amplified by the amplification unit 20a of the signal processing unit 20 in step SP2.
  • a step (also referred to as a third step) of calculating the flow calculation value Vc related to the flow state is executed.
  • steps SP33 are executed from step SP31 in FIG. 7B.
  • step SP31 the arithmetic processing unit 30a calculates the distribution (first frequency spectrum) related to the signal intensity for each frequency with respect to the time change of the signal intensity amplified by the amplification unit 20a in step SP2.
  • step SP32 the arithmetic processing unit 30a acquires the first value V1 related to the frequency based on the first frequency spectrum calculated in step SP31, and the second value V1 related to the frequency based on the first frequency spectrum calculated in step SP31. Get the value V2.
  • the arithmetic processing unit 30a relates to the flow state of the fluid 2b in the internal 2i of the irradiated object 2 by an arithmetic including division using the first value V1 and the second value V2 acquired in step SP32.
  • the flow calculation value Vc is calculated.
  • the flow calculation value Vc is calculated by dividing the first value V1 by the second value V2, the flow quantitative value and the flow calculation value are calculated from a small value to a large value.
  • the relationship with Vc can easily approach a proportional relationship. As a result, for example, the measurement accuracy in the measuring device 1 can be easily improved.
  • step SP4 the arithmetic processing unit 30a calculates a flow quantitative value indicating the flow state of the fluid 2b in the inner 2i of the irradiated object 2 based on the flow calculation value Vc calculated in step SP3.
  • the flow quantitative value includes at least one of the flow rate and the flow velocity of the fluid 2b.
  • the measuring device 1 has, for example, an increase rate according to the attenuation of the amplification factor with respect to the increase in the frequency in the amplification unit 20a based on the first frequency spectrum of the signal corresponding to the intensity of the interference light L2.
  • the decrease in the increase rate of the first value V1 due to the increase in frequency and the decrease in the second value due to the increase in frequency cancel each other out, so that the flow quantitative value changes from a small value to a large value.
  • the flow calculation value Vc can tend to increase in proportion to the increase in the flow quantitative value.
  • the relationship between the quantitative flow value and the calculated flow value Vc can approach a proportional relationship from a small value to a large value. Thereby, for example, the measurement accuracy in the measuring device 1 can be improved.
  • the control unit 30 is, for example, an operation for quantitatively measuring the flow state of the fluid 2b, which is different from the first embodiment, based on the electric signal output from the light receiving unit 12 by the arithmetic processing unit 30a. May be executed.
  • the arithmetic processing unit 30a can calculate, for example, a signal intensity distribution (also referred to as a first distribution) for each frequency with respect to a change (time change) in the intensity of the signal output from the light receiving unit 12 with time. ..
  • a signal intensity distribution also referred to as a first distribution
  • the time change of the intensity of the signal output from the light receiving unit 12 is analyzed by using an operation such as Fourier transform, so that the interference light L2 received by the light receiving unit 12 is analyzed for each frequency.
  • a power spectrum also referred to as a frequency spectrum
  • showing a distribution of signal strength can be calculated.
  • the frequency range in the frequency spectrum can be set based on, for example, the sampling rate in the AD conversion circuit.
  • the arithmetic processing unit 30a first performs various operations on the frequency spectrum obtained by analysis using an operation such as Fourier transform with respect to the time change of the intensity of the signal output from the light receiving unit 12, for example.
  • the distribution may be calculated.
  • a weighting operation (weighting operation) using a frequency with respect to a frequency spectrum can be applied to various operations.
  • the arithmetic processing unit 30a can calculate the weighted frequency spectrum as the first distribution by performing a weighting operation by multiplying the intensity of each frequency in the frequency spectrum by the corresponding frequency.
  • the arithmetic processing unit 30a can calculate the first distribution (frequency spectrum) as drawn by the thick line in FIG. 8A. .. Further, for example, when the flow rate or the flow velocity of the fluid 2b is relatively large, the arithmetic processing unit 30a can calculate the first distribution (frequency spectrum) as drawn by the thick line in FIG. 8B.
  • the arithmetic processing unit 30a can recognize, for example, the maximum value (also referred to as the maximum signal strength) fPmax of the signal strength in the first distribution as the first signal strength fP1.
  • the arithmetic processing unit 30a can recognize, for example, a frequency (also referred to as a first A frequency) f1a indicating the first signal strength fP1 in the first distribution.
  • the arithmetic processing unit 30a recognizes, for example, fPmin, which is the minimum value (also referred to as the minimum signal strength) of the signal strength in a frequency range higher than the first A frequency f1a in the first distribution, as the second signal strength fP2. Can be done.
  • the arithmetic processing unit 30a uses, for example, division by dividing the second signal strength fP2 by the first signal strength fP1 to calculate a calculated value (flow calculation) relating to the flow state of the fluid 2b flowing through the inside 2i of the irradiated object 2.
  • the value and) Vc can be calculated.
  • the flow calculation value Vc is calculated by the following equation (8), the first signal strength fP1, and the second signal strength fP2.
  • Flow conditions can include, for example, at least one of flow rate and flow rate.
  • Vc fP2 / fP1 ... (8).
  • the flow calculation value is set by the measuring device 1. It is assumed that Vc is calculated. In this case, as shown in FIG. 9, the calculated flow value Vc may tend to increase in proportion to the increase in the quantitative flow value.
  • the frequency at which the signal intensity in the frequency spectrum becomes the maximum value becomes a high frequency. Shift to the side.
  • the flow quantitative value changes from a relatively small value to a relatively large value as shown in FIGS. 8 (a) and 8 (b)
  • the frequency at which the signal intensity in the frequency spectrum becomes the maximum value becomes Shift to the high frequency side.
  • the maximum signal strength fPmax tends to decrease and the minimum signal strength fPmin tends to increase as the quantitative flow value increases.
  • the flow calculation value Vc using the above equation (8) increases the flow quantitative value as shown by the thick line in FIG. It can show a tendency to increase proportionally.
  • the relationship between the quantitative flow value and the calculated flow value can show linearity from a range where the quantitative flow value is relatively low to a relatively high range.
  • the relationship between the flow rate set value and the flow rate calculated value shown in FIG. 19 is shown by a two-dot chain line.
  • a value related to the first signal strength fP1 (also referred to as a first A value).
  • a division that divides the value related to the second signal strength fP2 (also referred to as the second A value) may be applied.
  • the first A value can be calculated by performing one or more calculations such as multiplication by multiplying the first signal strength fP1 by a coefficient or exponentiation.
  • the second A value can be calculated by performing one or more calculations on the second signal strength fP2, such as multiplication by a coefficient or exponentiation.
  • the first signal strength fP1 may be used as it is as the first A value
  • the second signal strength fP2 may be used as it is as the second A value.
  • FIG. 10 (a) and 10 (b) are flow charts showing an example of the operation of the measuring device 1 according to the second embodiment.
  • This operation can be realized, for example, by executing the program PG1 in the arithmetic processing unit 30a and controlling the operation of the measuring device 1 by the control unit 30.
  • steps SP3 from step SP1 in FIG. 10A a flow quantitative value indicating the flow state of the fluid 2b can be calculated.
  • step SP1 of FIG. 10 while the light emitting unit 11 irradiates the irradiated object 2 in which the fluid 2b is flowing inside 2i, the light receiving unit 12 receives the interference light L2 including the light scattered by the irradiated object 2. Then, a step of outputting a signal corresponding to the intensity of the interference light L2 (also referred to as a first A step) is executed. At this time, the signal output from the light receiving unit 12 is input to the control unit 30 after being amplified and AD converted by the signal processing unit 20, for example. As a result, the control unit 30 acquires information related to the time change of the signal according to the intensity of the interference light L2 from the irradiated object 2.
  • step SP2 the arithmetic processing unit 30a determines the flow calculation value Vc relating to the flow state of the fluid 2b in the internal 2i of the irradiated object 2 based on the time change of the intensity of the signal output from the light receiving unit 12 in step SP1. Is executed (also referred to as a second A step). In this step SP2, steps SP23 are executed from step SP21 in FIG. 10B.
  • step SP21 the arithmetic processing unit 30a calculates the signal intensity distribution (first distribution) for each frequency with respect to the time change of the signal intensity of the signal output from the light receiving unit 12 in step SP1.
  • This first distribution corresponds to the frequency spectrum.
  • step SP22 the arithmetic processing unit 30a recognizes the maximum signal strength fPmax as the first signal strength fP1 in the first distribution, and has a frequency higher than the first A frequency f1a indicating the first signal strength fP1 in the first distribution. Recognizes the minimum signal strength fPmin as the second signal strength fP2 in the range of.
  • step SP23 the arithmetic processing unit 30a divides the minimum signal strength fPmin as the second signal strength fP2 by the maximum signal strength fPmax as the first signal strength fP1 to divide the fluid 2b in the inner 2i of the object 2 to be irradiated.
  • the flow calculation value Vc related to the flow state of is calculated.
  • step SP3 the arithmetic processing unit 30a calculates a flow quantitative value indicating the flow state of the fluid 2b in the inner 2i of the irradiated object 2 based on the flow calculation value Vc calculated in step SP2.
  • the flow quantitative value includes at least one of the flow rate and the flow velocity of the fluid 2b.
  • the measuring device 1 has, for example, a frequency higher than the first A frequency f1a showing the maximum signal strength fPmax with respect to the first distribution of the signal strength for each frequency with respect to the time change of the signal strength in the interference light L2.
  • the flow calculation value Vc is calculated by dividing the minimum signal strength fPmin in the range by the maximum signal strength fPmax.
  • the calculated flow value Vc tends to increase in proportion to the increase of the quantitative flow value.
  • the relationship between the quantitative flow value and the calculated flow value Vc can approach a proportional relationship from a small value to a large value.
  • the measurement accuracy in the measuring device 1 can be improved.
  • the arithmetic processing unit 30a reduces the noise component (also referred to as the noise component) for each frequency with respect to the time change of the intensity of the signal output from the light receiving unit 12, for example.
  • the distribution of signal strength may be calculated.
  • the noise component can be reduced by using, for example, information related to the time change of the signal intensity according to the intensity of the interference light L2 obtained in the state where the flow of the fluid 2b in the inside 2i of the irradiated object 2 is stopped.
  • the light emitting unit 11 irradiates the irradiated object 2 in which the flow of the fluid 2b in the internal 2i is stopped with the light L1.
  • a quantitative value flow quantitative value
  • the inside 2i of the irradiated object 2 is set.
  • the flow of fluid 2b in can be stopped.
  • the light receiving unit 12 receives, for example, the interference light L2 including the light scattered by the irradiated object 2, and outputs a signal corresponding to the intensity of the interference light L2.
  • the arithmetic processing unit 30a calculates the distribution of the signal intensity for each frequency (also referred to as the second distribution) with respect to the time change of the intensity of the signal output from the light receiving unit 12.
  • the second distribution can be calculated for the time change of the intensity of the signal according to the intensity of the interference light output in response to the light reception of the interference light L2 including.
  • the arithmetic processing unit 30a can calculate, for example, the frequency spectrum as the second distribution as drawn by the thick line in FIG. 11A.
  • the second distribution corresponds, for example, to the frequency spectrum for the time change of the signal intensity according to the intensity of the interference light caused by the external environment (also referred to as the external environment) of the fluid 2b different from the flow of the fluid 2b.
  • a second distribution can be regarded as a noise component due to the external environment.
  • the noise caused by the external environment may include, for example, noise generated by vibration of the flow path constituent unit 2a such as a transparent tube, electromagnetic noise generated by the signal processing unit 20 and the control unit 30, and the like.
  • FIG. 11A a clear influence of noise caused by the external environment appears in the portion indicated by the arrow of the thick two-dot chain line.
  • the arithmetic processing unit 30a causes interference including light scattered by the light receiving unit 12 when the light L1 is irradiated to the irradiated object 2 in which the fluid 2b is flowing in the internal 2i by the light emitting unit 11.
  • the distribution of the signal intensity for each frequency (also referred to as the third distribution) can be calculated for the time change of the signal intensity according to the intensity of the interference light output in response to the light reception of the light L2.
  • the arithmetic processing unit 30a can calculate, for example, the frequency spectrum as the third distribution as drawn by the thick line in FIG. 11B. In the example of FIG. 11B, a clear influence of noise caused by the external environment appears in the portion indicated by the arrow of the thick two-dot chain line.
  • the arithmetic processing unit 30a performs an operation for reducing the noise component in the signal intensity of the third distribution for each frequency by using the second distribution, for example, to obtain the first distribution in which the noise component is reduced. Can be calculated.
  • the arithmetic processing unit 30a can calculate, for example, the frequency spectrum as the first distribution as drawn by the thick line in FIG. 11C. In this way, for example, by reducing the influence of noise caused by the external environment on the measurement of the flow quantitative value, the measurement accuracy in the quantitative measurement relating to the flow state of the fluid 2b can be further improved.
  • the state in which the fluid 2b is flowing inside the irradiated object 2 is more noisy due to the external environment than the state in which the fluid 2b is stopped in the inside 2i of the irradiated object 2. Is likely to occur. Therefore, as a calculation for reducing the noise component, for example, if division by dividing the signal strength of the third distribution by the signal strength of the second distribution for each frequency is adopted, noise caused by the external environment flows and the quantitative value is measured. The effect on the noise can be reduced. Thereby, for example, the measurement accuracy in the measuring device 1 can be improved.
  • a value related to the signal strength of the second distribution (also referred to as a third A value) is used, and a value related to the signal strength of the third distribution (also referred to as a fourth A value). ) May be adopted.
  • the third A value can be calculated by performing one or more calculations, such as a calculation of multiplying the signal strength of the second distribution by a coefficient or raising it to a power.
  • the fourth A value can be calculated by performing one or more calculations, such as a calculation of multiplying the signal strength of the third distribution by a coefficient or raising it to a power.
  • the signal strength of the second distribution may be used as it is as the third A value, or the signal strength of the third distribution may be used as it is as the fourth A value.
  • an operation for reducing the noise component for example, subtraction that reduces the signal strength of the second distribution from the signal strength of the third distribution may be adopted for each frequency.
  • an operation for reducing the noise component for example, an operation for reducing the third A value related to the signal strength of the second distribution from the fourth A value related to the signal strength of the third distribution may be adopted for each frequency.
  • the measuring device 1 may have an input unit 50 or an output unit 60, for example, as shown in FIG.
  • the input unit 50 can be connected to the control unit 30 via, for example, the connection unit 40.
  • the input unit 50 can input various conditions (also referred to as measurement conditions) related to the measurement of the flow quantitative value in the measuring device 1 to the control unit 30 in response to the operation of the user.
  • the measurement conditions include, for example, a frequency range in the frequency spectrum calculated by the arithmetic processing unit 30a.
  • an operation unit such as a keyboard, a mouse, a touch panel or a switch, or a microphone unit capable of inputting by voice is applied to the input unit 50.
  • the user can easily set desired measurement conditions.
  • the convenience of the measuring device 1 can be improved.
  • the measurement conditions include, for example, the amount of light L1 emitted by the light emitting unit 11, the period in which the light receiving unit 12 outputs a signal, the sampling rate in AD conversion, the calculation formula related to the calibration data and the coefficient of this calculation formula, or division or division. It may include a coefficient in subtraction, a power index, and the like.
  • the input unit 50 may be able to input various information regarding the fluid 2b, such as the viscosity, the concentration, or the size of the scatterer in the fluid 2b.
  • the output unit 60 can be connected to the control unit 30 via, for example, the connection unit 40.
  • the output unit 60 may include, for example, a display unit that visually outputs various information regarding the measurement of the flow quantitative value, or a speaker unit that audibly outputs various information regarding the measurement of the flow quantitative value. It may be included.
  • a liquid crystal display or a touch panel is applied to the display unit.
  • the input unit 50 includes a touch panel
  • the input unit 50 and the display unit of the output unit 60 may be realized by one touch panel. As a result, for example, the number of constituent members of the measuring device 1 can be reduced, and the measuring device 1 can be downsized and easy to manufacture.
  • the display unit can visually display the measurement conditions, the frequency spectrum, the flow calculation value or the flow quantitative value as the measurement result, and the like
  • the user can use various methods for measuring the flow quantitative value.
  • Information can be easily recognized.
  • the user may be able to change the output mode of various information in the output unit 60 via the input unit 50.
  • the change of the output mode may include, for example, a change of the display format or a change of the displayed information.
  • the user can easily recognize various information regarding the measurement of the flow quantitative value.
  • the convenience of the measuring device 1 can be improved.
  • the measuring device 1 may further include an external control unit 70, for example, as shown in FIG.
  • the external control unit 70 may include a computer such as a microcomputer (microcomputer), for example.
  • the external control unit 70 holds measurement conditions such as, for example, the amount of light L1, the period in which the light receiving unit 12 outputs a signal, and the sampling rate in AD conversion, and these measurement conditions can be input to the control unit 30. You may. As a result, for example, the number of items to be processed by the arithmetic processing unit 30a is reduced, and the processing speed of the control unit 30 can be improved.
  • the measurement conditions for example, the same various conditions as those related to the measurement of the flow quantitative value in the measuring device 1 which can be input by the input unit 50 are applied.
  • the external control unit 70 may be able to control the input unit 50 and the output unit 60, for example.
  • the number of portions having various functions controlled by the control unit 30 (also referred to as functional units) is reduced, and the processing speed of the control unit 30 can be improved.
  • the external control unit 70 may have various other functional units composed of, for example, a plurality of electronic components.
  • a pressure gauge or a thermometer is applied to various other functional parts.
  • the degree of freedom in design of the measuring device 1 can be improved, and the convenience of the measuring device 1 can be improved.
  • Communication between the external control unit 70, the control unit 30, the input unit 50, and the output unit 60 may be realized by either a wired or wireless method.
  • communication according to an arbitrary communication standard is applied. Any communication standard includes, for example, IIC (Inter Integrated Circuit), SPI (Serial Peripheral Interface), UART (Universal Asynchronous Receiver Transmitter), and the like.
  • the sensor unit 10, the signal processing unit 20, and the external control unit 70 may be able to directly communicate with each other.
  • the external control unit 70 may have the function of the control unit 30 without the measuring device 1 having the control unit 30.
  • the delay of the signal generated between the control unit 30 and the external control unit 70 can be eliminated by the direct communication between the sensor unit 10, the signal processing unit 20, and the external control unit 70.
  • the processing speed of the measuring device 1 can be improved.
  • the convenience of the measuring device 1 can be improved.
  • the measurement system 200 may be adopted in which all the parts or at least two or more parts constituting the measuring device 1 are connected to each other so as to be communicable with each other.
  • the measurement system 200 according to the fifth embodiment includes a light emitting unit 11, a light receiving unit 12, a signal processing unit 20 including an amplification unit 20a, and a control unit 30 including an arithmetic processing unit 30a.
  • the measurement system 200 includes a light emitting unit 11, a light receiving unit 12, a signal processing unit 20 including an amplification unit 20a, and a control unit 30 including an arithmetic processing unit 30a.
  • the signal processing unit 20 does not have to include the amplification unit 20a.
  • the arithmetic processing unit 30a may make noise regarding a time change in the intensity of the signal amplified by the amplification unit 20a of the signal processing unit 20, for example.
  • the distribution of the signal intensity for each frequency (first frequency spectrum) may be calculated so that the component (also referred to as a noise component) of the above is reduced.
  • the noise component can be reduced by using, for example, information related to the time change of the signal intensity according to the intensity of the interference light L2 obtained in the state where the flow of the fluid 2b in the inside 2i of the irradiated object 2 is stopped. Can be
  • the calculation including the division using the first value V1 and the second value V2 in the calculation processing unit 30a is, for example, the second value V2.
  • the operation may include division by dividing by the first value V1.
  • a flow calculation value Vc is obtained in which the decrease in the increase rate of the first value V1 due to the increase in the flow quantitative value and the decrease in the second value V2 due to the increase in the flow quantitative value are offset. Be done.
  • the frequency shift amount ⁇ f applied to the first value V1 is, for example, a signal for a frequency change in the first frequency spectrum or the second frequency spectrum.
  • the reciprocal of the slope indicating the rate of change in intensity may be adopted.
  • the first signal strength fP1 in the first distribution is, for example, a frequency range including the first A frequency f1a showing the maximum signal strength fPmax in the first distribution (first A frequency range). It may be any signal strength in A1a (also referred to as).
  • the second signal strength fP2 in the first distribution is, for example, a frequency range including the second A frequency f2a showing the minimum signal strength fPmin in a frequency range higher than the first A frequency range A1a in the first distribution (the first). It may be any signal strength in A2a (also referred to as 2A frequency range). Even if such a configuration is adopted, for example, the relationship between the quantitative flow value and the calculated flow value Vc can approach a proportional relationship from a small value to a large value.
  • the first A frequency range A1a can be set to a range of a predetermined width based on the first A frequency f1a, as shown in FIGS. 8 (a) and 8 (b), for example.
  • the second A frequency range A2a can be set to a range of a predetermined width with respect to the second A frequency f2a, for example, as shown in FIGS. 8 (a) and 8 (b).
  • the first A frequency range A1a can be set to, for example, a range having a predetermined width centered on the first A frequency f1a.
  • the second A frequency range A2a can be set to, for example, a range having a predetermined width centered on the second A frequency f2a.
  • the first A frequency range A1a and the second A frequency range A2a may be set so as not to overlap each other.
  • the first A frequency range A1a and the second A frequency range A2a are set so as to sandwich a frequency intermediate between the first A frequency f1a and the second A frequency f2a.
  • the first A frequency range A1a and the second A frequency range A2a may be adjacent to each other or may be separated from each other, for example.
  • the first signal strength fP1 may be, for example, a value 0.8 times or more the maximum signal strength fPmax, or a value 0.9 times or more the maximum signal strength fPmax.
  • the second signal strength fP2 may be, for example, a value 1.2 times or less of the minimum signal strength fPmin, or a value 1.1 times or less the minimum signal strength fPmin.
  • the first signal strength fP1 in the first distribution may be set to a value larger than, for example, the average value fPme of the maximum signal strength fPmax and the minimum signal strength fPmin.
  • the second signal strength fP2 in the first distribution may be, for example, a value smaller than the average value fPme of the maximum signal strength fPmax and the minimum signal strength fPmin. Even if such a configuration is adopted, for example, the relationship between the quantitative flow value and the calculated flow value Vc can approach a proportional relationship from a small value to a large value.
  • the first signal strength fP1 may be, for example, a value 0.8 times or more the maximum signal strength fPmax, or a value 0.9 times or more the maximum signal strength fPmax.
  • the second signal strength fP2 may be, for example, a value 1.2 times or less of the minimum signal strength fPmin, or a value 1.1 times or less the minimum signal strength fPmin.
  • the flow quantitative value is from a small value to a large value.
  • the relationship between the quantitative flow value and the calculated flow value Vc can easily approach a proportional relationship.
  • the measurement accuracy in the measuring device 1 can be easily improved.
  • the arithmetic processing unit 30a does not have to calculate, for example, a flow quantitative value indicating the state of the flow of the fluid 2b based on the flow calculation value Vc related to the flow of the fluid 2b.
  • the user can grasp the change in the flow state of the fluid 2b based on the change in the flow calculation value Vc. Therefore, for example, the measurement accuracy in the measuring device 1 that quantitatively measures the flow state of the fluid 2b can be improved.
  • At least a part of the functions of the arithmetic processing unit 30a may be configured by hardware such as a dedicated electronic circuit, for example.
  • Measuring device 2 Irradiated object 2a Flow path component 2b Fluid 2i Internal 10 Sensor unit 11 Light emitting unit 12 Light receiving unit 20 Signal processing unit 30 Control unit 30a Arithmetic processing unit 30b Storage unit 70 External control unit 200 Measurement system A1 First frequency Range A2 2nd frequency range A3 3rd frequency range A1a 1st A frequency range A2a 2nd A frequency range Ar1 1st integrated value Ar2 2nd integrated value L1 light L2 Interference light PG1 program Pmax 1st maximum intensity (maximum value) V1 1st value V2 2nd value Vc flow calculation value f1a 1st A frequency f2a 2nd A frequency fm average frequency fo frequency fp1 1st frequency fp2 2nd frequency fP1 1st signal strength fP2 2nd signal strength fPmax maximum signal strength fPmin minimum signal Strength

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Hematology (AREA)
  • Molecular Biology (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Veterinary Medicine (AREA)
  • Cardiology (AREA)
  • Physiology (AREA)
  • Electromagnetism (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Multimedia (AREA)
  • Measuring Volume Flow (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

測定装置は、発光部、受光部、増幅部および演算処理部を備える。発光部は、内部に流体が流れる被照射物に光を照射する。受光部は、被照射物で散乱した光を含む干渉光を受光して該干渉光の強度に応じた信号を出力する。増幅部は、受光部から出力された信号を増幅する。演算処理部は、増幅部で増幅された信号の強度の時間変化について周波数ごとの信号強度に係る第1周波数スペクトルを算出するとともに、第1値と第2値とを用いた除算を含む演算で、流体の流れの状態に係る計算値を算出する。第1値は、第1周波数スペクトルに基づく周波数に係る値である。第2値は、第1周波数スペクトルに基づく強度に係る値である。

Description

測定装置、測定システム、測定方法およびプログラム
 本開示は、測定装置、測定システム、測定方法およびプログラムに関する。
 流体の流れの状態を定量的に測定する測定装置としては、例えば、レーザー血流計などの光学的な手法を用いて流体の流量および流速を測定する装置が知られている(例えば、郷間雅樹、外6名、「小型レーザー血流センサーの開発」PIONEER R&D、VOL.21、No.1、2012年、p.30-37および特開2016-27337号公報の記載を参照)。
 測定装置、測定システム、測定方法およびプログラムが開示される。
 測定装置の一態様は、発光部、受光部、増幅部および演算処理部を備える。前記発光部は、内部に流体が流れる被照射物に光を照射する。前記受光部は、前記被照射物で散乱した光を含む干渉光を受光して該干渉光の強度に応じた信号を出力する。前記増幅部は、前記受光部から出力された信号を増幅する。前記演算処理部は、前記増幅部で増幅された信号の強度の時間変化について周波数ごとの信号強度に係る第1周波数スペクトルを算出するとともに、第1値と第2値とを用いた除算を含む演算で、前記流体の流れの状態に係る計算値を算出する。前記第1値は、前記第1周波数スペクトルに基づく周波数に係る値である。前記第2値は、前記第1周波数スペクトルに基づく強度に係る値である。
 測定装置の一態様は、発光部と、受光部と、演算処理部と、を備える。前記発光部は、内部に流体が流れる被照射物に光を照射する。前記受光部は、前記被照射物で散乱した光を含む干渉光を受光して該干渉光の強度に応じた信号を出力する。前記演算処理部は、前記受光部から出力される信号の強度の時間変化について周波数ごとの信号強度の第1分布を算出する。前記演算処理部は、前記第1分布のうちの第1A周波数範囲における第1信号強度に係る第1A値によって、前記第1分布のうちの第2A周波数範囲における第2信号強度に係る第2A値を除する除算を含む演算で、前記流体の流れの状態に係る計算値を算出する。前記第1A周波数範囲は、前記第1分布のうちの信号強度が最大値を示す第1A周波数を含む。前記第2A周波数範囲は、前記第1分布のうちの前記第1A周波数範囲よりも高い周波数の範囲において信号強度が最小値を示す第2A周波数を含む。
 測定システムの一態様は、発光部、受光部、増幅部および演算処理部を備える。前記発光部は、内部に流体が流れる被照射物に光を照射する。前記受光部は、前記被照射物で散乱した光を含む干渉光を受光して該干渉光の強度に応じた信号を出力する。前記増幅部は、前記受光部から出力された信号を増幅する。前記演算処理部は、前記増幅部で増幅された信号の強度の時間変化について周波数ごとの信号強度に係る第1周波数スペクトルを算出するとともに、第1値と第2値とを用いた除算を含む演算で、前記流体の流れの状態に係る計算値を算出する。前記第1値は、前記第1周波数スペクトルに基づく周波数に係る値である。前記第2値は、前記第1周波数スペクトルに基づく強度に係る値である。
 測定システムの一態様は、発光部と、受光部と、演算処理部と、を備える。前記発光部は、内部に流体が流れる被照射物に光を照射する。前記受光部は、前記被照射物で散乱した光を含む干渉光を受光して該干渉光の強度に応じた信号を出力する。前記演算処理部は、前記受光部から出力される信号の強度の時間変化について周波数ごとの信号強度の第1分布を算出する。前記演算処理部は、前記第1分布のうちの第1A周波数範囲における第1信号強度に係る第1A値によって、前記第1分布のうちの第2A周波数範囲における第2信号強度に係る第2A値を除する除算を含む演算で、前記流体の流れの状態に係る計算値を算出する。前記第1A周波数範囲は、前記第1分布のうちの信号強度が最大値を示す第1A周波数を含む。前記第2A周波数範囲は、前記第1分布のうちの前記第1A周波数範囲よりも高い周波数の範囲において信号強度が最小値を示す第2A周波数を含む。
 測定方法の一態様は、第1工程、第2工程および第3工程を有する。前記第1工程において、発光部によって内部に流体が流れている被照射物に光を照射しながら、受光部によって前記被照射物で散乱した光を含む干渉光を受光して該干渉光の強度に応じた信号を出力する。前記第2工程において、増幅部によって前記第1工程において前記受光部から出力された信号を増幅する。前記第3工程において、演算処理部によって前記第2工程において前記増幅部で増幅された信号の強度の時間変化について周波数ごとの信号強度に係る第1周波数スペクトルを算出するとともに、第1値と第2値とを用いた除算を含む演算で、前記流体の流れの状態に係る計算値を算出する。前記第1値は、前記第1周波数スペクトルに基づく周波数に係る値である。前記第2値は、前記第1周波数スペクトルに基づく強度に係る値である。
 測定方法の一態様は、第1A工程と、第2A工程と、を有する。前記第1A工程において、発光部によって内部に流体が流れている被照射物に光を照射しながら、受光部によって前記被照射物で散乱した光を含む干渉光を受光して該干渉光の強度に応じた信号を出力する。前記第2A工程において、演算処理部によって、前記第1A工程において前記受光部から出力される信号の強度の時間変化について周波数ごとの信号強度の第1分布を算出する。前記第2A工程において、前記演算処理部によって、前記第1分布のうちの第1A周波数範囲における第1信号強度に係る第1A値によって、前記第1分布のうちの第2A周波数範囲における第2信号強度に係る第2A値を除する除算を含む演算で、前記流体の流れの状態に係る計算値を算出する。前記第1A周波数範囲は、前記第1分布のうちの信号強度が最大値を示す第1A周波数を含む。前記第2A周波数範囲は、前記第1分布のうちの前記第1A周波数範囲よりも高い周波数の範囲において信号強度が最小値を示す第2A周波数を含む。
 プログラムの一態様は、測定装置に含まれる処理部によって実行されることで、前記測定装置を、上記測定装置の一態様として機能させる、プログラムである。
図1は、第1実施形態および第2実施形態に係る測定装置の概略的な構成の一例を示すブロック図である。 図2は、第1実施形態および第2実施形態に係る測定装置の一部の断面の一例を模式的に示す図である。 図3は、流れ定量値が比較的小さな値Q1である流体が内部を流れる被照射物からの干渉光に係る周波数スペクトルの一例を示す曲線Ln1、流れ定量値が比較的中程度の値Q2である流体が内部を流れる被照射物からの干渉光に係る周波数スペクトルの一例を示す曲線Ln2、および流れ定量値が比較的大きな値Q3である流体が内部を流れる被照射物からの干渉光に係る周波数スペクトルの一例を示す曲線Ln3を示す図である。 図4は、流れ定量値と流れ計算値との関係の一例を示す図である。 図5(a)は、第1値の第1例を示す図である。図5(b)は、第1値の第2例を示す図である。 図6(a)は、第2値の第1例を示す図である。図6(b)は、第2値の第2例を示す図である。 図7(a)および図7(b)は、第1実施形態に係る測定装置における動作の一例を示す流れ図である。 図8(a)は、流体の流れが小さな場合に第2実施形態に係る測定装置で算出される干渉光についての周波数スペクトルの一例を示す図である。図8(b)は、流体の流れが大きな場合に第1実施形態に係る測定装置で算出される干渉光についての周波数スペクトルの一例を示す図である。 図9は、流れ定量値と流れ計算値との関係の一例を示す図である。 図10(a)および図10(b)は、第2実施形態に係る測定装置における動作の一例を示す流れ図である。 図11(a)は、流体の流れが止まっている場合に測定装置で取得される干渉光についての周波数スペクトルの一例を示す図である。図11(b)は、流体が流れている場合に測定装置で取得される干渉光についての周波数スペクトルの一例を示す図である。図11(c)は、ノイズ成分が低減された周波数スペクトルの一例を示す図である。 図12は、第3実施形態に係る測定装置の概略的な構成の一例を示すブロック図である。 図13は、第4実施形態に係る測定装置の概略的な構成の一例を示すブロック図である。 図14は、第5実施形態に係る測定システムの概略的な構成の一例を示すブロック図である。 図15(a)は、第1参考例に係る測定装置で得られる流量設定値がそれぞれQ1、Q2およびQ3である流体が内部を流れる被照射物からの干渉光に係る重み付け周波数スペクトルおよび平均周波数の理想的な一例を示す図である。図15(b)は、第1参考例に係る測定装置における流量設定値と算出される平均周波数との関係の理想的な一例を示す図である。 図16は、増幅回路における受光信号の増幅率と周波数との関係の一例を示す図である。 図17(a)は、第1参考例に係る測定装置で得られる流量設定値がそれぞれQ1、Q2およびQ3である流体が内部を流れる被照射物からの干渉光に係る重み付け周波数スペクトルおよび平均周波数の一例を示す図である。図17(b)は、一参考例に係る測定装置における流量設定値と算出される平均周波数との関係の一例を示す図である。 図18は、第2参考例に係る測定装置で得られる干渉光についての周波数スペクトルを示す図である。 図19は、第2参考例に係る測定装置で算出される流量に係る計算値と設定値との関係を示す図である。
 流体の流れの状態を定量的に測定する測定装置として、例えば、レーザー血流計などの光学的な手法を用いて流体の流量および流速の少なくとも一方を測定する装置が知られている。このレーザー血流計は、例えば、生体に照射されたレーザー光が散乱する際に生ずるドップラーシフトに起因したレーザー光の波長の変化に基づいて、生体の血流量を算出することができる。
 具体的には、周波数foのレーザー光が生体に照射されると、血管内における血液の流れ(散乱体である血球などの移動)による散乱と、他の固定組織(皮膚組織および血管を形成している組織など)による散乱と、によってそれぞれ散乱光が発生する。血球の径は、例えば、数マイクロメートル(μm)から10μm程度である。このとき、散乱体である血球での散乱で生じた散乱光の周波数fは、他の固定組織での散乱で生じた散乱光の周波数foと比較して、散乱体である血球などの移動速度に対応したドップラーシフトによってΔfだけ変化した周波数fo+Δfとなっている。この変調周波数Δfは、血流の速度をVとし、流体に対するレーザー光の入射角度をθとし、レーザー光の波長をλとすると、下記の式(1)で示される。
 Δf=(2V×cosθ)/λ ・・・(1)。
 ここでは、固定組織で散乱された周波数foの散乱光と、移動する血球で散乱された周波数fo+Δfの散乱光と、の相互干渉によって、差周波Δfが光ビート(うなり)として観測され得る。換言すれば、これらの2種類の散乱光を受光することで得られる信号(受光信号)には、これらの2種類の散乱光の相互干渉によって生ずる光ビートに対応する信号(光ビート信号ともいう)の成分が含まれる。
 ここで、光ビートの周波数に対応する差周波Δfは、元の光の周波数fよりも非常に小さい。例えば、780nmの波長の元の光は、周波数が400テラヘルツ(THz)程度の光であり、通常の受光素子で検出が可能である応答速度を超えている。これに対して、光ビートの周波数(光ビート周波数ともいう)Δfは、血球の移動速度に依存するものの、例えば、数キロヘルツ(kHz)から数十kHz程度であり、通常の受光素子が十分応答して検出することが可能である周波数帯域に含まれる。このため、受光素子を用いて、固定組織で散乱された周波数foの散乱光と、移動する血球で散乱された周波数fo+Δfの散乱光と、を受光することで得られる信号(受光信号)は、直流成分の信号(DC信号)に光ビート周波数Δfの強度変調信号が重畳されたような波形を示す。そして、周波数Δfの光ビート信号を解析することで、血流量を算出することができる。
 例えば、まず、受光素子によって検出された受光信号についてフーリエ変換(FFT)などの演算を用いて周波数スペクトルP(f)を算出する。次に、この周波数スペクトルP(f)に周波数fの重み付けを行うことで、重み付け後の周波数スペクトル(重み付け周波数スペクトルともいう)P(f)×fを算出する。次に、重み付け周波数スペクトルP(f)×fについて、所定の周波数の範囲で積分を行って、第1の計算値(∫{P(f)×f}df)を算出する。次に、下記の式(2)で示されるように、第1の計算値(∫f・P(f)df)を、周波数スペクトルP(f)を所定の周波数の範囲について積分を行うことで算出される第2の計算値(∫P(f)df)で除することで、平均周波数fmを算出する。そして、平均周波数fmに所定の定数を乗じることで、生体の血流量を算出することが考えられる。
 fm=∫{P(f)×f}df/{∫P(f)df} ・・・(2)。
 ここで、例えば、流路としての透明チューブ内において、数μm程度の光散乱体が分散している流体を流す際に、レーザー血流計を用いて流体の流量Qを測定する構成を想定する。この構成では、例えば、ポンプなどで流路を流れる流体の流量(流量設定値ともいう)を設定することが可能であるものとする。ここでは、例えば、流量設定値をQ1、Q2、Q3の順に増加させ、各流量設定値Q1,Q2,Q3について、レーザー血流計を用いて、光ビート信号に係る周波数スペクトルP(f)、重み付け周波数スペクトルP(f)×f、平均周波数fmおよび流体の流量Qを算出する場合を想定する。
 この場合には、例えば、流量設定値がQ1の際には、図15(a)の太い実線で描かれた曲線Ln101で示される重み付け周波数スペクトルP(f)×fから平均周波数fm1が算出される。流量設定値がQ2の際には、図15(a)の太い一点鎖線で描かれた曲線Ln102で示される重み付け周波数スペクトルP(f)×fから平均周波数fm2が算出される。流量設定値がQ3の際には、図15(a)の太い破線で描かれた曲線Ln103で示される重み付け周波数スペクトルP(f)×fから平均周波数fm3が算出される。ここでは、例えば、仮に、図15(b)の太い実線で示されるように、流量設定値Q1,Q2,Q3と平均周波数fm1,fm2,fm3との関係が比例関係にあれば、平均周波数fmに所定の乗数を乗じる演算によって、流体の流量Qが正しく算出され得る。
 ところで、例えば、受光素子から出力される受光信号は微弱である。このため、レーザー血流計では、例えば、増幅回路によって受光信号を増幅した後に、光ビート信号に係る周波数スペクトルP(f)、重み付け周波数スペクトルP(f)×f、平均周波数fmおよび流体の流量Qを算出することが想定される。
 しかしながら、例えば、増幅回路における受光信号の増幅率は、図16の太い実線で描かれた曲線Ln104で示されるように、受光信号の周波数に依存する。具体的には、増幅回路では、受光信号の周波数が高くなると、信号強度の増幅率が低下する。これにより、例えば、流量設定値を増加させると、受光信号を構成する周波数成分が高周波側にシフトするものの、重み付け周波数スペクトルP(f)×fにおける高周波側の成分が減衰する。その結果、例えば、重み付け周波数スペクトルP(f)×fを用いて算出される周波数スペクトルP(f)の平均周波数が、流量設定値の増加に比例して増加しない場合がある。
 ここで、例えば、流量設定値を値Q1、値Q2および値Q3の順に増加させる場合を想定する。この場合には、例えば、流量設定値がQ1の際には、図17(a)の太い実線で描かれた曲線Ln201で示される重み付け周波数スペクトルP(f)×fから平均周波数fm1が算出される。流量設定値がQ2の際には、図17(a)の太い一点鎖線で描かれた曲線Ln202で示される重み付け周波数スペクトルP(f)×fから平均周波数fm2が算出される。流量設定値がQ3の際には、図17(a)の太い破線で描かれた曲線Ln203で示される重み付け周波数スペクトルP(f)×fから平均周波数fm3が算出される。
 ここでは、図17(b)の太い実線で示されるように、流量設定値が比較的小さな値の範囲A101にあれば、流量設定値と平均周波数とが比例関係にあるものの、流量設定値が比較的大きな値の範囲A102にあれば、流量設定値と平均周波数との関係が比例関係を示さない。図17(b)では、比較のために、理想的な比例関係にある流量設定値と平均周波数との関係が細い二点鎖線で示されている。具体的には、流量設定値が比較的大きな値の範囲A102にあれば、流量設定値の増加率に対して、算出される平均周波数fmの増加率が低下する。すなわち、例えば、流量設定値を増加させても、レーザー血流計で得られる平均周波数が、流量設定値の増加に比例して増加しない場合がある。これにより、平均周波数fmに所定の乗数を乗じる演算によって、流体の流量Qを正しく算出することができない場合がある。
 また、例えば、受光素子によって検出された受光信号に含まれるビート信号光に相当する信号成分についてフーリエ変換(FFT)などの演算を用いて周波数スペクトルP(f)が算出されることで、生体の血流量が算出される。ここで、例えば、式(3)に従って算出される値(流量計算値ともいう)Q4に所定の係数L,Kなどが乗じられることで、血流量が算出され得る。ここでは、例えば、0キロヘルツ(kHz)から500kHzの範囲の周波数fについて、式(3)で示される積分の演算が行われる。
 Q4=∫{f×P(f)}df ・・・(3)。
 ところで、例えば、流路としての透明チューブ内において、数μm程度の光散乱体が分散している流体を流す際に、レーザー血流計を用いて流体の流量を測定する場合を想定する。この場合には、例えば、レーザー血流計を用いて得られるビート信号に係る周波数スペクトルが算出される。ここで、例えば、ポンプなどで流路を流れる流体の流量(流量設定値ともいう)を設定する場合を想定する。この場合には、例えば、流量設定値が比較的小さな値Qaであれば、図18において太い実線L101で描かれるような周波数スペクトルが得られる。また、例えば、流量設定値が比較的大きな値Qbであれば、図18において太い破線L102で描かれるような周波数スペクトルが得られる。ここでは、周波数スペクトルにおいて、例えば、流量設定値の増大に応じて、低周波成分の信号強度が減少し、高周波成分の信号強度が増加する。ただし、このとき、例えば、環境ノイズの影響およびマイクロコンピュータ(マイコン)などにおける受光信号のサンプリング周波数による律速などに依存して、周波数スペクトルにおける高周波成分の信号強度が大きくは上昇しにくい。
 このため、例えば、流量設定値を増加させても、レーザー血流計で得られる受光信号に係る周波数スペクトルと上記式(3)の演算とに基づいて算出される流量の計算値(流量計算値ともいう)が、流量設定値の増加に比例して増加しない場合がある。例えば、図19で示されるように、流量設定値が比較的低い範囲A201にあれば、流量設定値と流量計算値との間の関係が線形性を示しても、流量設定値が比較的高い範囲A202となれば、流量設定値と流量計算値との間の関係が線形性を示さない場合がある。ここでは、例えば、流量設定値が比較的低ければ、流量設定値の増加に比例して流量計算値が増加するものの、流量設定値が比較的高くなれば、流量設定値の増加に対する流量計算値の増加量が徐々に減少し、流量設定値の増加に比例して流量計算値が増加しなくなる。
 上述した各問題は、流体の流量を測定する測定装置に限られず、流体の流量および流速の少なくとも一方を含む流体の流れの状態に係る定量値を測定する測定装置一般に共通する。
 したがって、流体の流れの状態を定量的に測定する測定装置については、測定精度を向上させる点で改善の余地がある。
 そこで、本発明者らは、流体の流れの状態を定量的に測定する測定装置について、測定精度を向上させることができる技術を創出した。
 これについて、以下、第1実施形態から第5実施形態を、図面を参照しつつ説明する。図面においては同様な構成および機能を有する部分に同じ符号が付されており、下記説明では重複説明が省略される。図面は模式的に示されたものである。
 <1.第1実施形態>
 <1-1.測定装置>
 図1および図2で示されるように、第1実施形態に係る測定装置1は、例えば、流路を構成する物体(流路構成部ともいう)2aの内部2iを流れる流体2bの流れの状態を定量的に測定することができる。ここで、流路構成部2aは、例えば、生体内の血管または各種装置の配管などの管状の物体(管状体ともいう)を含み得る。流体2bの流れの状態を示す定量的な値(流れ定量値ともいう)は、例えば、流量および流速のうちの少なくとも一方の値を含み得る。流量は、単位時間あたりに流路を通過する流体の量である。流体の量は、例えば、体積または質量で表され得る。流速は、流路における流体の流れの速さである。流れの速さは、単位時間あたりに流体が進む距離で表され得る。
 第1実施形態に係る測定装置1は、例えば、光のドップラー効果を利用して流体2bの流れの状態を定量的に測定することができる。ここで、例えば、流体2bに対する光の照射に応じて、その光が流体2bで散乱を生じる場合には、流体2bの流れに応じたドップラー効果によって、流体2bの移動速度に応じた光の周波数のシフト(ドップラーシフトともいう)が生じる。第1実施形態に係る測定装置1は、このドップラーシフトを利用して、流体2bの流れの状態を示す流れ定量値を測定することができる。後述する測定装置1の各種構成は、適宜周知あるいは公知の方法を用いて製造され得る。
 ここで、流れの状態が定量的に測定される対象物(被測定物ともいう)としての流体2bは、例えば、その流体2b自体が光を散乱するもの、または光を散乱する物質(散乱物質ともいう)または光を散乱する物体(散乱体ともいう)を流動させるものを含む。具体的には、この被測定物としての流体2bには、例えば、水、血液、プリンター用のインク、または粉体などの散乱体を含む気体などが適用される。ここで、例えば、散乱物質または散乱体が流体に追従して流動する場合には、「散乱物質または散乱体の流量」を「流体の流量」とみなしてもよいし、「散乱物質または散乱体の流速」を「流体の流速」とみなしてもよい。
 図1および図2で示されるように、第1実施形態に係る測定装置1は、例えば、センサー部10と、信号処理部20と、制御部30と、を備えている。また、測定装置1は、接続部(コネクタ部)40を備えている。
 センサー部10は、例えば、発光部11と、受光部12と、を有する。
 発光部11は、例えば、内部2iに流体2bが流れる物体(被照射物ともいう)2に光L1を照射することが可能である。被照射物2は、少なくとも管状体などの流路を構成する物体(流路構成部)2aと、流路を流れる流体2bと、を含む。発光部11が被照射物2に照射する光L1には、例えば、被測定物としての流体2bに応じた所定の波長の光が適用される。例えば、流体2bが血液である場合には、被照射物2に照射される光L1の波長は、600ナノメートル(nm)から900nm程度に設定される。また、例えば、流体2bがプリンター用のインクである場合には、被照射物2に照射される光の波長は、700nmから1000nm程度に設定される。発光部11には、例えば、垂直共振器面発光レーザー(VCSEL:Vertical Cavity Surface Emitting LASER)などの半導体レーザー素子が適用される。
 受光部12は、例えば、発光部11から被照射物2に照射された光L1のうち、被照射物2で散乱した光を含む干渉光L2を受光することができる。そして、受光部12は、例えば、受光した光を光の強度に応じた電気信号に変換することができる。換言すれば、受光部12は、例えば、被照射物2で散乱した光を含む干渉光L2を受光して、この干渉光L2の強度に応じた信号を出力することができる。受光部12が受光することができる干渉光L2は、被照射物2からの散乱光のうち、流体2bの周囲で静止している物体(静止物体ともいう)からのドップラーシフトを生じていない散乱光と、流体2bからのシフト量がΔfであるドップラーシフトを生じた散乱光と、によって生じる干渉光を含む。ここで、例えば、流体2bが血管内を流れる血液である場合には、静止物体は、皮膚および血管などを含む。流体2bが配管内を流れるインクである場合には、静止物体は、配管などの流体2bの流路を構成する物体(流路構成部)2aなどを含む。この場合には、配管は、例えば、透光性を有する材料によって構成され得る。透光性を有する材料には、例えば、ガラスまたはポリマー樹脂などが適用される。
 ここで、例えば、時間の経過に対する干渉光L2の強度の変化(時間変化ともいう)は、ドップラーシフトを生じていない散乱光の周波数と、ドップラーシフトを生じた散乱光の周波数と、の差(差周波ともいう)Δfに対応する周波数のうなりを示し得る。このため、例えば、受光部12から出力される干渉光L2の強度に応じた信号は、干渉光L2の強度の時間変化におけるうなりに対応する信号(うなり信号とも光ビート信号ともいう)の成分を含み得る。受光部12には、例えば、干渉光L2の強度の時間変化におけるうなりに追従することができる能力(時間分解能ともいう)を有するものが適用される。受光部12が受光することができる光の波長は、例えば、発光部11から被照射物2に照射される光L1の波長および流体2bの速度の範囲などの測定条件に応じて設定され得る。受光部12には、例えば、シリコン(Si)フォトダイオード、ガリウムヒ素(GaAs)フォトダイオード、ヒ化インジウムガリウム(InGaAs)フォトダイオード、またはゲルマニウム(Ge)フォトダイオードなどの各種のフォトダイオードが適用される。
 また、センサー部10は、さらにパッケージ13を有していてもよい。パッケージ13は、発光部11および受光部12を収容するものである。図2の例では、測定装置1は、センサー部10、信号処理部20、制御部30および接続部40が実装された状態で位置している基板(実装基板ともいう)1sを有する。実装基板1sには、例えば、プリント基板などが適用される。ここでは、センサー部10のパッケージ13が実装基板1s上に位置している。センサー部10と信号処理部20との間、信号処理部20と制御部30との間、センサー部10と制御部30との間および制御部30と接続部40との間のそれぞれは、例えば、実装基板1sによって電気的に接続されている状態にある。
 パッケージ13は、例えば、立方体状または直方体状の外形を有する。パッケージ13は、例えば、上方に向けてそれぞれ開口している第1凹部R1および第2凹部R2を有する。第1凹部R1には、発光部11が実装された状態で位置している。第2凹部R2には、受光部12が実装された状態で位置している。ここで、発光部11から発せられる光L1は、第1凹部R1の開口を介して被照射物2に照射される。また、被照射物2からの干渉光L2は、第2凹部R2の開口を介して受光部12によって受光される。パッケージ13には、例えば、セラミック材料または有機材料などで構成されている配線基板の積層体が適用される。セラミック材料には、例えば、酸化アルミニウム質焼結体またはムライト質焼結体などが適用される。有機材料には、例えば、エポキシ樹脂またはポリイミド樹脂などが適用される。
 また、例えば、図2で示されるように、パッケージ13のうちの第1凹部R1および第2凹部R2のそれぞれの開口を覆うように、透光性を有するカバー部材14が位置していてもよい。このような構成が採用されれば、例えば、パッケージ13の第1凹部R1内において発光部11が密閉された状態、およびパッケージ13の第2凹部R2内において受光部12が密閉された状態が実現され得る。カバー部材14には、ガラス板などが適用される。
 信号処理部20は、例えば、受光部12から受信した電気信号に対して種々の処理を行うことができる。種々の処理には、例えば、電気信号を電圧値に変換する処理、電気信号の強度を増幅する処理およびアナログ信号をデジタル信号に変換する処理などが含まれ得る。このため、信号処理部20は、例えば、受光部12から出力された信号を増幅することが可能である部分(増幅部ともいう)20aとしての機能を有する。信号処理部20は、例えば、増幅回路を有することで、増幅部20aとしての機能を実現することができる。ここで、増幅部20aにおける信号の増幅率は、例えば、3デシベル(dB)から150dBに設定され得る。増幅部20aにおいて信号の増幅率が減衰し始める周波数(カットオフ周波数ともいう)は、例えば、500kHzに設定され得る。また、増幅部20aは、例えば、2段階もしくは3段階以上で信号を増幅してもよい。また、受光部12から出力された電気信号は、例えば、直流(DC)成分と交流(AC)成分とを含む。このため、例えば、信号処理部20では、受光部12から出力された電気信号を、DC成分とAC成分とに分けた後に、増幅部20aでAC成分の信号を増幅してもよい。この場合には、信号処理部20で行われる種々の処理には、例えば、電気信号を電圧値に変換する処理、電気信号の交流(AC)成分と直流(DC)成分とを分離する処理、およびAC信号を増幅する処理、ならびにアナログ信号をデジタル信号に変換する処理などが含まれ得る。信号処理部20は、例えば、トランジスタもしくはダイオードなどの能動素子およびコンデンサなどの受動素子などを含む複数の電子部品を有する。信号処理部20は、例えば、電流-電圧変換回路(I-V変換回路)、交流-直流分離回路(AC-DCデカップリング回路)、交流増幅回路(AC増幅回路)およびアナログ-デジタル変換回路(AD変換回路)などの回路を有し得る。ここでは、例えば、信号処理部20は、受光部12から受信したアナログの電気信号に対して、増幅処理およびAD変換処理などの処理を施した上で、制御部30に向けて、デジタル信号を出力することができる。
 制御部30は、例えば、測定装置1を制御することができる。制御部30は、例えば、トランジスタもしくはダイオードなどの能動素子およびコンデンサなどの受動素子などを含む複数の電子部品を有する。接続部40は、例えば、制御部30と外部装置とを電気的に接続することができる。
 ここでは、例えば、複数の電子部品を集積して、1つ以上の集積回路(IC)または大規模集積回路(LSI)などを形成することで、信号処理部20、制御部30および接続部40を含む各種機能部を構成することができる。また、例えば、複数のICまたはLSIなどをさらに集積することで、信号処理部20、制御部30および接続部40を含む各種機能部を構成してもよい。信号処理部20、制御部30および接続部40を構成する複数の電子部品は、例えば、実装基板1s上に実装されている状態にある。ここでは、パッケージ13と信号処理部20とが電気的に接続され、パッケージ13と制御部30とが電気的に接続され、制御部30と接続部40とが電気的に接続されている状態にある。
 制御部30は、例えば、演算処理部30aと、記憶部30bと、を有する。
 演算処理部30aは、例えば、電気回路としてのプロセッサを有する。プロセッサは、例えば、1つ以上のプロセッサ、コントローラ、マイクロプロセッサ、マイクロコントローラ、特定用途向け集積回路(ASIC)、デジタル信号処理装置、プログラマブルロジックデバイス、またはこれらのデバイスもしくは任意の構成の組み合わせ、あるいは他の既知のデバイスもしくは構成の組み合わせを含み得る。
 記憶部30bは、例えば、即時呼び出し記憶装置(RAM)および読み出し専用メモリ(ROM)などを有する。記憶部30bは、例えば、プログラムPG1を含むファームウェアを記憶している状態にある。演算処理部30aは、記憶部30bに記憶されたファームウェアに従って、1つ以上のデータの演算またはデータ処理を実行することができる。換言すれば、例えば、演算処理部30aがプログラムPG1を実行することで、測定装置1の各種機能を実現することができる。これにより、制御部30は、例えば、発光部11の動作を制御することができる。
 ところで、例えば、受光部12から出力される電気信号の周波数および強度(信号強度ともいう)は、光のドップラー効果に依存する。このため、例えば、電気信号の周波数と信号強度との関係を示す周波数スペクトルは、流体2bの流れ定量値(流量または流速)に応じて変化する。そこで、制御部30は、例えば、演算処理部30aによって、受光部12から出力されて信号処理部20で増幅された電気信号に基づいて流体2bの流れの状態を定量的に測定するための演算を実行することができる。
 演算処理部30aは、例えば、受光部12から出力された信号を増幅部20aが増幅することで得た信号の強度に関する時間の経過に対する変化(時間変化)について、周波数ごとの信号強度に係る分布を算出することができる。ここでは、例えば、信号処理部20から出力される信号の強度の時間変化について、フーリエ変換などの演算を用いた解析がなされる。これにより、例えば、増幅部20aで増幅された信号の強度の時間変化について周波数ごとの信号強度に係る分布を示すパワースペクトル(第1周波数スペクトルともいう)が算出され得る。ここで、第1周波数スペクトルにおける周波数の範囲は、例えば、AD変換回路におけるサンプリングレートに基づいて設定され得る。
 ここでは、例えば、流体2bの流れ定量値(流量または流速)が比較的小さな値Q1である場合には、演算処理部30aは、図3の太い実線で描かれた曲線Ln1で示されるような第1周波数スペクトルを算出することができる。例えば、流体2bの流れ定量値(流量または流速)が比較的中程度の値Q2である場合には、演算処理部30aは、図3の太い一点鎖線で描かれた曲線Ln2で示されるような第1周波数スペクトルを算出することができる。例えば、流体2bの流れ定量値(流量または流速)が比較的大きな値Q3である場合には、演算処理部30aは、図3の太い二点鎖線で描かれた曲線Ln3で示されるような第1周波数スペクトルを算出することができる。図3で示されるように、流体2bの流れ定量値が増加すると、第1周波数スペクトルP(f)の形状は、周波数の変化に対して信号強度がなだらかに増減するようになる。
 <<流れ計算値の算出>>
 演算処理部30aは、例えば、第1周波数スペクトルに基づいて、周波数に係る第1の値(第1値ともいう)V1と、信号の強度に係る第2の値(第2値ともいう)V2を認識することができる。そして、演算処理部30aは、例えば、第1値V1と第2値V2とを用いた除算を含む演算によって、被照射物2の内部2iを流れる流体2bの流れの状態に係る計算値(流れ計算値ともいう)Vcを算出することができる。例えば、流れ計算値Vcは、次の式(4)と、第1値V1と、第2値V2と、によって算出される。この場合には、例えば、第1値V1と第2値V2とを用いた除算は、第1値V1を第2値V2で除する計算を含む。流れの状態には、例えば、流量および流速の少なくとも一方が含まれ得る。
 Vc=V1/V2 ・・・(4)。
 ここで、例えば、仮にポンプなどで流路構成部2aとしての透明チューブ内を流れる流体2bの流れの状態に係る定量的な値(流れ定量値)を設定しながら、測定装置1で流れ計算値Vcを算出する場合を想定する。この場合には、図4で示されるように、流れ計算値Vcは、流れ定量値の増加に比例して増加する傾向を示し得る。
 ところで、例えば、図16で示されたように、増幅回路では、信号の周波数が高くなると、信号の増幅率が低下する。このため、例えば、図17(a)および図17(b)で示されたように、第1周波数スペクトルの平均周波数は、流れ定量値の増加に比例して増加しない傾向を示す。また、例えば、流れ定量値を増加させると、図3で示されるように、第1周波数スペクトルを構成する周波数成分が高周波側にシフトするものの、第1周波数スペクトルにおける高周波側の成分が減衰する傾向を示す。このため、例えば、流れ定量値を増加させても、第1周波数スペクトルに基づく周波数に係る第1値V1の増加率が、流れ定量値の増加率よりも低くなる傾向を示す。また、例えば、第1周波数スペクトルに基づく強度に係る第2値V2は、流れ定量値の増加に伴って、第1値V1の増加率と同様に、低くなる傾向を示す。そこで、これらの傾向を利用して、例えば、上述した式(4)を用いた流れ計算値Vcを算出すると、流れ定量値の増加率に対する第1値V1の増加率の低下と、流れ定量値の増加に対する第2値V2の低下とが、相殺された流れ計算値Vcが得られる。換言すれば、例えば、第1値V1と第2値V2とを用いて増幅部30aの増幅特性に応じて減衰した値を相殺する演算を行うことができる。例えば、図4の太線で描かれるように、流れ計算値Vcは、流れ定量値の増加に比例して増加する傾向を示し得る。換言すれば、例えば、流れ定量値が比較的低い範囲から比較的高い範囲に至るまで、流れ定量値と流れ計算値Vcとの間の関係が線形性を示し得る。その結果、例えば、流体の流れの状態を定量的に測定する測定装置1における測定精度を向上させることが可能となる。図4では、比較のために図17(b)で示した流量設定値と流れ計算値(平均周波数)との間の関係を細い二点鎖線で示している。
 ここで、第1周波数スペクトルに基づく周波数に係る第1値V1には、例えば、第1周波数スペクトルについての周波数に係る特定の値が適用され得る。また、第1周波数スペクトルに基づく周波数に係る第1値V1には、例えば、第1周波数スペクトルに各種の演算を行うことで算出される周波数スペクトル(第2周波数スペクトルともいう)についての周波数に係る特定の値が適用されてもよい。また、ここで、第1周波数スペクトルに基づく強度に係る第2値V2には、例えば、第1周波数スペクトルについての強度に係る特定の値が適用され得る。また、第1周波数スペクトルに基づく強度に係る第2値V2には、例えば、第2周波数スペクトルについての強度に係る特定の値が適用されてもよい。ここでは、各種の演算には、例えば、第1周波数スペクトルに対する周波数を用いた重み付けの演算(重み付け演算ともいう)が適用され得る。この場合には、例えば、演算処理部30aは、第1周波数スペクトルにおける周波数毎の強度に、対応する周波数を乗じる重み付け演算を行うことで重み付け後のスペクトル(第2周波数スペクトル)を算出することができる。
 <<第1値V1の具体例>>
 第1値V1には、例えば、第1周波数スペクトルおよび第2周波数スペクトルの何れかの周波数スペクトルについての、低周波数側の強度に係る積分の計算で得られる値(第1積分値ともいう)と高周波数側の強度に係る積分の計算で得られる値(第2積分値ともいう)とが所定の比率となる境界の周波数(境界周波数ともいう)が適用され得る。この場合には、例えば、演算処理部30aが、図5(a)で示されるように、周波数スペクトルについて、周波数fcよりも低周波側における信号強度の積分値(第1積分値)Ar1、および周波数fcよりも高周波側における信号強度の積分値(第2積分値)Ar2を算出する。図5(a)には、周波数スペクトルの一例が、太い一点鎖線で描かれた曲線Ln10で示されている。次に、例えば、演算処理部30aが、第1積分値Ar1と第2積分値Ar2とが所定の比率となる周波数fを、境界周波数として認識する。そして、例えば、演算処理部30aが、境界周波数としての周波数fを第1値V1として採用する。ここで、所定の比率は、第1積分値Ar1と第2積分値Ar2との比が、2:3から3:2の間の所定の比となるように設定され得る。例えば、第1積分値Ar1と第2積分値Ar2との比が、1:1となるように、所定の比率が設定されてもよい。
 また、第1値V1には、例えば、第1周波数スペクトルおよび第2周波数スペクトルの何れかの周波数スペクトルについての、強度が最大値(第1最大強度ともいう)Pmaxを示す周波数(第1周波数ともいう)fp1を含む周波数の範囲(第1周波数範囲ともいう)A1における何れかの強度(第1強度ともいう)に係る周波数が適用され得る。ここで、第1周波数範囲A1は、例えば、図5(b)で示されるように、周波数スペクトルの強度が最大値Pmaxを示す第1周波数fp1を基準とする所定の幅の範囲に設定され得る。図5(b)には、周波数スペクトルの一例が、太い一点鎖線で描かれた曲線Ln10で示されている。具体的には、第1周波数範囲A1は、例えば、第1周波数fp1を中心とする所定の幅の範囲に設定され得る。ここでは、第1強度は、例えば、第1最大強度Pmaxの0.8倍以上の値であってもよいし、第1最大強度Pmaxの0.9倍以上の値であってもよい。この場合には、例えば、演算処理部30aが、図5(b)で示されるように、周波数スペクトルにおいて、信号強度が最大値Pmaxを示す第1周波数fp1を認識する。そして、例えば、演算処理部30aが、第1周波数fp1を含む第1周波数範囲A1における第1強度に係る周波数を第1値V1として採用する。ここでは、例えば、第1強度が、第1最大強度Pmaxであれば、第1強度が求めやすいため、流れ定量値が小さな値から大きな値に至るまで、流れ定量値と流れ計算値Vcとの関係が容易に比例関係に近づき得る。その結果、例えば、測定装置1における測定精度が容易に向上し得る。この場合には、例えば、図5(b)で示されるように、第1強度に係る周波数は、第1周波数fp1となる。ここでは、例えば、演算処理部30aが、図5(b)で示されるように、周波数スペクトルにおいて、信号強度が最大値Pmaxを示す第1周波数fp1を認識する。そして、例えば、演算処理部30aが、この第1周波数fp1を第1値V1として採用する。
 また、第1値V1には、例えば、第1周波数スペクトルおよび第2周波数スペクトルの何れかの周波数スペクトルについての、強度の変化の傾きの絶対値が最小値を示す周波数(第2周波数ともいう)fp2を含む周波数の範囲(第2周波数範囲ともいう)A2における何れかの傾き(第1傾きともいう)に係る周波数が適用され得る。ここで、周波数スペクトルにおける強度の変化の傾きとしては、例えば、周波数の変化に対する信号強度の変化の割合が採用される。また、第2周波数範囲A2は、例えば、図5(b)で示されるように、強度の傾きの絶対値が最小値(例えば、0)を示す第2周波数fp2を基準とする所定の幅の範囲に設定され得る。具体的には、第2周波数範囲A2は、例えば、第2周波数fp2を中心とする所定の幅の範囲に設定され得る。ここでは、第1傾きには、例えば、絶対値が所定値以下の傾きが適用される。この場合には、例えば、演算処理部30aが、図5(b)で示されるように、周波数スペクトルにおいて、信号強度の傾きの絶対値が最小値を示す第2周波数fp2を認識する。そして、例えば、演算処理部30aが、第2周波数fp2を含む第2周波数範囲A2における第1傾きに係る周波数を第1値V1として採用する。ここでは、例えば、第1傾きが、強度の変化の傾きの絶対値における最小値であれば、第1傾きが求めやすいため、流れ定量値が小さな値から大きな値に至るまで、流れ定量値と流れ計算値Vcとの関係が容易に比例関係に近づき得る。その結果、例えば、測定装置1における測定精度が容易に向上し得る。この場合には、例えば、図5(b)で示されるように、第1傾きに係る周波数は、第2周波数fp2となる。ここでは、例えば、演算処理部30aが、図5(b)で示されるように、周波数スペクトルにおいて、信強度の変化の傾きの絶対値が最小値を示す第2周波数fp2を認識する。そして、例えば、演算処理部30aが、この第2周波数fp2を第1値V1として採用する。
 また、第1値V1には、例えば、発光部11が被照射物2に照射した光L1の周波数foと、被照射物2で散乱した光を含む干渉光L2の周波数との間における周波数のシフト量(周波数シフト量ともいう)Δfが適用され得る。ここで、例えば、受光部12から出力される干渉光L2の強度に応じた信号は、周波数シフト量Δfに対応する周波数を有する光ビート信号の成分を含む。そして、第1周波数スペクトルは、例えば、受光部12から出力された後に増幅部20aで増幅された信号の強度の時間変化について周波数ごとの信号強度に係る分布を示すパワースペクトルである。このため、周波数シフト量Δfは、例えば、第1周波数スペクトルに基づいて推定され得る。よって、例えば、周波数シフト量Δfは、第1周波数スペクトルに基づく周波数に係る値の一例である。この周波数シフト量Δfとしては、例えば、第1周波数スペクトルについての周波数の平均値(平均周波数ともいう)fm、および第1周波数スペクトルにおける特定値以上の強度を示す周波数の範囲の幅(第1周波数幅ともいう)の何れかが適用され得る。この場合にも、例えば、流れ定量値が小さな値から大きな値に至るまで、流れ定量値と流れ計算値Vcとの関係が比例関係に近づき得る。その結果、例えば、測定装置1における測定精度が向上し得る。ここで、例えば、平均周波数fmは、周波数シフト量Δfに応じた光ビート信号の周波数に対応するものである。平均周波数fmは、例えば、第1周波数スペクトルP(f)に周波数fの重み付けを行うことで求めた第2周波数スペクトルP(f)×fについての強度の積分値(∫{P(f)×f}df)を、第1周波数スペクトルP(f)についての強度の積分値(∫P(f)df)で除することで算出され得る。この場合には、例えば、演算処理部30aが、第1周波数スペクトルP(f)に周波数fの重み付けを行うことで第2周波数スペクトルP(f)×fを算出する。次に、例えば、演算処理部30aが、第2周波数スペクトルP(f)×fについての強度の積分値(∫{P(f)×f}df)と、第1周波数スペクトルP(f)についての強度の積分値(∫P(f)df)と、を算出する。次に、例えば、演算処理部30aが、第2周波数スペクトルP(f)×fについての強度の積分値(∫{P(f)×f}df)を、第1周波数スペクトルP(f)についての強度の積分値(∫P(f)df)で除することで、平均周波数fmを算出する。そして、例えば、演算処理部30aが、この平均周波数fmを第1値V1として採用する。また、ここで、例えば、第1周波数幅は、平均周波数fmと同様に、流路構成部2aの内部2iを流れる流体2bの流れの状態を示す定量的な値(流れ定量値)に対して強い相関を有する。このため、例えば、平均周波数fmの代わりに、周波数シフト量Δfに相当する値として、第1周波数スペクトルにおける第1周波数幅を用いることができる。ここで、第1周波数幅を規定するための特定値には、例えば、第1周波数スペクトルの強度の最大値Pmaxを基準とした値が適用される。具体的には、特定値には、例えば、第1周波数スペクトルの強度の最大値Pmaxの1/2の値が適用される。換言すれば、第1周波数幅として、いわゆる半値幅が採用されてもよい。この場合には、例えば、演算処理部30aが、第1周波数幅を算出する。そして、例えば、演算処理部30aが、この第1周波数幅を第1値V1として採用する。
 また、ここで、第1値V1として、例えば、上述した境界周波数、第1強度に係る周波数、第1傾きに係る周波数または周波数シフト量Δfに対して、係数を乗じる乗算または冪(べき)乗を行う計算などの1つ以上の計算が施されることで算出された周波数に係る値が採用されてもよい。換言すれば、第1値V1として、例えば、上述した境界周波数、第1強度に係る周波数、第1傾きに係る周波数および周波数シフト量Δfのうちの何れか1つの周波数に係る値が採用されてもよい。また、第1値V1には、例えば、上述した境界周波数、第1強度に係る周波数、第1傾きに係る周波数および周波数シフト量Δfのうちの少なくとも1つの周波数に係る値が適用されてもよい。このような構成が採用されても、例えば、流れ定量値が小さな値から大きな値に至るまで、流れ定量値と流れ計算値Vcとの関係が比例関係に近づき得る。その結果、例えば、測定装置1における測定精度が向上し得る。ここでは、第1値V1として、例えば、上述した境界周波数、第1強度に係る周波数、第1傾きに係る周波数および周波数シフト量Δfのうちの2つ以上の値の和などが採用されてもよい。
 <<第2値V2の具体例>>
 第2値V2には、例えば、第1周波数スペクトルおよび第2周波数スペクトルの何れかの周波数スペクトルについての、積分の計算で得られる積分値(第3積分値ともいう)が適用され得る。この場合には、例えば、演算処理部30aは、第1周波数スペクトルP(f)についての強度の積分値(∫P(f)df)を算出することで第3積分値を算出してもよい。例えば、図6(a)で示されるように、第1周波数スペクトルP(f)についての強度の積分値(∫P(f)df)は、流れ設定値の増加に伴って、低くなる傾向を示す。また、例えば、演算処理部30aは、第1周波数スペクトルP(f)に周波数fの重み付けを行うことで、第2周波数スペクトルP(f)×fを算出してもよい。ここで、例えば、演算処理部30aは、第2周波数スペクトルP(f)×fについての強度の積分値(∫{P(f)×f}df)を算出することで第3積分値を算出してもよい。ここで、第3積分値を算出するための周波数スペクトルについての積分は、例えば、所定の周波数の範囲について行われてもよい。所定の周波数の範囲は、周波数スペクトルにおける予め設定された特定の周波数以下に設定され得る。特定の周波数は、例えば、増幅回路の増幅特性に応じて予め設定されていてもよいし、周波数スペクトルの強度が最大値Pmaxを示す第1周波数fp1に設定されてもよい。
 また、第2値V2には、例えば、第1周波数スペクトルおよび第2周波数スペクトルの何れかの周波数スペクトルについての、強度が最大値Pmaxを示す第1周波数fp1を含む周波数の範囲(第3周波数範囲ともいう)A3における第2強度が適用され得る。ここで、第3周波数範囲A3は、例えば、図6(b)で示されるように、周波数スペクトルの強度が最大値Pmaxを示す第1周波数fp1を基準とする所定の幅の範囲に設定され得る。図6(b)には、周波数スペクトルの一例が、太い一点鎖線で描かれた曲線Ln10で示されている。具体的には、第3周波数範囲A3は、例えば、第1周波数fp1以下の周波数の範囲に設定され得る。この場合には、例えば、演算処理部30aが、図6(b)で示されるように、周波数スペクトルにおいて、信号強度が最大値Pmaxを示す第1周波数fp1を認識する。そして、例えば、演算処理部30aが、第1周波数fp1を含む第3周波数範囲A3における第2強度を第2値V2として採用する。ここでは、例えば、第2強度が、第1最大強度Pmaxであれば、第2強度が求めやすいため、流れ定量値が小さな値から大きな値に至るまで、流れ定量値と流れ計算値Vcとの関係が容易に比例関係に近づき得る。その結果、例えば、測定装置1における測定精度が容易に向上し得る。この場合には、例えば、図6(b)で示されるように、第2強度は、最大値Pmaxとなる。また、この場合には、例えば、演算処理部30aが、図6(b)で示されるように、周波数スペクトルにおいて、信号強度の最大値Pmaxを認識する。そして、例えば、演算処理部30aが、この最大値Pmaxを第2値V2として採用する。
 また、ここで、第2値V2として、例えば、上述した第3積分値または第2強度に対して、係数を乗じる乗算または冪乗を行う計算などの1つ以上の計算が施されることで算出された強度に係る値が採用されてもよい。換言すれば、第2値V2として、例えば、上述した第3積分値および第2強度のうちの何れか1つの強度に係る値が採用されてもよい。また、第2値V2には、例えば、上述した第3積分値および第2強度のうちの少なくとも1つの強度に係る値が適用されてもよい。このような構成が採用されても、例えば、流れ定量値が小さな値から大きな値に至るまで、流れ定量値と流れ計算値Vcとの関係が比例関係に近づき得る。その結果、例えば、測定装置1における測定精度が向上し得る。ここでは、第2値V2として、例えば、上述した第3積分値と第2強度との和などが採用されてもよい。
 <<流れ定量値の算出>>
 演算処理部30aは、例えば、算出された流れ計算値Vcに基づいて、流体2bの流れの状態を示す定量的な値(流れ定量値)を算出することができる。例えば、演算処理部30aは、算出された流れ計算値Vcと、予め準備された検量データ(検量線ともいう)と、に基づいて、流体2bの流れに係る定量的な値(流れ定量値)を算出することができる。ここで、例えば、流体2bの流量に係る検量データが予め準備されていれば、流れ計算値Vcと、流れ定量値としての流量に係る検量線と、に基づいて、流体2bの流量が算出され得る。また、例えば、流体2bの流速に係る検量データが予め準備されていれば、流れ計算値Vcと、流れ定量値としての流速に係る検量線と、に基づいて、流体2bの流速が算出され得る。これにより、流体2bの流量および流速のうちの少なくとも一方が算出され得る。ここでは、上述したように、例えば、流れ定量値が小さな値から大きな値に至るまで、流れ定量値の増加に比例して流れ計算値Vcが増加するような傾向を示し得る。これにより、例えば、測定装置1における測定精度を向上させることができる。
 検量データは、例えば、流体2bの流れ定量値を測定する前に、予め記憶部30bなどに記憶されていればよい。検量データは、例えば、関数式の形式で記憶されていてもよいし、テーブルの形式で記憶されていてもよい。
 ここで、検量データは、例えば、流体2bについて、既知の流れ定量値で流路構成部2a内を流れる流体2bを測定の対象として測定装置1によって流れ計算値Vcの算出を行うことで準備され得る。このとき、測定装置1による流れ計算値Vcの算出は、発光部11による被照射物2に向けた光L1の照射と、受光部12による被照射物2で散乱した光を含む干渉光L2の受光と、演算処理部30aによる流れ計算値Vcの算出と、を行うものである。ここでは、例えば、既知の流れ定量値で流路構成部2a内を流れる流体2bを対象として測定装置1によって流れ計算値Vcを算出し、既知の流れ定量値と、算出された流れ計算値Vcと、の関係に基づいて検量データが導出され得る。具体的には、例えば、流れ計算値Vcを媒介変数とする演算式(検量線)が検量データとして導出され得る。
 例えば、流れ定量値をyとし、流れ計算値をxとして、係数aおよび定数bを有する式(5)によって検量線が表される場合を想定する。
 y=ax+b ・・・(5)。
 ここで、例えば、既知の流れ定量値x1で流路構成部2a内を流れる流体2bを対象として流れ計算値y1が算出され、既知の流れ定量値x2で流路構成部2a内を流れる流体2bを対象として流れ計算値y2が算出されれば、式(6)および式(7)が得られる。
 y1=ax1+b ・・・(6)
 y2=ax2+b ・・・(7)。
 ここで、式(6)および式(7)から、係数aおよび定数bが算出される。そして、算出された係数aおよび定数bを式(5)に代入すれば、検量線を示す検量データが得られる。
 ここで、検量線を示す関数式は、例えば、流れ定量値をyとし、流れ計算値を変数であるxとした、n次(nは2以上の自然数)の項を含む多項式で表されるものであってもよい。検量線を示す関数式は、例えば、流れ計算値を変数であるxについての対数の項および冪乗の項の少なくとも1つの項を有していてもよい。
 <1-2.測定装置の動作>
 次に、測定装置1の動作について、一例を挙げて説明する。図7(a)および図7(b)は、測定装置1の動作の一例を示す流れ図である。この動作は、例えば、演算処理部30aにおいてプログラムPG1が実行され、制御部30によって測定装置1の動作が制御されることで実現され得る。ここでは、図7(a)のステップSP1からステップSP4が実行されることで、流体2bの流れの状態を示す流れ定量値が算出され得る。
 図7(a)のステップSP1では、発光部11が内部2iに流体2bが流れている被照射物2に光を照射しながら、受光部12が被照射物2で散乱した光を含む干渉光L2を受光してこの干渉光L2の強度に応じた信号を出力する工程(第1工程ともいう)を実行する。
 ステップSP2では、信号処理部20の増幅部20aが、ステップSP1において受光部12から出力された信号を増幅する工程(第2工程ともいう)を実行する。このとき、信号処理部20は、受光部12から出力される信号に対して、信号の強度の増幅以外のAD変換処理などの各種処理を施してもよい。そして、信号処理部20で処理が施された信号は、制御部30に入力される。これにより、制御部30は、被照射物2からの干渉光L2の強度に応じた信号の時間変化に係る情報を取得する。
 ステップSP3では、制御部30の演算処理部30aが、ステップSP2において信号処理部20の増幅部20aで増幅された信号の強度の時間変化に基づいて、被照射物2の内部2iにおける流体2bの流れの状態に係る流れ計算値Vcを算出する工程(第3工程ともいう)を実行する。このステップSP3では、図7(b)のステップSP31からステップSP33が実行される。
 ステップSP31では、演算処理部30aが、ステップSP2において増幅部20aで増幅された信号の強度の時間変化について周波数ごとの信号強度に係る分布(第1周波数スペクトル)を算出する。
 ステップSP32では、演算処理部30aが、ステップSP31で算出された第1周波数スペクトルに基づく周波数に係る第1値V1を取得し、ステップSP31で算出された第1周波数スペクトルに基づく周波数に係る第2値V2を取得する。
 ステップSP33では、演算処理部30aが、ステップSP32で取得された第1値V1および第2値V2を用いた除算を含む演算で、被照射物2の内部2iにおける流体2bの流れの状態に係る流れ計算値Vcを算出する。ここでは、例えば、第1値V1を第2値V2で除することで、流れ計算値Vcが算出されれば、流れ定量値が小さな値から大きな値に至るまで、流れ定量値と流れ計算値Vcとの関係が容易に比例関係に近づき得る。その結果、例えば、測定装置1における測定精度が容易に向上し得る。
 ステップSP4では、演算処理部30aが、ステップSP3で算出された流れ計算値Vcに基づいて、被照射物2の内部2iにおける流体2bの流れの状態を示す流れ定量値を算出する。流れ定量値は、流体2bの流量および流速のうちの少なくとも一方を含む。
 <1-3.第1実施形態のまとめ>
 第1実施形態に係る測定装置1は、例えば、干渉光L2の強度に応じた信号についての第1周波数スペクトルに基づいて、増幅部20aにおける周波数の増加に対する増幅率の減衰に応じて、増加率が低下する周波数に係る第1値V1と減少する強度に係る第2値V2とを用いた除算を含む演算で、被照射物2の内部2iにおける流体2bの流れの状態に係る流れ計算値Vcを算出する。ここでは、例えば、周波数の増加に伴う第1値V1の増加率の低下と、周波数の増加に伴う第2値の減少と、が相殺し合うことで、流れ定量値が小さな値から大きな値に至るまで、流れ定量値の増加に比例して流れ計算値Vcが増加する傾向を示し得る。換言すれば、例えば、流れ定量値が小さな値から大きな値に至るまで、流れ定量値と流れ計算値Vcとの関係が比例関係に近づき得る。これにより、例えば、測定装置1における測定精度を向上させることができる。
 <2.第2実施形態>
 制御部30は、例えば、演算処理部30aによって、受光部12から出力された電気信号に基づいて、上記第1実施形態とは異なる、流体2bの流れの状態を定量的に測定するための演算を実行してもよい。
 <2-1.演算処理部における演算>
 演算処理部30aは、例えば、受光部12から出力される信号の強度の時間の経過に対する変化(時間変化)について、周波数ごとの信号強度の分布(第1分布ともいう)を算出することができる。ここでは、例えば、受光部12から出力される信号の強度の時間変化について、フーリエ変換などの演算を用いた解析がなされることで、受光部12で受光された干渉光L2についての周波数ごとの信号強度の分布(第1分布)を示すパワースペクトル(周波数スペクトルともいう)が算出され得る。ここで、周波数スペクトルにおける周波数の範囲は、例えば、AD変換回路におけるサンプリングレートに基づいて設定され得る。ここで、演算処理部30aは、例えば、受光部12から出力される信号の強度の時間変化について、フーリエ変換などの演算を用いた解析で得た周波数スペクトルに各種の演算を行うことで第1分布を算出してもよい。各種の演算には、例えば、周波数スペクトルに対する周波数を用いた重み付けの演算(重み付け演算)が適用され得る。この場合には、例えば、演算処理部30aは、周波数スペクトルにおける周波数毎の強度に、対応する周波数を乗じる重み付け演算を行うことで重み付け後の周波数スペクトルを第1分布として算出することができる。ここでは、例えば、流体2bの流量または流速が比較的小さい場合には、演算処理部30aは、図8(a)の太線で描かれるような第1分布(周波数スペクトル)を算出することができる。また、例えば、流体2bの流量または流速が比較的大きい場合には、演算処理部30aは、図8(b)の太線で描かれるような第1分布(周波数スペクトル)を算出することができる。
 また、演算処理部30aは、例えば、第1分布における信号強度の最大値(最大信号強度ともいう)fPmaxを第1信号強度fP1として認識することができる。このとき、演算処理部30aは、例えば、第1分布において第1信号強度fP1を示す周波数(第1A周波数ともいう)f1aを認識することができる。また、演算処理部30aは、例えば、第1分布のうちの第1A周波数f1aよりも高い周波数の範囲における信号強度の最小値(最小信号強度ともいう)fPminを第2信号強度fP2として認識することができる。図8(a)および図8(b)では、それぞれ第1分布のうちの最小信号強度fPminを示す周波数(第2A周波数ともいう)f2aを示している。演算処理部30aは、例えば、第2信号強度fP2を、第1信号強度fP1で除する除算を用いて、被照射物2の内部2iを流れる流体2bの流れの状態に係る計算値(流れ計算値と)Vcを算出することができる。換言すれば、例えば、流れ計算値Vcは、次の式(8)と、第1信号強度fP1と、第2信号強度fP2と、によって算出される。流れの状態には、例えば、流量および流速の少なくとも一方が含まれ得る。
 Vc=fP2/fP1 ・・・(8)。
 ここで、例えば、仮にポンプなどで流路構成部2aとしての透明チューブ内を流れる流体2bの流れの状態に係る定量的な値(流れ定量値)を設定しながら、測定装置1で流れ計算値Vcを算出する場合を想定する。この場合には、図9で示されるように、流れ計算値Vcは、流れ定量値の増加に比例して増加する傾向を示し得る。
 ところで、例えば、流れ定量値としての流量設定値が比較的小さな値Qaから比較的大きな値Qbとなると、図18で示されたように、周波数スペクトルにおける信号強度が最大値となる周波数が、高周波側にシフトする。また、例えば、流れ定量値が比較的小さな値から比較的大きな値となると、図8(a)および図8(b)で示されるように、周波数スペクトルにおける信号強度が最大値となる周波数が、高周波側にシフトする。このとき、周波数スペクトルでは、流れ定量値の増加に伴って、最大信号強度fPmaxが減少し、最小信号強度fPminが増加する傾向を示す。そこで、このような傾向を利用して、上述した式(8)を用いた流れ計算値Vcを算出すると、図9の太線で描かれるように、流れ計算値Vcは、流れ定量値の増加に比例して増加する傾向を示し得る。換言すれば、例えば、流れ定量値が比較的低い範囲から比較的高い範囲に至るまで、流れ定量値と流れ計算値との間の関係が線形性を示し得る。図9には、比較のために図19で示した流量設定値と流量計算値との間の関係を2点鎖線で示している。
 ここで、流れ計算値Vcを算出する演算には、第2信号強度fP2を第1信号強度fP1で直接除する除算の代わりに、例えば、第1信号強度fP1に係る値(第1A値ともいう)によって、第2信号強度fP2に係る値(第2A値ともいう)を除する除算が適用されてもよい。第1A値は、例えば、第1信号強度fP1に対して、係数を乗じる乗算または冪(べき)乗を行う計算などの1つ以上の計算が施されることで算出され得る。第2A値は、例えば、第2信号強度fP2に対して、係数を乗じる乗算または冪乗を行う計算などの1つ以上の計算が施されることで算出され得る。また、例えば、第1信号強度fP1がそのまま第1A値とされてもよいし、第2信号強度fP2がそのまま第2A値とされてもよい。
 <2-2.測定装置の動作>
 次に、第2実施形態に係る測定装置1の動作について、一例を挙げて説明する。図10(a)および図10(b)は、第2実施形態に係る測定装置1の動作の一例を示す流れ図である。この動作は、例えば、演算処理部30aにおいてプログラムPG1が実行され、制御部30によって測定装置1の動作が制御されることで実現され得る。ここでは、図10(a)のステップSP1からステップSP3が実行されることで、流体2bの流れの状態を示す流れ定量値が算出され得る。
 図10のステップSP1では、発光部11が内部2iに流体2bが流れている被照射物2に光を照射しながら、受光部12が被照射物2で散乱した光を含む干渉光L2を受光してこの干渉光L2の強度に応じた信号を出力する工程(第1A工程ともいう)を実行する。このとき、受光部12から出力される信号は、例えば、信号処理部20において増幅およびAD変換処理が施された後に制御部30に入力される。これにより、制御部30は、被照射物2からの干渉光L2の強度に応じた信号の時間変化に係る情報を取得する。
 ステップSP2では、演算処理部30aが、ステップSP1において受光部12から出力される信号の強度の時間変化に基づいて、被照射物2の内部2iにおける流体2bの流れの状態に係る流れ計算値Vcを算出する工程(第2A工程ともいう)を実行する。このステップSP2では、図10(b)のステップSP21からステップSP23が実行される。
 ステップSP21では、演算処理部30aが、ステップSP1において受光部12から出力される信号の強度の時間変化について周波数ごとの信号強度の分布(第1分布)を算出する。この第1分布が、周波数スペクトルに相当する。
 ステップSP22では、演算処理部30aが、第1分布における第1信号強度fP1としての最大信号強度fPmaxを認識し、第1分布のうちの第1信号強度fP1を示す第1A周波数f1aよりも高い周波数の範囲における第2信号強度fP2としての最小信号強度fPminを認識する。
 ステップSP23では、演算処理部30aが、第2信号強度fP2としての最小信号強度fPminを、第1信号強度fP1としての最大信号強度fPmaxで除する除算で、被照射物2の内部2iにおける流体2bの流れの状態に係る流れ計算値Vcを算出する。
 ステップSP3では、演算処理部30aが、ステップSP2で算出された流れ計算値Vcに基づいて、被照射物2の内部2iにおける流体2bの流れの状態を示す流れ定量値を算出する。流れ定量値は、流体2bの流量および流速のうちの少なくとも一方を含む。
 <2-3.第2実施形態のまとめ>
 第2実施形態に係る測定装置1は、例えば、干渉光L2における信号強度の時間変化についての周波数ごとの信号強度の第1分布について、最大信号強度fPmaxを示す第1A周波数f1aよりも高い周波数の範囲における最小信号強度fPminを最大信号強度fPmaxで除する演算で、流れ計算値Vcを算出する。これにより、例えば、流れ定量値が小さな値から大きな値に至るまで、流れ定量値の増加に比例して流れ計算値Vcが増加する傾向を示し得る。換言すれば、例えば、流れ定量値が小さな値から大きな値に至るまで、流れ定量値と流れ計算値Vcとの関係が比例関係に近づき得る。これにより、例えば、測定装置1における測定精度を向上させることができる。
 <2-4.第2実施形態の一変形例>
 上記第2実施形態において、演算処理部30aは、例えば、受光部12から出力される信号の強度の時間変化について、ノイズの成分(ノイズ成分ともいう)の低減が行われるように、周波数ごとの信号強度の分布(第1分布)を算出してもよい。ノイズ成分の低減は、例えば、被照射物2の内部2iにおける流体2bの流れが止められている状態で得られる干渉光L2の強度に応じた信号の強度の時間変化に係る情報を用いて行われ得る。
 具体的には、例えば、発光部11によって、内部2iにおける流体2bの流れが止められている被照射物2に光L1を照射する。ここでは、例えば、仮にポンプなどで透明チューブなどの流路構成部2a内を流れる流体2bの流れの状態に係る定量的な値(流れ定量値)を設定すれば、被照射物2の内部2iにおける流体2bの流れが止められ得る。このとき、受光部12によって、例えば、被照射物2で散乱した光を含む干渉光L2を受光して、この干渉光L2の強度に応じた信号を出力する。そして、演算処理部30aは、受光部12から出力される信号の強度の時間変化について、周波数ごとの信号強度の分布(第2分布ともいう)を算出する。換言すれば、演算処理部30aは、発光部11によって内部2iにおける流体2bの流れが止められている被照射物2に光L1を照射した際に受光部12によって被照射物2で散乱した光を含む干渉光L2の受光に応じて出力される干渉光の強度に応じた信号の強度の時間変化について、第2分布を算出することができる。ここでは、演算処理部30aは、例えば、図11(a)の太線で描かれたような第2分布としての周波数スペクトルを算出することができる。第2分布は、例えば、流体2bの流れとは異なる流体2bの外部の環境(外部環境ともいう)に起因する干渉光の強度に応じた信号強度の時間変化についての周波数スペクトルに相当する。このような第2分布は、外部環境に起因するノイズ成分とみなされ得る。ここで、外部環境に起因するノイズは、例えば、透明チューブなどの流路構成部2aの振動で発生するノイズならびに信号処理部20および制御部30で発生する電磁的なノイズなどを含み得る。図11(a)の例では、太い2点鎖線の矢印で示される部分に、外部環境に起因するノイズによる明らかな影響が現れている。
 また、例えば、演算処理部30aは、発光部11によって内部2iに流体2bが流れている被照射物2に光L1を照射した際に受光部12によって被照射物2で散乱した光を含む干渉光L2の受光に応じて出力される干渉光の強度に応じた信号強度の時間変化について、周波数ごとの信号強度の分布(第3分布ともいう)を算出することができる。ここでは、演算処理部30aは、例えば、図11(b)の太線で描かれたような第3分布としての周波数スペクトルを算出することができる。図11(b)の例では、太い2点鎖線の矢印で示される部分に、外部環境に起因するノイズによる明らかな影響が現れている。
 そして、例えば、演算処理部30aは、例えば、第2分布を用いて、周波数ごとに第3分布の信号強度におけるノイズ成分を低減する演算を行うことで、ノイズ成分が低減された第1分布を算出することができる。ここでは、演算処理部30aは、例えば、図11(c)の太線で描かれたような第1分布としての周波数スペクトルを算出することができる。このように、例えば、外部環境に起因するノイズが流れ定量値の測定に及ぼす影響を低減することで、流体2bの流れの状態に係る定量的な測定における測定精度をより向上させることができる。ここで、例えば、被照射物2の内部2iにおける流体2bの流れが止まっている状態よりも、被照射物2の内部2iにおいて流体2bが流れている状態の方が、外部環境に起因するノイズが生じやすくなる。そこで、ノイズ成分を低減する演算として、例えば、周波数ごとに第3分布の信号強度を第2分布の信号強度で除する除算が採用されれば、外部環境に起因するノイズが流れ定量値の測定に及ぼす影響を低減することができる。これにより、例えば、測定装置1における測定精度を向上させることができる。
 ここで、ノイズ成分を低減する演算として、例えば、周波数ごとに、第2分布の信号強度に係る値(第3A値ともいう)によって、第3分布の信号強度に係る値(第4A値ともいう)を除する演算が採用されてもよい。第3A値は、例えば、第2分布の信号強度に対して、係数を乗じる乗算または冪乗を行う計算などの1つ以上の計算が施されることで算出され得る。第4A値は、例えば、第3分布の信号強度に対して、係数を乗じる乗算または冪乗を行う計算などの1つ以上の計算が施されることで算出され得る。また、例えば、第2分布の信号強度がそのまま第3A値とされてもよいし、第3分布の信号強度がそのまま第4A値とされてもよい。また、ノイズ成分を低減する演算として、例えば、周波数ごとに、第3分布の信号強度から第2分布の信号強度を減ずる減算が採用されてもよい。ここでは、ノイズ成分を低減する演算として、例えば、周波数ごとに、第3分布の信号強度に係る第4A値から第2分布の信号強度に係る第3A値を減ずる演算が採用されてもよい。
 <3.他の実施形態>
 本開示は上述の第1実施形態および第2実施形態に限定されるものではなく、本開示の要旨を逸脱しない範囲において種々の変更および改良などが可能である。
 <3-1.第3実施形態>
 上記各実施形態において、測定装置1は、例えば、図12で示されるように、入力部50を有していてもよいし、出力部60を有していてもよい。
 入力部50は、例えば、接続部40を介して制御部30に接続され得る。入力部50は、例えば、ユーザの動作に応答して、測定装置1における流れ定量値の測定に関する種々の条件(測定条件ともいう)を制御部30に入力することができる。測定条件は、例えば、演算処理部30aで算出される周波数スペクトルにおける周波数の範囲などを含む。入力部50には、例えば、キーボード、マウス、タッチパネルまたはスイッチなどの操作部あるいは音声による入力が可能なマイク部などが適用される。これにより、例えば、ユーザは、所望の測定条件を容易に設定することができる。その結果、例えば、測定装置1の利便性が向上し得る。また、測定条件は、例えば、発光部11が発する光L1の光量、受光部12が信号を出力する周期、AD変換におけるサンプリングレート、検量データに係る演算式およびこの演算式の係数、あるいは除算または減算における係数および冪指数などを含んでいてもよい。また、入力部50は、例えば、流体2bにおける粘度、濃度または散乱体の大きさなど、流体2bに関する種々の情報を入力することができてもよい。
 出力部60は、例えば、接続部40を介して制御部30に接続され得る。出力部60は、例えば、流れ定量値の測定に関する種々の情報を可視的に出力する表示部を含んでいてもよいし、流れ定量値の測定に関する種々の情報を可聴的に出力するスピーカ部を含んでいてもよい。表示部には、例えば、液晶ディスプレイまたはタッチパネルなどが適用される。入力部50がタッチパネルを含む場合には、入力部50と出力部60の表示部とが1つのタッチパネルで実現されてもよい。これにより、例えば、測定装置1の構成部材が減り、測定装置1の小型化および製造の容易化が図られ得る。ここで、例えば、表示部が、測定条件、周波数スペクトルまたは測定結果としての流れ計算値もしくは流れ定量値などを可視的に表示することが可能であれば、ユーザは、流れ定量値の測定に関する種々の情報を容易に認識することができる。ここで、例えば、ユーザが、入力部50を介して出力部60における種々の情報の出力態様を変更させることが可能であってもよい。出力態様の変更には、例えば、表示形式の変更または表示される情報の切り替えなどが含まれ得る。これにより、例えば、ユーザは、流れ定量値の測定に関する種々の情報を容易に認識することができる。その結果、例えば、測定装置1の利便性が向上し得る。
 <3-2.第4実施形態>
 上記各実施形態において、測定装置1は、例えば、図13で示されるように、外部制御部70をさらに有していてもよい。外部制御部70は、例えば、マイクロコンピュータ(マイコン)などのコンピュータを含み得る。
 外部制御部70は、例えば、光L1の光量、受光部12が信号を出力する周期およびAD変換におけるサンプリングレートなどの測定条件を保持しており、この測定条件を制御部30に入力可能であってもよい。これにより、例えば、演算処理部30aにおいて処理する項目が少なくなり、制御部30における処理速度を向上させることができる。ここで、測定条件には、例えば、入力部50によって入力され得る、測定装置1における流れ定量値の測定に関する種々の条件と同一のものが適用される。
 また、外部制御部70は、例えば、入力部50および出力部60の制御を行うことが可能であってもよい。この場合には、例えば、制御部30が制御する種々の機能を有する部分(機能部ともいう)の数が少なくなり、制御部30の処理速度を向上させることができる。また、外部制御部70は、例えば、複数の電子部品によって構成された種々の他の機能部を有していてもよい。種々の他の機能部には、例えば、圧力計または温度計などが適用される。これにより、例えば、測定装置1における設計の自由度が向上し、測定装置1の利便性が向上し得る。
 外部制御部70と、制御部30、入力部50および出力部60と、の間における通信は、有線および無線の何れの方式で実現されてもよい。制御部30と外部制御部70との間における通信は、例えば、任意の通信規格に準じた通信が適用される。任意の通信規格は、例えば、IIC(Inter Integrated Circuit)、SPI(Serial Peripheral Interface)、またはUART(Universal Asynchronous Receiver Transmitter)などを含む。
 ここで、例えば、センサー部10および信号処理部20と外部制御部70とが、直接的に通信可能であってもよい。この場合には、例えば、測定装置1が、制御部30を有することなく、外部制御部70が制御部30の機能を有していてもよい。ここでは、例えば、センサー部10および信号処理部20と外部制御部70とが、直接通信を行うことで、制御部30と外部制御部70との間で生じる信号の遅延が解消され得る。これにより、例えば、測定装置1の処理速度を向上させることができる。その結果、例えば、測定装置1の利便性が向上し得る。
 <3-3.第5実施形態>
 上記各実施形態において、測定装置1を構成する全ての部分または少なくとも2つ以上の部分が、相互に通信可能に接続された、測定システム200が採用されてもよい。例えば、図14で示されるように、第5実施形態に係る測定システム200は、発光部11、受光部12、増幅部20aを含む信号処理部20および演算処理部30aを含む制御部30を備えている。図14の例では、例えば、発光部11と受光部12との間、発光部11と制御部30との間、受光部12と信号処理部20との間、および信号処理部20と制御部30との間のそれぞれが通信可能に接続されている状態にある。ここでは、例えば、上記第2実施形態に関しては、信号処理部20は、増幅部20aを含んでいなくてもよい。
 <4.その他>
 上記第1実施形態および上記第3実施形態から上記第5実施形態では、例えば、演算処理部30aは、例えば、信号処理部20の増幅部20aで増幅された信号の強度の時間変化について、ノイズの成分(ノイズ成分ともいう)の低減が行われるように、周波数ごとの信号強度の分布(第1周波数スペクトル)を算出してもよい。ノイズ成分の低減は、例えば、被照射物2の内部2iにおける流体2bの流れが止められている状態で得られる干渉光L2の強度に応じた信号の強度の時間変化に係る情報を用いて行われ得る。
 上記第1実施形態および上記第3実施形態から上記第5実施形態では、演算処理部30aにおける第1値V1と第2値V2とを用いた除算を含む演算は、例えば、第2値V2を第1値V1で除する除算を含む演算であってもよい。この場合にも、例えば、流れ定量値の増加に伴う第1値V1の増加率の低下と、流れ定量値の増加に伴う第2値V2の低下とが、相殺された流れ計算値Vcが得られる。
 上記第1実施形態および上記第3実施形態から上記第5実施形態では、第1値V1に適用される周波数シフト量Δfとして、例えば、第1周波数スペクトルまたは第2周波数スペクトルにおける周波数の変化に対する信号強度の変化の割合を示す傾きの逆数などが採用されてもよい。
 上記第2実施形態から上記第5実施形態において、第1分布における第1信号強度fP1は、例えば、第1分布において最大信号強度fPmaxを示す第1A周波数f1aを含む周波数の範囲(第1A周波数範囲ともいう)A1aにおける何れかの信号強度であってもよい。また、第1分布における第2信号強度fP2は、例えば、第1分布のうちの第1A周波数範囲A1aよりも高い周波数の範囲において最小信号強度fPminを示す第2A周波数f2aを含む周波数の範囲(第2A周波数範囲ともいう)A2aにおける何れかの信号強度であってもよい。このような構成が採用されても、例えば、流れ定量値が小さな値から大きな値に至るまで、流れ定量値と流れ計算値Vcとの関係が比例関係に近づき得る。
 ここで、第1A周波数範囲A1aは、例えば、図8(a)および図8(b)で示されるように、第1A周波数f1aを基準とする所定の幅の範囲に設定され得る。第2A周波数範囲A2aは、例えば、図8(a)および図8(b)で示されるように、第2A周波数f2aを基準とする所定の幅の範囲に設定され得る。具体的には、第1A周波数範囲A1aは、例えば、第1A周波数f1aを中心とする所定の幅の範囲に設定され得る。第2A周波数範囲A2aは、例えば、第2A周波数f2aを中心とする所定の幅の範囲に設定され得る。ここでは、例えば、第1A周波数範囲A1aと第2A周波数範囲A2aとは、重ならないように設定されればよい。この場合には、例えば、第1A周波数範囲A1aと第2A周波数範囲A2aとが、第1A周波数f1aと第2A周波数f2aとの中間の周波数を挟むように設定される態様が考えられる。第1A周波数範囲A1aと第2A周波数範囲A2aとは、例えば、隣接していてもよいし、離れていてもよい。ここでは、第1信号強度fP1は、例えば、最大信号強度fPmaxの0.8倍以上の値であってもよいし、最大信号強度fPmaxの0.9倍以上の値であってもよい。また、第2信号強度fP2は、例えば、最小信号強度fPminの1.2倍以下の値であってもよいし、最小信号強度fPminの1.1倍以下の値であってもよい。
 また、第1分布における第1信号強度fP1は、例えば、最大信号強度fPmaxと最小信号強度fPminとの平均値fPmeよりも大きな値とされてもよい。また、第1分布における第2信号強度fP2は、例えば、最大信号強度fPmaxと最小信号強度fPminとの平均値fPmeよりも小さな値とされてもよい。このような構成が採用されても、例えば、流れ定量値が小さな値から大きな値に至るまで、流れ定量値と流れ計算値Vcとの関係が比例関係に近づき得る。ここでも、第1信号強度fP1は、例えば、最大信号強度fPmaxの0.8倍以上の値であってもよいし、最大信号強度fPmaxの0.9倍以上の値であってもよい。また、第2信号強度fP2は、例えば、最小信号強度fPminの1.2倍以下の値であってもよいし、最小信号強度fPminの1.1倍以下の値であってもよい。
 ここで、例えば、上記各実施形態のように、最大信号強度fPmaxが第1信号強度fP1とされ、最小信号強度fPminが第2信号強度fP2とされれば、流れ定量値が小さな値から大きな値に至るまで、流れ定量値と流れ計算値Vcとの関係が容易に比例関係に近づき得る。その結果、例えば、測定装置1における測定精度が容易に向上し得る。
 上記各実施形態において、演算処理部30aは、例えば、流体2bの流れに係る流れ計算値Vcに基づいて、流体2bの流れの状態を示す流れ定量値を算出しなくてもよい。このような構成によっても、例えば、ユーザは、流れ計算値Vcの変化に基づいて、流体2bの流れの状態の変化を把握することができる。このため、例えば、流体2bの流れの状態を定量的に測定する測定装置1における測定精度を向上させることができる。
 上記各実施形態において、演算処理部30aの機能の少なくとも一部の機能は、例えば、専用の電子回路などのハードウェアで構成されてもよい。
 上記各実施形態および各種変形例をそれぞれ構成する全部または一部を、適宜、矛盾しない範囲で組み合わせ可能であることは、言うまでもない。
 1 測定装置
 2 被照射物
 2a 流路構成部
 2b 流体
 2i 内部
 10 センサー部
 11 発光部
 12 受光部
 20 信号処理部
 30 制御部
 30a 演算処理部
 30b 記憶部
 70 外部制御部
 200 測定システム
 A1 第1周波数範囲
 A2 第2周波数範囲
 A3 第3周波数範囲
 A1a 第1A周波数範囲
 A2a 第2A周波数範囲
 Ar1 第1積分値
 Ar2 第2積分値
 L1 光
 L2 干渉光
 PG1 プログラム
 Pmax 第1最大強度(最大値)
 V1 第1値
 V2 第2値
 Vc 流れ計算値
 f1a 第1A周波数
 f2a 第2A周波数
 fm 平均周波数
 fo 周波数
 fp1 第1周波数
 fp2 第2周波数
 fP1 第1信号強度
 fP2 第2信号強度
 fPmax 最大信号強度
 fPmin 最小信号強度

Claims (19)

  1.  内部に流体が流れる被照射物に光を照射する発光部と、
     前記被照射物で散乱した光を含む干渉光を受光して該干渉光の強度に応じた信号を出力する受光部と、
     前記受光部から出力された信号を増幅する増幅部と、
     前記増幅部で増幅された信号の強度の時間変化について周波数ごとの信号強度に係る第1周波数スペクトルを算出するとともに、該第1周波数スペクトルに基づく周波数に係る第1値と、前記第1周波数スペクトルに基づく強度に係る第2値と、を用いた除算を含む演算で、前記流体の流れの状態に係る計算値を算出する演算処理部と、を備える、測定装置。
  2.  請求項1に記載の測定装置であって、
     前記除算は、前記第1値を前記第2値で除する計算を含む、測定装置。
  3.  請求項1または請求項2に記載の測定装置であって、
     前記第1値は、前記第1周波数スペクトルまたは前記第1周波数スペクトルに演算を行うことで算出される第2周波数スペクトルについての、低周波数側の強度に係る積分の計算で得られる第1積分値と高周波数側の強度に係る積分の計算で得られる第2積分値とが所定の比率となる境界の周波数、強度が最大値を示す第1周波数を含む第1周波数範囲における第1強度に係る周波数、および強度の変化の傾きの絶対値が最小値を示す第2周波数を含む第2周波数範囲における第1傾きに係る周波数、ならびに前記発光部が前記被照射物に照射した光の周波数と前記干渉光の周波数との間における周波数のシフト量、のうちの少なくとも1つの周波数に係る値を含む、測定装置。
  4.  請求項3に記載の測定装置であって、
     前記第1強度は、前記最大値である、測定装置。
  5.  請求項3または請求項4に記載の測定装置であって、
     前記第1傾きの絶対値は、前記最小値である、測定装置。
  6.  請求項3に記載の測定装置であって、
     前記シフト量は、前記第1周波数スペクトルについての平均周波数、または前記第1周波数スペクトルにおいて特定値以上の強度を示す周波数の範囲の幅、を含む、測定装置。
  7.  請求項1から請求項6の何れか1つの請求項に記載の測定装置であって、
     前記第2値は、前記第1周波数スペクトルまたは前記第1周波数スペクトルに演算を行うことで算出される第2周波数スペクトルについての、積分の計算で得られる第3積分値、および強度が最大値を示す第1周波数を含む第3周波数範囲における第2強度、のうちの少なくとも1つの強度に係る値を含む、測定装置。
  8.  請求項7に記載の測定装置であって、
     前記第2強度は、前記最大値である、測定装置。
  9.  内部に流体が流れる被照射物に光を照射する発光部と、
     前記被照射物で散乱した光を含む干渉光を受光して該干渉光の強度に応じた信号を出力する受光部と、
     前記受光部から出力される信号の強度の時間変化について周波数ごとの信号強度の第1分布を算出するとともに、該第1分布のうちの信号強度が最大値を示す第1A周波数を含む第1A周波数範囲における第1信号強度に係る第1A値によって、前記第1分布のうちの前記第1A周波数範囲よりも高い周波数の範囲において信号強度が最小値を示す第2A周波数を含む第2A周波数範囲における第2信号強度に係る第2A値を除する除算を含む演算で、前記流体の流れの状態に係る計算値を算出する演算処理部と、を備える、測定装置。
  10.  請求項9に記載の測定装置であって、
     前記第1信号強度は、前記第1分布のうちの前記最大値と前記最小値との平均値よりも大きな値であり、
     前記第2信号強度は、前記第1分布のうちの前記平均値よりも小さな値である、測定装置。
  11.  請求項9または請求項10に記載の測定装置であって、
     前記第1信号強度は、前記最大値であり、
     前記第2信号強度は、前記最小値である、測定装置。
  12.  請求項9から請求項11の何れか1つの請求項に記載の測定装置であって、
     前記演算処理部は、前記内部における前記流体の流れが止められている前記被照射物に前記発光部によって光を照射した際に前記被照射物で散乱した光を含む干渉光の前記受光部による受光に応じて出力される該干渉光の強度に応じた信号の強度の時間変化について、周波数ごとの信号強度の第2分布を算出し、前記内部に前記流体が流れている前記被照射物に前記発光部によって光を照射した際に前記被照射物で散乱した光を含む干渉光の前記受光部による受光に応じて出力される該干渉光の強度に応じた信号の強度の時間変化について、周波数ごとの信号強度の第3分布を算出し、前記第2分布を用いて、周波数ごとに前記第3分布の信号強度におけるノイズ成分を低減する演算を行うことで、前記第1分布を算出する、測定装置。
  13.  請求項12に記載の測定装置であって、
     前記ノイズ成分を低減する演算は、周波数ごとに、前記第2分布の信号強度に係る第3A値によって前記第3分布の信号強度に係る第4A値を除する除算を含む、測定装置。
  14.  請求項1から請求項13の何れか1つの請求項に記載の測定装置であって、
     前記演算処理部は、前記計算値に基づいて、前記流体の流れの状態を示す流れ定量値を算出する、測定装置。
  15.  内部に流体が流れる被照射物に光を照射する発光部と、
     前記被照射物で散乱した光を含む干渉光を受光して該干渉光の強度に応じた信号を出力する受光部と、
     前記受光部から出力された信号を増幅する増幅部と、
     前記増幅部で増幅された信号の強度の時間変化について周波数ごとの信号強度に係る第1周波数スペクトルを算出するとともに、該第1周波数スペクトルに基づく周波数に係る第1値と、前記第1周波数スペクトルに基づく強度に係る第2値と、を用いた除算を含む演算で、前記流体の流れの状態に係る計算値を算出する演算処理部と、を備える、測定システム。
  16.  内部に流体が流れる被照射物に光を照射する発光部と、
     前記被照射物で散乱した光を含む干渉光を受光して該干渉光の強度に応じた信号を出力する受光部と、
     前記受光部から出力される信号の強度の時間変化について周波数ごとの信号強度の第1分布を算出するとともに、該第1分布のうちの信号強度が最大値を示す第1A周波数を含む第1A周波数範囲における第1信号強度に係る第1A値によって、前記第1分布のうちの前記第1A周波数範囲よりも高い周波数の範囲において信号強度が最小値を示す第2A周波数を含む第2A周波数範囲における第2信号強度に係る第2A値を除する除算を含む演算で、前記流体の流れの状態に係る計算値を算出する演算処理部と、を備える、測定システム。
  17.  発光部によって内部に流体が流れている被照射物に光を照射しながら、受光部によって前記被照射物で散乱した光を含む干渉光を受光して該干渉光の強度に応じた信号を出力する第1工程と、
     増幅部によって前記第1工程において前記受光部から出力された信号を増幅する第2工程と、
     演算処理部によって前記第2工程において前記増幅部で増幅された信号の強度の時間変化について周波数ごとの信号強度に係る第1周波数スペクトルを算出するとともに、該第1周波数スペクトルに基づく周波数に係る第1値と、前記第1周波数スペクトルに基づく強度に係る第2値と、を用いた除算を含む演算で、前記流体の流れの状態に係る計算値を算出する第3工程と、を有する測定方法。
  18.  発光部によって内部に流体が流れている被照射物に光を照射しながら、受光部によって前記被照射物で散乱した光を含む干渉光を受光して該干渉光の強度に応じた信号を出力する第1A工程と、
     演算処理部によって、前記第1A工程において前記受光部から出力される信号の強度の時間変化について周波数ごとの信号強度の第1分布を算出するとともに、該第1分布のうちの信号強度が最大値を示す第1A周波数を含む第1A周波数範囲における第1信号強度に係る第1A値によって、前記第1分布のうちの前記第1A周波数範囲よりも高い周波数の範囲において信号強度が最小値を示す第2A周波数を含む第2A周波数範囲における第2信号強度に係る第2A値を除する除算を含む演算で、前記流体の流れの状態に係る計算値を算出する第2A工程と、を有する、測定方法。
  19.  測定装置に含まれる処理部によって実行されることで、前記測定装置を、請求項1から請求項14の何れか1つの請求項に記載の測定装置として機能させる、プログラム。
PCT/JP2020/013640 2019-03-29 2020-03-26 測定装置、測定システム、測定方法およびプログラム WO2020203637A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080022677.9A CN113597536A (zh) 2019-03-29 2020-03-26 测定装置、测定系统、测定方法以及程序
JP2021511916A JP7386849B2 (ja) 2019-03-29 2020-03-26 測定装置、測定システム、測定方法およびプログラム
EP20782573.8A EP3951327A4 (en) 2019-03-29 2020-03-26 MEASUREMENT DEVICE, MEASUREMENT SYSTEM, MEASUREMENT PROCEDURE AND PROGRAM
US17/599,019 US20220039675A1 (en) 2019-03-29 2020-03-26 Measurement device and non-transitory computer-readable recording medium

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019-068194 2019-03-29
JP2019068194 2019-03-29
JP2019-178839 2019-09-30
JP2019178839 2019-09-30

Publications (1)

Publication Number Publication Date
WO2020203637A1 true WO2020203637A1 (ja) 2020-10-08

Family

ID=72668276

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/013640 WO2020203637A1 (ja) 2019-03-29 2020-03-26 測定装置、測定システム、測定方法およびプログラム

Country Status (5)

Country Link
US (1) US20220039675A1 (ja)
EP (1) EP3951327A4 (ja)
JP (1) JP7386849B2 (ja)
CN (1) CN113597536A (ja)
WO (1) WO2020203637A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112964901A (zh) * 2021-02-07 2021-06-15 中南大学 一种基于太赫兹高速回波效应的流体流速测量装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60203235A (ja) * 1984-03-28 1985-10-14 キヤノン株式会社 レ−ザ−スペツクル血流計
JPS60203236A (ja) * 1984-03-28 1985-10-14 キヤノン株式会社 レ−ザ−スペツクル血流計
JP2000210264A (ja) * 1998-11-20 2000-08-02 Fuji Photo Film Co Ltd 血管の画像化装置および血管の識別装置並びに散乱流体の流速測定装置
JP2016027337A (ja) 2015-09-03 2016-02-18 パイオニア株式会社 流体評価装置及び方法
WO2019035175A1 (ja) * 2017-08-15 2019-02-21 オリンパス株式会社 血管認識方法および血管認識装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4169504B2 (ja) * 2001-10-26 2008-10-22 東京電力株式会社 ドップラ式超音波流量計
JP4719713B2 (ja) * 2007-05-09 2011-07-06 日本電信電話株式会社 生体情報測定装置
JP2008309753A (ja) * 2007-06-18 2008-12-25 Tokiko Techno Kk 流量計
US9237856B2 (en) * 2010-06-24 2016-01-19 Pioneer Corporation Light detecting apparatus and fluid measuring apparatus
JP5897812B2 (ja) * 2011-03-31 2016-03-30 パイオニア株式会社 光検出装置及び流体計測装置
JP6176054B2 (ja) * 2013-10-19 2017-08-09 ウシオ電機株式会社 液滴内流動観察方法及び液滴内流動観察装置
CN105078441A (zh) * 2015-09-23 2015-11-25 广州医软智能科技有限公司 人体微循环血流灌注检测仪及检测方法
JP6546128B2 (ja) * 2016-07-15 2019-07-17 日本電信電話株式会社 流体測定装置および方法
JP2018197732A (ja) * 2017-05-25 2018-12-13 日本電信電話株式会社 流体測定装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60203235A (ja) * 1984-03-28 1985-10-14 キヤノン株式会社 レ−ザ−スペツクル血流計
JPS60203236A (ja) * 1984-03-28 1985-10-14 キヤノン株式会社 レ−ザ−スペツクル血流計
JP2000210264A (ja) * 1998-11-20 2000-08-02 Fuji Photo Film Co Ltd 血管の画像化装置および血管の識別装置並びに散乱流体の流速測定装置
JP2016027337A (ja) 2015-09-03 2016-02-18 パイオニア株式会社 流体評価装置及び方法
WO2019035175A1 (ja) * 2017-08-15 2019-02-21 オリンパス株式会社 血管認識方法および血管認識装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MASAKI GOMA: "The Development of Small Laser Doppler Blood Flow Sensor", vol. 21, 2012, PIONEER R&D, pages: 30 - 37
See also references of EP3951327A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112964901A (zh) * 2021-02-07 2021-06-15 中南大学 一种基于太赫兹高速回波效应的流体流速测量装置

Also Published As

Publication number Publication date
JP7386849B2 (ja) 2023-11-27
JPWO2020203637A1 (ja) 2020-10-08
US20220039675A1 (en) 2022-02-10
EP3951327A1 (en) 2022-02-09
CN113597536A (zh) 2021-11-02
EP3951327A4 (en) 2023-04-05

Similar Documents

Publication Publication Date Title
Gravante et al. Characterization of the pressure fluctuations under a fully developed turbulent boundary layer
US20130231871A1 (en) Multifunctional breath analyzer
Kim et al. A method for dynamic system characterization using hydraulic series resistance
EP3045876B1 (en) Flow rate detection apparatus and flow rate detection method
WO2020203637A1 (ja) 測定装置、測定システム、測定方法およびプログラム
WO2021085525A1 (ja) 測定装置、測定システム、測定方法およびプログラム
US10451518B2 (en) All fiber temperature and air density sensor
JP2022085336A (ja) 測定装置、測定システム、測定方法、プログラムおよび測定装置の校正方法
WO2022059663A1 (ja) 測定装置、測定システム、プログラムおよび測定装置の校正方法
JP7345661B2 (ja) 測定モジュールおよび測定装置
WO2020121944A1 (ja) 測定装置、測定システムおよび測定方法
JP4611001B2 (ja) 血液レオロジー測定装置
CN203400153U (zh) 基于mems的人体生理参数检测装置
JP5392919B2 (ja) 生体情報計測装置及び生体情報計測方法
JP7019962B2 (ja) 流体解析装置、血流解析装置および流体解析方法
Norgia et al. Laser diode for flow-measurement
JP7332789B2 (ja) 計測システム、計測モジュール、計測処理装置、及び計測方法
WO2021153582A1 (ja) 測定装置
Sawada et al. Blood flow sensor with built-in contact pressure and temperature sensor
Kumar et al. Development and validation of offset current compensation technique for optical sensors
JP2022070650A (ja) 測定装置、測定システム、測定方法及びプログラム
WO2020090840A1 (ja) 流量算出装置
US20230337926A1 (en) Measurement device, measurement system, measurement method, and non-transitory computer-readable recording medium
JP2019076539A (ja) 血流解析装置、血流解析方法およびプログラム
Norgia et al. A lensless self-mixing blood-flow sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20782573

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021511916

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020782573

Country of ref document: EP

Effective date: 20211029