WO2021085424A1 - 樹脂組成物およびそれより得られる成形体 - Google Patents

樹脂組成物およびそれより得られる成形体 Download PDF

Info

Publication number
WO2021085424A1
WO2021085424A1 PCT/JP2020/040284 JP2020040284W WO2021085424A1 WO 2021085424 A1 WO2021085424 A1 WO 2021085424A1 JP 2020040284 W JP2020040284 W JP 2020040284W WO 2021085424 A1 WO2021085424 A1 WO 2021085424A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
resin
melt
mass
group
Prior art date
Application number
PCT/JP2020/040284
Other languages
English (en)
French (fr)
Inventor
穣 鍋島
泰生 上川
Original Assignee
ユニチカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ユニチカ株式会社 filed Critical ユニチカ株式会社
Priority to JP2021553629A priority Critical patent/JPWO2021085424A1/ja
Publication of WO2021085424A1 publication Critical patent/WO2021085424A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/05Alcohols; Metal alcoholates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/101Esters; Ether-esters of monocarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/524Esters of phosphorous acids, e.g. of H3PO3
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/527Cyclic esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • C08L67/03Polyesters derived from dicarboxylic acids and dihydroxy compounds the dicarboxylic acids and dihydroxy compounds having the carboxyl- and the hydroxy groups directly linked to aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates

Definitions

  • the present invention relates to a resin composition and a molded product obtained from the resin composition, and more particularly to a resin composition for a molded product, particularly a resin composition for producing a substrate for a light reflector, and a molded product obtained from the resin composition.
  • Polyare relay resin composed of dihydric phenols such as bisphenol compounds and terephthalic acid and isophthalic acid is an amorphous polymer, and is already well known as an engineering plastic having excellent transparency, mechanical properties, and heat resistance. ing.
  • Such polyarylate resins are used in various fields due to their characteristics, but it is known that a resin composition obtained by mixing polycarbonate with polyarylate is useful from the viewpoint of improving molding processability and impact resistance. Has been done.
  • Reflectors for reflecting light in housings, reflectors, extension reflectors, home appliance lighting fixtures, etc. in in-vehicle lamps have high brightness and smoothness due to the directionality and reflectivity of the lamp light source. , Uniform reflectance, and high heat resistance that can withstand heat generation from a light source are required. Conventionally, thermosetting resins have been used for such applications.
  • thermoplastic resin which responds to the high functionality and diversification of designs of light reflectors and has excellent productivity.
  • a substrate for a light reflector made of a thermoplastic resin composition is required to have excellent mechanical properties, electrical properties, and other physical and chemical properties, and good workability.
  • the design of incorporating an ambient monitoring sensor (for example, LiDAR technology) into an in-vehicle lamp such as a headlamp or a rear lamp is also in progress.
  • the light reflector substrate may be required to have optical characteristics such as visible light opacity and infrared transmission in addition to the above characteristics.
  • thermoplastic resin composition a polyarylate resin or a composition containing a mixture of the polyarylate resin and another resin as a main component has been used (Patent Documents 1 and 2).
  • the heat resistance of the polyarylate resin was utilized, and the characteristics of the other resins to be mixed were utilized to ensure the fluidity.
  • Polycarbonate resin which is a resin that can be mixed with such a polyarylate resin, has been produced by an interfacial polymerization method using phosgene as a raw material.
  • Such a polycarbonate resin can be a resin composition having excellent compatibility with a polyarylate resin and excellent mechanical properties.
  • Patent Documents 3 to 9 disclose techniques for using a melt-polymerized polycarbonate resin.
  • Patent Document 3 discloses a technique for using a resin composition containing an aromatic polycarbonate resin obtained by a melt polymerization method for internal parts of an OA device or the like from the viewpoint of chemical resistance, wet heat fatigue, and the like.
  • Patent Document 4 describes a technique for using a resin composition containing an aromatic polycarbonate resin obtained by a melt polymerization method as a substrate for a high-density optical disk or the like from the viewpoint of color tone, durability, stability, and the like. It is disclosed.
  • Patent Document 5 discloses a technique of using a resin composition containing a polycarbonate resin obtained by a melt polymerization method for an optical information substrate from the viewpoints of high cycle property and reduction of mold stains. .. Further, for example, Patent Documents 6 to 9 disclose techniques for using a resin composition containing a polycarbonate resin obtained by a melt polymerization method for producing an optical disc or the like.
  • the polycarbonate resin when used alone, it can be melted and flowed at a molding temperature (resin temperature at the time of melting) of about 300 ° C. That is, molding can be performed at the temperature.
  • a molding temperature resin temperature at the time of melting
  • the molding temperature is about 320 to 360 ° C., although it depends on the mixing ratio.
  • Fogging occurred in or around the weld line of the molded product surface appearance characteristics of the molded product. More specifically, such surface appearance characteristics related to fogging of a molded product became a problem for the first time when injection molding was performed using a mold having a molding surface having a mirror surface specification.
  • the inventors of the present invention added a heat stabilizer and a mold release agent to a polymer mixture containing a polyarylate resin and a melt-polymerized polycarbonate resin from the viewpoint of heat resistance and mold release property, and as a result, high-temperature molding was performed.
  • the decrease in molecular weight makes molding difficult, or as described below, it becomes difficult to achieve both releasability and hydrolysis resistance, and at least one of releasability or hydrolysis resistance decreases. I found that a new problem arises.
  • the mold release property may not be sufficiently improved. Specifically, at the time of molding, when the obtained molded product was released from the mold by the projecting pin, the mold releasability of the molded product was not sufficient, so that a mark of the protruding pin remained on the molded product. When the marks of the protruding pins remained on the molded product, the value of the molded product as a product decreased.
  • the present invention also contains a heat stabilizer and a mold release agent, and is sufficient for hydrolysis resistance, mold release property, surface appearance characteristics, vapor deposition suitability, and heat aging suitability while sufficiently suppressing mold stains. It is an object of the present invention to obtain a resin composition capable of producing an excellent molded product and having an excellent balance between heat resistance and fluidity.
  • the present inventors use a specific polycarbonate resin, a specific phosphite compound, and a specific fatty acid ester in combination in a resin composition containing polyarylate and polycarbonate. Then, they found that the above-mentioned problems could be solved, and arrived at the present invention.
  • the gist of the present invention is as follows. ⁇ 1> One or more compounds selected from the group consisting of (A) polyarylate resin, (B) melt-polymerized polycarbonate resin, and (C) phosphite compounds represented by the following general formulas (I) and (II). , And (D) a resin composition containing an aliphatic monoalcohol fatty acid ester represented by the following general formula (III).
  • the mass ratio (A / B) of the (A) polyarylate resin and the (B) melt-polymerized polycarbonate resin is 2/98 to 98/2.
  • the resin composition having a Vicat softening point of 140 ° C.
  • R 11 and R 12 independently represent an aryl group having 6 to 40 carbon atoms or an alkyl group having 1 to 40 carbon atoms);
  • R 41 to R 45 are each independently a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms);
  • R 51 is an alkyl group having 15 to 25 carbon atoms;
  • R 52 is an alkyl group having 30 or less carbon atoms).
  • the content of the (C) phosphite compound is 0.01 to 0.2 parts by mass with respect to 100 parts by mass of the total amount of the (A) polyarylate resin and the (B) melt-polymerized polycarbonate resin.
  • the content of the (D) aliphatic monoalcohol fatty acid ester is 0.01 to 0.6 parts by mass with respect to 100 parts by mass of the total amount of the (A) polyarylate resin and the (B) melt-polymerized polycarbonate resin.
  • the (D) aliphatic monoalcohol fatty acid ester is one or more compounds selected from the group consisting of behenyl behenate, behenyl stearate, stearyl stearate, and stearyl behenate.
  • the mixing ratio of the (A) polyarylate resin and the (B) melt-polymerized polycarbonate resin is 10/90 to 65/35 in terms of mass ratio.
  • the mixing ratio of the (A) polyarylate resin and the (B) melt-polymerized polycarbonate resin is 25/75 to 45/55 in terms of mass ratio.
  • the (C) phosphite compound is one or more compounds selected from the group consisting of the phosphite compounds represented by the general formula (i-1).
  • the content of the (C) phosphite compound is 0.01 to 0.08 parts by mass with respect to 100 parts by mass of the total amount of the (A) polyarylate resin and the (B) melt-polymerized polycarbonate resin, ⁇ 5>.
  • the resin composition according to. ⁇ 7> The mixing ratio of the (A) polyarylate resin and the (B) melt-polymerized polycarbonate resin is 25/75 to 35/65 in terms of mass ratio.
  • R 52 is an alkyl group having 16 to 20 carbon atoms.
  • the content of the (D) aliphatic monoalcohol fatty acid ester is 0.01 to 0.4 parts by mass with respect to 100 parts by mass of the total amount of the (A) polyarylate resin and the (B) melt-polymerized polycarbonate resin.
  • ⁇ 8> The resin composition according to any one of ⁇ 1> to ⁇ 7>, wherein the content of the monofunctional phenol compound in the resin composition is 10,000 ppm or less.
  • ⁇ 9> The resin composition according to any one of ⁇ 1> to ⁇ 8>, wherein the logarithmic viscosity of the (B) melt-polymerized polycarbonate resin is 0.30 to 0.60 dL / g.
  • the content of the colorant is 0.01 to 2 parts by mass with respect to 100 parts by mass of the total amount of the (A) polyarylate resin and the (B) melt-polymerized polycarbonate resin, ⁇ 12> or ⁇ 13>.
  • ⁇ 17> The resin composition according to any one of ⁇ 1> to ⁇ 16>, wherein the resin composition is a resin composition for use in injection molding.
  • ⁇ 18> A molded product containing the resin composition according to any one of ⁇ 1> to ⁇ 17>.
  • ⁇ 19> A substrate for a light reflector using the molded product according to ⁇ 18>.
  • ⁇ 20> An in-vehicle lamp using the light reflector substrate according to ⁇ 19>.
  • the resin composition of the present invention can produce a molded product having sufficiently excellent hydrolysis resistance and mold release property even if it contains a heat stabilizer and a mold release agent, and also has fluidity and mold release property. Excellent balance with.
  • the resin composition of the present invention can sufficiently suppress mold stains.
  • By using the resin composition of the present invention it is possible to produce a molded product having sufficiently excellent surface appearance characteristics and vapor deposition suitability. Since the molded product produced by using the resin composition of the present invention is sufficiently excellent in heat aging suitability, even if a vapor-deposited layer is formed on the molded product and exposed to a harsher high-temperature atmosphere, the vapor-deposited layer can be formed. The decrease in glossiness and adhesion is sufficiently suppressed.
  • the resin composition of the present invention contains (A) a polyarylate resin and (B) a melt-polymerized polycarbonate resin.
  • the polyarylate resin is not particularly limited, and any polyarylate can be used.
  • the polyarylate resin contains an aromatic dicarboxylic acid residue and a divalent phenol residue, and is particularly an amorphous aromatic polyester polymer composed of an aromatic dicarboxylic acid or a derivative thereof and a divalent phenol or a derivative thereof. is there.
  • the polyarylate resin can be produced by a method such as a solution polymerization method, a melt polymerization method, or an interfacial polymerization method.
  • Preferred examples of raw materials for introducing aromatic dicarboxylic acid residues constituting the polyarylate resin are terephthalic acid, isophthalic acid, phthalic acid, chlorphthalic acid, nitrophthalic acid, 2,5-naphthalenedicarboxylic acid, 2,6.
  • Examples of the derivative of the aromatic dicarboxylic acid include an esterified product and an acid chloride of an alkyl having 1 to 3 carbon atoms of the aromatic dicarboxylic acid. These compounds may be used alone or in combination of two or more. Of these, terephthalic acid, isophthalic acid, and derivatives thereof are preferable, and from the viewpoint of the balance between heat resistance and fluidity, it is particularly preferable to use a mixture of terephthalic acid or a derivative thereof and isophthalic acid or a derivative thereof.
  • the mixed molar ratio (terephthalic acid / isophthalic acid) is arbitrary in the range of 100/0 to 0/100, but is preferably 90/10 to 10/90, more preferably 70/30 to 30/70. Particularly preferably, in the range of 55/45 to 45/55, the obtained polyarylate becomes amorphous, and the heat resistance becomes more excellent.
  • a preferable example of a raw material for introducing a divalent phenol residue constituting a polyarylate resin is bisphenols.
  • bisphenols include resorcinol, 2,2-bis (4-hydroxyphenyl) propane, 2,2-bis (4-hydroxy-3,5-dimethylphenyl) propane, and 2,2-bis (4-hydroxyphenyl) propane.
  • Polyarylate resins composed of these compounds tend to be amorphous and have better heat resistance. These compounds may be used alone or in combination of two or more. Among these compounds, it is preferable to use 2,2-bis (4-hydroxyphenyl) propane, and optimally, this is used alone.
  • the polyarylate resin is used from the viewpoint of further improving the fluidity of the resin composition of the present invention and the heat resistance, releasability, hydrolysis resistance and mechanical properties of the molded product obtained by molding the resin composition.
  • the logarithmic viscosity of a solution prepared by dissolving 1.0 g of a sample in 100 ml of 1,1,2,2-tetrachloroethane is preferably 0.40 to 0.75 dL / g at a temperature of 25 ° C., preferably 0.45 to 0. It is more preferably 65.
  • the polyarylate resin can be produced by a known method or can be obtained as a commercially available product.
  • Examples of commercially available polyarylate resins include U-powder D type (logarithmic viscosity 0.72) and L type (logarithmic viscosity 0.54) (both manufactured by Unitika Ltd.).
  • the melt-polymerized polycarbonate resin contains a polycarbonate resin obtained by a melt polymerization reaction, that is, a transesterification reaction between an aromatic dihydroxy compound and a carbonic acid diester.
  • Polycarbonate resins obtained by a surface polymerization method (phosgene method) in which a conventional aromatic dihydroxy compound and phosgene are reacted in the presence of an aqueous sodium hydroxide solution and a methylene chloride solvent are excluded from the melt-polymerized polycarbonate resin.
  • melt-polymerized polycarbonate instead of interfacial-polymerized polycarbonate as the polycarbonate
  • the balance between heat resistance and fluidity of the resin composition is enhanced, mold stains are suppressed, and the molded product is not only suppressed.
  • the aromatic dihydroxy compound constituting the melt-polymerized polycarbonate resin is a compound represented by the general formula: HO-Ar-OH.
  • Ar is a divalent aromatic residue, for example, a phenylene group, a naphthylene group, a biphenylene group, a pyridylene group, or a divalent aromatic group represented by -Ar 1- Y-Ar 2-. ..
  • Ar 1 and Ar 2 each independently represent a divalent carbocyclic or heterocyclic aromatic group having 5 to 70 carbon atoms, and Y has 1 to 30 carbon atoms, particularly 1 to 5 2.
  • Preferred Ar is a phenylene group.
  • Preferred Ar 1 and Ar 2 are phenylene groups.
  • Preferred Y is an isopropylidene group.
  • aromatic dihydroxy compound examples include, for example, bis (4-hydroxyphenyl) methane, 2,2-bis (4-hydroxyphenyl) propane, 2,2-bis (4-hydroxy-3-methylphenyl) propane, and the like.
  • 2,2-bis (4-hydroxyphenyl) propane [bisphenol A] is particularly preferable.
  • the aromatic dihydroxy compound used in the present invention may be a single type or two or more types.
  • a typical example of the aromatic dihydroxy compound is bisphenol A, and it is preferable to use bisphenol A in a proportion of 85 mol% or more as the aromatic dihydroxy compound.
  • Phosgene may be used in place of or in combination with the carbonic acid diester that constitutes the melt-polymerized polycarbonate resin.
  • R 1 -Ar 3 -O-CO -O-Ar 4 -R 2 substituted or unsubstituted diaryl carbonates may be mentioned indicated in.
  • Ar 3 and Ar 4 are independently divalent aromatic residues, and examples thereof include a phenylene group and a naphthylene group.
  • R 1 and R 2 are independently hydrogen atoms or alkyl groups having 1 to 10 carbon atoms.
  • Preferred Ar 3 and Ar 4 are phenylene groups.
  • Preferred R 1 and R 2 are independently hydrogen atoms or alkyl groups having 1 to 5 carbon atoms, respectively. The more preferred R 1 and R 2 are the same group as each other.
  • diaryl carbonates such as unsubstituted diphenyl carbonate, ditril carbonate, and lower alkyl substituted diphenyl carbonate such as di-t-butylphenyl carbonate are preferable.
  • diphenyl carbonate which is a diaryl carbonate having the simplest structure, is preferable.
  • the symmetric diaryl carbonate is a diaryl carbonate that can be represented by a chemical structural formula having line symmetry when represented by a chemical structural formula in which a hydrogen atom and a carbon atom are omitted.
  • the carbonic acid diester may be used alone or in combination of two or more.
  • the melt-polymerized polycarbonate resin can be obtained by a transesterification method based on a melt polymerization reaction.
  • the transesterification method is a method in which an aromatic dihydroxy compound and a carbonic acid diester are subjected to a transesterification reaction in a molten state while being heated in the presence or absence of a catalyst, under reduced pressure and / or under an inert gas flow. A method of condensation. There are no restrictions on the polymerization method, equipment, etc.
  • a melt-polymerized polycarbonate resin can be easily produced by using a perforated plate-type reactor that polymerizes while allowing it to polymerize, a perforated plate-type reactor with a wire that polymerizes while dropping along a wire, or the like, either alone or in combination.
  • the reaction temperature for transesterification is usually in the range of 50 to 350 ° C, preferably selected in the temperature range of 100 to 300 ° C.
  • the reaction pressure also differs depending on the molecular weight of the polycarbonate in the polymerization process, and is generally in the range of 400 Pa to normal pressure in the range of the number average molecular weight of 5000 or less, and 10 to 400 Pa in the range of the number average molecular weight of 5000 or more. ..
  • a method of using a perforated plate-type reactor that polymerizes while dropping freely and / or a perforated plate-type reactor with a wire that polymerizes while dropping along a wire is particularly preferable. Is preferably polymerized at a temperature not exceeding 270 ° C.
  • the usage ratio (preparation ratio) of the aromatic dihydroxy compound and the carbonic acid diester varies depending on the type of the aromatic dihydroxy compound and the carbonic acid diester used, the target molecular weight, the hydroxyl group terminal ratio, the polymerization conditions, etc., but is usually the carbonic acid diester. Is used in a ratio of 0.9 to 2.5 mol, preferably 0.95 to 1.5 mol, and more preferably 1.00 to 1.2 mol with respect to 1 mol of the aromatic dihydroxy compound.
  • a branching agent may be used in combination to obtain a polycarbonate having a desired molecular weight.
  • the trifunctional or higher functional compound as a branching agent include compounds having a phenolic hydroxyl group or a carboxyl group, and examples thereof include trimellitic acid, 1,3,5-benzenetricarboxylic acid, pyromellitic acid, and 1 , 1,1-Tris (4-hydroxyphenyl) ethane, fluoroglycin, 2,4,4'-trihydroxybenzophenone, 2,2', 4,4'-tetrahydroxybenzophenone, 2,4,4'-tri Hydroxydiphenyl ether, 2,2', 4,4'-tetrahydroxydiphenyl ether, 2,4,4'-trihydroxydiphenyl-2-propane, 2,4,4'-trihydroxydiphenylmethane, 2,2'4,4 '-Tetrahydroxydiphenyl
  • the melt-polymerized polycarbonate resin is used from the viewpoint of further improving the fluidity of the resin composition of the present invention and the heat resistance, releasability, hydrolysis resistance and mechanical properties of the molded product obtained by molding the resin composition.
  • the logarithmic viscosity is preferably 0.30 to 0.60 dL / g, and more preferably 0.30 to 0.50 dL / g.
  • a value measured by the same method as the logarithmic viscosity of the polyarylate resin is used except that the melt-polymerized polycarbonate resin is used.
  • the logarithmic viscosity of the melt-polymerized polycarbonate resin is usually lower than the logarithmic viscosity of the polyarylate resin.
  • the difference in log-viscosity obtained by subtracting the log-viscosity of the melt-polymerized polycarbonate resin from the log-viscosity of the polyarylate resin is obtained from the viewpoint of the balance between the fluidity of the resin composition and the heat resistance of the molded product obtained from the resin composition. It is preferably 0.05 to 0.25 dL / g, and more preferably 0.10 to 0.20 dL / g.
  • melt-polymerized polycarbonate resin can also be obtained as a commercial product.
  • Commercially available melt-polymerized polycarbonate resins include, for example, WONDERLITE PC-108U, PC-110, PC-115, PC-122, PC-175 (manufactured by Chi Mei Corporation), Infini SC-1060U, SC-1100R, SC-1100UR. , SC-1220R, SC-1220UR, SC-1280UR (manufactured by LOTTE Advanced Material), HOPELEX PC-1600 (manufactured by LOTTE Chemical), LEXAN 172L (manufactured by SABIC) and the like.
  • the mixing ratio of the polyarylate resin (A) and the melt-polymerized polycarbonate resin (B) is (A) / (B), which is 2/98 to 98/2 (mass ratio). It is necessary to have the fluidity of the resin composition, the heat resistance, mold releasability, hydrolysis resistance, surface appearance characteristics, vapor deposition suitability and heat aging suitability of the molded product obtained by molding the resin composition, and the mold. From the viewpoint of further improving the fogging resistance of the molded surface, it is preferably 10/90 to 65/35 (mass ratio), more preferably 25/75 to 45/55 (mass ratio), and 25 /. It is more preferably 75 to 35/65 (mass ratio).
  • the resin composition preferably contains the polyarylate resin (A) in an amount of 2 to 65 mass with respect to the total amount of the polyarylate resin (A) and the melt-polymerized polycarbonate resin (B). %, More preferably 2 to 45% by mass, still more preferably 2 to 35% by mass.
  • the resin composition of the present invention further contains a specific phosphite compound (C) and a specific fatty acid ester (D).
  • the resin composition of the present invention contains a specific phosphite compound (C) and a specific fatty acid ester (D) in combination in a system of a polyarylate resin (A) and a melt-polymerized polycarbonate resin (B).
  • a molded product having sufficiently excellent hydrolysis resistance and mold releasability can be produced, and a resin composition having an excellent balance between heat resistance and fluidity can be obtained.
  • the resin composition of the present invention can produce a molded product that is sufficiently excellent in surface appearance characteristics, vapor deposition suitability, and heat aging suitability while sufficiently suppressing mold stains.
  • the specific phosphite compound (C) is one or more compounds selected from the group consisting of phosphite compounds represented by the following general formulas (I) and (II).
  • the phosphite compound represented by the general formula (I) and the phosphite compound represented by the general formula (II) will be described in detail in this order.
  • R 11 and R 12 independently represent an aryl group having 6 to 40 carbon atoms or an alkyl group having 1 to 40 carbon atoms. R 11 and R 12 preferably represent the same group with each other.
  • the number of carbon atoms of the aryl group as R 11 and / or R 12 is the fluidity of the resin composition, the heat resistance of the molded product obtained by molding the resin composition, and the mold releasability. From the viewpoint of further improving hydrolysis resistance, surface appearance characteristics, vapor deposition suitability and heat aging suitability, and cloud resistance of the mold molding surface, preferably 6 to 22, more preferably 6 to 14, still more preferably 6 or It is 10.
  • the carbon atom number of the aryl group does not include the carbon atom number of the substituent described later which the aryl group may have. Specific examples of the aryl group include a phenyl group, a naphthyl group, an anthryl group and the like.
  • Such an aryl group may have a monovalent hydrocarbon group as a substituent.
  • the monovalent hydrocarbon group as a substituent that the aryl group may have may be a monovalent saturated hydrocarbon group (eg, an alkyl group) or a monovalent unsaturated hydrocarbon group (eg, an alkyl group). , Arylalkyl group), the fluidity of the resin composition, the heat resistance, mold releasability, hydrolysis resistance, surface appearance characteristics, vapor deposition suitability, and the heat resistance of the molded product obtained by molding the resin composition.
  • a monovalent saturated hydrocarbon group (for example, an alkyl group) is preferable from the viewpoint of heat aging suitability and further improvement of the fogging resistance of the mold molding surface.
  • the aryl group has a plurality of substituents
  • the plurality of substituents may be selected independently of each other.
  • the number of carbon atoms of the monovalent hydrocarbon group as a substituent that the aryl group may have is not particularly limited, and the fluidity of the resin composition and the molded product obtained by molding the resin composition are not particularly limited. From the viewpoint of further improving heat resistance, mold releasability, hydrolysis resistance, surface appearance characteristics, vapor deposition suitability and heat aging suitability, and antifogging resistance of the mold molding surface, it is preferably 1 to 20, more preferably 1 to 20. 12, more preferably 1 to 10.
  • the number of carbon atoms of a monovalent saturated hydrocarbon group (for example, an alkyl group) as a substituent that the aryl group may have is preferably 1 to 10, more preferably 1 to 5 from the same viewpoint. , More preferably 1 to 4.
  • the number of carbon atoms of the monounsaturated hydrocarbon group (for example, the arylalkyl group) as the substituent that the aryl group may have is preferably 7 to 20, more preferably 7 to 20 from the same viewpoint. It is 7 to 12, more preferably 7 to 10.
  • alkyl group as a substituent that the aryl group may have include, for example, a methyl group, an ethyl group, an n-propyl, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, and a tert-. Examples thereof include a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group and a decyl group.
  • Specific examples of the arylalkyl group as a substituent that the aryl group may have include, for example, a benzyl group, a 2-phenylethyl group, a cumyl group and the like.
  • the number of carbon atoms of the alkyl group as R 11 and / or R 12 is the fluidity of the resin composition, the heat resistance of the molded product obtained by molding the resin composition, and the mold releasability. From the viewpoint of further improving the hydrolysis resistance, surface appearance characteristics, vapor deposition suitability and heat aging suitability, and the fogging resistance of the mold molding surface, it is preferably 10 to 30, more preferably 10 to 26, still more preferably 14 to. 22.
  • Such an alkyl group may be linear or branched, preferably linear.
  • alkyl group as R 11 and / or R 12 include, for example, a decyl group, an undecylic group, a lauryl group, a tridecylic group, a myristyl group, a pentadecyl group, a cetyl group, a heptadecyl group, a stearyl group, a nonadecylic group, and an eicosyl group. And so on.
  • Examples of the phosphite compound represented by the formula (I) include phosphite compounds represented by the following general formulas (i-1) to (i-2).
  • R 21 to R 30 are independently groups similar to a hydrogen atom or a monovalent hydrocarbon group as a substituent of an aryl group in formula (I) (for example, a carbon atom). It represents a monovalent saturated hydrocarbon group of numbers 1 to 10 (particularly an alkyl group) and / or a monounsaturated hydrocarbon group of carbon atoms 7 to 20 (for example, an arylalkyl group).
  • R 21 to R 30 are fluidity of the resin composition, heat resistance, mold releasability, hydrolysis resistance, surface appearance characteristics, vapor deposition suitability and heat aging suitability of the molded product obtained by molding the resin composition. Further, from the viewpoint of further improving the antifogging resistance of the mold molding surface, it is preferable that each of them is independently an alkyl group having 1 to 5 hydrogen atoms or 1 to 5 carbon atoms, particularly 1 to 3 carbon atoms.
  • R 21 to R 30 are as follows: Of R 21 to R 30 , R 21 , R 23 , R 28 and R 30 , respectively, have 1 to 5 carbon atoms, particularly 1 to 4 alkyl groups or 7 to 12 carbon atoms, particularly 7 carbon atoms.
  • R 25 and R 26 are independently hydrogen atoms and 1 to 5 carbon atoms, particularly 1 to 4 alkyl groups or 7 to 12 carbon atoms, particularly 7 to 10. And the remaining groups are hydrogen atoms; Of R 21 to R 30 , R 21 , R 23 , R 25 , R 26 , R 28 and R 30 , respectively, have 1 to 5 carbon atoms, particularly 1 to 4 alkyl groups or carbon atoms, respectively. 7-12, especially 7-10 arylalkyl groups, the remaining groups are hydrogen atoms; or of R 21 -R 30 , R 22 , R 24 , R 27 and R 29 are independent of each other. , Alkyl groups having 1 to 5 carbon atoms, particularly 1 to 4, and the remaining groups are hydrogen atoms.
  • phosphite compound represented by the formula (i-1) include the following compounds: Bis (2,4-di-tert-butylphenyl) pentaerythritol diphosphite; Bis (2,6-di-tert-butyl-4-methylphenyl) pentaerythritol diphosphite; Bis (2,4-dimethyl-6-tert-butylphenyl) pentaerythritol diphosphite; Bis (2,4,6-tri-tert-butylphenyl) pentaerythritol diphosphite; Bis (2-methyl-4,6-di-tert-butylphenyl) pentaerythritol diphosphite; Bis (3,5-di-tert-butylphenyl) pentaerythritol diphosphite; Bis (nonylphenyl) pentaerythritol diphosphite;
  • the phosphite compound represented by the formula (i-1) is available as a commercially available product.
  • specific trade names include "ADEKA STAB PEP-36" (bis (2,6-di-tert-butyl-4-methylphenyl) pentaerythritol diphosphite) and "ADEKA STAB PEP-4C” manufactured by ADEKA. (Bis (nonylphenyl) pentaerythritol diphosphite), and "Doverphos S-9228” (bis (2,4-dikmylphenyl) pentaerythritol diphosphite) manufactured by Doverchemical Co., Ltd. and the like.
  • R 31 and R 32 are independently groups similar to the alkyl group as R 11 and / or R 12 in formula (I) (eg, having 10 to 30 carbon atoms). Alkyl group). R 31 to R 32 are fluidity of the resin composition, heat resistance, mold releasability, hydrolysis resistance, surface appearance characteristics, vapor deposition suitability and heat aging suitability of the molded product obtained by molding the resin composition. Further, from the viewpoint of further improving the antifogging resistance of the mold molding surface, it is preferable that the groups are the same as each other.
  • R 31 and R 32 are as follows: R 31 and R 32 are independently linear alkyl groups having 10 to 26 carbon atoms, particularly 14 to 22 carbon atoms.
  • phosphite compound represented by the formula (i-2) include the following compounds: Distearyl pentaerythritol diphosphite.
  • the phosphite compound represented by the formula (i-2) is available as a commercially available product.
  • a specific product name for example, "ADEKA STAB PEP-8" (distearyl pentaerythritol diphosphite) manufactured by ADEKA Corporation can be mentioned.
  • R 41 to R 45 are independently hydrogen atoms or hydrocarbon groups having 1 to 10 carbon atoms.
  • the number of carbon atoms of the hydrocarbon group as R 41 to R 45 is the fluidity of the resin composition, the heat resistance, the mold releasability, and the mold resistance of the molded product obtained by molding the resin composition. From the viewpoint of further improving the hydrolyzability, surface appearance characteristics, vapor deposition suitability and heat aging suitability, and the fogging resistance of the mold molding surface, it is preferably 1 to 5, more preferably 1 to 4.
  • the hydrocarbon group is a monovalent hydrocarbon group and may be a monovalent saturated hydrocarbon group or a monounsaturated hydrocarbon group, and the fluidity of the resin composition, the resin composition.
  • the hydrocarbon group as R 41 to R 45 include, for example, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group and a pentyl group.
  • Such an alkyl group may be linear or branched, preferably linear.
  • R 41 to R 45 are as follows: Of R 41 to R 45 , R 41 and R 43 are independently alkyl groups having 1 to 5 carbon atoms, particularly 1 to 4, and R 45 is a hydrogen atom or 1 to 5 carbon atoms. In particular, it is an alkyl group of 1 to 4, and the remaining groups are hydrogen atoms.
  • phosphite compound represented by the formula (II) include the following compounds: Tris (2,4-di-tert-butylphenyl) phosphite; Tris (2,4,6-tri-tert-butylphenyl) phosphite; Tris (4-methyl-2,6-di-tert-butylphenyl) phosphite; Triphenylphosphine; Trinonylphenyl phosphite.
  • the phosphite compound represented by the formula (II) is available as a commercially available product.
  • specific product names for example, "ADEKA STAB 1178” manufactured by ADEKA, "Sumilyzer TNP” manufactured by Sumitomo Chemical Co., Ltd., "JP-351” manufactured by Johoku Chemical Industry Co., Ltd., “ADEKA STAB 2112” manufactured by ADEKA, and BASF.
  • Examples thereof include “Irgafos 168" and "JP-650” manufactured by Johoku Chemical Industry Co., Ltd.
  • the fluidity of the resin composition the heat resistance, mold releasability, hydrolysis resistance, surface appearance characteristics, vapor deposition suitability and thermal aging of the molded product obtained by molding the resin composition.
  • it is selected from the group consisting of the phosphite compounds represented by the above general formulas (i-1), (i-2) and (II).
  • One or more compounds are preferable, and one or more compounds selected from the group consisting of the phosphite compounds represented by the general formulas (i-1) and (II) are more preferable, and the general one is most preferable. It is one or more compounds selected from the group consisting of phosphite compounds represented by the formula (i-1).
  • the content of the phosphite compound (C) is not particularly limited, and the fluidity of the resin composition, the heat resistance, mold releasability, hydrolysis resistance, and surface appearance of the molded product obtained by molding the resin composition are not particularly limited. From the viewpoint of further improving the characteristics, vapor deposition suitability and heat aging suitability, and the fogging resistance of the mold molding surface, 0 is 0 with respect to 100 parts by mass of the total amount of the polyarylate resin (A) and the melt-polymerized polycarbonate resin (B). It is preferably 0.01 to 0.2 parts by mass, more preferably 0.01 to 0.12 parts by mass, further preferably 0.01 to 0.08 parts by mass, and 0.02 to 0.02 to 0.08 parts by mass. Most preferably, it is 0.06 parts by mass. When two or more kinds of phosphite compounds (C) are contained, the total amount thereof may be within the above range.
  • the specific fatty acid ester (D) is a fatty acid ester of an aliphatic monoalcohol represented by the following general formula (III).
  • R 51 is an alkyl group having 15 to 25 carbon atoms.
  • R 51 is an alkyl group derived from a fatty acid constituting an aliphatic monoalcohol fatty acid ester, and may be linear or branched chain.
  • the fatty acid providing R 51 that is, the fatty acid (R 51- COOH) constituting the aliphatic monoalcohol fatty acid ester
  • R 51 describes the fluidity of the resin composition, the heat resistance, mold releasability, hydrolysis resistance, surface appearance characteristics, vapor deposition suitability and heat aging suitability of the molded product obtained by molding the resin composition, and the mold. From the viewpoint of further improving the antifogging resistance of the molded surface, the number of carbon atoms is preferably 15 to 23, more preferably 15 to 21, and even more preferably 15 to 19 alkyl groups.
  • R 52 is an alkyl group having 30 or less carbon atoms (particularly 8 to 30).
  • R 52 is an alkyl group derived from an aliphatic monoalcohol constituting an aliphatic monoalcohol fatty acid ester, and may be linear or branched chain.
  • aliphatic monoalcohol that is, the aliphatic monoalcohol (R 52- OH) constituting the aliphatic monoalcohol fatty acid ester
  • decanol (R 52) C
  • R 52 describes the fluidity of the resin composition, the heat resistance, mold releasability, hydrolysis resistance, surface appearance characteristics, vapor deposition suitability and heat aging suitability of the molded product obtained by molding the resin composition, and the mold.
  • the number of carbon atoms is preferably 12 to 28, more preferably 14 to 26, still more preferably 16 to 24 alkyl groups, and most preferably 16 to 20 alkyl groups. is there.
  • fatty acid ester (D) examples include behenyl behenate, behenyl stearate, stearyl stearate, stearyl behenate and the like.
  • these aliphatic monoalcohol fatty acid esters the fluidity of the resin composition, the heat resistance, mold releasability, hydrolysis resistance, surface appearance characteristics, vapor deposition suitability and heat of the molded product obtained by molding the resin composition. From the viewpoint of further improving the aging suitability and the fogging resistance of the mold molding surface, it is preferably one or more fatty acid esters selected from the group consisting of behenyl stearate and stearyl stearate, and more preferably stearyl. Stearate.
  • Fatty acid ester (D) can be obtained as a commercial product.
  • Specific examples of such commercially available products include stearyl stearate (“G32” manufactured by Emery oleochemicals) and behenyl stearate (“G47” manufactured by Emery oleochemicals).
  • an ester of an aliphatic dialcohol having a predetermined number of carbon atoms and a fatty acid having a predetermined number of carbon atoms instead of the fatty acid ester (D), an ester of an aliphatic dialcohol having a predetermined number of carbon atoms and a fatty acid having a predetermined number of carbon atoms, an ester of an aliphatic trialcohol having a predetermined number of carbon atoms and a fatty acid having a predetermined number of carbon atoms, and carbon.
  • the molecular weight may rapidly decrease during high-temperature molding (for example, when the resin temperature is 350 ° C.), and it may be difficult to obtain a molded product anymore. is there.
  • the content of the fatty acid ester (D) is not particularly limited, and is the fluidity of the resin composition, the heat resistance, mold releasability, hydrolysis resistance, and surface appearance characteristics of the molded product obtained by molding the resin composition. From the viewpoint of further improving the vapor deposition suitability and heat aging suitability, and the fogging resistance of the mold molding surface, 0.01 to 0 to 100 parts by mass of the total amount of the polyarylate resin (A) and the melt-polymerized polycarbonate resin. It is preferably .6 parts by mass, more preferably 0.01 to 0.5 parts by mass, further preferably 0.01 to 0.4 parts by mass, and 0.05 to 0.4 parts by mass. It is particularly preferably parts, and most preferably 0.1 to 0.3 parts by mass. When two or more kinds of fatty acid esters (D) are contained, the total amount thereof may be within the above range.
  • the resin composition of the present invention further comprises an additive such as a fatty acid ester other than the fatty acid ester (D) of the aliphatic monoalcohol represented by the general formula (III), a coloring agent, and a brightening material such as aluminum powder or pearl pigment. It may be included.
  • an additive such as a fatty acid ester other than the fatty acid ester (D) of the aliphatic monoalcohol represented by the general formula (III), a coloring agent, and a brightening material such as aluminum powder or pearl pigment. It may be included.
  • Colorants include, for example, various and color pigments and dyes. Pigments are preferable as the colorant from the viewpoint of further improving the fogging resistance of the mold molding surface, the surface appearance characteristics of the molded product, the vapor deposition suitability and the heat aging suitability.
  • the colorant can be selected according to the application of the molded product.
  • the molded body when used as a substrate for a light reflector such as a lamp reflector or an extension reflector of an automobile part, the molded body preferably has a black color or gray color.
  • the resin composition of the present invention preferably contains a black pigment.
  • the resin composition of the present invention preferably contains a black pigment and a white pigment in combination.
  • the black pigment is an inorganic pigment having a black color, and examples thereof include carbon black, acetylene black, lamp black, bone black, graphite, iron black, aniline black, cyanine black, and titanium black.
  • the black pigment can be used alone or in combination of two or more.
  • the white pigment is an inorganic pigment having white color, and examples thereof include titanium oxide, zinc oxide, zinc sulfide, zinc sulfate, barium sulfate, calcium carbonate, and alumina oxide.
  • the white pigment can be used alone or in combination of two or more.
  • a black dye can be used instead of the black pigment or in combination with the black pigment.
  • the black dye is an organic compound having a black color.
  • the black dye include dyes such as quinoline compounds, anthraquinone compounds, and perinone compounds. All of these have high heat resistance and can be used alone or in combination of two or more.
  • Commercially available black dyes include, for example, Solvent Black 3, 5, 7, 22, 27, 29 or 34, Modant Black 1, 11 or 17, Acid Black 2 or 52, or Direct Black 19 or 154. (Each numerical value is a color index (CI) number).
  • Pigments (particularly black pigments) and dyes (particularly black dyes) can be used in combination, but it is preferable to use each individually in order to enhance the effects of each.
  • Any molded body colored with a pigment or dye can be vapor-deposited with aluminum, but a molded body containing a pigment (particularly a black pigment) is suitable as a substrate for a light reflector for vapor-depositing aluminum.
  • the molded product containing a dye (particularly a black dye) is preferably used without aluminum vapor deposition.
  • the content of the colorant is preferably 0.01 to 2 parts by mass, more preferably 0.02 to 1 part by mass, based on 100 parts by mass of the total amount of the polyarylate resin (A) and the melt-polymerized polycarbonate resin (B). Parts, more preferably 0.03 to 0.5 parts by mass.
  • the total amount thereof may be within the above range.
  • the molded product can transmit infrared rays, and therefore the heat of the molded product or the product incorporating the molded product. Problems such as deformation due to the above can be suppressed.
  • the resin composition of the present invention exerts the above-mentioned effects of the present invention by containing a black dye (particularly, a mixture of neutral dyes) alone as a colorant, and has excellent visible light opacity and infrared transparency. Can have. Visible light opacity is a property that visible light does not pass through. Infrared transparency is a property that allows infrared rays to pass through.
  • the obtained molded product can transmit infrared rays while having visual shielding properties.
  • the visual shielding property is a characteristic that an object on the other side of the molded body cannot be visually recognized through the molded body. For example, when the molded body covers the infrared sensor, the molded body can transmit infrared rays derived from the infrared sensor while hiding the infrared sensor from the outside line of sight.
  • the resin composition of the present invention containing a black dye (particularly, a neutral dye mixture) alone as a colorant is useful for manufacturing peripheral parts (molded parts) of an infrared sensor used in in-vehicle LiDAR technology.
  • LiDAR technology is a "Light Detection and Ranging" technology that measures the distance to an object by irradiating the object with scanning laser light (especially infrared rays) and observing its scattering and reflected light. It is an optical sensor technology that identifies the properties of objects.
  • the infrared sensor for LiDAR technology
  • visible light impermeable and infrared transmissive are required for peripheral parts of the infrared sensor (for example, a base for a reflector of an in-vehicle lamp).
  • the resin composition of the present invention containing a black dye (particularly, a neutral dye mixture) alone as a colorant can be suitably used for producing peripheral parts (for example, a reflector substrate) of such an infrared sensor.
  • the content of the colorant is From the viewpoint of further improving visible light opacity and infrared transmission, it is preferably within the above range, with respect to 100 parts by mass of the total amount of the polyarylate resin (A) and the melt-polymerized polycarbonate resin (B). It is more preferably 0.05 to 0.5 parts by mass, and even more preferably 0.06 to 0.3 parts by mass.
  • the mixing ratio ((A) / (B)) of the polyarylate resin (A) and the melt-polymerized polycarbonate resin (B) is visible light opaque and infrared transmission. From the viewpoint of further improving the property, it is preferably within the above range, more preferably 25/75 to 45/55 (mass ratio), and further preferably 25/75 to 35/65 (mass ratio). is there.
  • the resin composition of the present invention can be obtained by melt-kneading a polyarylate resin (A), a melt-polymerized polycarbonate resin (B), a phosphite compound (C) and a fatty acid ester (D), and a desired additive. It usually has the form of pellets.
  • the Vicat softening point of the resin composition of the present invention is usually 140 ° C. or higher, preferably 145 ° C. or higher, more preferably 150 ° C. or higher, and 155 ° C. or higher from the viewpoint of further improving heat resistance. It is preferably 160 ° C. or higher, more preferably 170 ° C. or higher, and most preferably 175 ° C. or higher.
  • the resin composition of the present invention is used, for example, as a light-reflecting substrate (particularly a reflector), it is particularly important that the Vicat softening point is 140 ° C. or higher as a practical index of heat resistance.
  • the reflector must have durability against heat when the lamp is lit for a long period of time, and the molded product is not allowed to be distorted and / or deteriorated by heat.
  • the molded product is distorted because there is a high concern that the optical axis may shift and the function of the in-vehicle lamp cannot be sufficiently fulfilled.
  • the resin composition of the present invention has a logarithmic viscosity of 0.35 to 0 from the viewpoint of further improving the fluidity of the resin composition and the heat resistance and mechanical properties of the molded product obtained by molding the resin composition. It is preferably .65 dL / g, more preferably 0.38 to 0.55 dL / g, more preferably 0.40 to 0.485 dL / g, and more preferably 0.425 to 0.455 dL / g. It is more preferably g, and more preferably 0.425 to 0.435 dL / g.
  • the logarithmic viscosity of the resin composition a value measured by the same method as the logarithmic viscosity of the polyarylate resin is used except that the resin composition is used.
  • the content of the monofunctional phenol compound is the fluidity of the resin composition, the heat resistance of the molded product obtained by molding the resin composition, the fogging resistance of the mold molding surface, and the molding.
  • the suitability for vapor deposition and the suitability for heat aging it is preferably 10000 ppm or less (usually 100 to 10000 ppm), more preferably 500 to 9000 ppm, still more preferably 1100 to 5000 ppm, and particularly preferably. It is 1100 to 2500 ppm, most preferably 1100-1500 ppm.
  • the monofunctional phenol compound examples include phenol, isopropylphenol, p-tert-butylphenol, p-cresol, p-cumylphenol, 2-phenylphenol, 4-phenylphenol, isooctylphenol and the like.
  • the content of the monofunctional phenol compound the value measured by thermal decomposition / gas chromatography mass spectrometry is used.
  • the content of the monofunctional phenol compound is particularly the total content of phenol, p-tert-butylphenol and p-cumylphenol.
  • the melt polymerization method makes it easy to control the molecular weight, and thus the content of the monofunctional phenol compound as the terminal blocking agent is reduced in the melt polymerization polycarbonate resin.
  • the interfacial polymerized polycarbonate resin usually contains a relatively large amount of a monofunctional phenol compound as a terminal blocking agent.
  • the content of the monofunctional phenol compound in the resin composition is usually more than 10,000 ppm.
  • the resin composition of the present invention is an unnecessary additive from the viewpoint of further improving the fogging resistance of the mold molding surface and the surface appearance characteristics, mold release property, hydrolysis resistance, vapor deposition suitability and heat aging suitability of the molded product. Should not be used as much as possible. Unnecessary additives cause gas generation due to their own decomposition, so the addition should be suppressed as much as possible. However, since the resin composition of the present invention has heat resistance, it is melt-kneaded and / or injection-molded at a processing temperature of 300 ° C. or higher to obtain a resin composition or a molded product. Therefore, it is necessary to suppress deterioration and decomposition of the resin composition under the condition that the processing is performed at such a high temperature.
  • the resin composition of the present invention is a phosphite compound (from the viewpoint of improving the fogging resistance of the mold molding surface, the surface appearance characteristics of the molded product, the mold release property, the hydrolysis resistance, the vapor deposition suitability and the thermal aging suitability). It needs to contain C) and fatty acid ester (D).
  • (A) / (B) (mass ratio) is in the range of 25/75 to 45/55, and the group consisting of the phosphite compound represented by the above general formula (i-1) as the (C) phosphite compound.
  • (A) / (B) (mass ratio) is set in the range of 25/75 to 35/65, and as (D) an aliphatic monoalcohol fatty acid ester, R 52 in the above formula (III) is
  • a compound which is an alkyl group having 16 to 20 carbon atoms in an amount of 0.05 to 0.4 parts by mass with respect to a total amount of 100 parts by mass of (A) and (B)
  • the releasability can be improved. Most improve.
  • a molded product can be produced by any molding method such as an injection molding method, an extrusion molding method, a blow molding method, a compression molding method, and a foam molding method.
  • a molded product produced by an injection molding method using the resin composition of the present invention may be produced by an injection molding method because it has excellent surface appearance characteristics regarding fogging in and around the weld line peculiar to the injection molding method. preferable.
  • the resin composition of the present invention is useful for producing a substrate for a light reflector.
  • the light reflector obtained by forming a metal layer on a molded product (particularly a substrate for a light reflector) produced by using the resin composition of the present invention is suitable for vapor deposition with respect to fogging of the surface of the metal layer in and around the weld line. This is because it is excellent in heat aging suitability.
  • the light reflector substrate is a support for supporting the metal layer, and constitutes the light reflector by forming the metal layer.
  • the light reflector may be a reflector for any light source such as an in-vehicle lamp, home appliance lighting, and the like.
  • the molded product produced by using the resin composition of the present invention is particularly useful as a substrate for a light reflector of an in-vehicle lamp.
  • the resin composition of the present invention can produce a molded product having excellent surface appearance characteristics, vapor deposition suitability, and heat aging suitability while sufficiently suppressing mold stains, and has a good balance between heat resistance and fluidity.
  • the substrate for a light reflector of an in-vehicle lamp has higher required performance of the characteristics (particularly heat resistance, surface appearance characteristics, vapor deposition suitability, thermal aging suitability, etc.) than a substrate for other applications.
  • the molded product (particularly the substrate for a light reflector) produced by using the resin composition of the present invention is excellent in mold releasability and hydrolysis resistance, and the resin composition of the present invention is used for an in-vehicle lamp. This is one of the reasons why it is particularly useful for producing a substrate for a light reflector. Specifically, since the base for a light reflector of an in-vehicle lamp is mass-produced, the base for a light reflector is required to have excellent releasability.
  • the substrate for the light reflector of the in-vehicle lamp is Since it is often placed in a relatively high temperature environment and is placed in a high temperature and high humidity environment when it rains, the light reflector substrate is also required to have excellent hydrolysis resistance.
  • the light reflector of the in-vehicle lamp include a lamp reflector and an extension reflector.
  • the molded product containing the resin composition of the present invention usually has a logarithmic viscosity retention rate of 56%, preferably 60% or more, more preferably 60% or more after the high-temperature and high-humidity environment test. It is 64% or more.
  • the high-temperature and high-humidity environment test is a test in which the molded product is held for 75 hours under the conditions of a temperature of 130 ° C., a relative humidity of 75% RH, and a pressure of 0.2 MPa.
  • the logarithmic viscosity retention rate after the high temperature and high humidity environment test is a ratio to the logarithmic viscosity before the high temperature and high humidity environment test.
  • the method for forming the metal layer on the light reflector substrate is not particularly limited, and for example, the metal layer such as aluminum can be formed by means such as vacuum deposition.
  • the metal layer such as aluminum can be formed by means such as vacuum deposition.
  • a method of directly forming a metal layer on a light reflector substrate (direct vapor deposition method), once a primer is applied to the surface of a light reflector substrate, and a vapor deposition layer is placed on the surface.
  • the method of forming can be arbitrarily selected. Since the molded product obtained by using the resin composition of the present invention has improved smoothness and surface appearance, a direct thin-film deposition method can be preferably adopted.
  • the vapor-deposited layer formed on the molded product obtained by using the resin composition of the present invention not only has high reflection efficiency as a light reflector, but also does not deform to heat when the lamp is lit, and is said to be present for a long period of time.
  • the reflection efficiency can be maintained, and the concern of falling off from the molded product is reduced.
  • an infrared sensor for LiDAR technology is installed around the light reflector substrate and there is a part of the light reflector base that requires infrared transmission, no metal layer is formed on that part, or infrared rays are emitted. It is desirable to form the metal layer with a thin thickness that allows it to pass through.
  • GC device HP-6890 type manufactured by Hewlett-Packard. Temperature temperature: After holding at 40 ° C for 3 minutes, the temperature is raised to 150 ° C at 10 ° C / min, and the temperature is raised from 150 ° C to 320 ° C at 20 / min. Hold at 320 ° C. for 3 minutes.
  • MS device Hewlett-Packard HP-5973 mass range: scan measurement (mass range: 29.0 to 550.0) Transfer line: 320 ° C
  • the flow length at a resin temperature of 350 ° C. was evaluated as follows. ⁇ : 550 mm or more (best). ⁇ : 450 mm or more and less than 550 mm (good). ⁇ : 300 mm or more and less than 450 mm (no problem in practical use). X: Less than 300 mm (there is a problem in practical use).
  • Vicat softening point (heat resistance) The measurement was performed in accordance with the B50 method specified in JIS K 7206. The Vicat softening point was measured with an HDT test device (heat distortion tester) (manufactured by Toyo Seiki Seisakusho Co., Ltd.). As a test piece, a molded product having a thickness of 4 mm was used for measurement. The Vicat softening point was evaluated as follows. ⁇ : 150 ° C or higher (best). ⁇ : 145 ° C or higher and lower than 150 ° C (good). ⁇ : 140 ° C or higher and lower than 145 ° C (no problem in practical use). X: Less than 140 ° C (There is a problem in practical use).
  • the protrusion pressure was measured to determine the mold release resistance value.
  • the releasability was evaluated as follows. ⁇ ⁇ : 105 MPa or less (extra quality). ⁇ : Over 105 MPa, 120 MPa or less (best). ⁇ : Over 120 MPa, 150 MPa or less (good). ⁇ : Over 150 MPa, 170 MPa or less (no problem in practical use). X: Over 170 MPa (there is a problem in practical use).
  • Logarithmic viscosity retention rate of molded product (Logarithmic viscosity of molded product after treatment / Logarithmic viscosity of molded product before treatment) ⁇ 100 ⁇ : Retention rate 64% or more (best). ⁇ : Retention rate 60% or more and less than 64% (good). ⁇ : Retention rate 56% or more and less than 60% (no problem in practical use). X: Retention rate is less than 56% (there is a problem in practical use).
  • the molding surface of the mold is a mirror surface with only # 8000 brushed, and the molten resin composition is not fully filled in the mold, and 50 shots are continuously molded in a short shot state, and the flowing tip of the resin is formed.
  • the surface of the mold (movable mold and fixed mold molding surface) in the vicinity was visually confirmed, and the presence or absence of fogging was observed.
  • the evaluation was made on a scale of 5 (thin 1 ⁇ 3 ⁇ 5 dark) according to the degree of cloudiness. The smaller the evaluation value of the degree of cloudiness, the less cloudiness and the better.
  • ⁇ : Evaluation value 1 (best).
  • ⁇ : Evaluation value 2 (good).
  • ⁇ : Evaluation value 3 (no problem in practical use).
  • X: Evaluation value 4 (There is a problem in practical use).
  • XX: Evaluation value 5 (There is a problem in practical use).
  • the molten resin flows into the cavity from the two gates at the same time.
  • the molten resin that has flowed into the cavity merges at the center of the cavity and cools the resin to form a weld at the junction.
  • the appearance of the molded body surface of the weld portion was evaluated according to the following criteria. ⁇ : There is no cloudiness in and around the weld line (best). ⁇ : Fogging occurred partially in only one place on the weld line and / or its surroundings (good). ⁇ : Fogging was partially generated at two or more places in and / or around the weld line, but it was within a range where there was no problem in practical use.
  • X A band-shaped cloudiness occurred along the weld line and / or its surroundings, which caused a practical problem.
  • T2 60% or more and less than 70% (no problem in practical use).
  • X T2 less than 60% (there is a problem in practical use). Visible light opacity and infrared transparency are not necessarily properties that the resin composition of the present invention must have, but are preferred properties.
  • Polycarbonate / Polycarbonate b1 Melt-polymerized polycarbonate: Polycarbonate polymerized from diphenyl carbonate and bisphenol A WONDERLITE PC-175 (manufactured by Chi Mei Corporation) (logarithmic viscosity 0.39)
  • Polycarbonate b2 Interfacial polycarbonate: Polycarbonate polymerized from phosgene and bisphenol A SD Polycarbonate 200-80 (manufactured by Sumika Polycarbonate Limited) (logarithmity 0.39)
  • Fatty acid ester / fatty acid ester d1 Stearyl stearate (“G32” manufactured by Emery Oleo Chemicals)
  • Fatty acid ester d2 Behenyl stearate ("G47” manufactured by Emery Oleo Chemical Co., Ltd.)
  • Non-fatty acid ester d3 Compounds other than fatty acid ester: Paraffin wax (Rubax 1266 manufactured by Nippon Seiwa Co., Ltd.)
  • -Fatty acid ester d4 Ethylene glycol monostearate (reagent manufactured by Tokyo Chemical Industry Co., Ltd.)
  • -Fatty acid ester d5 Glycerin monostearate (Rikemar S-100 manufactured by RIKEN Vitamin Co., Ltd.)
  • -Fatty acid ester d6 Methyl laurate (Kao Corporation Exepearl ML-85)
  • -Fatty acid ester d7 Montanic acid ester wax (Recolve WE4
  • a predetermined amount of a phosphite compound (or non-phosphite compound) and a fatty acid ester (or non-fatty acid ester), and 0.05 parts by mass of a colorant are added.
  • Kubota's continuous metering supply device was used to supply to the main supply port of the same-direction twin-screw extruder (Toshiba Machine Co., Ltd. TEM-37BS).
  • melt-kneading is performed at a predetermined resin temperature and a discharge rate of 10 kg / hour, and the resin composition taken in a strand shape from a nozzle is passed through a water bath to be cooled and solidified, cut with a pelletizer, and then hot air is blown at 120 ° C. for 8 hours.
  • the predetermined resin temperature is the molding temperature shown in Tables 1 to 6.
  • the obtained resin composition pellets were injection-molded according to the method described in the above-mentioned evaluation method to obtain a molded product.
  • Various evaluations were carried out using the obtained resin composition pellets or molded products. The results are shown in Tables 1 to 6.
  • Example 1 the evaluation of the polycarbonate resin alone (evaluation of fluidity, hydrolysis resistance, and heat aging suitability has not been performed) was performed.
  • Examples 3a, 4b, 5a and 6a respectively, the same as in Examples 3, 4, 5 and 6 except that a black neutral dye mixture is used in 0.15 parts by mass instead of carbon black as a colorant.
  • the resin composition pellets were obtained and various evaluations were performed. The results are shown in Table 6.
  • Example 4a resin composition pellets were obtained in the same manner as in Example 4 except that a black neutral dye mixture was used in an amount of 0.05 parts by mass instead of carbon black as a colorant, and various evaluations were carried out. went. The results are shown in Table 6.
  • the resin compositions were excellent in the balance between heat resistance (Vicut softening point) and fluidity (barflow flow length), and were sufficiently excellent in antifogging resistance of the mold molding surface. ..
  • the molded product was sufficiently excellent in surface appearance characteristics, mold releasability and hydrolysis resistance. Further, the molded product was sufficiently excellent in vapor deposition suitability and thermal aging suitability with respect to the vapor deposition layer.
  • visible light opacity and infrared transmission could be further imparted.
  • Comparative Examples 6 to 7 and 15 are experimental examples that can be positioned as reference examples of the present invention because they are systems that do not contain a release agent. In these systems, at least the mold releasability of the molded product was inferior.
  • Comparative Examples 8 to 14 are systems containing a heat stabilizer and a mold release agent, in which a heat stabilizer different from the predetermined phosphite compound and / or a mold release agent different from the predetermined fatty acid ester are used. Was used. For this reason, molding becomes difficult due to a decrease in molecular weight during high-temperature molding (Comparative Examples 11 to 14), or even if molding is possible, it becomes difficult to achieve both mold releasability and hydrolysis resistance of the obtained molded product.
  • Comparative Example 16 is a system that does not contain a heat stabilizer, it is an experimental example that can be positioned as a reference example of the present invention. In this system, at least the hydrolysis resistance of the molded product was inferior. Further, a band-like cloudiness occurred along the weld line of the molded product. In addition, the suitability for vapor deposition and heat aging of the molded product were also inferior.
  • the resin composition of the present invention is useful, for example, for producing a substrate for a light reflector by an injection molding method.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本発明は、熱安定剤および離型剤を含有させても、耐加水分解性および離型性に十分に優れた成形体を製造することができ、しかも耐熱性と流動性とのバランスに優れている樹脂組成物を提供する。本発明は、(A)ポリアリレート樹脂、(B)溶融重合ポリカーボネート樹脂、(C)特定のホスファイト化合物、および(D)特定の脂肪族モノアルコール脂肪酸エステルを含有する樹脂組成物であって、(A)ポリアリレート樹脂と(B)溶融重合ポリカーボネート樹脂との質量比(A/B)が2/98~98/2であり、前記樹脂組成物のビカット軟化点が140℃以上である、樹脂組成物に関する。

Description

樹脂組成物およびそれより得られる成形体
 本発明は、樹脂組成物およびそれより得られる成形体に関し、詳しくは成形体用樹脂組成物、特に光反射体用基体を製造するための樹脂組成物、およびそれより得られる成形体に関する。
 ビスフェノール化合物のような二価フェノール類とテレフタル酸およびイソフタル酸とからなるポリアリレー卜樹脂は非晶性のポリマーで、透明性、機械的特性、および、耐熱性に優れたエンジニアリングプラスチックとして既によく知られている。係るポリアリレート樹脂はその特性から様々な分野で使用されているが、成形加工性の向上、耐衝撃性の向上の観点から、ポリアリレートにポリカーボネートを混合した樹脂組成物が有用であることは知られている。
 車載用ランプ等におけるハウジング、リフレクター、エクステンションリフレクターや家電照明器具等の光を反射させるための反射体(光反射体)は、ランプ光源の方向性および反射性のために、高い輝度感、平滑性、均一な反射率、さらには光源からの発熱に耐え得る高耐熱性等が要求される。このような用途では従来では熱硬化性樹脂が用いられてきた。
 近年の光反射体の高機能化やデザインの多様化に対応し、かつ、生産性にも優れる、熱可塑性樹脂を用いて形成された光反射体用基体への転換が進んでいる。熱可塑性樹脂組成物からなる光反射体用基体には、機械的性質、電気的性質、その他物理的および化学的特性に優れ、かつ良好な加工性が要求される。
 例えば高機能化の例として、ヘッドランプやリアランプなどの車載ランプに、周囲監視センサー(例えば、LiDAR技術)などを内蔵するデザインも進んでいる。この場合、光反射体用基体には、上記特性以外に、可視光不透過性や赤外線透過性などの光学特性が求められる場合もある。
 そこで、熱可塑性樹脂組成物として、ポリアリレート樹脂、又は、ポリアリレート樹脂と他の樹脂との混合物を主成分とした組成物が用いられてきた(特許文献1~2)。特許文献1~2の樹脂組成物では、ポリアリレート樹脂が有する耐熱性を生かし、混合する他の樹脂の特性を生かして流動性も確保することができた。このようなポリアリレート樹脂に混合することのできる樹脂であるポリカーボネート樹脂は、ホスゲンを原料とし界面重合法で製造されていた。このようなポリカーボネート樹脂はポリアリレート樹脂との相溶性に優れ、機械特性に優れた樹脂組成物とすることができる。
 一方、特許文献3~9には、溶融重合ポリカーボネート樹脂を用いる技術が開示されている。
 例えば、特許文献3には、溶融重合法で得られた芳香族ポリカーボネート樹脂を含む樹脂組成物を、耐薬品性および湿熱疲労性等の観点から、OA機器の内部部品等に用いる技術が開示されている。
 また例えば、特許文献4には、溶融重合法で得られた芳香族ポリカーボネート樹脂を含む樹脂組成物を、色調、耐久性および安定性等の観点から、高密度光ディスク用の基板等に用いる技術が開示されている。
 また例えば、特許文献5には、溶融重合法で得られたポリカーボネート樹脂を含む樹脂組成物を、ハイサイクル性および金型汚れの低減等の観点から、光学情報基板に用いる技術が開示されている。
 また例えば、特許文献6~9には、溶融重合法で得られたポリカーボネート樹脂を含む樹脂組成物を光ディスク等の製造に用いる技術が開示されている。
 他方、ポリアリレート樹脂およびポリカーボネート樹脂を含むポリマー混合物に対して、熱安定剤および離型剤等の添加剤を添加する試みがなされている(例えば、特許文献10~16)。
特開2010-159332号公報 特開2014-080577号公報 特開2000-143951号公報 国際公開第01/092371号 特開2002-080711号公報 特開平5-262969号公報 特開平5-262970号公報 特開2001-49104号公報 特開2001-49105号公報 特開平06-200141号公報 特開2002-053748号公報 特開2004-277438号公報 特開2003-041131号公報 特開2000-322918号公報 国際公開第2017/204078号 米国特許出願公開第2003/0125504号明細書
 近年、自動車のデザインの自由度が広がり、車載用ランプ構造も複雑かつ多機能化している。それにともないランプ周辺部材での耐熱性の要求が高まっている。そこで、本発明の発明者等は、特許文献1~2に記載のような界面重合ポリカーボネート樹脂を、ポリアリレート樹脂とともに含む樹脂組成物を、車載用ランプのリフレクターのような光反射体のための基体(すなわち、光反射体用基体)の製造(特に射出成形)に使用した場合、以下のような新たな問題が生じることを見い出した。
(1)金型が汚れ、金型の成形面に曇りが生じた(金型成形面の耐曇り性)。詳しくは、ポリカーボネート樹脂は、単独で用いる場合、成形温度(溶融時の樹脂温度)300℃程度で、溶融および流動させることができる。つまり当該温度で成形加工ができる。このような300℃程度の領域で成形加工する場合、たとえ界面重合ポリカーボネート樹脂を単独で用いても、金型汚れは生じなかった。そこで、耐熱性付与のため、界面重合ポリカーボネート樹脂をポリアリレート樹脂と混合し樹脂組成物とすると、その混合比率にもよるが、成形温度は320~360℃程度となる。このような成形温度において、ポリアリレート樹脂および界面重合ポリカーボネート樹脂を含む樹脂組成物を用いると、金型汚れの問題が生じた。一方で、ポリアリレート樹脂および界面重合ポリカーボネート樹脂を含む樹脂組成物において、耐熱性を損なわず流動性を確保するために、低粘度のポリカーボネート樹脂を用いる場合、特に界面重合ポリカーボネート樹脂を用いると、金型汚れが著しかった。
(2)成形体のウェルドラインまたはその周辺に曇りが生じた(成形体の表面外観特性)。詳しくは、このような成形体の曇りに関する表面外観特性は、鏡面仕様の成形面を有する金型を用いて射出成形を行った場合に、初めて問題となった。
(3)成形体に蒸着層を形成したとき、成形体のウェルドラインまたはその周辺における蒸着層の表面に曇りが生じた(成形体の蒸着適性の低下)。詳しくは、蒸着層表面の曇りに関する成形体の蒸着適性は、鏡面仕様の成形面を有する金型を用いて射出成形により得られた成形体に蒸着層を形成した場合に、初めて問題となった。
(4)蒸着層が形成された成形体が、車載用ランプのリフレクターとして、繰り返しのランプ点灯等により高温雰囲気下にさらされると、初期では熱エージング適性は良好であるものの、比較的早期に低下した。詳しくは、比較的早期に、蒸着層の光沢度および/または密着性が低下した。より詳しくは、車載用ランプのリフレクターにおいて、光源近傍あるいは光源上部は、特に高温にさらされ、蒸着層表面の光沢度および/または密着性が比較的早期に低下した。このような熱エージング適性の比較的早期の低下は、自動車の耐用年数が延びている近年において深刻な問題であった。車載用ランプのリフレクターにおいて蒸着層の光沢度が低下すること、および/または蒸着層の密着性が低下することは許容されない。従って、ランプ部品としての実成形体においては、より現実的には、単なる軟化点等に基づく耐熱性の低下が起こらないだけでなく、アニール等の熱エージング試験を行い、蒸着層の光沢度および密着性の低下が起こらないことも要求される。
 また、本発明の発明者等は、耐熱性および離型性の観点から、ポリアリレート樹脂および溶融重合ポリカーボネート樹脂を含むポリマー混合物に対して、熱安定剤および離型剤を添加したところ、高温成形時において分子量の低下により成形が困難になったり、または以下のように、離型性および耐加水分解性の両立が困難となり、離型性または耐加水分解性の少なくとも一方が低下したりする、という新たな問題が生じることを見い出した。
(5)離型剤を添加しても、離型性が十分に向上しないことがあった。詳しくは、成形時において、得られた成形体を金型から突出ピンにより離型する際、成形体の離型性が十分ではないため、成形体に突出ピンの跡が残った。成形体に突出ピンの跡が残ると、成形体の製品としての価値が低下した。
(6)添加剤を含有しないポリマー混合物を用いたときには問題とならなかった耐加水分解性の問題が、熱安定剤および/または離型剤を添加したときに生じた。詳しくは、ポリアリレート樹脂およびポリカーボネート樹脂を含むポリマー混合物に対して、熱安定剤および/または離型剤を添加すると、成形体の耐加水分解性が低下することがあった。成形体の耐加水分解性が低下すると、成形体を高温高湿環境下で使用または保管したとき、ポリアリレート樹脂および/またはポリカーボネート樹脂の分子量が経時的に低下するため、成形体の製品としての価値が低下した。
 本発明は、熱安定剤および離型剤を含有させても、耐加水分解性および離型性に十分に優れた成形体を製造することができ、しかも耐熱性と流動性とのバランスに優れている樹脂組成物を得ることを目的とする。
 本発明はまた、熱安定剤および離型剤を含有させても、金型汚れを十分に抑制しながら、耐加水分解性、離型性、表面外観特性、蒸着適性および熱エージング適性に十分に優れた成形体を製造することができ、しかも耐熱性と流動性とのバランスに優れている樹脂組成物を得ることを目的とする。
 本発明者らは、上記課題を解決するために検討を行った結果、ポリアリレートおよびポリカーボネートを含む樹脂組成物において、特定のポリカーボネート樹脂、特定のホスファイト化合物および特定の脂肪酸エステルを組み合わせて用いることで、上記課題を解決できることを見出し、本発明に到達した。
 すなわち、本発明の要旨は以下の通りである。
<1> (A)ポリアリレート樹脂、(B)溶融重合ポリカーボネート樹脂、(C)下記一般式(I)および(II)で表されるホスファイト化合物からなる群から選択される1種以上の化合物、および(D)下記一般式(III)で表される脂肪族モノアルコール脂肪酸エステルを含有する樹脂組成物であって、
 (A)ポリアリレート樹脂と(B)溶融重合ポリカーボネート樹脂との質量比(A/B)が2/98~98/2であり、
 前記樹脂組成物のビカット軟化点が140℃以上である、樹脂組成物:
Figure JPOXMLDOC01-appb-C000005
(式(I)中、R11およびR12は、それぞれ独立して、炭素原子数6~40のアリール基または炭素原子数1~40のアルキル基を表す);
Figure JPOXMLDOC01-appb-C000006
(式(II)中、R41~R45は、それぞれ独立して、水素原子または炭素原子数1~10の炭化水素基である);
Figure JPOXMLDOC01-appb-C000007
(式(III)中、R51は炭素原子数15~25のアルキル基である;R52は炭素原子数30以下のアルキル基である)。
<2> 前記(C)ホスファイト化合物の含有量が、(A)ポリアリレート樹脂と(B)溶融重合ポリカーボネート樹脂との合計量100質量部に対し0.01~0.2質量部である、<1>に記載の樹脂組成物。
<3> 前記(D)脂肪族モノアルコール脂肪酸エステルの含有量が、(A)ポリアリレート樹脂と(B)溶融重合ポリカーボネート樹脂との合計量100質量部に対し0.01~0.6質量部である、<1>または<2>に記載の樹脂組成物。
<4> 前記(D)脂肪族モノアルコール脂肪酸エステルが、ベヘニルベヘネート、ベへニルステアレート、ステアリルステアレート、ステアリルベヘネートからなる群から選択される1種以上の化合物である、<1>~<3>のいずれかに記載の樹脂組成物。
<5> 前記(A)ポリアリレート樹脂と前記(B)溶融重合ポリカーボネート樹脂との混合比率が質量比で10/90~65/35であり、
 前記(C)ホスファイト化合物が下記一般式(i-1)および前記一般式(II)で表されるホスファイト化合物からなる群から選択される1種以上の化合物である、<1>に記載の樹脂組成物:
Figure JPOXMLDOC01-appb-C000008
(式(i-1)中、R21~R30は、それぞれ独立して、水素原子または炭素原子数1~20の炭化水素基を表す)。
<6> 前記(A)ポリアリレート樹脂と前記(B)溶融重合ポリカーボネート樹脂との混合比率が質量比で25/75~45/55であり、
 前記(C)ホスファイト化合物が前記一般式(i-1)で表されるホスファイト化合物からなる群から選択される1種以上の化合物であり、
 前記(C)ホスファイト化合物の含有量が、(A)ポリアリレート樹脂と(B)溶融重合ポリカーボネート樹脂との合計量100質量部に対し0.01~0.08質量部である、<5>に記載の樹脂組成物。
<7> 前記(A)ポリアリレート樹脂と前記(B)溶融重合ポリカーボネート樹脂との混合比率が質量比で25/75~35/65であり、
 前記式(III)中、R52は炭素原子数16~20のアルキル基であり、
 前記(D)脂肪族モノアルコール脂肪酸エステルの含有量が、(A)ポリアリレート樹脂と(B)溶融重合ポリカーボネート樹脂との合計量100質量部に対し0.01~0.4質量部である、<6>に記載の樹脂組成物。
<8> 前記樹脂組成物における単官能フェノール化合物の含有量が10,000ppm以下である、<1>~<7>のいずれかに記載の樹脂組成物。
<9> 前記(B)溶融重合ポリカーボネート樹脂の対数粘度が0.30~0.60dL/gである、<1>~<8>のいずれかに記載の樹脂組成物。
<10> 前記(A)ポリアリレート樹脂の対数粘度が0.40~0.75dL/gである、<1>~<9>のいずれかに記載の樹脂組成物。
<11> 前記樹脂組成物の対数粘度が0.35~0.65dL/gである、<1>~<10>のいずれかに記載の樹脂組成物。
<12> 前記樹脂組成物が着色剤をさらに含む、<1>~<11>のいずれかに記載の樹脂組成物。
<13> 前記樹脂組成物が前記着色剤として黒色染料を単独で含む、<12>に記載の樹脂組成物。
<14> 前記着色剤の含有量が、(A)ポリアリレート樹脂と(B)溶融重合ポリカーボネート樹脂との合計量100質量部に対し、0.01~2質量部である、<12>または<13>に記載の樹脂組成物。
<15> 前記樹脂組成物が光反射体用基体を製造するための樹脂組成物である、<1>~<14>のいずれかに記載の樹脂組成物。
<16>
 前記樹脂組成物が車載用ランプの光反射体用基体を製造するための樹脂組成物である、<1>~<15>のいずれかに記載の樹脂組成物。
<17> 前記樹脂組成物が射出成形に使用されるための樹脂組成物である、<1>~<16>のいずれかに記載の樹脂組成物。
<18> <1>~<17>のいずれかに記載の樹脂組成物を含む、成形体。
<19> <18>に記載の成形体を用いた光反射体用基体。
<20> <19>に記載の光反射体用基体を用いた車載用ランプ。
 本発明の樹脂組成物は、熱安定剤および離型剤を含有させても、耐加水分解性および離型性に十分に優れた成形体を製造することができ、しかも流動性と離型性とのバランスに優れている。
 本発明の樹脂組成物は、金型汚れを十分に抑制できる。
 本発明の樹脂組成物を用いると、表面外観特性および蒸着適性に十分に優れた成形体を製造することができる。
 本発明の樹脂組成物を用いて製造された成形体は、熱エージング適性に十分に優れるため、当該成形体に蒸着層を形成して、より苛酷な高温雰囲気下にさらしても、蒸着層の光沢度および密着性の低下が十分に抑制される。
[樹脂組成物]
 本発明の樹脂組成物は、(A)ポリアリレート樹脂および(B)溶融重合ポリカーボネート樹脂を含む。
 ポリアリレート樹脂は、特に限定されず、あらゆるポリアリレートを用いることができる。ポリアリレート樹脂は、芳香族ジカルボン酸残基および二価フェノール残基を含み、詳しくは芳香族ジカルボン酸またはその誘導体と、二価フェノールまたはその誘導体とよりなる非晶性の芳香族ポリエステル重合体である。ポリアリレート樹脂は、溶液重合法、溶融重合法、界面重合法などの方法により製造できる。
 ポリアリレート樹脂を構成する芳香族ジカルボン酸残基を導入するための原料の好ましい例としては、テレフタル酸、イソフタル酸、フタル酸、クロルフタル酸、ニトロフタル酸、2,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、メチルテレフタル酸、4,4’-ビフェニルジカルボン酸、2,2’-ビフェニルジカルボン酸、4,4’-ジフェニルエーテルジカルボン酸、4,4’-ジフェニルメタンジカルボン酸、4,4’-ジフェニルスルフォンジカルボン酸、4,4’-ジフェニルイソプロピリデンジカルボン酸、1,2-ビス(4-カルボキシフェノキシ)エタン、5-ナトリウムスルホイソフタル酸、ジフェン酸ならびにそれらの誘導体などが挙げられる。芳香族ジカルボン酸の誘導体として、例えば、上記芳香族ジカルボン酸の炭素原子数1~3のアルキルのエステル化物および酸塩化物が挙げられる。これらの化合物は単独で使用してもよいし、あるいは2種類以上混合して使用してもよい。なかでも、テレフタル酸、イソフタル酸、ならびにそれらの誘導体が好ましく、耐熱性と流動性のバランスの点から、テレフタル酸またはその誘導体とイソフタル酸またはその誘導体の両者を混合して用いることが特に好ましい。その場合、混合モル比率(テレフタル酸/イソフタル酸)は100/0~0/100の範囲の任意であるが、好ましくは90/10~10/90、より好ましくは70/30~30/70、特に好ましくは55/45~45/55の範囲とすると、得られるポリアリレートは非晶質となり、耐熱性により優れたものとなる。
 ポリアリレート樹脂を構成する二価フェノール残基を導入するための原料の好ましい例としては、ビスフェノール類が挙げられる。ビスフェノール類の具体例として、例えばレゾルシノール、2,2-ビス(4-ヒドロキシフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジブロモフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジクロロフェニル)プロパン、4,4’-ジヒドロキシジフェニルスルホン、4,4’-ジヒドロキシジフェニルエーテル、4,4’-ジヒドロキシジフェニルスルフィド、4,4’-ジヒドロキシジフェニルケトン、4,4’-ジヒドロキシジフェニルメタン、1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン等が挙げられる。これらの化合物からなるポリアリレート樹脂は非晶性で耐熱性により優れたものとなりやすい。これらの化合物は単独で使用してもよいし、あるいは2種類以上混合して使用してもよい。これらの化合物の中で、2,2-ビス(4-ヒドロキシフェニル)プロパンを使用することが好ましく、最適にはこれを単独で使用する。
 ポリアリレート樹脂は、本発明の樹脂組成物の流動性ならびに当該樹脂組成物を成形して得られる成形体の耐熱性、離型性、耐加水分解性および機械的特性のさらなる向上の観点から、1,1,2,2-テトラクロロエタン100mlに試料1.0gを溶解した溶液の、温度25℃における対数粘度が0.40~0.75dL/gであることが好ましく、0.45~0.65であることがより好ましい。
 ポリアリレート樹脂は公知の方法により製造することもできるし、または市販品として入手することもできる。ポリアリレート樹脂の市販品として、例えば、U-パウダー Dタイプ(対数粘度0.72)、Lタイプ(対数粘度0.54)(いずれもユニチカ社製)等が挙げられる。
 溶融重合ポリカーボネート樹脂は、溶融重合反応、すなわち芳香族ジヒドロキシ化合物と炭酸ジエステルのエステル交換反応により得られるポリカーボネート樹脂を含む。従来の芳香族ジヒドロキシ化合物とホスゲンとを水酸化ナトリウム水溶液および塩化メチレン溶媒の存在下に反応させる界面重合法(ホスゲン法)により得られるポリカーボネート樹脂は、溶融重合ポリカーボネート樹脂から除外される。本発明においては、ポリカーボネートとして、界面重合ポリカーボネートではなく、溶融重合ポリカーボネートを用いることにより、樹脂組成物の耐熱性と流動性のバランスが高まり、金型汚れが抑制されるだけでなく、成形体の離型性、表面外観特性、蒸着適性および熱エージング適性が向上する。
 溶融重合ポリカーボネート樹脂を構成する芳香族ジヒドロキシ化合物は、一般式:HO-Ar-OHで示される化合物である。式中、Arは二価の芳香族残基であり、例えば、フェニレン基、ナフチレン基、ビフェニレン基、ピリジレン基、-Ar-Y-Ar-で表される2価の芳香族基である。ArおよびArは、各々独立にそれぞれ炭素原子数5~70を有する2価の炭素環式又は複素環式芳香族基を表し、Yは炭素原子数1~30特に1~5を有する2価のアルカン基(すなわちアルキレン基)を表す。好ましいArはフェニレン基である。好ましいArおよびArはフェニレン基である。好ましいYはイソプロピリデン基である。
 芳香族ジヒドロキシ化合物の具体例として、例えば、ビス(4-ヒドロキシフェニル)メタン、2,2-ビス(4-ヒドロキシフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン、1,1-ビス(4-ヒドロキシフェニル)-1-フェニルエタン、1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン、4,4’-〔1,3-フェニレンビス(1-メチルエチリデン)〕ビスフェノール、4,4’-〔1,4-フェニレンビス(1-メチルエチリデン)〕ビスフェノール、9,9-ビス(4-ヒドロキシフェニル)フルオレン、9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレンなどのビス(4-ヒドロキシアリール)アルカン)等が挙げられる。中でも2,2-ビス(4-ヒドロキシフェニル)プロパン[ビスフェノールA]が特に好ましい。
 本発明で用いられる芳香族ジヒドロキシ化合物は、単一種類でも2種類以上でもかまわない。芳香族ジヒドロキシ化合物の代表的な例としてはビスフェノールAが挙げられ、芳香族ジヒドロキシ化合物として85モル%以上の割合でビスフェノールAを使用することが好ましい。
 溶融重合ポリカーボネート樹脂を構成する炭酸ジエステルの代わりに、または炭酸ジエステルとともに、ホスゲンが使用されてもよい。
 炭酸ジエステルの代表的な例としては、一般式:R-Ar-O-CO-O-Ar-Rで示される置換または非置換のジアリールカーボネート類を挙げる事ができる。ArおよびArはそれぞれ独立して二価の芳香族残基であり、例えば、フェニレン基、ナフチレン基が挙げられる。RおよびRはそれぞれ独立して水素原子または炭素原子数1~10のアルキル基である。好ましいArおよびArはフェニレン基である。好ましいRおよびRはそれぞれ独立して水素原子または炭素原子数1~5のアルキル基である。より好ましいRおよびRは相互に同じ基である。
 ジアリールカーボネート類の中でも、非置換のジフェニルカーボネート、ジトリルカーボネート、ジ-t-ブチルフェニルカーボネートのような低級アルキル置換ジフェニルカーボネートなどの対称型ジアリールカーボネートが好ましい。特に最も簡単な構造のジアリールカーボネートであるジフェニルカーボネートが好適である。対称型ジアリールカーボネートとは、水素原子および炭素原子を省略した化学構造式で表したとき、線対称性を有する化学構造式で表し得るジアリールカーボネートのことである。
 炭酸ジエステルは単独で用いても良いし、2種以上を組み合わせて用いても良い。
 溶融重合ポリカーボネート樹脂は溶融重合反応に基づくエステル交換法により、得ることができる。エステル交換法とは、芳香族ジヒドロキシ化合物と炭酸ジエステルを、触媒の存在下または非存在下で、且つ減圧下および/または不活性ガスフロー下で、加熱しながら溶融状態でエステル交換反応にて重縮合する方法をいう。重合方法、装置等には制限はない。例えば、溶融エステル交換法の場合、攪拌槽型反応器、薄膜反応器、遠心式薄膜蒸発反応器、表面更新型二軸混練反応器、二軸横型攪拌反応器、濡れ壁式反応器、自由落下させながら重合する多孔板型反応器、ワイヤーに沿わせて落下させながら重合するワイヤー付き多孔板型反応器等を用い、これらを単独もしくは組み合わせることで、溶融重合ポリカーボネート樹脂を容易に製造できる。
 エステル交換の反応温度は、通常50~350℃の範囲であり、好ましくは100~300℃の温度範囲で選ばれる。反応圧力は、重合過程のポリカーボネートの分子量によっても異なり、数平均分子量が5000以下の範囲では、400Pa~常圧の範囲が一般に用いられ、数平均分子量が5000以上の範囲では10~400Paが用いられる。上記した反応器の中で特に、自由落下させながら重合する多孔板型反応器、および/またはワイヤーに沿わせて落下させながら重合するワイヤー付き多孔板型反応器を用いる方法が好ましく、その場合には270℃を越えない温度で重合するのが好ましい。
 芳香族ジヒドロキシ化合物と炭酸ジエステルとの使用割合(仕込比率)は、用いられる芳香族ジヒドロキシ化合物と炭酸ジエステルの種類や、目標とする分子量や水酸基末端比率、重合条件等によって異なるが、通常、炭酸ジエステルは芳香族ジヒドロキシ化合物1モルに対して、0.9~2.5モル、好ましくは0.95~1.5モル、より好ましくは1.00~1.2モルの割合で用いられる。
 溶融重合ポリカーボネート樹脂の製造に際し、所望の分子量を備えたポリカーボネートを得るために分岐剤を併用してもよい。本発明で使用できる分岐剤としての3官能以上の化合物は、フェノール性水酸基またはカルボキシル基を有する化合物が挙げられ、例えば、トリメリット酸、1,3,5-ベンゼントリカルボン酸、ピロメリット酸、1,1,1-トリス(4-ヒドロキシフェニル)エタン、フロログリシン、2,4,4’-トリヒドロキシベンゾフェノン、2,2’,4,4’-テトラヒドロキシベンゾフェノン、2,4,4’-トリヒドロキシジフェニルエーテル、2,2’,4,4’-テトラヒドロキシジフェニルエーテル、2,4,4’-トリヒドロキシジフェニル-2-プロパン、2,4,4’-トリヒドロキシジフェニルメタン、2,2’4,4‘-テトラヒドロキシジフェニルメタン、1-[α-メチル-α-(4’-ヒドロキシフェニル)エチル]-4-[α’,α’’-ビス (4’’-ヒドロキシフェニル)エチル]ベンゼン、α、α’,α’’-トリス(4-ヒドロキシフェニル)-1,3,5-トリイソプロピルベンゼン、2,6-ビス(2’-ヒドロキシ-5’-メチルベンジル)-4-メチルフェノール、4,6-ジメチル-2,4,6-トリス(4’-ヒドロキシフェニル)-ペプテン-2、4,6-ジメチル-2,4,6-トリス(4’-ヒドロキシフェニル)-ペプタン、1,3,5-トリス(4’-ヒドロキシフェニル)ベンゼン、2,2-ビス[4,4-ビス(4’-ヒドロキシフェニル)シクロヘキシル-プロパン、2,6-ビス(2’-ヒドロキシ-5’-イソプロピルベンジル)-4-イソプロピルフェノール、ビス[2-ヒドロキシ-3-(2’-ヒドロキシ-5’-メルベンジル)-5-メチルフェニル]メタン、ビス[2-ヒドロキシ-5’-イソプロプルベンジル]-5-メチルフェニル]メタン、テトラキス(4-ヒドロキシフェニル)メタン、トリス(4-ヒドロキシフェニル)フェニルメタン、2’,4’,7-トリヒドロキシフラボン、2,4,4-トリメチル-2’,4’,7-トリヒドロキシフラボン、1,3-ビス(2’,4’-ジヒドロキシフェニルイソプロピル)ベンゼン、トリス(4’-ヒドロキシアリール)-アミル-S-トリアジン、1-[α-メチル-α-(4’-ヒドロキシフェニル)エチル]-3-[α’、α’-ビス(4’’-ヒドロキシフェニル)エチル]ベンゼン等が挙げられる。
 溶融重合ポリカーボネート樹脂は、本発明の樹脂組成物の流動性ならびに当該樹脂組成物を成形して得られる成形体の耐熱性、離型性、耐加水分解性および機械的特性のさらなる向上の観点から、対数粘度が0.30~0.60dL/gであることが好ましく、0.30~0.50dL/gであることがより好ましい。
 溶融重合ポリカーボネート樹脂の対数粘度は、溶融重合ポリカーボネート樹脂を用いること以外、ポリアリレート樹脂の対数粘度と同様の方法により測定された値を用いている。
 溶融重合ポリカーボネート樹脂の対数粘度は通常、ポリアリレート樹脂の対数粘度よりも低い。ポリアリレート樹脂の対数粘度から溶融重合ポリカーボネート樹脂の対数粘度を減じて得られる対数粘度差は、樹脂組成物の流動性と当該樹脂組成物から得られる成形体の耐熱性とのバランスの観点から、好ましくは0.05~0.25dL/g、より好ましくは0.10~0.20dL/gである。
 溶融重合ポリカーボネート樹脂は市販品として入手することもできる。溶融重合ポリカーボネート樹脂の市販品として、例えば、WONDERLITE PC-108U、PC-110、PC-115、PC-122、PC-175(奇美実業社製)、Infino SC-1060U、SC-1100R、SC-1100UR、SC-1220R、SC-1220UR、SC-1280UR(LOTTE Advanced Materials社製)、HOPELEX  PC-1600(LOTTE Chemical社製)、LEXAN  172L(SABIC社製)等が挙げられる。
 本発明の樹脂組成物において、ポリアリレート樹脂(A)と溶融重合ポリカーボネート樹脂(B)との混合比率は、(A)/(B)で、2/98~98/2(質量比)である必要があり、樹脂組成物の流動性、当該樹脂組成物を成形して得られる成形体の耐熱性、離型性、耐加水分解性、表面外観特性、蒸着適性および熱エージング適性、ならびに金型成形面の耐曇り性のさらなる向上の観点から、10/90~65/35(質量比)であることが好ましく、25/75~45/55(質量比)であることがより好ましく、25/75~35/65(質量比)であることがさらに好ましい。特に離型性を重視する場合、樹脂組成物は、ポリアリレート樹脂(A)を、ポリアリレート樹脂(A)と溶融重合ポリカーボネート樹脂(B)との合計量に対して、好ましくは2~65質量%、より好ましくは2~45質量%、さらに好ましくは2~35質量%で含有する。
 本発明の樹脂組成物はさらに、特定のホスファイト化合物(C)および特定の脂肪酸エステル(D)を含む。本発明の樹脂組成物は、ポリアリレート樹脂(A)および溶融重合ポリカーボネート樹脂(B)の系において、特定のホスファイト化合物(C)および特定の脂肪酸エステル(D)を組み合わせて含有させることにより、耐加水分解性および離型性に十分に優れた成形体を製造することができ、かつ、耐熱性と流動性とのバランスに優れている樹脂組成物を得ることができる。しかも、本発明の樹脂組成物は、金型汚れを十分に抑制しながら、表面外観特性、蒸着適性および熱エージング適性にも十分に優れた成形体を製造することもできる。特定のホスファイト化合物(C)または特定の脂肪酸エステル(D)の一方のみを用いる場合、特定のホスファイト化合物(C)と他の離型剤とを組み合わせて用いる場合、および他の熱安定剤と特定の脂肪酸エステル(D)とを組み合わせて用いる場合、高温成形時において分子量の低下により成形が困難になることがある。仮に成形できたとしても、得られる成形体の離型性および耐加水分解性の両立が困難となり、これらの特性のうち少なくとも一方が低下する。しかも、これらの場合、耐加水分解性、金型汚れに関する耐曇り性、ならびに成形体の表面外観特性、蒸着適性および熱エージング適性が低下することがある。
 特定のホスファイト化合物(C)は、下記一般式(I)および(II)で表されるホスファイト化合物からなる群から選択される1種以上の化合物である。以下、一般式(I)で表されるホスファイト化合物および一般式(II)で表されるホスファイト化合物を、この順序で詳しく説明する。
Figure JPOXMLDOC01-appb-C000009
 式(I)中、R11およびR12は、それぞれ独立して、炭素原子数6~40のアリール基または炭素原子数1~40のアルキル基を表す。R11およびR12は、好ましくは、相互に同じ基を表す。
 式(I)において、R11および/またはR12としてのアリール基の炭素原子数は、樹脂組成物の流動性、当該樹脂組成物を成形して得られる成形体の耐熱性、離型性、耐加水分解性、表面外観特性、蒸着適性および熱エージング適性、ならびに金型成形面の耐曇り性のさらなる向上の観点から、好ましくは6~22、より好ましくは6~14、さらに好ましくは6または10である。当該アリール基の炭素原子数は、アリール基が有していてもよい後述の置換基の炭素原子数は含まない。アリール基の具体例として、例えば、フェニル基、ナフチル基、アントリル基等が挙げられる。このようなアリール基は、置換基として1価の炭化水素基を有していてもよい。アリール基が有していてもよい置換基としての1価の炭化水素基は、1価飽和炭化水素基(例えば、アルキル基)であってもよいし、または1価不飽和炭化水素基(例えば、アリールアルキル基)であってもよく、樹脂組成物の流動性、当該樹脂組成物を成形して得られる成形体の耐熱性、離型性、耐加水分解性、表面外観特性、蒸着適性および熱エージング適性、ならびに金型成形面の耐曇り性のさらなる向上の観点から、好ましくは1価飽和炭化水素基(例えば、アルキル基)である。アリール基が複数の置換基を有する場合、当該複数の置換基はそれぞれ独立して選択されてよい。アリール基が有していてもよい置換基としての1価の炭化水素基の炭素原子数は、特に限定されず、樹脂組成物の流動性、当該樹脂組成物を成形して得られる成形体の耐熱性、離型性、耐加水分解性、表面外観特性、蒸着適性および熱エージング適性、ならびに金型成形面の耐曇り性のさらなる向上の観点から、好ましくは1~20、より好ましくは1~12、さらに好ましくは1~10である。例えば、アリール基が有していてもよい置換基としての1価飽和炭化水素基(例えば、アルキル基)の炭素原子数は、同様の観点から、好ましくは1~10、より好ましくは1~5、さらに好ましくは1~4である。また例えば、アリール基が有していてもよい置換基としての1価不飽和炭化水素基(例えば、アリールアルキル基)の炭素原子数は、同様の観点から、好ましくは7~20、より好ましくは7~12、さらに好ましくは7~10である。アリール基が有していてもよい置換基としてのアルキル基の具体例として、例えば、メチル基、エチル基、n-プロピル、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基等が挙げられる。アリール基が有していてもよい置換基としてのアリールアルキル基の具体例として、例えば、ベンジル基、2-フェニルエチル基、クミル基等が挙げられる。
 式(I)において、R11および/またはR12としてのアルキル基の炭素原子数は、樹脂組成物の流動性、当該樹脂組成物を成形して得られる成形体の耐熱性、離型性、耐加水分解性、表面外観特性、蒸着適性および熱エージング適性、ならびに金型成形面の耐曇り性のさらなる向上の観点から、好ましくは10~30、より好ましくは10~26、さらに好ましくは14~22である。このようなアルキル基は直鎖状であってもよいし、または分枝鎖状であってもよく、好ましくは直鎖状である。R11および/またはR12としてのアルキル基の具体例として、例えば、デシル基、ウンデシル基、ラウリル基、トリデシル基、ミリスチル基、ペンタデシル基、セチル基、ヘプタデシル基、ステアリル基、ノナデシル基、エイコシル基等が挙げられる。
 式(I)で表されるホスファイト化合物として、例えば、下記一般式(i-1)~(i-2)で表されるホスファイト化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000010
 式(i-1)中、R21~R30は、それぞれ独立して、水素原子または式(I)におけるアリール基の置換基としての1価の炭化水素基と同様の基(例えば、炭素原子数1~10の1価飽和炭化水素基(特にアルキル基)および/または炭素原子7~20の1価不飽和炭化水素基(例えば、アリールアルキル基))を表す。R21~R30は、樹脂組成物の流動性、当該樹脂組成物を成形して得られる成形体の耐熱性、離型性、耐加水分解性、表面外観特性、蒸着適性および熱エージング適性、ならびに金型成形面の耐曇り性のさらなる向上の観点から、それぞれ独立して、水素原子または炭素原子数1~5、特に1~3のアルキル基であることが好ましい。
 式(i-1)においては、樹脂組成物の流動性、当該樹脂組成物を成形して得られる成形体の耐熱性、離型性、耐加水分解性、表面外観特性、蒸着適性および熱エージング適性、ならびに金型成形面の耐曇り性のさらなる向上の観点から、好ましいR21~R30は以下の通りである:
 R21~R30のうち、R21、R23、R28およびR30は、それぞれ独立して、炭素原子数1~5、特に1~4のアルキル基または炭素原子数7~12、特に7~10のアリールアルキル基であり、R25およびR26は、それぞれ独立して、水素原子、炭素原子数1~5、特に1~4のアルキル基または炭素原子数7~12、特に7~10のアリールアルキル基であり、残りの基は水素原子である;
 R21~R30のうち、R21、R23、R25、R26、R28およびR30は、それぞれ独立して、炭素原子数1~5、特に1~4のアルキル基または炭素原子数7~12、特に7~10のアリールアルキル基であり、残りの基は水素原子である;または
 R21~R30のうち、R22、R24、R27およびR29は、それぞれ独立して、炭素原子数1~5、特に1~4のアルキル基であり、残りの基は水素原子である。
 式(i-1)で表されるホスファイト化合物の具体例として、例えば、以下の化合物が挙げられる:
 ビス(2,4-ジ-tert-ブチルフェニル)ペンタエリスリトールジホスファイト;
 ビス(2,6-ジ-tert-ブチル-4-メチルフェニル)ペンタエリスリトールジホスファイト;
 ビス(2,4-ジメチル-6-tert-ブチルフェニル)ペンタエリスリトールジホスファイト;
 ビス(2,4,6-トリ-tert-ブチルフェニル)ペンタエリスリトールジホスファイト;
 ビス(2-メチル-4,6-ジ-tert-ブチルフェニル)ペンタエリスリトールジホスファイト;
 ビス(3,5-ジ-tert-ブチルフェニル)ペンタエリスリトールジホスファイト;
 ビス(ノニルフェニル)ペンタエリスリトールジホスファイト;
 ビス(2,4-ジクミルフェニル)ペンタエリスリトールジホスファイト。
 式(i-1)で表されるホスファイト化合物は市販品として入手可能である。例えば、具体的な商品名として、例えば、ADEKA社製「アデカスタブPEP-36」(ビス(2,6-ジ-tert-ブチル-4-メチルフェニル)ペンタエリスリトールジホスファイト)および「アデカスタブPEP-4C」(ビス(ノニルフェニル)ペンタエリスリトールジホスファイト)、ならびにDoverchemical社製「Doverphos  S-9228」(ビス(2,4-ジクミルフェニル)ペンタエリスリトールジホスファイト)等が挙げられる。
Figure JPOXMLDOC01-appb-C000011
 式(i-2)中、R31およびR32は、それぞれ独立して、式(I)におけるR11および/またはR12としてのアルキル基と同様の基(例えば、炭素原子数10~30のアルキル基)を表す。R31~R32は、樹脂組成物の流動性、当該樹脂組成物を成形して得られる成形体の耐熱性、離型性、耐加水分解性、表面外観特性、蒸着適性および熱エージング適性、ならびに金型成形面の耐曇り性のさらなる向上の観点から、相互に同じ基であることが好ましい。
 式(i-2)においては、樹脂組成物の流動性、当該樹脂組成物を成形して得られる成形体の耐熱性、離型性、耐加水分解性、表面外観特性、蒸着適性および熱エージング適性、ならびに金型成形面の耐曇り性のさらなる向上の観点から、好ましいR31およびR32は以下の通りである:
 R31およびR32は、それぞれ独立して、炭素原子数10~26、特に14~22の直鎖状アルキル基である。
 式(i-2)で表されるホスファイト化合物の具体例として、例えば、以下の化合物が挙げられる:
 ジステアリルペンタエリスリトールジホスファイト。
 式(i-2)で表されるホスファイト化合物は市販品として入手可能である。例えば、具体的な商品名として、例えば、ADEKA社製「アデカスタブPEP-8」(ジステアリルペンタエリスリトールジホスファイト)等が挙げられる。
Figure JPOXMLDOC01-appb-C000012
 式(II)中、R41~R45は、それぞれ独立して、水素原子または炭素原子数1~10の炭化水素基である。
 式(II)において、R41~R45としての炭化水素基の炭素原子数は、樹脂組成物の流動性、当該樹脂組成物を成形して得られる成形体の耐熱性、離型性、耐加水分解性、表面外観特性、蒸着適性および熱エージング適性、ならびに金型成形面の耐曇り性のさらなる向上の観点から、好ましくは1~5、より好ましくは1~4である。炭化水素基は1価の炭化水素基であり、1価飽和炭化水素基であってもよいし、または1価不飽和炭化水素基であってもよく、樹脂組成物の流動性、当該樹脂組成物を成形して得られる成形体の耐熱性、離型性、耐加水分解性、表面外観特性、蒸着適性および熱エージング適性、ならびに金型成形面の耐曇り性のさらなる向上の観点から、好ましくは1価飽和炭化水素基(例えば、アルキル基)である。R41~R45としての炭化水素基の具体例として、例えば、メチル基、エチル基、n-プロピル、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基等のアルキル基が挙げられる。このようなアルキル基は直鎖状であってもよいし、または分枝鎖状であってもよく、好ましくは直鎖状である。
 式(II)においては、樹脂組成物の流動性、当該樹脂組成物を成形して得られる成形体の耐熱性、離型性、耐加水分解性、表面外観特性、蒸着適性および熱エージング適性、ならびに金型成形面の耐曇り性のさらなる向上の観点から、好ましいR41~R45は以下の通りである:
 R41~R45のうち、R41およびR43は、それぞれ独立して、炭素原子数1~5、特に1~4のアルキル基であり、R45は水素原子または炭素原子数1~5、特に1~4のアルキル基であり、残りの基は水素原子である。
 式(II)で表されるホスファイト化合物の具体例として、例えば、以下の化合物が挙げられる:
 トリス(2,4-ジ-tert-ブチルフェニル)ホスファイト;
 トリス(2,4,6-トリ-tert-ブチルフェニル)ホスファイト;
 トリス(4-メチル-2,6-ジ-tert-ブチルフェニル)ホスファイト;
 トリフェニルホスファイト;
 トリノニルフェニルホスファイト。
 式(II)で表されるホスファイト化合物は市販品として入手可能である。例えば、具体的な商品名として、例えば、ADEKA社製「アデカスタブ1178」、住友化学社製「スミライザーTNP」、城北化学工業社製「JP-351」、ADEKA社製「アデカスタブ2112」、BASF社製「イルガフォス168」、城北化学工業社製「JP-650」等が挙げられる。
 ホスファイト化合物(C)の中でも、樹脂組成物の流動性、当該樹脂組成物を成形して得られる成形体の耐熱性、離型性、耐加水分解性、表面外観特性、蒸着適性および熱エージング適性、ならびに金型成形面の耐曇り性のさらなる向上の観点から、上記一般式(i-1)、(i-2)および(II)で表されるホスファイト化合物からなる群から選択される1種以上の化合物が好ましく、より好ましくは上記一般式(i-1)および(II)で表されるホスファイト化合物からなる群から選択される1種以上の化合物であり、最も好ましくは上記一般式(i-1)で表されるホスファイト化合物からなる群から選択される1種以上の化合物である。
 ホスファイト化合物(C)の含有量は、特に限定されず、樹脂組成物の流動性、当該樹脂組成物を成形して得られる成形体の耐熱性、離型性、耐加水分解性、表面外観特性、蒸着適性および熱エージング適性、ならびに金型成形面の耐曇り性のさらなる向上の観点から、ポリアリレート樹脂(A)と溶融重合ポリカーボネート樹脂(B)との合計量100質量部に対し、0.01~0.2質量部であることが好ましく、0.01~0.12質量部であることがより好ましく、0.01~0.08質量部であることがさらに好ましく、0.02~0.06質量部であることが最も好ましい。2種以上のホスファイト化合物(C)を含有する場合、それらの合計量が上記範囲内であればよい。
 特定の脂肪酸エステル(D)は、下記一般式(III)で表される、脂肪族モノアルコールの脂肪酸エステルである。
Figure JPOXMLDOC01-appb-C000013
 式(III)中、R51は炭素原子数15~25のアルキル基である。R51は、脂肪族モノアルコール脂肪酸エステルを構成する脂肪酸由来のアルキル基であり、直鎖状であっても、または分岐鎖状であってもよい。R51を提供する脂肪酸(すなわち、脂肪族モノアルコール脂肪酸エステルを構成する脂肪酸(R51-COOH))として、例えば、パルミチン酸(R51=C15アルキル基)、ステアリン酸(R51=C17アルキル基)、アラキン酸(R51=C19アルキル基))、ベヘン酸(R51=C21アルキル基)、リグノセリン酸(R51=C23アルキル基)、セロチン酸(R51=C25アルキル基)等の飽和脂肪酸が挙げられる。R51は、樹脂組成物の流動性、当該樹脂組成物を成形して得られる成形体の耐熱性、離型性、耐加水分解性、表面外観特性、蒸着適性および熱エージング適性、ならびに金型成形面の耐曇り性のさらなる向上の観点から、炭素原子数が好ましくは15~23、より好ましくは15~21、さらに好ましくは15~19のアルキル基である。
 R52は炭素原子数30以下(特に8~30)のアルキル基である。R52は、脂肪族モノアルコール脂肪酸エステルを構成する脂肪族モノアルコール由来のアルキル基であり、直鎖状であっても、または分岐鎖状であってもよい。R52を提供する脂肪族モノアルコール(すなわち、脂肪族モノアルコール脂肪酸エステルを構成する脂肪族モノアルコール(R52-OH))として、例えば、オクタノール(R52=C8アルキル基)、デカノール(R52=C10アルキル基)、ドデカノール(R52=C12アルキル基)、テトラデカノール(R52=C14アルキル基)、セチルアルコール(R52=C16アルキル基)、ステアリルアルコール(R52=C18アルキル基)、エイコシルアルコール(R52=C20アルキル基)、ベヘニルアルコール(R52=C22アルキル基)、セリルアルコール(R52=C26アルキル基)、メリシルアルコール(R52=C30アルキル基)等の飽和脂肪族モノアルコールが挙げられる。R52は、樹脂組成物の流動性、当該樹脂組成物を成形して得られる成形体の耐熱性、離型性、耐加水分解性、表面外観特性、蒸着適性および熱エージング適性、ならびに金型成形面の耐曇り性のさらなる向上の観点から、炭素原子数が好ましくは12~28、より好ましくは14~26、さらに好ましくは16~24のアルキル基、最も好ましくは16~20のアルキル基である。
 脂肪酸エステル(D)の具体例として、例えば、ベヘニルベヘネート、ベへニルステアレート、ステアリルステアレート、ステアリルベヘネート等が挙げられる。これら脂肪族モノアルコール脂肪酸エステルの中でも、樹脂組成物の流動性、当該樹脂組成物を成形して得られる成形体の耐熱性、離型性、耐加水分解性、表面外観特性、蒸着適性および熱エージング適性、ならびに金型成形面の耐曇り性のさらなる向上の観点から、好ましくはベへニルステアレート、ステアリルステアレートからなる群から選択される1種以上の脂肪酸エステルであり、より好ましくはステアリルステアレートである。
 脂肪酸エステル(D)は市販品として入手することができる。そのような市販品の具体例としては、ステアリルステアレート(エメリーオレオケミカルズ社製「G32」)、ベヘニルステアレート(エメリーオレオケミカル社製「G47」)が挙げられる。
 脂肪酸エステル(D)の代わりに、所定炭素原子数の脂肪族ジアルコールと所定炭素原子数の脂肪酸とのエステル、所定炭素原子数の脂肪族トリアルコールと所定炭素原子数の脂肪酸とのエステル、炭素原子数が多すぎる脂肪族モノアルコールと所定炭素原子数の脂肪酸とのエステル、所定炭素原子数の脂肪族モノアルコールと炭素原子数が少なすぎる脂肪酸とのエステル、所定炭素原子数の脂肪族モノアルコールと炭素原子数が多すぎる脂肪酸とのエステル等の他の脂肪酸エステルを用いても、成形体の離型性および耐加水分解性の両立が困難となり、これらの特性のうち少なくとも一方が低下する。また、樹脂組成物として所定対数粘度のものが得られたとしても、高温成形時(例えば樹脂温度が350℃の場合)、急激に分子量低下し、もはや成形体を得ることが困難となる場合がある。
 脂肪酸エステル(D)の含有量は、特に限定されず、樹脂組成物の流動性、当該樹脂組成物を成形して得られる成形体の耐熱性、離型性、耐加水分解性、表面外観特性、蒸着適性および熱エージング適性、ならびに金型成形面の耐曇り性のさらなる向上の観点から、ポリアリレート樹脂(A)と溶融重合ポリカーボネート樹脂との合計量100質量部に対し、0.01~0.6質量部であることが好ましく、0.01~0.5質量部であることがより好ましく、0.01~0.4質量部であることがさらに好ましく、0.05~0.4質量部であることが特に好ましく、0.1~0.3質量部であることが最も好ましい。2種以上の脂肪酸エステル(D)を含有する場合、それらの合計量が上記範囲内であればよい。
 本発明の樹脂組成物は、一般式(III)で表される脂肪族モノアルコールの脂肪酸エステル(D)以外の脂肪酸エステル、着色剤、アルミニウム粉やパール顔料等の光輝材等の添加剤をさらに含んでもよい。
 本発明の樹脂組成物が着色剤を含有することにより、様々な色調の成形体を得ることができる。着色剤としては、例えば、各種および各色の顔料および染料が挙げられる。金型成形面の耐曇り性ならびに成形体の表面外観特性、蒸着適性および熱エージング適性のさらなる向上の観点から、着色剤は顔料が好ましい。
 成形体の用途に応じて着色剤の選択が可能である。例えば、成形体を自動車部品のランプリフレクターまたはエクステンションリフレクター等の光反射体のための基体として用いる場合は、成形体は黒色または灰色を有することが好ましい。
 成形体が黒色を有する場合、本発明の樹脂組成物は黒色顔料を好適に含む。
 成形体が灰色を有する場合、本発明の樹脂組成物は黒色顔料と白色顔料とを組み合わせて好適に含む。
 黒色顔料は黒色を有する無機系顔料であり、例えば、カーボンブラック、アセチレンブラック、ランプブラック、ボーンブラック、黒鉛、鉄黒、アニリンブラック、シアニンブラック、チタンブラック等が挙げられる。黒色顔料は単独また2種以上を組み合わせて用いることができる。
 白色顔料は白色を有する無機系顔料であり、例えば、酸化チタン、酸化亜鉛、硫化亜鉛、硫酸亜鉛、硫酸バリウム、炭酸カルシウム、酸化アルミナ等が挙げられる。白色顔料は単独また2種以上を組み合わせて用いることができる。
 成形体(特に光反射体用基体)を黒色または灰色に着色する場合、黒色顔料の代わりに、または黒色顔料と組み合わせて、黒色染料を用いることもできる。黒色染料は、黒色を有する有機系化合物である。黒色染料としては、例えばキノリン系化合物、アントラキノン系化合物、ペリノン系化合物等の染料を挙げることができる。これらは何れも耐熱性が高く、単独また2種以上を組み合わせて用いることができる。黒色染料の市販品としては、例えば、ソルベントブラック3、5、7、22、27、29若しくは34、モーダントブラック1、11若しくは17、アシッドブラック2若しくは52、又は、ダイレクトブラック19若しくは154などが挙げられる(数値は何れもカラーインデックス(C.I.)ナンバーである)。上記以外に、黒色のアジン系縮合混合物(染料)として、“NUBIAN”(登録商標)BLACK  PC-8550、同PC-0850、黒色の中性染料混合物として、同PC-5856、同PC-5857、同PC-5877(以上、何れもオリエント化学工業(株)製)等が挙げられる。
 顔料(特に黒色顔料)と染料(特に黒色染料)とは組み合わせて用いることもできるが、各々の効果を高めるため、それぞれ単独で用いることが好ましい。顔料または染料で着色された成形体は、いずれもアルミ蒸着を行うことができるが、顔料(特に黒色顔料)を含有させた成形体は、アルミ蒸着を行うための光反射体用基体に適する。一方、染料(特に黒色染料)を含有させた成形体は、アルミ蒸着レスで用いることが好ましい。
 着色剤の含有量は、ポリアリレート樹脂(A)と溶融重合ポリカーボネート樹脂(B)との合計量100質量部に対し、好ましくは0.01~2質量部、より好ましくは0.02~1質量部、さらに好ましくは0.03~0.5質量部である。着色剤が2種以上含有される場合、それらの合計量が上記範囲内であればよい。着色剤(特に黒色顔料および黒色染料)を前記範囲の含有量で用いることで、成形体が可視光線を吸収し、黒色が映える(ピアノブラック)。
 着色剤として、特に前記のような黒色の染料(特に、中性染料混合物)を単独で用いた場合、成形体は赤外線を透過させることができるため、成形体または成形体を組み込んだ製品の熱による変形等の問題を抑制できる。特に、本発明の樹脂組成物は着色剤として黒色染料(特に、中性染料混合物)を単独で含むことにより、上記した本発明の効果を奏するとともに、優れた可視光線不透過性および赤外線透過性を有することができる。可視光線不透過性とは、可視光線が透過しない特性のことである。赤外線透過性とは、赤外線が透過する特性のことである。本発明の樹脂組成物がこのような可視光線不透過性および赤外線透過性に優れることにより、得られる成形体は視覚遮蔽性を有しつつ、赤外線を透過させることができる。視覚遮蔽性とは、当該成形体の向こう側にある物体を、当該成形体を通して目視認識できない特性のことである。例えば、成形体が赤外線センサーを覆うとき、成形体は外部の視線から赤外線センサーを隠しつつ、赤外線センサー由来の赤外線を透過させることができる。このため、着色剤として黒色染料(特に、中性染料混合物)を単独で含む本発明の樹脂組成物は、車載向けLiDAR技術で採用される赤外線センサーの周辺部品(成形体)の製造に有用である。LiDAR技術は「Light Detection and Ranging」技術であり、レーザー光(特に赤外線)を走査しながら対象物に照射してその散乱や反射光を観測することで、対象物までの距離を計測したり対象物の性質を特定したりする、光センサー技術のことである。例えば、車載ランプに、LiDAR技術用の赤外線センサーを内蔵するような一体構造において、赤外線センサーの周辺部品(例えば車載ランプの反射体用基体)に可視光線不透過性と赤外線透過性が求められることがある。着色剤として黒色染料(特に、中性染料混合物)を単独で含む本発明の樹脂組成物は、そのような赤外線センサーの周辺部品(例えば反射体用基体)の製造に好適に使用できる。
 本発明の樹脂組成物が着色剤として黒色染料(特に、中性染料混合物)を単独で含み、かつ赤外線センサーの周辺部品(成形体)の製造に使用される場合、当該着色剤の含有量は、可視光線不透過性と赤外線透過性のさらなる向上の観点から、上記した範囲内であることが好ましく、ポリアリレート樹脂(A)と溶融重合ポリカーボネート樹脂(B)との合計量100質量部に対して、より好ましくは0.05~0.5質量部であり、さらに好ましくは0.06~0.3質量部である。このような場合、本発明の樹脂組成物において、ポリアリレート樹脂(A)と溶融重合ポリカーボネート樹脂(B)との混合比率((A)/(B))は、可視光線不透過性と赤外線透過性のさらなる向上の観点から、上記した範囲内であることが好ましく、より好ましくは25/75~45/55(質量比)であり、さらに好ましくは25/75~35/65(質量比)である。
 本発明の樹脂組成物は、ポリアリレート樹脂(A)、溶融重合ポリカーボネート樹脂(B)、ホスファイト化合物(C)および脂肪酸エステル(D)ならびに所望の添加剤を溶融混練して得ることができ、通常はペレットの形態を有している。
 本発明の樹脂組成物のビカット軟化点は通常、140℃以上であり、145℃以上であることが好ましく、150℃以上であることがより好ましく、耐熱性のさらなる向上の観点から、155℃以上であることが好ましく、160℃以上であることがより好ましく、170℃以上であることがさらに好ましく、175℃以上であることが最も好ましい。本発明の樹脂組成物を例えば、光反射用基体(特にリフレクター)等の用途で用いた場合、実用的な耐熱性の指標として、ビカット軟化点が140℃以上であることは特に重要である。リフレクターは、車載用のランプ部品として、長期にわたってランプ点灯時の熱に対する耐久性を有さなくてはならず、成形体が熱によって歪んだり、かつ/または劣化したりすることは許容されない。例えば成形体が歪むことは、光軸がずれたりする懸念が高まり、車載用ランプの機能を十分果たすことができないため、好ましくない。
 本発明の樹脂組成物は、当該樹脂組成物の流動性および当該樹脂組成物を成形して得られる成形体の耐熱性および機械的特性のさらなる向上の観点から、対数粘度が0.35~0.65dL/gであることが好ましく、0.38~0.55dL/gであることがより好ましく、0.40~0.485dL/gであることがより好ましく、0.425~0.455dL/gであることがより好ましく、0.425~0.435dL/gであることがより好ましい。樹脂組成物の対数粘度は、樹脂組成物を用いること以外、ポリアリレート樹脂の対数粘度と同様の方法により測定された値を用いている。
 本発明における樹脂組成物において、単官能フェノール化合物の含有量は、樹脂組成物の流動性、当該樹脂組成物を成形して得られる成形体の耐熱性、金型成形面の耐曇り性ならびに成形体の表面外観特性、蒸着適性および熱エージング適性のさらなる向上の観点から、好ましくは10000ppm以下(通常は100~10000ppm)であり、より好ましくは500~9000ppm、さらに好ましくは1100~5000ppm、特に好ましくは1100~2500ppm、最も好ましくは1100~1500ppmである。
 単官能フェノール化合物の具体例としては、例えばフェノール、イソプロピルフェノール、p-tert-ブチルフェノール、p-クレゾール、p-クミルフェノール、2-フェニルフェノール、4-フェニルフェノール、およびイソオクチルフェノールなどが挙げられる。
 単官能フェノール化合物の含有量は、熱分解/ガスクロマトグラフィー質量分析法によって測定された値を用いている。本発明において、単官能フェノール化合物の含有量は、特にフェノール、p-tert-ブチルフェノールおよびp-クミルフェノールの総含有量を用いている。
 単官能フェノール化合物の含有量を制御する方法として、樹脂組成物の構成成分として溶融重合ポリカーボネート樹脂を用いることが必要である。溶融重合法は分子量制御が容易なために、溶融重合ポリカーボネート樹脂は末端封鎖剤としての単官能フェノール化合物の含有量が低減されているためである。他方、界面重合法は分子量制御が困難なため、界面重合ポリカーボネート樹脂は通常、末端封鎖剤として単官能フェノール化合物を比較的多量で含む。本発明の樹脂組成物において、溶融重合ポリカーボネート樹脂の代わりに、界面重合ポリカーボネート樹脂を用いた場合、当該樹脂組成物の単官能フェノール化合物の含有量は通常、10000ppm超である。
 本発明の樹脂組成物は、金型成形面の耐曇り性ならびに成形体の表面外観特性、離型性、耐加水分解性、蒸着適性および熱エージング適性のさらなる向上の観点から、不要な添加剤は極力用いるべきでない。不必要な添加剤は、それ自身の分解によるガス発生を引き起こす要因となるため、添加を極力抑制すべきである。しかしながら、本発明の樹脂組成物は、耐熱性を有するため、加工温度300℃以上の高温で溶融混練および/または射出成形して樹脂組成物や成形体とする。従って、そのような高温下で加工が行われる状況下、樹脂組成物の劣化や分解を抑制する必要がある。さらには、樹脂組成物の劣化や分解は、耐加水分解性の低下もまねく。樹脂組成物の劣化や分解、耐加水分解性の低下は、機械特性を低下させ成形体のシャルピー衝撃強度等が低下する懸念が高まる。よって、本発明の樹脂組成物は、金型成形面の耐曇り性ならびに成形体の表面外観特性、離型性、耐加水分解性、蒸着適性および熱エージング適性向上の観点から、ホスファイト化合物(C)と脂肪酸エステル(D)を含有する必要がある。
 本発明の樹脂組成物においては、(A)ポリアリレート樹脂と(B)溶融重合ポリカーボネート樹脂との混合比率(質量比)が10/90~65/35の範囲としたときに、(C)ホスファイト化合物として、上記一般式(i-1)および上記一般式(II)で表されるホスファイト化合物からなる群から選択される1種以上の化合物を用いることにより、流動性、離型性、耐加水分解性をさらに向上させることができる。
 また、(A)/(B)(質量比)を25/75~45/55の範囲とし、(C)ホスファイト化合物として上記一般式(i-1)で表されるホスファイト化合物からなる群から選択される1種以上の化合物の添加量を(A)と(B)との合計量100質量部に対し0.01~0.08質量部とすることにより、流動性、離型性、耐加水分解性をより一層向上させることができる。この場合において、さらに、(A)/(B)(質量比)を25/75~35/65の範囲とし、(D)脂肪族モノアルコール脂肪酸エステルとして、上記式(III)中、R52は炭素原子数16~20のアルキル基である化合物を(A)と(B)との合計量100質量部に対し0.05~0.4質量部の添加量で用いることにより、離型性が最も向上する。
[用途]
 本発明の樹脂組成物を用いて、射出成形法、押出成形法、ブロー成形法、圧縮成形法、発泡成形法等のあらゆる成形法により、成形体を製造することができる。本発明の樹脂組成物を用いて射出成形法により製造された成形体は、射出成形法に特有のウェルドラインおよびその周辺において曇りに関する表面外観特性に優れるため、射出成形法により製造されることが好ましい。
 本発明の樹脂組成物は光反射体用基体の製造に有用である。本発明の樹脂組成物を用いて製造された成形体(特に光反射体用基体)に金属層を形成して得られる光反射体は、ウェルドラインおよびその周辺における金属層表面の曇りに関する蒸着適性ならびに熱エージング適性に優れるためである。
 光反射体用基体は、金属層を支持するための支持体であって、金属層の形成によって光反射体を構成する。光反射体は、車載用ランプ、家電照明等のあらゆる光源のための反射体であってよい。本発明の樹脂組成物を用いて製造された成形体は、車載用ランプの光反射体用基体として特に有用である。本発明の樹脂組成物は、金型汚れを十分に抑制しながらも、表面外観特性、蒸着適性および熱エージング適性に優れた成形体を製造することができ、かつ耐熱性と流動性のバランスに優れるところ、車載用ランプの光反射体用基体は、当該特性(特に耐熱性、表面外観特性、蒸着適性および熱エージング適性等)の要求性能が、他の用途の基体よりも高いためである。本発明の樹脂組成物を用いて製造された成形体(特に光反射体用基体)は、離型性および耐加水分解性に優れていることも、本発明の樹脂組成物が車載用ランプの光反射体用基体の製造に特に有用であることの理由の1つである。詳しくは、車載用ランプの光反射体用基体は大量生産されるため、光反射体用基体は離型性に優れていることが要求されている。また車載用ランプの光反射体用基体は、
比較的高温環境下に置かれることが多く、しかも降雨時には高温高湿環境下に置かれることになるため、光反射体用基体は耐加水分解性に優れていることも要求されている。車載用ランプの光反射体としては、例えば、ランプリフレクター、およびエクステンションリフレクター等が挙げられる。
 特に耐加水分解性については、本発明の樹脂組成物を含む成形体は、高温高湿環境試験後の対数粘度保持率が通常、56%であり、好ましくは60%以上であり、より好ましくは64%以上である。高温高湿環境試験とは、成形体を、温度130℃、相対湿度75%RH、圧力0.2MPaの条件で、75時間保持する試験のことである。高温高湿環境試験後の対数粘度保持率は、高温高湿環境試験前の対数粘度に対する割合である。
 光反射体用基体への金属層の形成方法は特に限定されず、例えば、真空蒸着等の手段を用いてアルミニウム等の金属層を形成することができる。金属層を形成する場合、光反射体用基体に対して直接的に金属層を形成する方法(ダイレクト蒸着法)、一旦、光反射体用基体表面にプライマー塗布を行い、その上に蒸着層を形成する方法等、任意で選択することができる。本発明の樹脂組成物を用いて得られた成形体は、平滑性、表面外観が向上したものであるため、ダイレクト蒸着法を好ましく採用することができる。本発明の樹脂組成物を用いて得られた成形体に形成された蒸着層は、光反射体としての高い反射効率を有するばかりでなく、ランプ点灯時の熱に変形することなく、長期にわたって当該反射効率を維持することができ、しかも成形体からの脱落の懸念が低減される。
 光反射体用基体の周辺にLiDAR技術用の赤外線センサーを設置し、かつ光反射体基体に赤外線透過性が求められる部分が存在する場合は、当該部分へは金属層は形成させない、または赤外線が透過するレベルの薄い厚みで金属層を形成させるのが望ましい。
 以下、実施例、比較例および参考例により本発明をさらに詳しく説明するが、下記実施例に限定されるものではない。
1.評価方法
(1)単官能フェノール化合物の総量
 樹脂組成物ペレットを用い、下記の装置および条件にて、熱分解/ガスクロマトグラフ質量分析(Py/GC-MS)を行い、フェノール、p-tert-ブチルフェノールおよびp-クミルフェノールの3種のフェノール化合物の総量をデカン換算数値としてppm単位で表した。
(分析条件)
1-1.Py装置:フロンティアラボ製PY2020D
 ヘリウムガス雰囲気下で開始温度40℃から20℃/分で昇温、370℃到達で5分間ホールドし、上記条件にて採取された発生ガスを下記GC装置およびMS装置にて同定、定量した。
1-2.GC装置:ヒューレッドパッカード製HP-6890型
 昇温条件:40℃で3分ホールド後、10℃/分で150℃まで昇温し、150℃から320℃までは20/分で昇温し、320℃で3分ホールドした。
カラム  UltraALLOY-5(30m×0.25mm×0.25μm)
スプリット  50:1
1-3.MS装置:ヒューレッドパッカード製HP-5973型
マスレンジ:スキャン測定(massレンジ:29.0~550.0)
トランスファーライン:320℃
(2)対数粘度
 1,1,2,2-テトラクロロエタンを溶媒として、温度25℃において測定し、dL/g単位で表した。
(3)流動性
 樹脂組成物ペレットを、120℃にて12時間以上熱風乾燥した後、射出成型機(東芝機械社製EC100N型)にて、樹脂温度350℃、金型温度100℃、射出圧力150MPa、射出時間4秒、設定射出速度150mm/秒で成形した際の試験片の流動長を測定した。試験片の数は5点で、5点の平均値を各評価条件での流動長とした。
 金型は厚み2mmおよび幅20mmのバーフロー試験金型を用いた。樹脂温度が同一条件下、流動長が長いほど流動性がよいことを示す。同一条件で測定した流動長を対比した場合5mm以上の差異があった場合、有意な差があると判断した。
 樹脂温度350℃での流動長を以下のように評価した。
◎:550mm以上(最良)。
○:450mm以上、550mm未満(良)。
△:300mm以上、450mm未満(実用上問題なし)。
×:300mm未満(実用上問題あり)。
(4)ビカット軟化点(耐熱性)
 JIS K 7206に規定のB50法に準拠して測定した。ビカット軟化点は、HDT試験装置(ヒートディストーションテスター)(東洋精機製作所社製)で測定した。試験片として、厚さ4mmの成形体を用いて測定した。
 ビカット軟化点を以下のように評価した。
◎:150℃以上(最良)。
○:145℃以上、150℃未満(良)。
△:140℃以上、145℃未満(実用上問題なし)。
×:140℃未満(実用上問題あり)。
(5)離型性(離型抵抗値)
 上記で得られた各種樹脂組成物のペレットをそれぞれ125℃で4時間乾燥した後に、射出成型機(日本製鋼所社製、J35AD)を用いて、シリンダー設定温度340℃、金型温度90℃、冷却時間30秒の条件にて、連続1000ショット成形を行い、1000ショット目の成形において、離型時の離型抵抗値に基づいて離型性を評価した。詳しくは、金型には、円筒型の離型抵抗金型(成形品の形状:直径40mm、高さ40mm、厚み2.5mm)を用いて、円筒型成形品を成形する際の突き出しピンにかかる突き出し圧力を測定し、離型抵抗値を求めた。
 離型性を以下のように評価した。
◎◎:105MPa以下(極上:extra quality)。
◎:105MPa超、120MPa以下(最良)。
○:120MPa超、150MPa以下(良)。
△:150MPa超、170MPa以下(実用上問題なし)。
×:170MPa超(実用上問題あり)。
(6)耐加水分解性
 樹脂組成物ペレットを、120℃で8時間以上熱風乾燥した後、射出成形機(東芝機械社製EC100N型)に試験片金型を取り付けて、樹脂温度は各樹脂組成物ごとに最適な温度(表参照)に設定しつつ、金型温度は90℃に設定し、射出成形を行い、成形体(70×10mm、厚み4mmt)を得た。得られた成形体につき、前記(2)対数粘度での条件に従い対数粘度を測定した。
 一方、得られた試験片をプレッシャークッカー(平山製作所製、型式PC-242HSR2)に投入し、温度130℃、相対湿度75%RH、圧力0.2MPaの条件で、75時間処理をし、同様に成形体の対数粘度を測定し、処理前に対する処理後の対数粘度保持率を下記式により算出した。
 成形体の対数粘度保持率56%以上であれば、耐加水分解性が「実用上問題なし」と判断した。
 成形体の対数粘度保持率(%)=(処理後の成形体対数粘度/処理前の成形体対数粘度)×100
◎:保持率64%以上(最良)。
○:保持率60%以上64%未満(良)。
△:保持率56%以上60%未満(実用上問題なし)。
×:保持率56%未満(実用上問題あり)。
(7)金型成形面の耐曇り性
 樹脂組成物ペレットを、120℃で8時間以上熱風乾燥した後、射出成形機(東芝機械社製EC100N型)に試験片金型を取り付けて、樹脂温度は各樹脂組成物ごとに最適な温度(表参照)に設定しつつ、金型温度は90℃に設定し、射出成形を行い、成形体(70mm×40mm)を得た。成形体は、厚みが1mm、2mmおよび3mmの三段階で変化した成形体であった。なお、金型の成形面は#8000のみがきをかけた鏡面仕様とし、溶融した樹脂組成物が金型内フル充填とならない、ショートショットの状態で連続50ショットの成形を行い、樹脂の流動先端近傍となる金型表面(可動型および固定型の成形面)を目視確認し、曇りの発生の有無を観察した。曇りの程度に応じて5段階(薄1<<3<<5濃)で評価をした。曇の程度の評価値が小さいほど、曇は少なく、良好である。
◎:評価値=1(最良)。
○:評価値=2(良)。
△:評価値=3(実用上問題なし)。
×:評価値=4(実用上問題あり)。
××:評価値=5(実用上問題あり)。
(8)成形体の表面外観特性
 樹脂組成物ペレットを、120℃で8時間以上熱風乾燥した後、射出成形機(東芝機械社製EC100N型)に試験片金型を取り付けて、樹脂温度は各樹脂組成物ごとに最適な温度(表参照)に設定しつつ、金型温度は90℃に設定し、射出成形を行い、成形体(70×40mm、厚み2mmt)を得た。なお、金型のコア側成形面は#8000のみがきをかけた鏡面仕様とした。また、金型は、短辺方向中央部に第一のゲートと、第一のゲートを有する短辺に対向する他方短辺に近接する長辺終端部に第二のゲートの2つのゲートを有するものであり、溶融樹脂は、2つのゲートより同時にキャビティ内に流入する。キャビティに流入した溶融樹脂は、キャビティ中央部で合流し樹脂冷却とともに合流部にウェルドを生成する。ウェルド部の成形体表面の外観を下記基準で評価した。
◎:ウェルドラインおよびその周辺に曇りは全く無い(最良)。
○:ウェルドラインおよび/またはその周辺に曇りが1カ所のみで部分的に生じた(良)。
△:ウェルドラインおよび/またはその周辺に曇りが2カ所以上で部分的に生じたが、実用上問題のない範囲であった。
×:ウェルドラインおよび/またはその周辺に沿って帯状の曇りが生じ、実用上問題があった。
(9)成形体の蒸着適性
 (8)で得た成形体のコア側表面に対し、アンダーコートすることなくベルジャー型真空蒸着装置(ULVAC社製)を用いアルミニウムを蒸着した。蒸着層の厚みはおよそ0.1μmであった。表面にアルミニウムの蒸着層が形成された成形体の初期外観について目視により下記の基準で判定した。
◎:蒸着層の全表面が鏡面であり、曇りが全く無く、成形体の外観が最良であった。
○:ウェルドラインおよびその周辺の蒸着層表面に曇りが1カ所のみで部分的に生じたが、成形体の外観が良好であった。
△:ウェルドラインおよびその周辺の蒸着層表面に曇りが2カ所以上で部分的に生じたが実用上問題なかった。
×:ウェルドラインおよびその周辺の蒸着層表面に曇りが全体的に生じ、成形体の外観は不良であった(実用上問題あり)。
(10)成形体の熱エージング適性(実使用に即した評価)
 (9)で得た蒸着層を有する成形体を各々高温炉中、135℃条件下、24時間熱エージング試験を行った。熱エージング試験とは、成形体を所定の温度で所定の時間だけ静置する処理のことである。熱エージング試験後の成形体について、(i)蒸着層表面の光沢度、(ii)蒸着層の密着性の評価をそれぞれ行った。
(i)蒸着層表面の光沢度
 JIS Z8741に準拠し、光沢度計(日本電色工業社製、VG-2000型)を用い、各成形体における蒸着層表面の入射角20°における表面光沢度を測定し、下記の基準により4段階で評価した。なお(9)にて、蒸着層表面に曇りを生じたものは、特に曇り近傍の光沢度を測定した。N=5で測定を行い、その平均値を該成形体における光沢度とした。
◎:光沢度1500以上(最良)。
○:光沢度1000以上1500未満(良)。
△:光沢度750以上1000未満(実用上問題なし)。
×:光沢度750未満(実用上問題あり)。
(ii)蒸着層の密着性
 JIS K5400で規定されているXカットテープ法に準拠し、各成形体の蒸着層に対し、カッターナイフにてクロスカット(Xカット)を入れ、セロハンテープを貼付後、剥離し、下記基準で測定した。N=5で測定を行い、その平均値を該成形体における蒸着層の密着性評価とした。
◎:蒸着層の剥がれが全くない(最良)。
○:Xカット部にわずかの剥がれがある(良)。
△:Xカット部の交点いずれかの方向に、3.0mm以内の剥がれがある(実用上問題なし)。
×:Xカット部より大きく剥がれる(実用上問題あり)。
(11)総合評価
 流動性、耐熱性、金型成形面の耐曇り性、ならびに成形体の表面外観特性、蒸着適性および熱エージング適性の評価結果に基づいて、総合的に評価した。
◎◎:全ての評価結果うち、最も低い評価結果が◎であり、かつ離型性が◎◎であった。
◎:全ての評価結果が◎であった。
○:全ての評価結果うち、最も低い評価結果が○であった。
△:全ての評価結果うち、最も低い評価結果が△であった。
×:全ての評価結果うち、最も低い評価結果が×または××であったか、または成形できなかった。
(12)可視光線不透過性・赤外線透過性
 (8)で得た成形体について、UV可視分光光度計(日立ハイテク社製、U-4000型)を使用して、光線波長300~2000nmまで2nm間隔で透過率Tを測定した。可視光線波長380~780nmの範囲での平均透過率T1と赤外線波長800~2000nmの範囲での平均透過率T2を計算した。以下の基準に従って評価した。本発明の樹脂組成物がLiDAR技術で採用される赤外線センサーの周辺部品に使用され、かつ可視光線不透過性と赤外線透過性が求められる場合、T1は40%以下が必要であり、T2は60%以上が必要である。
・可視光線不透過性
◎:T1 12.5%以下(最良)。
○:T1 12.5%超25%以下(良)。
△:T1 25%超40%以下(実用上問題なし)。
×:T1 40%超(実用上問題あり)。
・赤外線透過性
◎:T2 80%以上(最良)。
○:T2 70%以上80%未満(良)。
△:T2 60%以上70%未満(実用上問題なし)。
×:T2 60%未満(実用上問題あり)。
 可視光線不透過性および赤外線透過性は、本発明の樹脂組成物が必ずしも有さなければならない特性というわけではなく、有することが好ましい特性である。
2.原料
(1)ポリアリレート:U-パウダー Lタイプ(ユニチカ社製)(対数粘度0.54)
(2)ポリカーボネート
・ポリカーボネートb1:溶融重合ポリカーボネート:ジフェニルカーボネートおよびビスフェノールAから重合されたポリカーボネート
 WONDERLITE PC-175(奇美実業社製)(対数粘度0.39)
・ポリカーボネートb2:界面重合ポリカーボネート:ホスゲンおよびビスフェノールAから重合されたポリカーボネート
 SDポリカ200-80(住化ポリカーボネート社製)(対数粘度0.39)
(3)ホスファイト化合物
・ホスファイト化合物c1:ビス(2,6-ジ-tert-ブチル-4-メチルフェニル)ペンタエリスリトールジホスファイト(ADEKA社製アデカスタブPEP-36)
・ホスファイト化合物c2:トリス(2,4-ジ-tert-ブチルフェニル)ホスファイト(ADEKA社製アデカスタブ2112)
・ホスファイト化合物c3:ジステアリルペンタエリスリトールジホスファイト(ADEKA社アデカスタブPEP-8)
・非ホスファイト化合物c4(ホスホナイト系化合物):テトラキス(2,4-ジ-t-ブチルフェニル)[1,1-ビフェニル]-4,4'-ジイルビスホスホナイト(BASF製IRGAFOS P-EPQ)
・非ホスファイト化合物c5(ヒンダードフェノール系化合物):イルガノックス1010(ペンタエリスリチル-テトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、(BASF社製Irganox 1010)
(4)脂肪酸エステル
・脂肪酸エステルd1:ステアリルステアレート(エメリーオレオケミカルズ社製「G32」)
・脂肪酸エステルd2:ベヘニルステアレート(エメリーオレオケミカル社製「G47」)
・非脂肪酸エステルd3:脂肪酸エステル以外の化合物:パラフィンワックス(日本精蝋社製ルバックス1266)
・脂肪酸エステルd4:エチレングリコールモノステアレート(東京化成工業社製試薬)
・脂肪酸エステルd5:グリセリンモノステアレート(理研ビタミン社製リケマールS-100)
・脂肪酸エステルd6:ラウリン酸メチル(花王社製エキセパールML-85)
・脂肪酸エステルd7:モンタン酸エステルワックス(クラリアントジャパン社製リコルブWE4)
(5)着色剤
・カーボンブラック(UP-D 701;大日精化工業社製)
・黒色の中性染料混合物(NUBIAN BLACK PC-5857;オリエント化学工業社製)
実施例1~18、3a、4a、4b、5aおよび6a、比較例1~16ならびに参考例1~2
 所定のポリアリレートとポリカーボネートを、熱風循環式乾燥機を用いて120℃で8時間以上乾燥を行い、ホスファイト化合物(または非ホスファイト化合物)および脂肪酸エステル(または非脂肪酸エステル)とともに、表1~表6に示した配合割合で均一混練をした。詳しくは、ポリアリレートとポリカーボネートとの合計量100質量部に対し、ホスファイト化合物(または非ホスファイト化合物)および脂肪酸エステル(または非脂肪酸エステル)をそれぞれ所定量、ならびに着色剤0.05質量部を、クボタ社製連続定量供給装置を用いて、同方向2軸押出機(東芝機械社製TEM-37BS)の主供給口に供給した。そして、所定の樹脂温度および吐出量10kg/時で溶融混練を行い、ノズルからストランド状に引き取った樹脂組成物を水浴にくぐらせて冷却固化し、ペレタイザーでカッティングした後、120℃で8時間熱風乾燥することによって樹脂組成物のペレットを得た。所定の樹脂温度とは表1~表6に記載の成形温度のことである。さらに得られた樹脂組成物ペレットを、上記した評価方法に記載の方法に従って、射出成形し、成形体を得た。
 得られた樹脂組成物ペレットもしくは成形体を用い、各種評価を行った。その結果を表1~表6に示す。
 なお、参考例1~2においては、ポリカーボネート樹脂単独での前記評価(流動性、耐加水分解性および熱エージング適性の評価は未実施)を行った。
 実施例3a、4b、5aおよび6aそれぞれにおいては、着色剤としてカーボンブラックに代えて、黒色の中性染料混合物を0.15質量部で用いる以外は、実施例3、4、5および6と同様にして樹脂組成物ペレットを得て、各種評価を行った。その結果を表6に示す。
 実施例4aにおいては、着色剤としてカーボンブラックに代えて、黒色の中性染料混合物を0.05質量部で用いる以外は、実施例4と同様にして樹脂組成物ペレットを得て、各種評価を行った。その結果を表6に示す。
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
 実施例1~18では、樹脂組成物は、耐熱性(ビカット軟化点)と流動性(バーフロー流動長)のバランスに優れており、金型成形面の耐曇り性にも十分に優れていた。また成形体は、表面の外観特性、離型性および耐加水分解性に十分に優れていた。さらに成形体は、蒸着層に関し、蒸着適性および熱エージング適性に十分に優れていた。
 実施例3a、4a、4b、5aおよび6aでは、可視光線不透過性および赤外線透過性をさらに付与することができた。
 比較例1~5では、所定のポリカーボネート樹脂を用いなかったため、金型成形面の耐曇り性が劣り、また成形体のウェルドラインに沿って帯状に曇りが生じた。また成形体は、離型性に劣った。さらに、成形体の蒸着適性および熱エージング適性も劣った。
 比較例6~7および15は、離型剤を含まない系であるため、本発明の参考例としても位置付けられ得る実験例である。これらの系では、少なくとも成形体の離型性が劣った。
 比較例8~14は、熱安定剤および離型剤を含む系であるが、これらの系では、所定のホスファイト化合物とは異なる熱安定剤および/または所定の脂肪酸エステルとは異なる離型剤を用いた。このため、高温成形時において分子量の低下により成形が困難になるか(比較例11~14)、または成形できたとしても、得られる成形体の離型性および耐加水分解性の両立が困難となり、これらの特性のうち少なくとも一方が低下した(比較例8~10)。
 比較例16は、熱安定剤を含まない系であるため、本発明の参考例としても位置付けられ得る実験例である。この系では、少なくとも成形体の耐加水分解性が劣った。さらに、成形体のウェルドラインに沿って帯状に曇りが生じた。また成形体の蒸着適性および熱エージング適性も劣った。
 本発明の樹脂組成物は、例えば、射出成形法による光反射体用基体の製造に有用である。

Claims (20)

  1.  (A)ポリアリレート樹脂、(B)溶融重合ポリカーボネート樹脂、(C)下記一般式(I)および(II)で表されるホスファイト化合物からなる群から選択される1種以上の化合物、および(D)下記一般式(III)で表される脂肪族モノアルコール脂肪酸エステルを含有する樹脂組成物であって、
     (A)ポリアリレート樹脂と(B)溶融重合ポリカーボネート樹脂との質量比(A/B)が2/98~98/2であり、
     前記樹脂組成物のビカット軟化点が140℃以上である、樹脂組成物:
    Figure JPOXMLDOC01-appb-C000001
    (式(I)中、R11およびR12は、それぞれ独立して、炭素原子数6~40のアリール基または炭素原子数1~40のアルキル基を表す);
    Figure JPOXMLDOC01-appb-C000002
    (式(II)中、R41~R45は、それぞれ独立して、水素原子または炭素原子数1~10の炭化水素基である);
    Figure JPOXMLDOC01-appb-C000003
    (式(III)中、R51は炭素原子数15~25のアルキル基である;R52は炭素原子数30以下のアルキル基である)。
  2.  前記(C)ホスファイト化合物の含有量が、(A)ポリアリレート樹脂と(B)溶融重合ポリカーボネート樹脂との合計量100質量部に対し0.01~0.2質量部である、請求項1に記載の樹脂組成物。
  3.  前記(D)脂肪族モノアルコール脂肪酸エステルの含有量が、(A)ポリアリレート樹脂と(B)溶融重合ポリカーボネート樹脂との合計量100質量部に対し0.01~0.6質量部である、請求項1または2に記載の樹脂組成物。
  4.  前記(D)脂肪族モノアルコール脂肪酸エステルが、ベヘニルベヘネート、ベへニルステアレート、ステアリルステアレート、ステアリルベヘネートからなる群から選択される1種以上の化合物である、請求項1~3のいずれかに記載の樹脂組成物。
  5.  前記(A)ポリアリレート樹脂と前記(B)溶融重合ポリカーボネート樹脂との混合比率が質量比で10/90~65/35であり、
     前記(C)ホスファイト化合物が下記一般式(i-1)および前記一般式(II)で表されるホスファイト化合物からなる群から選択される1種以上の化合物である、請求項1に記載の樹脂組成物:
    Figure JPOXMLDOC01-appb-C000004
    (式(i-1)中、R21~R30は、それぞれ独立して、水素原子または炭素原子数1~20の炭化水素基を表す)。
  6.  前記(A)ポリアリレート樹脂と前記(B)溶融重合ポリカーボネート樹脂との混合比率が質量比で25/75~45/55であり、
     前記(C)ホスファイト化合物が前記一般式(i-1)で表されるホスファイト化合物からなる群から選択される1種以上の化合物であり、
     前記(C)ホスファイト化合物の含有量が、(A)ポリアリレート樹脂と(B)溶融重合ポリカーボネート樹脂との合計量100質量部に対し0.01~0.08質量部である、請求項5に記載の樹脂組成物。
  7.  前記(A)ポリアリレート樹脂と前記(B)溶融重合ポリカーボネート樹脂との混合比率が質量比で25/75~35/65であり、
     前記式(III)中、R52は炭素原子数16~20のアルキル基であり、
     前記(D)脂肪族モノアルコール脂肪酸エステルの含有量が、(A)ポリアリレート樹脂と(B)溶融重合ポリカーボネート樹脂との合計量100質量部に対し0.05~0.4質量部である、請求項6に記載の樹脂組成物。
  8.  前記樹脂組成物における単官能フェノール化合物の含有量が10,000ppm以下である、請求項1~7のいずれかに記載の樹脂組成物。
  9.  前記(B)溶融重合ポリカーボネート樹脂の対数粘度が0.30~0.60dL/gである、請求項1~8のいずれかに記載の樹脂組成物。
  10.  前記(A)ポリアリレート樹脂の対数粘度が0.40~0.75dL/gである、請求項1~9のいずれかに記載の樹脂組成物。
  11.  前記樹脂組成物の対数粘度が0.35~0.65dL/gである、請求項1~10のいずれかに記載の樹脂組成物。
  12.  前記樹脂組成物が着色剤をさらに含む、請求項1~11のいずれかに記載の樹脂組成物。
  13.  前記樹脂組成物が前記着色剤として黒色染料を単独で含む、請求項12に記載の樹脂組成物。
  14.  前記着色剤の含有量が、(A)ポリアリレート樹脂と(B)溶融重合ポリカーボネート樹脂との合計量100質量部に対し、0.01~2質量部である、請求項12または13に記載の樹脂組成物。
  15.  前記樹脂組成物が光反射体用基体を製造するための樹脂組成物である、請求項1~14のいずれかに記載の樹脂組成物。
  16.  前記樹脂組成物が車載用ランプの光反射体用基体を製造するための樹脂組成物である、請求項1~15のいずれかに記載の樹脂組成物。
  17.  前記樹脂組成物が射出成形に使用されるための樹脂組成物である、請求項1~16のいずれかに記載の樹脂組成物。
  18.  請求項1~17のいずれかに記載の樹脂組成物を含む、成形体。
  19.  請求項18に記載の成形体を用いた光反射体用基体。
  20.  請求項19に記載の光反射体用基体を用いた車載用ランプ。
PCT/JP2020/040284 2019-10-31 2020-10-27 樹脂組成物およびそれより得られる成形体 WO2021085424A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021553629A JPWO2021085424A1 (ja) 2019-10-31 2020-10-27

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019199016 2019-10-31
JP2019-199016 2019-10-31

Publications (1)

Publication Number Publication Date
WO2021085424A1 true WO2021085424A1 (ja) 2021-05-06

Family

ID=75716011

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/040284 WO2021085424A1 (ja) 2019-10-31 2020-10-27 樹脂組成物およびそれより得られる成形体

Country Status (2)

Country Link
JP (1) JPWO2021085424A1 (ja)
WO (1) WO2021085424A1 (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05262969A (ja) * 1992-03-19 1993-10-12 Nippon G Ii Plast Kk 光学用ポリカーボネート系樹脂組成物
JPH06200141A (ja) * 1992-12-28 1994-07-19 Nippon G Ii Plast Kk ポリカーボネート及びポリアリーレートを含む樹脂組成物
JP2001049104A (ja) * 1999-08-10 2001-02-20 Teijin Chem Ltd 芳香族ポリカーボネート樹脂組成物
JP2001279109A (ja) * 2000-01-25 2001-10-10 Mitsubishi Engineering Plastics Corp 熱可塑性樹脂組成物
JP2004131652A (ja) * 2002-10-11 2004-04-30 Mitsubishi Engineering Plastics Corp 芳香族ポリカーボネート樹脂組成物及びその組成物を用いた成形品
JP2004277438A (ja) * 2003-03-12 2004-10-07 Unitika Ltd ポリカーボネート及びポリアリレートを含む樹脂組成物
JP2012188578A (ja) * 2011-03-11 2012-10-04 Teijin Chem Ltd 金型磨耗性に優れるガラス繊維強化ポリカーボネート樹脂組成物
JP2013147559A (ja) * 2012-01-19 2013-08-01 Unitika Ltd 樹脂組成物、該樹脂組成物からなる成形体、および該樹脂組成物の製造方法
JP2013194171A (ja) * 2012-03-21 2013-09-30 Unitika Ltd ポリアリレート樹脂組成物およびそれを成形してなる成形体
WO2016194758A1 (ja) * 2015-05-29 2016-12-08 東洋紡株式会社 赤外光透過性ポリエステル樹脂組成物

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05262969A (ja) * 1992-03-19 1993-10-12 Nippon G Ii Plast Kk 光学用ポリカーボネート系樹脂組成物
JPH06200141A (ja) * 1992-12-28 1994-07-19 Nippon G Ii Plast Kk ポリカーボネート及びポリアリーレートを含む樹脂組成物
JP2001049104A (ja) * 1999-08-10 2001-02-20 Teijin Chem Ltd 芳香族ポリカーボネート樹脂組成物
JP2001279109A (ja) * 2000-01-25 2001-10-10 Mitsubishi Engineering Plastics Corp 熱可塑性樹脂組成物
JP2004131652A (ja) * 2002-10-11 2004-04-30 Mitsubishi Engineering Plastics Corp 芳香族ポリカーボネート樹脂組成物及びその組成物を用いた成形品
JP2004277438A (ja) * 2003-03-12 2004-10-07 Unitika Ltd ポリカーボネート及びポリアリレートを含む樹脂組成物
JP2012188578A (ja) * 2011-03-11 2012-10-04 Teijin Chem Ltd 金型磨耗性に優れるガラス繊維強化ポリカーボネート樹脂組成物
JP2013147559A (ja) * 2012-01-19 2013-08-01 Unitika Ltd 樹脂組成物、該樹脂組成物からなる成形体、および該樹脂組成物の製造方法
JP2013194171A (ja) * 2012-03-21 2013-09-30 Unitika Ltd ポリアリレート樹脂組成物およびそれを成形してなる成形体
WO2016194758A1 (ja) * 2015-05-29 2016-12-08 東洋紡株式会社 赤外光透過性ポリエステル樹脂組成物

Also Published As

Publication number Publication date
JPWO2021085424A1 (ja) 2021-05-06

Similar Documents

Publication Publication Date Title
CA2505969C (en) Polycarbonate copolymer, resin composition, and molded article
TWI486374B (zh) 具有改良的熱及機械性質和降低的熱膨脹係數之聚碳酸酯
KR20130018988A (ko) 도광판용 방향족 폴리카보네이트 수지 조성물 및 도광판
US20100330362A1 (en) Polycarbonate resin laminated sheet
JP5749177B2 (ja) ビスベンゾオキサジノン化合物を含有する樹脂組成物
JP2011137153A (ja) 熱特性が改良されかつ混合物に基づくコポリカーボネート組成物
JPH1135815A (ja) ポリカーボネート組成物
JP2017536466A (ja) 加工性が改良されたpeワックス含有コポリカーボネート組成物
JP2005082713A (ja) 芳香族ポリカーボネート樹脂
WO2020218307A1 (ja) 樹脂組成物およびそれより得られる成形体
JP2009184266A (ja) ポリカーボネート樹脂成形体の成形装置、成形方法及びポリカーボネート樹脂成形体
JP5584001B2 (ja) ポリカーボネート樹脂組成物およびその成形品
JP2007106943A (ja) 光拡散性樹脂組成物およびそれを用いた光拡散性部材
WO2021085424A1 (ja) 樹脂組成物およびそれより得られる成形体
JP2006083230A (ja) 芳香族ポリカーボネート樹脂組成物およびその成形体
JP2006028391A (ja) 芳香族ポリカーボネート樹脂
JP4820972B2 (ja) ポリカーボネート樹脂の回転成形方法
JP2003183378A (ja) 芳香族ポリカーボネート樹脂およびそれからの成形品
JP2005119124A (ja) ポリカーボネート共重合体の射出成形法およびそれにより成形される成形品
JP2005060628A (ja) リフロー耐性に優れたポリカーボネート樹脂
JP2005018993A (ja) 高屈折性導光板
WO2023145197A1 (ja) 芳香族ポリカーボネート樹脂組成物及びその成形品
JP2005060540A (ja) ポリカーボネート共重合体
JP2005060541A (ja) ポリカーボネート共重合体および成形体
JP2002265766A (ja) ポリアリレート樹脂組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20881830

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021553629

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20881830

Country of ref document: EP

Kind code of ref document: A1