WO2021084710A1 - LiDAR装置、LiDARシステム及びLiDARによる測定方法 - Google Patents

LiDAR装置、LiDARシステム及びLiDARによる測定方法 Download PDF

Info

Publication number
WO2021084710A1
WO2021084710A1 PCT/JP2019/042888 JP2019042888W WO2021084710A1 WO 2021084710 A1 WO2021084710 A1 WO 2021084710A1 JP 2019042888 W JP2019042888 W JP 2019042888W WO 2021084710 A1 WO2021084710 A1 WO 2021084710A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
electric signal
optical
modulator
output
Prior art date
Application number
PCT/JP2019/042888
Other languages
English (en)
French (fr)
Inventor
栄実 野口
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to PCT/JP2019/042888 priority Critical patent/WO2021084710A1/ja
Priority to US17/770,091 priority patent/US20220357447A1/en
Priority to JP2021554004A priority patent/JP7347532B2/ja
Priority to EP19950787.2A priority patent/EP4053595A4/en
Publication of WO2021084710A1 publication Critical patent/WO2021084710A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/32Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S17/34Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/32Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/491Details of non-pulse systems
    • G01S7/4911Transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/491Details of non-pulse systems
    • G01S7/493Extracting wanted echo signals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0121Operation of devices; Circuit arrangements, not otherwise provided for in this subclass
    • G02F1/0123Circuits for the control or stabilisation of the bias voltage, e.g. automatic bias control [ABC] feedback loops

Definitions

  • the present invention relates to a LiDAR apparatus, a LiDAR system, and a measurement method using LiDAR capable of suppressing deterioration of signal quality of an optical signal.
  • the modulator used in optical communication modulates the light input from the light source based on the input modulation signal. As a result, the modulator outputs an optical signal having characteristics corresponding to the modulated signal. Techniques for such modulators are disclosed in Patent Documents 1 and 2 below.
  • the extinction ratio of the output from the modulator decreases due to, for example, an operating point fluctuation caused by aged deterioration or the like.
  • the operating point is controlled to be maintained at an appropriate position by changing the bias voltage in order to suppress a decrease in the extinction ratio.
  • the above bias voltage is obtained from the optical signal output from the modulator.
  • a low-frequency signal extracted from an optical signal modulated by a modulated signal on which a low-frequency voltage signal (hereinafter referred to as “dither signal”) is superimposed is extracted, and a bias voltage is applied based on the extracted signal.
  • dither signal a low-frequency signal extracted from an optical signal modulated by a modulated signal on which a low-frequency voltage signal
  • an optical signal is output and an optical signal (reflected light) reflected by the object is output. ) Is received to measure the distance to the object.
  • LiDAR Light Detection and Ringing, Laser Imaging Detection and Ringing
  • the intensity level of the optical signal modulated by the modulated signal fluctuates due to the modulation by the dither signal. That is, the quality of the optical signal output from the modulator deteriorates due to the influence of the dither signal.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a LiDAR device capable of suppressing deterioration of signal quality of an optical signal.
  • the LiDAR device of the present invention A signal output means that outputs a first electric signal in the first period, reduces the amplitude of the first electric signal outside the first period, and then outputs a second electric signal.
  • a modulator that outputs an optical signal modulated based on the first electric signal or the second electric signal, and A control means for applying a bias voltage based on the optical signal modulated based on the first electric signal to the modulator is provided.
  • the LiDAR system of the present invention A signal output means that outputs a first electric signal in the first period, reduces the amplitude of the first electric signal outside the first period, and then outputs a second electric signal.
  • a modulator that outputs an optical signal modulated based on the first electric signal or the second electric signal, and A control means for applying a bias voltage based on the optical signal modulated based on the first electric signal to the modulator is provided.
  • the measurement method using LiDAR of the present invention is Output the first electrical signal in the first period, An optical signal modulated by a modulator based on the first electric signal is output, and the light signal is output. A bias voltage based on the optical signal modulated based on the first electrical signal is applied to the modulator. Outside the first period, the amplitude of the first electric signal is reduced, and then the second electric signal is output. This is a method of outputting an optical signal modulated by the modulator based on the second electric signal.
  • FIG. 1 is a block diagram showing a configuration example of the optical output device 1.
  • the optical output device 1 is, for example, a LiDAR device.
  • FIG. 2 is a diagram for explaining the signal output means 20 described later.
  • FIG. 3 is a flowchart showing an operation example of the optical output device 1.
  • the optical output device 1 in the first embodiment will be described. As shown in FIG. 1, the optical output device 1 includes an optical output means 10, a signal output means 20, a modulator 30, and a control means 40.
  • the optical output means 10 will be described.
  • the light output means 10 outputs light having an arbitrary wavelength.
  • the light output means 10 is a laser diode.
  • the light output by the optical output means 10 is input to the modulator 30.
  • the signal output means 20 will be described.
  • the signal output means 20 outputs an electric signal having a predetermined waveform and a predetermined frequency.
  • the electric signal output from the signal output means 20 is input to the modulator 30.
  • the signal output means 20 is, for example, an LSI (Large-Scale Integration). As shown in FIG. 2, the signal output means 20 outputs the first electric signal in the first period. Further, the signal output means 20 outputs a second electric signal outside the first period. Further, the signal output means 20 reduces the amplitude of the first electric signal to be lower than the amplitude of the first electric signal output in the first period outside the first period. At this time, it is preferable that the signal output means 20 does not output the first electric signal outside the first period.
  • the control means 40 which will be described later, adjusts the bias voltage based on the optical signal modulated by the first electric signal. Therefore, the first period is preferably long enough for the control means 40 to adjust the bias voltage.
  • the first electrical signal is, for example, a dither signal.
  • the second electric signal is, for example, a modulated signal.
  • the second electric signal is output in all the time outside the first period, but the second electric signal is output in a part outside the first period. You may be. Further, the signal output means 20 may output a second electric signal even outside the first period and in the first period. Further, as shown in FIG. 2, the amplitude of the first electric signal is preferably smaller than the amplitude of the second electric signal.
  • the modulator 30 will be described.
  • the modulator 30 modulates the light from the optical output means 10 in accordance with the first electric signal and the second electric signal from the signal output means 20, and outputs the optical signal.
  • the modulator 30 is controlled according to the bias voltage from the control means 40.
  • the modulator 30 performs phase modulation, frequency modulation or intensity modulation on the light output from the optical output means 10.
  • the optical signal output from the modulator 30 can be coherently detected by interfering with the reference light from the optical output means 10 when it is reflected by the object and received.
  • the modulator 30 is, for example, a Machzenda modulator.
  • the control means 40 will be described.
  • An optical signal from the modulator 30 is input to the control means 40 from an optical coupler (not shown) that branches the optical signal from the modulator 30.
  • the control means 40 is output from the modulator 30 via its own photoelectric converter and low-pass filter. Of the optical signals, only the component of the first electric signal can be extracted. Then, the control means 40 adjusts the bias voltage so that the component of the first electric signal becomes small, and applies the adjusted bias voltage to the modulator 30. As described above, the control means 40 applies a bias voltage based on the optical signal modulated based on the first electric signal to the modulator 30.
  • the signal output means 20 outputs the first electric signal in the first period (S101).
  • the modulator 30 modulates light based on the first electric signal and outputs an optical signal (S102).
  • the control means 40 applies a bias voltage based on the optical signal output from the modulator 30 to the modulator 30 (S103). Specifically, the adjusted bias voltage is applied to the modulator 30 according to the method detailed in the description of the control means 40.
  • the signal output means 20 outputs the second electric signal after reducing the amplitude of the first electric signal outside the first period (S104). At this time, it is preferable that the signal output means 20 does not output the first electric signal.
  • the modulator 30 modulates the light based on the second electric signal and outputs the optical signal (S105).
  • the control means 40 applies a bias voltage having the same value as the bias voltage applied to the modulator 30 in S103 to the modulator 30.
  • optical output device 1 The operation example of the optical output device 1 has been described above.
  • the optical output device 1 performs the processes of S101 to S105.
  • the signal output means 20 outputs the first electric signal (disorder signal) in the first period, and reduces the amplitude of the first electric signal outside the first period. Then, the second electric signal (modulated signal) is output. Further, the modulator 30 outputs an optical signal modulated based on the first electric signal (dither signal) and the second electric signal (modulated signal).
  • the control means 40 applies a bias voltage based on an optical signal modulated based on the first electric signal (dither signal) to the modulator 30.
  • the modulator 30 when the second electric signal (modulation signal) is input to the modulator 30, the amplitude of the first electric signal (dither signal) decreases. .. Therefore, the modulator 30 can suppress the fluctuation of the intensity level in the optical signal according to the second electric signal (modulated signal) as compared with the case where the amplitude of the first electric signal (dither signal) is not reduced. That is, the optical output device 1 of the present embodiment can suppress deterioration of the signal quality of the optical signal. In the optical output device 1, not only the intensity level fluctuation but also the influence of the dither signal such as the phase fluctuation and the frequency fluctuation can be suppressed.
  • ToF Time of Flight
  • the optical signal is output, if not only the modulation by the second electric signal (modulation signal) but also the modulation by the first electric signal (disa signal) is applied, the first electric signal (disa signal) is used.
  • An optical signal is output with the intensity level fluctuating. As described above, when the optical signal is output in a state where the intensity level fluctuates, it becomes difficult to accurately detect the timing at which the portion of the reflected light whose intensity level has decreased is received.
  • the reflected optical signal is attenuated by propagation in free space and scattering in the object.
  • the timing at which the signal is received may not be detected because the intensity level of the optical signal fluctuates during transmission.
  • the characteristics (shape, etc.) and the distance measuring environment (distance to the object, etc.) of the distance measuring object are unknown, it is preferable to suppress the fluctuation of the intensity level in the LiDAR technology.
  • the optical output device 1 of the present embodiment reduces the amplitude of the first electric signal (disorder signal) when the second electric signal (modulation signal) is input to the modulator 30. , Fluctuations in the intensity level of the optical signal can be suppressed. That is, the optical output device 1 of the present embodiment can output a high quality optical signal.
  • the optical output device 1A is a first modification of the optical output device 1.
  • the optical output device 1A is, for example, a LiDAR device. As shown in FIG. 4, the optical output device 1A includes an optical output means 10, a modulator 30, and a control means 40, similarly to the optical output device 1. Further, the optical output device 1A includes a signal output means 20A instead of the signal output means 20.
  • the signal output means 20A includes a first signal generation circuit 21A, a second signal generation circuit 22A, and a multiplexing means 23.
  • the first signal generation circuit 21A outputs the first electric signal in the first period. Specifically, as shown in FIG. 5, the first signal generation circuit 21A outputs the first electric signal after a predetermined time. The first signal generation circuit 21A makes the amplitude of the first electric signal lower than that of the first electric signal in the first period outside the first period. It is preferable that the first signal generation circuit 21A does not output the first electric signal outside the first period. FIG. 5 shows a case where the first electric signal is not output outside the first period.
  • the first signal generation circuit 21A is connected to the multiplexing means 23.
  • the first signal generation circuit 21A is, for example, an LSI.
  • the second signal generation circuit 22A outputs a second electric signal outside the first period. Specifically, the second signal generation circuit 22A outputs a second electric signal after a first period, as shown in FIG. In addition, in FIG. 5, it is shown that the second signal generation circuit 22A outputs the second electric signal in all the cases outside the first period, but the second signal generation circuit 22A outputs a second electric signal in a part outside the first period. The electric signal of may be output. Further, the second signal generation circuit 22A may output the second electric signal even outside the first period and in the first period.
  • the second signal generation circuit 22A is connected to the multiplexing means 23.
  • the second signal generation circuit 22A is, for example, an LSI.
  • the multiplexing means 23 multiplexes the first electric signal from the first signal generation circuit 21A and the second electric signal from the second signal generation circuit 22A, and outputs the second electric signal to the modulator 30.
  • the multiplexing means 23 is, for example, an adder.
  • the multiplexing means 23 may be provided in the modulator 30.
  • the first electric signal from the first signal generation circuit 21A and the second electric signal from the second signal generation circuit 22A are multiplexed by the multiplexing means 23 included in the modulator 30.
  • optical output device 1A The operation of the optical output device 1A is the same as the operation of the optical output device 1 shown in FIG.
  • the optical output device 1B is a second modification of the optical output device 1.
  • the optical output device 1B is, for example, a LiDAR device. As shown in FIG. 6, the optical output device 1B includes an optical output means 10, a modulator 30, and a control means 40, similarly to the optical output device 1. Further, the optical output device 1B includes a signal output means 20B instead of the signal output means 20.
  • the signal output means 20B includes a first signal generation circuit 21B, a second signal generation circuit 22B, and a selection means 24.
  • the first signal generation circuit 21B continuously outputs the first electric signal. Specifically, the first signal generation circuit 21B always outputs the first electric signal as shown in FIG. 7.
  • the first signal generation circuit 21B is connected to the selection means 24.
  • the first signal generation circuit 21B is, for example, an LSI.
  • the second signal generation circuit 22B continuously outputs the second electric signal. Specifically, the second signal generation circuit 22B always outputs the second electric signal as shown in FIG. 7.
  • the second signal generation circuit 22B is connected to the selection means 24.
  • the second signal generation circuit 22B is, for example, an LSI.
  • the selection means 24 outputs either one of the first electric signal from the first signal generation circuit 21B and the second electric signal from the second signal generation circuit 22B to the modulator 30. Specifically, the selection means 24 outputs the first electric signal from the first signal generation circuit 21B to the modulator 30 in the first period. Further, the selection means 24 outputs the electric signal from the second signal generation circuit 22B to the modulator 30 outside the first period.
  • the selection means 24 may be provided in the modulator 30.
  • the modulator 30 selects either the first electric signal from the first signal generation circuit 21B or the second electric signal from the second signal generation circuit 22B by the selection means 24. Then, the modulator 30 modulates the light from the optical output means 10 based on the selected electric signal.
  • the operation of the optical output device 1B is the same as the operation of the optical output device 1 shown in FIG. ⁇ Second embodiment>
  • the optical output device 2 according to the second embodiment of the present invention is output based on FIGS. 8 and 9.
  • the optical output device 2 is, for example, a LiDAR device.
  • FIG. 8 is a block diagram showing a configuration example of the optical output device 2.
  • FIG. 9 is a flowchart showing an operation example of the optical output device 2.
  • the optical output device 2 includes an optical output means 10, a signal output means 20, a modulator 30, and a control means 40, similarly to the optical output device 1. Further, the optical output device 2 further includes a branching means 50, a shading means 60, and a shading means control circuit 70.
  • the branching means 50 branches the optical signal output from the modulator 30 and outputs it to the control means 40 and the shading means 60.
  • the branching means 50 is, for example, an optical coupler.
  • the shading means 60 blocks the optical signal modulated based on the first electric signal and transmits the optical signal modulated based on the second electric signal.
  • the light-shielding means 60 blocks the optical signal in response to an instruction from the light-shielding means control circuit 70.
  • the shading means 60 is, for example, an optical shutter.
  • the shading means 60 may be an acousto-optic modulator or a semiconductor optical amplifier.
  • the light-shielding means control circuit 70 instructs the light-shielding means 60 at the timing of blocking the optical signal from the branching means 50 and the timing of transmitting the light signal. Specifically, the light-shielding means control circuit 70 instructs the light-shielding means 60 to block the optical signal in the first period. Further, the light-shielding means control circuit 70 instructs the light-shielding means 60 to transmit an optical signal outside the first period.
  • the modulator 30 modulates the light based on the first electric signal, as in the process of S102.
  • the light-shielding means control circuit 70 further gives a light-shielding instruction to the light-shielding means 60.
  • the shading means 60 blocks the optical signal from the modulator 30.
  • the modulator 30 modulates the light based on the second electric signal, as in the process of S105.
  • the light-shielding means control circuit 70 further gives a transmission instruction to the light-shielding means 60.
  • the shading means 60 transmits the optical signal from the modulator 30.
  • optical output device 2 The operation example of the optical output device 2 has been described above.
  • the optical output device 2 blocks the optical signal modulated based on the first electric signal (disorder signal) in addition to the configuration added by the optical output device 1, and blocks the second electric signal (modulated signal). ) Is provided with a light shielding means 60 that transmits an optical signal modulated based on the above.
  • the optical output device 2 can suppress the output of the optical signal modulated based on the first electric signal (dither signal). For example, in the ToF technology, the timing at which the reflected light of the optical signal modulated from the second electric signal (modulated signal) is received is detected based on the intensity of the received light. At this time, if an optical signal modulated based on the first electric signal (diza signal) is output from the optical output device 2, the reflected light is based on the first electric signal (diza signal). The reflected light of the modulated optical signal is also included.
  • the reflected light of the optical signal modulated based on the first electric signal erroneously detects the reception of the reflected light of the optical signal modulated based on the second electric signal (modulated signal). It has an adverse effect such as.
  • the output of the optical signal modulated based on the first electric signal (diza signal) is suppressed, so that the output is based on the second electric signal (modulated signal). It is possible to make the receiving device accurately detect the reception timing of the reflected light of the modulated optical signal.
  • the optical output device 2 when an optical amplifier is provided after the light shielding means 60, the output of the optical signal modulated based on the first electric signal (disorder signal) is suppressed to suppress the output of the second optical signal. It is possible to efficiently amplify an optical signal modulated based on the electric signal (modulated signal) of.
  • the shading means 60 is an acousto-optic modulator or an optical amplifier.
  • the optical output device 2 of the present embodiment can output an optical signal corresponding to the second electric signal (modulation signal) with higher accuracy than when an LN modulator or the like is used for the light shielding means 60.
  • Optical output device 10 Optical output means 20, 20A, 20B Signal output means 21A, 21B First signal generation circuit 22A, 22B Second signal generation circuit 23 Multiplexing means 24 Selection means 30 Modulator 40 Control means 50 Branching means 60 Shading means 70 Shading means control circuit

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

[課題]光信号の信号品質の低下を抑制すること。 [解決手段]LiDAR装置は、第1の期間において第1の電気信号を出力し、第1の期間外において第1の電気信号の振幅を低下させた上で第2の電気信号を出力する信号出力手段20と、第1の電気信号又は第2の電気信号に基づいて変調した光信号を出力する変調器30と、第1の電気信号に基づいて変調された光信号に基づくバイアス電圧を変調器30に印加する制御手段40と、を備える。

Description

LiDAR装置、LiDARシステム及びLiDARによる測定方法
 本発明は、光信号の信号品質の低下を抑制することが可能なLiDAR装置、LiDARシステム及びLiDARによる測定方法に関する。
 光通信で用いられる変調器は、入力される変調信号に基づいて、光源から入力された光を変調する。これにより、変調器は、変調信号に応じた特性を有する光信号を出力する。このような変調器に関する技術が、下記の特許文献1及び特許文献2に開示されている。
 一方で、変調器においては、例えば、経年劣化等に起因する動作点変動によって、変調器からの出力の消光比が低下する。消光比の低下等を抑制する為に、動作点は、バイアス電圧を変化させることによって、適切な位置で保たれるように制御される。
 上記のバイアス電圧は、変調器から出力される光信号から求められる。例えば、低周波の電圧信号(以下、「ディザ信号」とする。) が重畳された変調信号により変調された光信号から抽出された低周波信号を取り出し、取り出された信号に基づいてバイアス電圧を調整する方法が知られている。
国際公開第2019/116549号 特表2014-531779号公報
 例えば、光信号によって対象物までの距離等を測定する技術(LiDAR(Light Detection and Ranging、Laser Imaging Detection and Ranging))においては、光信号を出力し、対象物により反射された光信号(反射光)を受信することで、対象物までの距離等を測定する。
 一方で、前述のように、変調信号に対してディザ信号を重畳した場合、変調信号により変調された光信号における強度レベルが、ディザ信号による変調によって変動する。すなわち、ディザ信号の影響によって、変調器から出力される光信号の品質が低下する。
 特に、LiDARのようなアプリケーションでは、距離測定の対象物から戻ってくる微小な反射光を受信する必要がある。そのため、ディザ信号の影響によって品質が低下した光信号を用いることは、測距可能な距離が短くなったり、距離測定の精度劣化を引き起こすという問題があった。
 本発明は、上記問題に鑑みてなされたものであり、本発明の目的は、光信号の信号品質の低下を抑制することが可能なLiDAR装置を提供することである。
 本発明のLiDAR装置は、
 第1の期間において第1の電気信号を出力し、前記第1の期間外において前記第1の電気信号の振幅を低下させた上で第2の電気信号を出力する信号出力手段と、
 前記第1の電気信号又は前記第2の電気信号に基づいて変調した光信号を出力する変調器と、
 前記第1の電気信号に基づいて変調された前記光信号に基づくバイアス電圧を前記変調器に印加する制御手段と、を備える。
 または、本発明のLiDARシステムは、
 第1の期間において第1の電気信号を出力し、前記第1の期間外において前記第1の電気信号の振幅を低下させた上で第2の電気信号を出力する信号出力手段と、
 前記第1の電気信号又は前記第2の電気信号に基づいて変調した光信号を出力する変調器と、
 前記第1の電気信号に基づいて変調された前記光信号に基づくバイアス電圧を前記変調器に印加する制御手段と、を備える。
 または、本発明のLiDARによる測定方法は、
 第1の期間において第1の電気信号を出力し、
 前記第1の電気信号に基づいて変調器により変調した光信号を出力し、
 前記第1の電気信号に基づいて変調された前記光信号に基づくバイアス電圧を前記変調器に印加し、
 前記第1の期間外において前記第1の電気信号の振幅を低下させた上で第2の電気信号を出力し、
 前記第2の電気信号に基づいて前記変調器により変調した光信号を出力する方法である。
 本発明によれば、光信号の信号品質の低下を抑制することが可能である。
本発明の第1の実施形態における光出力装置の構成例を示すブロック図である。 本発明の第1の実施形態における光出力装置の一例を説明するための図である。 本発明の第1の実施形態における光出力装置の動作例を示すフローチャートである。 本発明の第1の実施形態における光出力装置の変形例の構成例を示すブロック図である。 本発明の第1の実施形態における光出力装置の第1の変形例を説明するための図である。 本発明の第1の実施形態における光出力装置の第2の変形例の構成例を示すブロック図である。 本発明の第1の実施形態における光出力装置の第2の変形例を説明するための図である。 本発明の第2の実施形態における光出力装置の構成例を示すブロック図である。 本発明の第2の実施形態における光出力装置の動作例を示すフローチャートである。
 <第1の実施の形態>
 第1の実施形態における光出力装置1について、図1、図2及び図3に基づき説明する。図1は、光出力装置1の構成例を示すブロック図である。光出力装置1は、例えば、LiDAR装置である。また、図2は、後述する信号出力手段20について説明するための図である。また、図3は、光出力装置1の動作例を示すフローチャートである。
 第1の実施形態における光出力装置1について説明する。図1に示されるように、光出力装置1は、光出力手段10、信号出力手段20、変調器30及び制御手段40を備える。
 光出力手段10について説明する。光出力手段10は、任意の波長の光を出力する。例えば、光出力手段10は、レーザダイオードである。光出力手段10が出力した光は、変調器30に入力される。
 信号出力手段20について説明する。信号出力手段20は、所定の波形及び所定の周波数の有する電気信号を出力する。信号出力手段20から出力された電気信号は、変調器30に入力される。信号出力手段20は、例えばLSI(Large―Scale Integration)である。信号出力手段20は、図2に示されるように、第1の期間において第1の電気信号を出力する。また、信号出力手段20は、第1の期間外において、第2の電気信号を出力する。また、信号出力手段20は、第1の期間外において、第1の電気信号の振幅を、第1の期間に出力されていた第1の電気信号の振幅よりも低下させる。この際、信号出力手段20は、第1の期間外において、第1の電気信号を出力しないことが好ましい。
 なお、後述の制御手段40は、第1の電気信号により変調された光信号に基づいてバイアス電圧を調整する。そのため、第1の期間は、制御手段40がバイアス電圧を調整するのに十分な長さであることが好ましい。第1の電気信号は、例えばディザ信号である。また、第2の電気信号は、例えば変調信号である。
 なお、図2においては、第1の期間外の全てにおいて第2の電気信号が出力されていることが示されているが、第1の期間外の一部において第2の電気信号が出力されていても良い。また、信号出力手段20は、第1の期間外及び第1の期間においても、第2の電気信号を出力しても良い。また、図2に示されるように、第1の電気信号の振幅は、第2の電気信号の振幅よりも小さいことが好ましい。
 変調器30について説明する。変調器30は、信号出力手段20からの第1の電気信号及び第2の電気信号に応じて光出力手段10からの光を変調して、光信号を出力する。変調器30は、制御手段40からのバイアス電圧に従って制御される。変調器30は、光出力手段10から出力された光に、位相変調、周波数変調又は強度変調を行う。これにより、変調器30から出力された光信号は、対象物により反射されて受信される際に、光出力手段10からの参照光と干渉することによりコヒーレント検波されることが出来る。変調器30は、例えばマッハツェンダ変調器である。
 制御手段40について説明する。制御手段40には、変調器30からの光信号を分岐する不図示の光カプラから、変調器30からの光信号が入力される。この際、第1の電気信号の周波数を第2の電気信号の周波数よりも低くすることで、制御手段40は、自身が備える光電変換器及びローパスフィルタを介して、変調器30から出力された光信号のうち、第1の電気信号の成分のみを抽出できる。そして、制御手段40は、第1の電気信号の成分が小さくなるようにバイアス電圧を調整して、調整したバイアス電圧を変調器30に印加する。以上のように、制御手段40は、第1の電気信号に基づいて変調された光信号に基づくバイアス電圧を変調器30に印加する。
 次に図3を用いて、光出力装置1の動作について説明する。
 信号出力手段20は、第1の期間において第1の電気信号を出力する(S101)。
 変調器30は、第1の電気信号に基づいて光を変調して、光信号を出力する(S102)。
 制御手段40は、変調器30から出力された光信号に基づくバイアス電圧を、変調器30に印加する(S103)。具体的には、制御手段40の説明において詳述した方法に従って、調整されたバイアス電圧を変調器30に印加する。
 信号出力手段20は、第1の期間外において、第1の電気信号の振幅を低下させた上で第2の電気信号を出力する(S104)。この際、信号出力手段20は、第1の電気信号を出力しないことが好ましい。
 変調器30は、第2の電気信号に基づいて光を変調して、光信号を出力する(S105)。この際、制御手段40は、S103で変調器30に印加したバイアス電圧と同じ値のバイアス電圧を、変調器30に印加する。
 以上、光出力装置1の動作例について説明した。なお、再度、信号出力手段20が第1の電気信号を出力した場合、光出力装置1は、S101~S105の処理を行う。
 このように、光出力装置1においては、信号出力手段20は、第1の期間において第1の電気信号(ディザ信号)を出力し、第1の期間外において第1の電気信号の振幅を低下させた上で第2の電気信号(変調信号)を出力する。また、変調器30は、第1の電気信号(ディザ信号)及び第2の電気信号(変調信号)に基づいて変調した光信号を出力する。制御手段40は、第1の電気信号(ディザ信号)に基づいて変調された光信号に基づくバイアス電圧を変調器30に印加する。
 このように、本実施形態の光出力装置1においては、変調器30に第2の電気信号(変調信号)が入力される際には、第1の電気信号(ディザ信号)の振幅が低下する。したがって、第1の電気信号(ディザ信号)の振幅が低下されない場合に比べて、変調器30は、第2の電気信号(変調信号)に応じた光信号における強度レベルの変動を抑制できる。すなわち、本実施形態の光出力装置1は、光信号の信号品質の低下を抑制することが可能である。なお、光出力装置1においては、強度レベル変動に限らず、位相変動や周波数変動など、ディザ信号による影響を抑圧することができる。
 例えば、LiDAR技術に関連するToF(Time of Flight)技術においては、変調信号により変調された光信号を出力してから、対象物等により反射された光信号(反射光)を受信するまでの時間に基づいて、対象物までの距離等を測定する。そのため、反射光を受信したタイミングを正確に検出することが好ましい。一方で、光信号を出力する際に、第2の電気信号(変調信号)による変調だけでなく第1の電気信号(ディザ信号)による変調もかけると、第1の電気信号(ディザ信号)により強度レベルが変動した状態で光信号が出力される。このように、強度レベルが変動した状態で光信号が出力された場合、反射光のうち、強度レベルが下がった部分を受信したタイミングを正確に検出することが困難になる。
 また、反射された光信号は、自由空間中の伝搬及び対象物における散乱等により減衰する。光信号が大きく減衰した場合、送信時に光信号の強度レベルが変動していることにより、信号を受信したタイミングを検出できない場合がある。このように、測距対象の特性(形状等)及び測距環境(対象物までの距離等)が不明なため、LiDAR技術においては、強度レベルの変動を抑制することが好ましい。
 これに対して、本実施形態の光出力装置1は、変調器30に第2の電気信号(変調信号)が入力される際に第1の電気信号(ディザ信号)の振幅を低下させることにより、光信号の強度レベルの変動を抑制できる。すなわち、本実施形態の光出力装置1は、高品質な光信号を出力することが出来る。
 次に図1、図4及び図5を用いて、光出力装置1Aについて説明する。光出力装置1Aは、光出力装置1の第1の変形例である。光出力装置1Aは、例えば、LiDAR装置である。図4に示されるように、光出力装置1Aは、光出力装置1と同様に、光出力手段10、変調器30及び制御手段40を備える。また、光出力装置1Aは、信号出力手段20に代えて、信号出力手段20Aを備える。
 図4に示されるように、信号出力手段20Aは、第1の信号生成回路21A、第2の信号生成回路22A及び多重手段23を備える。
 第1の信号生成回路21Aは、第1の期間において第1の電気信号を出力する。具体的には、第1の信号生成回路21Aは、図5に示されるように、所定の時間をあけて、第1の電気信号を出力する。第1の信号生成回路21Aは、第1の期間外においては、第1の電気信号の振幅を、第1の期間における第1の電気信号よりも低下させる。なお、第1の信号生成回路21Aは、第1の期間外に第1の電気信号を出力しないことが好ましい。図5では、第1の期間外に第1の電気信号を出力しない場合について図示した。第1の信号生成回路21Aは、多重手段23に接続されている。第1の信号生成回路21Aは、例えばLSIである。
 第2の信号生成回路22Aは、第1の期間外において第2の電気信号を出力する。具体的には、第2の信号生成回路22Aは、図5に示されるように、第1の期間をあけて、第2の電気信号を出力する。なお、図5において、第2の信号生成回路22Aは、第1の期間外の全てにおいて第2の電気信号が出力することが示されているが、第1の期間外の一部において第2の電気信号が出力しても良い。また、第2の信号生成回路22Aは、第1の期間外及び第1の期間においても、第2の電気信号を出力しても良い。第2の信号生成回路22Aは、多重手段23に接続されている。第2の信号生成回路22Aは、例えばLSIである。
 多重手段23は、第1の信号生成回路21Aからの第1の電気信号及び第2の信号生成回路22Aからの第2の電気信号を多重して、変調器30へ出力する。多重手段23は、例えば、加算器である。
 なお、多重手段23を信号出力手段20Aに設ける代わりに、多重手段23が変調器30に設けられていても良い。この場合、第1の信号生成回路21Aからの第1の電気信号及び第2の信号生成回路22Aからの第2の電気信号は、変調器30が備える多重手段23により、多重される。
 光出力装置1Aの動作は、図3に示される光出力装置1の動作と同様である。
 次に図1、図6及び図7を用いて、光出力装置1Bについて説明する。光出力装置1Bは、光出力装置1の第2の変形例である。光出力装置1Bは、例えば、LiDAR装置である。図6に示されるように、光出力装置1Bは、光出力装置1と同様に、光出力手段10、変調器30及び制御手段40を備える。また、光出力装置1Bは、信号出力手段20に代えて、信号出力手段20Bを備える。
 図6に示されるように、信号出力手段20Bは、第1の信号生成回路21B、第2の信号生成回路22B及び選択手段24を備える。
 第1の信号生成回路21Bは、連続して第1の電気信号を出力する。具体的には、第1の信号生成回路21Bは、図7に示されるように、常時、第1の電気信号を出力する。第1の信号生成回路21Bは、選択手段24に接続されている。第1の信号生成回路21Bは、例えばLSIである。
 第2の信号生成回路22Bは、連続して第2の電気信号を出力する。具体的には、第2の信号生成回路22Bは、図7に示されるように、常時、第2の電気信号を出力する。第2の信号生成回路22Bは、選択手段24に接続されている。第2の信号生成回路22Bは、例えばLSIである。
 選択手段24は、第1の信号生成回路21Bからの第1の電気信号及び第2の信号生成回路22Bからの第2の電気信号のうち、何れか一方を変調器30へ出力する。具体的には、選択手段24は、第1の期間においては、第1の信号生成回路21Bからの第1の電気信号を変調器30へ出力する。また、選択手段24は、第1の期間外においては、第2の信号生成回路22Bからの電気信号を変調器30へ出力する。
 なお、選択手段24を信号出力手段20Bに設ける代わりに、選択手段24が変調器30に設けられていても良い。この場合、変調器30は、第1の信号生成回路21Bからの第1の電気信号及び第2の信号生成回路22Bからの第2の電気信号の何れか一方を、選択手段24により選択する。そして、変調器30は、選択した電気信号に基づいて、光出力手段10からの光を変調する。
 光出力装置1Bの動作は、図3に示される光出力装置1の動作と同様である。
<第2の実施の形態>
 本発明の第2の実施形態における光出力装置2について、図8及び図9に基づいて出力する。光出力装置2は、例えば、LiDAR装置である。図8は、光出力装置2の構成例を示すブロック図である。図9は、光出力装置2の動作例を示すフローチャートである。
 光出力装置2は、光出力装置1と同様に、光出力手段10、信号出力手段20、変調器30、制御手段40を備える。また、光出力装置2は、分岐手段50、遮光手段60及び遮光手段制御回路70を更に備える。
 分岐手段50は、変調器30から出力された光信号を分岐して、制御手段40及び遮光手段60に出力する。分岐手段50は、例えば光カプラである。
 遮光手段60は、第1の電気信号に基づいて変調された光信号を遮断し、第2の電気信号に基づいて変調された光信号を透過する。遮光手段60は、遮光手段制御回路70からの指示に応じて光信号を遮断する。遮光手段60は、例えば、光シャッターである。遮光手段60は、音響光学変調器又は半導体光増幅器であってもよい。
 遮光手段制御回路70は、遮光手段60に対して、分岐手段50からの光信号を遮断するタイミング及び透過するタイミングを指示する。具体的には、遮光手段制御回路70は、第1の期間において、遮光手段60に対して、光信号を遮断するように指示する。また、遮光手段制御回路70は、第1の期間外において、遮光手段60に対して光信号を透過するよう指示する。
 次に、図9を用いて、光出力装置2の動作について説明する。なお、図9に示されるフローチャートにおけるS201、S203及びS204の処理の各々は、光出力装置1の動作を示すフローチャートにおけるS101、S103及びS104の処理の各々と同様であるので、説明を省略する。
 図9に示されるS202の処理においては、S102の処理と同様に、変調器30は、第1の電気信号に基づいて光を変調する。S202の処理においては、更に、遮光手段制御回路70は、遮光手段60に遮光の指示を出す。これにより、遮光手段60は、変調器30からの光信号を遮光する。
 また、図9に示されるS205の処理においては、S105の処理と同様に、変調器30は、第2の電気信号に基づいて光を変調する。S205の処理においては、更に、遮光手段制御回路70は、遮光手段60に透過の指示を出す。これにより、遮光手段60は、変調器30からの光信号を透過する。
 以上、光出力装置2の動作例について説明した。
 このように、光出力装置2は、光出力装置1が加える構成に加えて、第1の電気信号(ディザ信号)に基づいて変調された光信号を遮断し、第2の電気信号(変調信号)に基づいて変調された光信号を透過する遮光手段60を備える。
 これにより、光出力装置2は、第1の電気信号(ディザ信号)に基づいて変調された光信号の出力を抑制できる。例えば、ToF技術においては、受信した光の強度に基づいて、第2の電気信号(変調信号)より変調された光信号の反射光を受信したタイミングを検出する。この際に、第1の電気信号(ディザ信号)に基づいて変調された光信号が光出力装置2から出力されていると、反射光の中に第1の電気信号(ディザ信号)に基づいて変調された光信号の反射光も含まれる。この場合、第1の電気信号(ディザ信号)に基づいて変調された光信号の反射光によって、第2の電気信号(変調信号)に基づいて変調された光信号の反射光の受信を誤検出してしまう等の悪影響を与える。
 そのため、本実施形態の光出力装置2のように、第1の電気信号(ディザ信号)に基づいて変調された光信号の出力を抑制することより、第2の電気信号(変調信号)に基づいて変調された光信号の反射光の受信タイミングを受信装置に正確に検出させることができる。
 また、光出力装置2において、遮光手段60の後段に光増幅器が備えられている場合、第1の電気信号(ディザ信号)に基づいて変調された光信号の出力を抑制することで、第2の電気信号(変調信号)に基づいて変調された光信号を効率よく増幅することが出来る。
 また、遮光手段60は、音響光学変調器又は光増幅器である。一般的に、音響光学変調器及び光増幅器においては、ディザ信号を用いたバイアス制御をする必要が無い。そのため、本実施形態の光出力装置2は、遮光手段60にLN変調器等を用いる場合に比べて、第2の電気信号(変調信号)に応じた光信号を精度よく出力できる。
 以上、実施形態を参照して本願発明を説明したが、本願発明は上記実施形態に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
1、1A、2 光出力装置
10 光出力手段
20、20A、20B 信号出力手段
21A、21B 第1の信号生成回路
22A、22B 第2の信号生成回路
23 多重手段
24 選択手段
30 変調器
40 制御手段
50 分岐手段
60 遮光手段
70 遮光手段制御回路

Claims (9)

  1.  第1の期間において第1の電気信号を出力し、前記第1の期間外において前記第1の電気信号の振幅を低下させた上で第2の電気信号を出力する信号出力手段と、
     前記第1の電気信号及び前記第2の電気信号に基づいて変調した光信号を出力する変調器と、
     前記第1の電気信号に基づいて変調された前記光信号に基づくバイアス電圧を前記変調器に印加する制御手段と、を備えるLiDAR装置。
  2.  前記信号出力手段は、前記第1の期間外において、前記第1の電気信号を出力せずに、前記第2の電気信号を出力する請求項1に記載のLiDAR装置。
  3.  前記第1の電気信号に基づいて変調された前記光信号を遮断し、前記第2の電気信号に基づいて変調された前記光信号を透過する遮光手段を、
     更に備えた請求項1又は2に記載のLiDAR装置。
  4.  前記信号出力手段は、
     前記第1の期間において前記第1の電気信号を生成する第1の信号生成回路と、
     前記第1の期間外において前記第2の電気信号を生成する第2の信号生成回路と、
     前記第1の信号生成回路からの前記第1の電気信号及び前記第2の信号生成回路からの前記第2の電気信号を多重して出力する多重手段と、を備える請求項1から3の何れか1項に記載のLiDAR装置。
  5.  前記信号出力手段は、
     前記第1の電気信号を生成する第1の信号生成回路と、
     前記第2の電気信号を生成する第2の信号生成回路と、
     前記第1の期間において前記第1の信号生成回路からの前記第1の電気信号を出力し、前記第1の期間外において前記第2の信号生成回路からの前記第2の電気信号を出力する選択手段と、を備える請求項1~4の何れか1項に記載のLiDAR装置。
  6.  前記遮光手段は、音響光学変調器又は光増幅器である請求項1~5の何れか1項に記載のLiDAR装置。
  7.  前記変調手段は、前記第1の電気信号及び前記第2の電気信号に基づいて位相変調又は周波数変調した光信号を出力する請求項1~6の何れか1項に記載のLiDAR装置。
  8.  第1の期間において第1の電気信号を出力し、前記第1の期間外において前記第1の電気信号の振幅を低下させた上で第2の電気信号を出力する信号出力手段と、
     前記第1の電気信号又は前記第2の電気信号に基づいて変調した光信号を出力する変調器と、
     前記第1の電気信号に基づいて変調された前記光信号に基づくバイアス電圧を前記変調器に印加する制御手段と、を備えるLiDARシステム。
  9.  第1の期間において第1の電気信号を出力し、
     前記第1の電気信号に基づいて変調器により変調した光信号を出力し、
     前記第1の電気信号に基づいて変調された前記光信号に基づくバイアス電圧を前記変調器に印加し、
     第1の期間外において前記第1の電気信号の振幅を低下させた上で第2の電気信号を出力し、
     前記第2の電気信号に基づいて前記変調器により変調した光信号を出力するLiDARによる測定方法。
PCT/JP2019/042888 2019-10-31 2019-10-31 LiDAR装置、LiDARシステム及びLiDARによる測定方法 WO2021084710A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2019/042888 WO2021084710A1 (ja) 2019-10-31 2019-10-31 LiDAR装置、LiDARシステム及びLiDARによる測定方法
US17/770,091 US20220357447A1 (en) 2019-10-31 2019-10-31 LiDAR DEVICE, LiDAR SYSTEM, AND MEASUREMENT METHOD USING LiDAR
JP2021554004A JP7347532B2 (ja) 2019-10-31 2019-10-31 LiDAR装置、LiDARシステム及びLiDARによる測定方法
EP19950787.2A EP4053595A4 (en) 2019-10-31 2019-10-31 LIDAR DEVICE, LIDAR SYSTEM AND METHOD OF MEASURING USING LIDAR

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/042888 WO2021084710A1 (ja) 2019-10-31 2019-10-31 LiDAR装置、LiDARシステム及びLiDARによる測定方法

Publications (1)

Publication Number Publication Date
WO2021084710A1 true WO2021084710A1 (ja) 2021-05-06

Family

ID=75715016

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/042888 WO2021084710A1 (ja) 2019-10-31 2019-10-31 LiDAR装置、LiDARシステム及びLiDARによる測定方法

Country Status (4)

Country Link
US (1) US20220357447A1 (ja)
EP (1) EP4053595A4 (ja)
JP (1) JP7347532B2 (ja)
WO (1) WO2021084710A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05302977A (ja) * 1992-04-24 1993-11-16 Agency Of Ind Science & Technol 距離測定装置
JP2004037647A (ja) * 2002-07-01 2004-02-05 Mitsubishi Electric Corp 光送信装置
JP2008292985A (ja) * 2007-04-23 2008-12-04 Opnext Japan Inc 光送信器
US20100119239A1 (en) * 2008-11-12 2010-05-13 Lockheed Martin Corporation Bias control apparatus and method for optical modulator
WO2019116549A1 (ja) 2017-12-15 2019-06-20 日本電気株式会社 測距装置及び制御方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1048582A (ja) * 1996-08-08 1998-02-20 Mitsubishi Electric Corp 変調装置、送信装置、変調方法及び通信システム
US6907052B2 (en) * 2003-02-19 2005-06-14 The Aerospace Corporation Tunable optical local oscillator
JP2017147622A (ja) 2016-02-17 2017-08-24 富士通オプティカルコンポーネンツ株式会社 光送信機、及び制御方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05302977A (ja) * 1992-04-24 1993-11-16 Agency Of Ind Science & Technol 距離測定装置
JP2004037647A (ja) * 2002-07-01 2004-02-05 Mitsubishi Electric Corp 光送信装置
JP2008292985A (ja) * 2007-04-23 2008-12-04 Opnext Japan Inc 光送信器
US20100119239A1 (en) * 2008-11-12 2010-05-13 Lockheed Martin Corporation Bias control apparatus and method for optical modulator
WO2019116549A1 (ja) 2017-12-15 2019-06-20 日本電気株式会社 測距装置及び制御方法

Also Published As

Publication number Publication date
JP7347532B2 (ja) 2023-09-20
US20220357447A1 (en) 2022-11-10
JPWO2021084710A1 (ja) 2021-05-06
EP4053595A1 (en) 2022-09-07
EP4053595A4 (en) 2022-11-09

Similar Documents

Publication Publication Date Title
US9184834B1 (en) Method and apparatus for detection and correction of time skew in an optical transmitter
US8000612B2 (en) Optical transmission device
US8929731B2 (en) Apparatus for measuring performance of coherent optical receiver
KR100221265B1 (ko) 주기적 파형을 이용한 동기형 편광 및 위상 변조장치 및 방법
JP2010028741A (ja) 光送信装置
US20100129088A1 (en) Optical transmission apparatus
JP6805687B2 (ja) 光モジュールおよび光変調器のバイアス制御方法
JP2011188325A (ja) 偏波多重光送信器、および、偏波多重光信号の制御方法
CN109104245B (zh) 多通道无杂散宽频带非合作信号稳相传输系统
EP1965519A1 (en) Optical receiver and optical transmitter
JP5334619B2 (ja) 光路長制御装置
US10003408B2 (en) Receiving method and receiver device for a coherent optical communication system
WO2021084710A1 (ja) LiDAR装置、LiDARシステム及びLiDARによる測定方法
WO2006011410A1 (ja) 変調器、光送信器および光伝送装置
US20210297159A1 (en) Optical Transmitter/Receiver and Method for Controlling Optical Transmitter/Receiver
JP2009246578A (ja) 光送信装置及び光試験装置
JP6947294B2 (ja) 測距装置及び制御方法
JP2010233176A (ja) 光送信器
JP2009246579A (ja) 光送信装置及び光試験装置
CN110988510B (zh) 基于光载无线电的相位噪声检测方法及装置
US10749604B2 (en) Optical phase distortion compensating device and method of compensating optical phase distortion
JP6783743B2 (ja) 偏波多重光信号伝送システム
JP5424939B2 (ja) 光位相雑音抑圧回路及び位相揺らぎ検出回路及び位相揺らぎ検出方法
US8798481B2 (en) Method and system for compensation of laser phase/frequency noise in an optical device
WO2023144868A1 (ja) 光パルス生成装置及び生成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19950787

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021554004

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019950787

Country of ref document: EP

Effective date: 20220531