WO2021083266A1 - 壳体组件及其制备方法和电子设备 - Google Patents

壳体组件及其制备方法和电子设备 Download PDF

Info

Publication number
WO2021083266A1
WO2021083266A1 PCT/CN2020/124756 CN2020124756W WO2021083266A1 WO 2021083266 A1 WO2021083266 A1 WO 2021083266A1 CN 2020124756 W CN2020124756 W CN 2020124756W WO 2021083266 A1 WO2021083266 A1 WO 2021083266A1
Authority
WO
WIPO (PCT)
Prior art keywords
dimensional texture
glass
texture
glass substrate
dimensional
Prior art date
Application number
PCT/CN2020/124756
Other languages
English (en)
French (fr)
Inventor
李聪
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to EP20882733.7A priority Critical patent/EP4040928A4/en
Publication of WO2021083266A1 publication Critical patent/WO2021083266A1/zh
Priority to US17/725,528 priority patent/US20220248552A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K5/00Casings, cabinets or drawers for electric apparatus
    • H05K5/02Details
    • H05K5/0217Mechanical details of casings
    • H05K5/0243Mechanical details of casings for decorative purposes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/0202Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
    • H04M1/0279Improving the user comfort or ergonomics
    • H04M1/0283Improving the user comfort or ergonomics for providing a decorative aspect, e.g. customization of casings, exchangeable faceplate
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C15/00Surface treatment of glass, not in the form of fibres or filaments, by etching
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2204/00Glasses, glazes or enamels with special properties
    • C03C2204/08Glass having a rough surface
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • C03C2217/72Decorative coatings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/15Deposition methods from the vapour phase

Definitions

  • the present disclosure relates to the technical field of electronic equipment, and in particular, to a housing assembly, a preparation method thereof, and electronic equipment.
  • a UV glue texture layer is often formed on the PET film through UV transfer.
  • the PET film layer is prone to aging and deformation, causing the UV texture layer attached to the PET film layer to crack and the texture effect to deteriorate.
  • the UV texture layer formed by exposure is prone to breakage or bubbles, and the yield is low.
  • an object of the present invention is to provide a shell assembly that directly forms a double-layer three-dimensional texture on two opposite surfaces of glass, and forms a special moiré appearance through the optical interference of the double-layer three-dimensional texture.
  • the present disclosure provides a housing assembly.
  • the housing assembly includes a glass substrate having a first surface and a second surface opposite to each other, the first surface having a first three-dimensional texture, and the second surface having a first surface.
  • Two-dimensional texture, the orthographic projection of the first three-dimensional texture in the vertical direction and the orthographic projection of the second three-dimensional texture in the vertical direction do not completely overlap, so that the reflection of the first three-dimensional texture and the second three-dimensional texture Light interferes.
  • a double-layer three-dimensional texture is directly formed on the two opposite surfaces of the glass without spraying UV glue, which improves the production yield, and the three-dimensional texture directly formed on the glass surface has been fixed and is not easily deformed, which is a good solution
  • the shell components can form a special moiré appearance, presenting a more dazzling and three-dimensional appearance decoration effect, which can greatly improve the appearance of the product.
  • Strength and competitiveness are the shell components that can form a special moiré appearance, presenting a more dazzling and three-dimensional appearance decoration effect, which can greatly improve the appearance of the product. Strength and competitiveness.
  • the present disclosure provides a method of preparing a housing assembly.
  • the method includes: forming a dry film with a predetermined pattern on two opposite surfaces of the glass to obtain a glass to be etched; immersing the glass to be etched in an etching solution for a predetermined time to obtain a glass substrate
  • the glass substrate has a first surface and a second surface opposite to each other, the first surface has a micron-level first three-dimensional texture formed by etching, and the second surface has a micron-level second three-dimensional texture formed by etching, so
  • the orthographic projection of the first three-dimensional texture in the vertical direction and the orthographic projection of the second three-dimensional texture in the vertical direction do not completely overlap, and cause the reflected light of the first three-dimensional texture and the second three-dimensional texture to interfere;
  • the dry film on the glass substrate includes: forming a dry film with a predetermined pattern on two opposite surfaces of the glass to obtain a glass to be etched; immersing the glass to be etched in an
  • the method can quickly and efficiently prepare a shell assembly with a double-layer three-dimensional texture, with simple steps, easy operation, high production yield, and the obtained shell assembly can form a special moiré appearance, presenting a more dazzling and three-dimensional appearance It has a decorative appearance and is not easy to be deformed after long-term use.
  • the present disclosure provides an electronic device.
  • the electronic device includes: the aforementioned housing assembly, the housing assembly defines an accommodating space; and a display screen, in which the display screen is arranged in the accommodating space.
  • the electronic device has a double-layer three-dimensional texture, can present a special moiré appearance, presents a more dazzling and three-dimensional appearance decoration effect, is not easy to be deformed after long-term use, and has a longer service life.
  • Fig. 1 is a schematic structural diagram of a housing assembly according to an embodiment of the present disclosure.
  • Fig. 2 is a schematic structural diagram of a housing assembly according to another embodiment of the present disclosure.
  • Fig. 3 is a schematic diagram of an orthographic projection of a first surface of a glass substrate in a vertical direction according to an embodiment of the present disclosure.
  • Fig. 4 is a schematic diagram of an orthographic projection of a first surface of a glass substrate in a vertical direction according to another embodiment of the present disclosure.
  • Fig. 5 is a schematic diagram of an orthographic projection of a first surface of a glass substrate in a vertical direction according to another embodiment of the present disclosure.
  • Fig. 6 is a schematic structural diagram of a housing assembly according to another embodiment of the present disclosure.
  • Fig. 7 is a schematic structural diagram of an electronic device according to an embodiment of the present disclosure.
  • FIG. 8 is a photograph of the glass shell obtained in Example 1 of the present disclosure.
  • the present disclosure provides a housing assembly.
  • the housing assembly includes: a glass substrate 10 having a first surface 11 and a second surface 12 opposed to each other, and the first surface has a micron-level first three-dimensional texture 110.
  • the second surface has a micron-level second three-dimensional texture 120, and the orthographic projection of the first three-dimensional texture 110 in the vertical direction and the orthographic projection of the second three-dimensional texture 120 in the vertical direction are incomplete Overlap, so that the reflected light of the first three-dimensional texture 110 and the second three-dimensional texture 120 interfere.
  • a double-layer three-dimensional texture is directly formed on the two opposite surfaces of the glass without spraying UV glue, which improves the production yield, and the three-dimensional texture directly formed on the glass surface has been fixed and is not easily deformed, which is a good solution
  • the shell components can form a special moiré appearance, presenting a more dazzling and three-dimensional appearance decoration effect, which can greatly improve the appearance of the product.
  • Strength and competitiveness are the shell components that can form a special moiré appearance, presenting a more dazzling and three-dimensional appearance decoration effect, which can greatly improve the appearance of the product. Strength and competitiveness.
  • interference is a phenomenon in which waves of two or more rows overlap in space to form a new waveform.
  • the three-dimensional texture of the light irradiated on the housing At this time, due to the uneven surface of the three-dimensional texture, the optical path between the reflected light at different positions will be different, so that the reflected light will interfere, so that the reflected light at different positions on the first three-dimensional texture surface will occur.
  • the reflected light at different positions on the surface of the second three-dimensional texture will also interfere, and at the same time there will be interference between the reflected light of the first three-dimensional texture and the reflected light of the second three-dimensional texture, which is the interference effect of the two-dimensional texture
  • the outer surface of the shell can present light and dark fringes generated by interference, that is, moiré, forming a special appearance effect.
  • the specific moiré shape and arrangement can be adjusted according to the shape and arrangement of the first three-dimensional texture and the second three-dimensional texture.
  • micron-level first three-dimensional texture and “micron-level second three-dimensional texture” in this article mean that the line width and line spacing of the first three-dimensional texture and the second three-dimensional texture are both on the micron level, that is It is in the range of 1 to 1000 microns. If the line width and line spacing are too small, on the one hand, it is not easy to process, and on the other hand, when the light shines on the texture of too small size, the phenomenon of light splitting will occur, and the moiré appearance under the condition of micron-level texture will not appear. If the line pitch is too large, the interference condition cannot be satisfied, and the moiré appearance cannot be produced.
  • the specific type of glass substrate can be any glass suitable for electronic device housings, for example, silicate glass (e.g., quartz glass, high silica glass, soda lime glass, aluminosilicate glass). , Borosilicate glass, etc.), borate glass, phosphate glass, etc.
  • the thickness of the glass substrate may be 0.5-8mm, such as 0.5mm, 0.6mm, 0.7mm, 0.8mm, 0.9mm, 1mm, 2mm, 3mm, 4mm, 5mm, 6mm, 7mm, 8mm, etc.
  • the specific structure of the glass substrate can also be selected according to actual needs, for example, it can be flat glass, 2.5D glass or 3D glass.
  • the first three-dimensional texture 110 and the second three-dimensional texture 120 may both be recessed toward the inside of the glass substrate 10. Therefore, under the premise of ensuring a good moiré appearance, it can be conveniently prepared through an etching process, and the edges and corners of the texture are recessed inward, which is not easy to be damaged or destroyed.
  • the specific shape, distribution position, size, etc. of the first three-dimensional texture and the second three-dimensional texture can be adjusted according to the desired appearance effect.
  • the line width (that is, the width of the three-dimensional texture) d1 of the first three-dimensional texture 110 and the line width d2 of the second three-dimensional texture 120 are independently 1-100 microns (specifically, it can be 100 microns).
  • the line distance of the first three-dimensional texture 110 (that is, the distance between two adjacent three-dimensional textures) w1 and the line distance w2 of the second three-dimensional texture 120 are independently 1 to 150 Micrometers (specifically 150 micrometers, 140 micrometers, 130 micrometers, 120 micrometers, 110 micrometers, 100 micrometers, 50 micrometers, 20 micrometers, 10 micrometers, 5 micrometers, 1 micrometers, etc.); in some specific embodiments, the first The texture depth h1 of the three-dimensional texture 110 and the texture depth h2 of the second three-dimensional texture 120 are each independently 1-100 microns (specifically, they can be 100
  • the double-layer three-dimensional texture can cause the reflected light to interfere, thereby presenting a special moiré appearance, the appearance effect is more three-dimensional and more dazzling, and the decorative effect is better.
  • the orthographic projection shapes of the first three-dimensional texture 110 and the second three-dimensional texture 120 in the vertical direction are independently any one of geometric figures and irregular figures.
  • the geometric figures may include circles (refer to FIG. 3, taking the first three-dimensional texture as an example), polygons (specifically, triangles, four sides, pentagons, hexagons, etc.) (refer to FIG. 4).
  • the orthographic projection projection is quadrilateral
  • the arc shape and the multi-arc shape. Irregular graphics can be flexibly set according to the appearance effect you want to present, so I won't repeat them here.
  • the orthographic projections of the first three-dimensional texture and the second three-dimensional texture in the vertical direction do not completely overlap.
  • the first three-dimensional texture and the second three-dimensional texture may be different in shape, size, or arrangement. The methods are different.
  • the first three-dimensional texture may be a plurality of parallel strip textures
  • the second three-dimensional texture may be a plurality of dot-shaped textures distributed in an array; or the first three-dimensional texture and the second three-dimensional texture are both multiple parallel
  • the strip texture of the two, but the line width and line spacing of the two are different; or, the shape and size of the first three-dimensional texture and the second three-dimensional texture are multiple parallel strip textures, and the lengths of the two strip textures are the same Cross, for example, perpendicular to each other, with an angle of 45 degrees, and so on.
  • the housing assembly may further include: a coating layer 20, the coating layer 20 is disposed on the first surface; a bottom cover ink layer 30, the bottom cover ink layer 30 is disposed on the The coating layer 20 is on the surface away from the glass substrate 10. Therefore, the combination of the coating layer and the bottom ink layer can make the housing assembly have rich and gorgeous colors, and combined with the optical interference effect of the double-layer three-dimensional texture, the housing assembly can present a gorgeous and three-dimensional appearance effect.
  • the coating layer may have a single-layer structure or a multi-layer structure.
  • the material of the coating layer may be at least one of silicon dioxide, titanium dioxide, and niobium pentoxide, such as a multilayer structure in which titanium dioxide and silicon dioxide are alternately arranged.
  • the bottom cover ink layer can be an ink layer with a predetermined color. In some specific embodiments, it can be a black ink layer, etc., so that the light shielding effect is better, which is conducive to achieving a better appearance effect.
  • the bottom cover ink layer can be Single-layer structure or multi-layer structure. The specific composition and thickness of each ink layer can be the same or different.
  • the specific composition of the ink can be the common ink used in the housing of electronic equipment, and the thickness can be 10-15 microns.
  • the bottom cover ink layer has a multilayer structure, it can be formed by multiple coatings with the same ink, specifically, it can be formed by 2 to 3 coatings, each coating with a thickness of 3 to 5 microns.
  • the refractive index of the coating layer and the glass substrate are different. Therefore, the interface between the glass substrate and the coating layer can be made more obvious, the texture effect is stronger, and the optical interference effect of the double-layer three-dimensional texture on the glass substrate is better, thereby achieving a more gorgeous and three-dimensional appearance effect. It can be understood that the greater the difference in refractive index between the coating layer and the glass substrate, the clearer the interface between the two, and the stronger the interference effect of the double-layer three-dimensional texture.
  • the coating layer and the glass substrate The refractive index difference of the glass substrate may be greater than or equal to 0.5, specifically such as 0.5, 0.6, 0.7, 0.8, 0.9, 1, etc. Therefore, the appearance effect of the housing assembly is more gorgeous and three-dimensional, and the decorative effect is better.
  • the present disclosure provides a method of preparing a housing assembly.
  • the method includes: forming a dry film with a predetermined pattern on two opposite surfaces of the glass to obtain a glass to be etched; immersing the glass to be etched in an etching solution for a predetermined time to obtain a glass substrate
  • the glass substrate has a first surface and a second surface opposite to each other, the first surface has a micron-level first three-dimensional texture formed by etching, and the second surface has a micron-level second three-dimensional texture formed by etching, so
  • the orthographic projection of the first three-dimensional texture in the vertical direction and the orthographic projection of the second three-dimensional texture in the vertical direction do not completely overlap, and cause the reflected light of the first three-dimensional texture and the second three-dimensional texture to interfere;
  • the dry film on the glass substrate includes: forming a dry film with a predetermined pattern on two opposite surfaces of the glass to obtain a glass to be etched; immersing the glass to be etched in an
  • the method can quickly and efficiently prepare a shell assembly with a double-layer three-dimensional texture, with simple steps, easy operation, high production yield, and the obtained shell assembly can form a special moiré appearance, presenting a more dazzling and three-dimensional appearance It has a decorative appearance and is not easy to be deformed after long-term use. At the same time, it can be understood that this method can be used to prepare the aforementioned housing assembly.
  • forming a dry film with a predetermined pattern on two opposite surfaces of the glass may include: providing a whole layer of dry film, superimposing a film with a preset pattern on the whole layer of dry film, and then sequentially exposing and developing. Obtain an exposed area and an unexposed area; remove the dry film in the unexposed area to obtain a dry film with a predetermined pattern; then stick the dry film with a predetermined pattern on two opposite surfaces of the glass. It is understandable that the entire layer of dry film can be formed on the two opposite surfaces of the glass before being superimposed with the film. Specifically, the dry film can be sprayed directly on the surface of the glass, or the prepared dry film can be pasted.
  • the preset pattern film can be prepared by computer typesetting, and the preset pattern film has the effect of fine texture. It should be noted that, in order to ensure the interference effect of the double-layer three-dimensional texture, the predetermined patterns of the dry film on the two opposite surfaces of the glass are different.
  • the dry film mainly plays a role of protecting the glass, specifically so that the part covered by the dry film will not be etched in the subsequent steps, and can resist the attack of the etching solution for a long time without falling off or dissolving.
  • the dry film can be a photosensitive and acid-resistant film, specifically a polymer film, which can be prepared from polyimide, liquid crystal polymer or polyethylene naphthalate film, under ultraviolet light irradiation It will be cross-linked and cured. When it is covered by film, it is directly exposed to ultraviolet light. The illuminated part is cured, and the non-illuminated part is still uncured. The uncured photosensitive film can be removed by development.
  • the developer may be a sodium carbonate solution with a mass concentration of 0.5% to 1%, so that a predetermined pattern corresponding to the preset pattern film is formed on the dry film.
  • the glass to be etched can be directly immersed in an etching solution for etching, so as to form a three-dimensional texture at a location not covered by the dry film.
  • the etching solution used may be a hydrofluoric acid solution with a mass concentration of 5-10%.
  • the etching time can be adjusted according to the size of the three-dimensional texture, the etching speed of the etching solution, etc.
  • the etching time (that is, the predetermined time mentioned above) can be 1-10 minutes, such as 1 minute, 2 Minutes, 3 minutes, 4 minutes, 5 minutes, 6 minutes, 7 minutes, 8 minutes, 9 minutes, 10 minutes, etc.
  • the glass substrate may be cleaned to remove the etching solution remaining on the glass surface.
  • water can be used to wash or ultrasonically clean the glass substrate, and then the cleaned glass substrate can be dried for subsequent steps.
  • the method for removing the dry film with a predetermined pattern on the glass substrate is not particularly limited, as long as the dry film can be effectively removed without damaging the glass substrate.
  • a deplating process is used to remove the dry film with a predetermined pattern. The specific steps and parameters can be performed with reference to conventional techniques, which will not be repeated here.
  • the method may further include: forming a coating layer on the first surface; and forming an undercover ink layer on the surface of the coating layer away from the glass substrate.
  • the coating layer can be formed by methods such as physical vapor deposition, chemical vapor deposition, and the bottom ink layer can be formed by processes such as silk screen printing, coating, printing, and printing.
  • the specific operation steps and parameters can be performed with reference to conventional techniques. This will not be repeated one by one.
  • the present disclosure provides an electronic device.
  • the electronic device includes: the aforementioned housing assembly 100, the housing assembly 100 defines an accommodation space; the display screen 200, the display screen 200 is set in the accommodation In space.
  • the electronic device has a double-layer three-dimensional texture, can present a special moiré appearance, presents a more dazzling and three-dimensional appearance decoration effect, is not easy to be deformed after long-term use, and has a longer service life.
  • the specific type of the electronic device is not particularly limited, including but not limited to mobile phones, tablet computers, wearable devices, game consoles, televisions, etc. It can also be understood that, in addition to the aforementioned housing components and In addition to the display screen, the electronic device can also include the necessary components and structures of conventional electronic devices. Taking a mobile phone as an example, it can also include touch components, fingerprint recognition modules, camera modules, motherboards, storage, batteries, etc. I will not repeat them one by one here.
  • S1 Provide a 3D glass cover with a thickness of 0.6mm (refractive index of 1.5), and spray a photosensitive and acid-resistant film (polyimide film) on the front and back of the glass cover;
  • a photosensitive and acid-resistant film polyimide film
  • the patterns correspond, where the front three-dimensional texture pattern is a plurality of parallel strip textures, the line width is 8 microns, the line spacing is 20 microns, and the depth is 5 microns; the back three-dimensional texture pattern is a plurality of parallel strips. Texture, and the length direction of the strip texture in the first three-dimensional texture and the second three-dimensional texture has an angle of 45 degrees, the line width is 8 micrometers, the line spacing is 20 micrometers, and the depth is 5 micrometers;
  • S1 Provide a 3D glass cover with a thickness of 0.3mm (refractive index of 1.5), and spray a photosensitive and acid-resistant film (polyimide film) on the front and back of the glass cover;
  • a photosensitive and acid-resistant film polyimide film
  • the front three-dimensional texture pattern is a plurality of parallel settings
  • the line width is 8 microns
  • the line spacing is 20 microns
  • the depth is 5 microns
  • the back three-dimensional texture pattern is a plurality of parallel strip textures
  • the first three-dimensional texture and the second three-dimensional texture are the bars
  • the length of the texture has an angle of 45 degrees
  • the line width is 8 microns
  • the line spacing is 20 microns
  • the depth is 5 microns
  • step S6 The back surface of the 3D glass obtained in step S5 is vacuum coated to form a coating layer with a specific color (refractive index is 1.43);
  • S1 Provide a 3D glass cover with a thickness of 0.7mm (refractive index of 1.5), and spray a photosensitive and acid-resistant film (liquid crystal polymer film) on the front and back of the glass cover;
  • a photosensitive and acid-resistant film liquid crystal polymer film
  • step S6 The back surface of the 3D glass obtained in step S5 is vacuum coated to form a coating layer with a specific color (refractive index is 1.65);
  • S1 Provide a 3D glass cover with a thickness of 1mm (refractive index of 1.5), and spray a photosensitive and acid-resistant film (polyethylene naphthalate film) on the front and back of the glass cover;
  • a photosensitive and acid-resistant film polyethylene naphthalate film
  • step S6 The back surface of the 3D glass obtained in step S5 is vacuum coated to form a coating layer with a specific color (refractive index is 1.58);
  • S1 Provide a 3D glass cover with a thickness of 3mm (refractive index of 1.5), and spray a photosensitive and acid-resistant film (polyimide film) on the front and back of the glass cover;
  • a photosensitive and acid-resistant film polyimide film
  • the set strip texture has a line width of 8 microns, a line spacing of 20 microns, and a depth of 5 microns;
  • the back three-dimensional texture pattern is a plurality of parallel strip textures, and the stripes in the first three-dimensional texture and the second three-dimensional texture
  • step S6 The back surface of the 3D glass obtained in step S5 is vacuum coated to form a coating layer with a specific color (refractive index is 1.53);
  • S1 Provide a 3D glass cover with a thickness of 5mm (refractive index of 1.5), and spray a photosensitive and acid-resistant film (polyimide film) on the front and back of the glass cover;
  • a photosensitive and acid-resistant film polyimide film
  • the set strip texture has a line width of 100 microns, a line spacing of 100 microns, and a depth of 100 microns;
  • the back three-dimensional texture pattern is a plurality of parallel strip textures, and the stripes in the first three-dimensional texture and the second three-dimensional texture
  • the length direction of the shaped texture has an angle of 45 degrees, the line width is 30 microns, the line spacing is 150 microns, and the depth is 100 microns;
  • step S6 The back surface of the 3D glass obtained in step S5 is vacuum coated to form a coating layer with a specific color (refractive index is 1.45);
  • the decorative film includes a PET (polyethylene terephthalate) substrate and sequentially formed on the PET The UV transfer texture layer and the cover ink layer on the substrate.
  • Example 2 Same as Example 2, the difference is that only the back surface of the glass substrate has texture.
  • Accelerated aging test UV aging test (for example, refer to ASTM G154) is carried out on the shells of the above examples and comparative examples. The results show that the shells of Examples 1-6 and Comparative Example 2 have no significant changes before and after the test. The PET substrate in the case of ratio 1 is deformed and cracked.
  • first and second are only used for description purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Therefore, the features defined with “first” and “second” may explicitly or implicitly include one or more of these features.
  • “plurality” means two or more than two, unless otherwise specifically defined.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Signal Processing (AREA)
  • Laminated Bodies (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

本公开提供了壳体组件及其制备方法和电子设备,该壳体组件包括:玻璃基体,所述玻璃基体具有相对的第一表面和第二表面,所述第一表面具有微米级第一立体纹理,所述第二表面上具有微米级第二立体纹理,所述第一立体纹理在垂直方向上的正投影和所述第二立体纹理在所述垂直方向上的正投影不完全重叠,以使得第一立体纹理和第二立体纹理的反射光发生干涉。该壳体组件中,直接在玻璃两个相对的表面形成双层立体纹理,提高了制作良率,不易变形,很好地解决了装饰可靠性及制作良率的问题,并通过双层纹理的光学干涉可以使得壳体组件形成特殊的摩尔纹外观,呈现出更炫更立体的外观装饰效果,可以极大地提高产品的外观吸引力和竞争力。

Description

壳体组件及其制备方法和电子设备
优先权信息
本公开请求2019年11月1日向中国国家知识产权局提交的、专利申请号为201911061864.3的专利申请的优先权和权益,并且通过参照将其全文并入此处。
技术领域
本公开涉及电子设备技术领域,具体的,涉及壳体组件及其制备方法和电子设备。
背景技术
现有技术,为了在玻璃外观上显示出美观的纹理,常在PET膜片上通过UV转印形成UV胶纹理层。长期使用过程中,PET膜层容易发生老化和变形,使得PET膜层上附着的UV纹理层发生开裂,纹理效果变差。为了避免PET变形带来的纹理开裂,有人提出直接在玻璃内表面直接喷涂UV胶,然后通过带有纹理的模具滚压UV胶,然后经过紫外曝光处理后形成UV胶纹理层,但在玻璃表面通过曝光方式形成UV纹理层容易出现断线或气泡,良率低。
因而,目前的玻璃壳体外观装饰相关技术仍有待改进。
发明内容
本发明旨在至少在一定程度上解决相关技术中的技术问题之一。为此,本发明的一个目的在于提出一种直接在玻璃两个相对的表面形成双层立体纹理,并通过双层立体纹理的光学干涉使壳体组件形成特殊的摩尔纹外观的壳体组件。
在本公开的一个方面,本公开提供了一种壳体组件。根据本公开的实施例,该壳体组件包括:玻璃基体,所述玻璃基体具有相对的第一表面和第二表面,所述第一表面具有第一立体纹理,所述第二表面上具有第二立体纹理,所述第一立体纹理在垂直方向上的正投影和所述第二立体纹理在所述垂直方向上的正投影不完全重叠,以使得第一立体纹理和第二立体纹理的反射光发生干涉。该壳体组件中,直接在玻璃两个相对的表面形成双层立体纹理,无需喷涂UV胶,提高了制作良率,且在玻璃表面直接形成的立体纹理已经固定,不易变形,很好地解决了装饰可靠性及制作良率的问题,并通过双层纹理的光学干涉可以使得壳体组件形成特殊的摩尔纹外观,呈现出更炫更立体的外观装饰效果,可以极大地提高产品的外观吸引力和竞争力。
在本公开的另一方面,本公开提供了一种制备壳体组件的方法。根据本公开的实施例,该方法包括:在玻璃的相对的两个表面上形成具有预定图案的干膜,得到待蚀刻玻璃;将所述待蚀刻玻璃浸入蚀刻液中预定时间,以得到玻璃基体,所述玻璃基体具有相对的第一表面和第二表面,所述第一表面具有蚀刻形成的微米级第一立体纹理,所述第二表面上具有蚀刻形成的微米级第二立体纹理,所述第一立体纹理在垂直方向上的正投影和所述第二立体纹理在所述垂直方向上的正投影不完全重叠,并使得第一立体纹理和第二立体纹理的反射光发生干涉;去除所述玻璃基体上的所述干膜。该方法可以快速、高效的制备获得具有双层立体纹理的壳体组件,步骤简单、操作容易、制作良率高,且得到的壳体组件可以形成特殊的摩尔纹外观,呈现出更炫更立体的外观装饰效果,同时长时间使用不易变形。
在本公开的第三方面,本公开提供了一种电子设备。根据本公开的实施例,该电子设备包括:前面所述的壳体组件,所述壳体组件限定出容纳空间;显示屏,所示显示屏设置在所述容纳空间中。该电子设备具有双层立体纹理,能够呈现特殊的摩尔纹外观,呈现出更炫更立体的外观装饰效果,且长时间使用不易变形,使用寿命更长。
附图说明
图1是本公开一个实施例的壳体组件的结构示意图。
图2是本公开另一个实施例的壳体组件的结构示意图。
图3是本公开一个实施例的玻璃基体的第一表面在垂直方向的正投影的示意图。
图4是本公开另一个实施例的玻璃基体的第一表面在垂直方向的正投影的示意图。
图5是本公开另一个实施例的玻璃基体的第一表面在垂直方向的正投影的示意图。
图6是本公开另一个实施例的壳体组件的结构示意图。
图7是本公开一个实施例的电子设备的结构示意图。
图8是本公开实施例1中得到的玻璃壳的照片。
发明详细描述
下面详细描述本公开的实施例。下面描述的实施例是示例性的,仅用于解释本公开,而不能理解为对本公开的限制。实施例中未注明具体技术或条件的,按照本领域内的文献所描述的技术或条件或者按照产品说明书进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规产品。
在本公开的一个方面,本公开提供了一种壳体组件。根据本公开的实施例,参照图 1,该壳体组件包括:玻璃基体10,所述玻璃基体具有相对的第一表面11和第二表面12,所述第一表面具有微米级第一立体纹理110,所述第二表面上具有微米级第二立体纹理120,所述第一立体纹理110在垂直方向上的正投影和所述第二立体纹理120在所述垂直方向上的正投影不完全重叠,以使得所述第一立体纹理110和所述第二立体纹理120的反射光发生干涉。该壳体组件中,直接在玻璃两个相对的表面形成双层立体纹理,无需喷涂UV胶,提高了制作良率,且在玻璃表面直接形成的立体纹理已经固定,不易变形,很好地解决了装饰可靠性及制作良率的问题,并通过双层纹理的光学干涉可以使得壳体组件形成特殊的摩尔纹外观,呈现出更炫更立体的外观装饰效果,可以极大地提高产品的外观吸引力和竞争力。
具体的,根据干涉原理,干涉是两列或两列以上的波在空间中重叠时发生叠加从而形成新的波形的现象,具体到本公开的壳体中,光照射到壳体上的立体纹理时,由于立体纹理表面凹凸不平,不同位置处的反射光之间的光程会存在差异,这样反射光之间就会发生干涉,这样,第一立体纹理表面不同位置的反射光之间会发生干涉,第二立体纹理表面不同位置的反射光之间也会发生干涉,同时第一立体纹理的反射光和第二立体纹理的反射光之间还会发生干涉,在双层立体纹理的干涉作用下,壳体外表面可以呈现出干涉产生的明暗条纹,即摩尔纹,形成特殊的外观效果。具体的摩尔纹形状和排布方式则可以根据第一立体纹理和第二立体纹理的形状和排布方式进行调整。
需要说明的是,本文中的描述方式“微米级第一立体纹理”和“微米级第二立体纹理”是指第一立体纹理和第二立体纹理的线宽和线距均为微米级,即为1~1000微米范围内。如果线宽和线距过小,一方面不易于加工,另一方面光照到过小尺寸的纹理上,会发生分光现象,无法呈现出微米级纹理条件下的摩尔纹外观,而如果线宽和线距过大,则无法满足干涉的条件,无法产生摩尔纹外观。
在一些实施例中,玻璃基体的具体种类可以为适用于电子设备壳体的任何玻璃,例如可以为硅酸盐玻璃(具体如石英玻璃、高硅氧玻璃、钠钙玻璃、铝硅酸盐玻璃、硼硅酸盐玻璃等)、硼酸盐玻璃、磷酸盐玻璃等等。而所述玻璃基体的厚度可以为0.5~8mm,具体如0.5mm、0.6mm、0.7mm、0.8mm、0.9mm、1mm、2mm、3mm、4mm、5mm、6mm、7mm、8mm等。另外,玻璃基体的具体结构也可以根据实际需要选择,例如可以为平板玻璃、2.5D玻璃或者3D玻璃。
一些具体实施例中,参照图2,所述第一立体纹理110和所述第二立体纹理120可以均向所述玻璃基体10内部凹陷。由此,在保证良好的摩尔纹外观的前提下,可以方便的通过蚀刻工艺进行制备,且纹理的棱角向内凹陷,不易损伤和破坏。
根据本公开的实施例,第一立体纹理和第二立体纹理的具体形状、分布位置、尺寸等等可以根据想要实现的外观效果进行调整。一些具体实施例中,所述第一立体纹理110的线宽(即立体纹理的宽度)d1和所述第二立体纹理120的线宽d2各自独立的为1~100微米(具体可以为100微米、80微米、50微米、40微米、30微米、20微米、15微米、10微米、9微米、8微米、7微米、6微米、5微米、4微米、3微米、2微米、1微米等);一些具体实施例中,所述第一立体纹理110的线距(即相邻两个立体纹理之间的距离)w1和所述第二立体纹理120的线距w2各自独立的为1~150微米(具体可以为150微米、140微米、130微米、120微米、110微米、100微米、50微米、20微米、10微米、5微米、1微米等);一些具体实施例中,所述第一立体纹理110的纹理深度h1和所述第二立体纹理120的纹理深度h2各自独立的为1~100微米(具体可以为100微米、80微米、50微米、40微米、30微米、20微米、15微米、10微米、9微米、8微米、7微米、6微米、5微米、4微米、3微米、2微米、1微米等)。在上述线宽、线距和深度范围内,双层立体纹理可以使得其反射光发生干涉作用,从而呈现特殊的摩尔纹外观,外观效果更立体和更炫丽,装饰效果更佳。
一些具体实施例中,,所述第一立体纹理110和所述第二立体纹理120在所述垂直方向的正投影的形状各自独立的为几何图形和不规则图形中的任意一种。具体的,所述几何图形可以包括圆形(参照图3,以第一立体纹理为例说明)、多边形(具体可以为三角形、四边新、五边形、六边形等等)(参照图4和图5,以第一立体纹理、正投影投影为四边形为例说明)、弓形和多弧形中的至少一种。而不规则图形则可以根据想要呈现的外观效果灵活设置,在此不再一一赘述。
一些具体实施例中,,第一立体纹理和第二立体纹理在垂直方向的正投影只要不完全重叠即可,具体的,第一立体纹理和第二立体纹理可以形状不同、尺寸不同或者排布方式不同,例如,可以第一立体纹理为多个平行设置的条状纹理,而第二立体纹理为多个阵列分布的点状纹理;或者第一立体纹理和第二立体纹理均为多个平行的条状纹理,但两者的线宽和线距不同;或者,第一立体纹理和第二立体纹理的形状和尺寸均为多个平行的条状纹理,两者条状纹理的长度方相交叉,例如相互垂直,具有45度夹角等等。
一些实施例中,参照图6,该壳体组件还可以包括:镀膜层20,所述镀膜层20设置在所述第一表面上;盖底油墨层30,所述盖底油墨层30设置在所述镀膜层20远离所述玻璃基体10的表面上。由此,结合镀膜层和盖底油墨层,可以使得壳体组件具有丰富绚丽的颜色,结合双层立体纹理的光学干涉作用,可以使得壳体组件呈现绚丽、立体的外观效果。
一些具体实施例中,镀膜层可以为单层结构,也可以为多层结构。一些具体实施例中,镀膜层的材料可以为二氧化硅、二氧化钛和五氧化二铌中的至少一种,例如二氧化钛和二氧化硅交替设置的多层结构等。盖底油墨层可以为具有预定颜色的油墨层,一些具体实施例中,可以为黑色油墨层等,由此遮光效果较好,利于实现更好看的外观效果,具体的,盖底油墨层可以为单层结构,也可以为多层结构,每层油墨层的具体成分、厚度可以相同也可以不同,例如油墨的具体成分可以为使用与电子设备壳体的常用油墨,厚度可以为10~15微米,盖底油墨层为多层结构时可以是采用相同的油墨多次涂覆形成,具体可以2~3次涂覆形成,每次涂覆3~5微米厚度。
一些具体实施例中,所述镀膜层与所述玻璃基体的折射率不同。由此,可以使得玻璃基体与镀膜层之间的界面更加明显,纹理作用更强,玻璃基体上的双层立体纹理的光学干涉作用更好,进而实现更加绚丽和立体的外观效果。可以理解,所述镀膜层与所述玻璃基体的折射率差值越大,两者之间的界面更清晰,双层立体纹理的干涉作用更强烈,一些具体实施例中,所述镀膜层与所述玻璃基体的折射率差值可以大于等于0.5,具体如0.5、0.6、0.7、0.8、0.9、1等。由此,壳体组件的外观效果更绚丽和立体,装饰效果更好。
在本公开的另一方面,本公开提供了一种制备壳体组件的方法。根据本公开的实施例,该方法包括:在玻璃的相对的两个表面上形成具有预定图案的干膜,得到待蚀刻玻璃;将所述待蚀刻玻璃浸入蚀刻液中预定时间,以得到玻璃基体,所述玻璃基体具有相对的第一表面和第二表面,所述第一表面具有蚀刻形成的微米级第一立体纹理,所述第二表面上具有蚀刻形成的微米级第二立体纹理,所述第一立体纹理在垂直方向上的正投影和所述第二立体纹理在所述垂直方向上的正投影不完全重叠,并使得第一立体纹理和第二立体纹理的反射光发生干涉;去除所述玻璃基体上的所述干膜。该方法可以快速、高效的制备获得具有双层立体纹理的壳体组件,步骤简单、操作容易、制作良率高,且得到的壳体组件可以形成特殊的摩尔纹外观,呈现出更炫更立体的外观装饰效果,同时长时间使用不易变形。同时可以理解,该方法可以用于制备前面所述的壳体组件。
一些具体实施例中,,在玻璃的相对的两个表面上形成具有预定图案的干膜可以包括:提供整层干膜,将预设图案菲林与整层干膜叠加后依次进行曝光和显影,获得曝光区域和未曝光区域;去除所述未曝光区域的干膜,得到具有预定图案的干膜;然后将具有预定图案的干膜贴合于玻璃相对的两个表面上。可以理解,可以在与菲林叠加之前,先将整层干膜形成在玻璃相对的两个表面上,具体的可以直接在玻璃的表面上喷涂形成干膜,也可以将已经制备好的干膜贴合在玻璃的表面上;也可以将菲林与整层干膜叠加 后,再将叠加产品贴合在玻璃相对的两个表面上,然后再进行曝光以及后续其他步骤。其中,可以采用电脑排版的方式制备预设图案菲林,该预设图案菲林具有精细纹理的效果。需要说明的是,为了保证双层立体纹理的干涉作用,玻璃相对的两个表面上干膜的预定图案不同。
可以理解,所述干膜主要起到保护玻璃的作用,具体为使得被干膜覆盖的部分不会在后续步骤中被蚀刻,可长时间耐蚀刻液攻击而不脱落、溶解。根据上述使用要求,干膜可以为感光耐酸膜,具体可以为高分子薄膜,可以由聚酰亚胺、液晶高分子聚合物或聚萘二甲酸乙二醇酯薄膜制备,在紫外光的照射下会交联固化,当用菲林遮蔽后,采用紫外线直接曝光,光照部分被固化,非光照部分仍未固化,未固化感光膜可通过显影去除,例如可以通过平板喷淋线进行显影,去除所述未曝光区域的干膜,显影液可以为质量浓度为0.5%~1%的碳酸钠溶液,从而在所述干膜上形成与预设图案菲林对应的预定图案。
一些具体实施例中,,在玻璃上形成预定图案干膜后,可以直接将待蚀刻玻璃浸入蚀刻液中进行蚀刻,以在未被干膜覆盖的位置形成立体纹理。具体的,采用的蚀刻液可以为质量浓度为5~10%的氢氟酸溶液。由此,蚀刻速度、蚀刻精度等均较好,得到的立体纹理表面平整、精度较高,壳体组件的外观效果较好。可以理解,蚀刻时间可以根据立体纹理尺寸、蚀刻液的蚀刻速度等进行调整,一些具体实施例中,蚀刻时间(即前面所述的预定时间)可为1~10分钟,具体如1分钟、2分钟、3分钟、4分钟、5分钟、6分钟、7分钟、8分钟、9分钟、10分钟等。
一些具体实施例中,,蚀刻之后,可以对玻璃基体进行清洗处理,以去除玻璃表面残留的蚀刻液。具体可以采用水对玻璃基体进行水洗或者超声清洗等,然后将清洗后的玻璃基体进行烘干,以便进行后续步骤。
一些具体实施例中,,去除所述玻璃基体上具有预定图案的干膜的方法没有特别限制,只要能够有效去除干膜、又不会损伤玻璃基体即可。一些具体实施例中,采用退镀工艺去除具有预定图案的干膜,具体步骤和参数可以参照常规技术进行,在此不再一一赘述。
一些具体实施例中,,该方法还可以包括:在所述第一表面上形成镀膜层;和在所述镀膜层远离所述玻璃基体的表面上形成盖底油墨层。
具体的,镀膜层可以通过物理气相沉积、化学气相沉积等方法形成,而盖底油墨层可以通过丝印、涂覆、打印、印刷等工艺形成,具体的操作步骤和参数可以参照常规技术进行,在此不再一一赘述。
在本公开的第三方面,本公开提供了一种电子设备。根据本公开的实施例,参照图7,该电子设备包括:前面所述的壳体组件100,所述壳体组件100限定出容纳空间;显示屏200,所示显示屏200设置在所述容纳空间中。该电子设备具有双层立体纹理,能够呈现特殊的摩尔纹外观,呈现出更炫更立体的外观装饰效果,且长时间使用不易变形,使用寿命更长。
在一些实施例中,该电子设备的具体种类没有特别限制,包括但不限于手机、平板电脑、可穿戴设备、游戏机、电视机等等,也可以理解,除了前面所述的壳体组件和显示屏之外,该电子设备还可以包括常规电子设备必要的部件和结构,以手机为例,还可以包括触控组件、指纹识别模组、照相模组、主板、储存器、电池等等,在此不再一一赘述。
下面详细描述本发明的实施例。
示例1
S1、提供厚度为0.6mm的3D玻璃盖板(折射率为1.5),在玻璃盖板的正面及背面喷涂感光耐酸膜(聚酰亚胺膜);
S2、采用电脑排版的方式制备预设图案菲林,然后将预设图案菲林与所述3D玻璃盖板上的感光耐酸膜叠加后放入曝光机中进行曝光,为了形成干涉摩尔纹,正反面的菲林图案不能完全一致,玻璃盖板的正反两面需分两次曝光,获得曝光区域和未曝光区域;
S3、通过平板喷淋线进行显影,去除所述未曝光区域的干膜,其中,显影液为质量浓度为0.5%的碳酸钠溶液;
S4、将经过显影的3D玻璃盖板浸入质量浓度为5%的氢氟酸蚀刻液中2分钟,蚀刻得到具有双面微纳米立体纹理的3D玻璃板,所述立体纹理的图形和所述预设图案相对应,其中,正面立体纹理图形为多个平行设置的条形纹理,线宽为8微米,线距为20微米,深度为5微米;背面立体纹理图形为多个平行设置的条形纹理,且第一立体纹理和第二立体纹理中的条形纹理的长度方向之间具有45度夹角,线宽为8微米,线距为20微米,深度为5微米;
S5、将蚀刻后的3D玻璃盖板取出,放入水中洗净玻璃上的蚀刻液;并将清洗后的玻璃板进行褪镀清洗,去除曝光区域的感光耐酸膜,得到的3D玻璃壳的照片参见图8。
示例2
S1、提供厚度为0.3mm的3D玻璃盖板(折射率为1.5),在玻璃盖板的正面及背面喷涂感光耐酸膜(聚酰亚胺膜);
S2、采用电脑排版的方式制备预设图案菲林,然后将预设图案菲林与所述3D玻璃 盖板上的感光耐酸膜叠加后放入曝光机中进行曝光,为了形成干涉摩尔纹,正反面的菲林图案不能完全一致,玻璃盖板的正反两面需分两次曝光,获得曝光区域和未曝光区域;
S3、通过平板喷淋线进行显影,去除所述未曝光区域的干膜,其中,显影液为质量浓度为0.5%的碳酸钠溶液;
S4、将经过显影的3D玻璃盖板浸入质量浓度为5%的氢氟酸蚀刻液中2分钟,蚀刻得到具有双面微纳米立体纹理的3D玻璃板其中,正面立体纹理图形为多个平行设置的条形纹理,线宽为8微米,线距为20微米,深度为5微米;背面立体纹理图形为多个平行设置的条形纹理,且第一立体纹理和第二立体纹理中的条形纹理的长度方向之间具有45度夹角,线宽为8微米,线距为20微米,深度为5微米;
S5、将蚀刻后的3D玻璃盖板取出,放入水中洗净玻璃上的蚀刻液;并将清洗后的玻璃板进行褪镀清洗,去除曝光区域的感光耐酸膜;
S6、在步骤S5得到的3D玻璃的背面通过真空镀膜形成具有特定颜色的镀膜层(折射率为1.43);
S7、在上述镀膜层的表面印刷油墨盖底层。
示例3
S1、提供厚度为0.7mm的3D玻璃盖板(折射率为1.5),在玻璃盖板的正面及背面喷涂感光耐酸膜(液晶高分子聚合物膜);
S2、采用电脑排版的方式制备预设图案菲林,然后将预设图案菲林与所述3D玻璃盖板上的感光耐酸膜叠加后放入曝光机中进行曝光,为了形成干涉摩尔纹,正反面的菲林图案不能完全一致,玻璃盖板的正反两面需分两次曝光,获得曝光区域和未曝光区域;
S3、通过平板喷淋线进行显影,去除所述未曝光区域的干膜,其中,显影液为质量浓度为1%的碳酸钠溶液;
S4、将经过显影的3D玻璃盖板浸入质量浓度为10%的氢氟酸蚀刻液中2分钟,蚀刻得到具有双面微纳米立体纹理的3D玻璃板,其中,正面立体纹理图形为多个平行的曲线纹理,线宽为50微米,线距为100微米,深度为10微米;背面立体纹理图形为多个平行的曲线纹理,线宽为100微米,线距为50微米,深度为20微米;
S5、将蚀刻后的3D玻璃盖板取出,放入水中洗净玻璃上的蚀刻液;并将清洗后的玻璃板进行褪镀清洗,去除曝光区域的感光耐酸膜;
S6、在步骤S5得到的3D玻璃的背面通过真空镀膜形成具有特定颜色的镀膜层(折射率为1.65);
S7、在上述镀膜层的表面印刷油墨盖底层。
示例4
S1、提供厚度为1mm的3D玻璃盖板(折射率为1.5),在玻璃盖板的正面及背面喷涂感光耐酸膜(聚萘二甲酸乙二醇酯膜);
S2、采用电脑排版的方式制备预设图案菲林,然后将预设图案菲林与所述3D玻璃盖板上的感光耐酸膜叠加后放入曝光机中进行曝光,为了形成干涉摩尔纹,正反面的菲林图案不能完全一致,玻璃盖板的正反两面需分两次曝光,获得曝光区域和未曝光区域;
S3、通过平板喷淋线进行显影,去除所述未曝光区域的干膜,其中,显影液为质量浓度为0.8%的碳酸钠溶液;
S4、将经过显影的3D玻璃盖板浸入质量浓度为8%的氢氟酸蚀刻液中2分钟,蚀刻得到具有双面微纳米立体纹理的3D玻璃板,其中,正面立体纹理图形为阵列分布的点状纹理,线宽(即点状纹理的轮廓线上任意两点之间的最大距离)为20微米,线距为60微米,深度为15微米;背面立体纹理图形为多个平行的条状纹理,线宽为80微米,线距为40微米,深度为30微米;
S5、将蚀刻后的3D玻璃盖板取出,放入水中洗净玻璃上的蚀刻液;并将清洗后的玻璃板进行褪镀清洗,去除曝光区域的感光耐酸膜;
S6、在步骤S5得到的3D玻璃的背面通过真空镀膜形成具有特定颜色的镀膜层(折射率为1.58);
S7、在上述镀膜层的表面印刷油墨盖底层。
示例5
S1、提供厚度为3mm的3D玻璃盖板(折射率为1.5),在玻璃盖板的正面及背面喷涂感光耐酸膜(聚酰亚胺膜);
S2、采用电脑排版的方式制备预设图案菲林,然后将预设图案菲林与所述3D玻璃盖板上的感光耐酸膜叠加后放入曝光机中进行曝光,为了形成干涉摩尔纹,正反面的菲林图案不能完全一致,玻璃盖板的正反两面需分两次曝光,获得曝光区域和未曝光区域;
S3、通过平板喷淋线进行显影,去除所述未曝光区域的干膜,其中,显影液为质量浓度为0.5%的碳酸钠溶液;
S4、将经过显影的3D玻璃盖板浸入质量浓度为5%的氢氟酸蚀刻液中2分钟,蚀刻得到具有双面微纳米立体纹理的3D玻璃板,其中,正面立体纹理图形为多个平行设置的条形纹理,线宽为8微米,线距为20微米,深度为5微米;背面立体纹理图形为多个平行设置的条形纹理,且第一立体纹理和第二立体纹理中的条形纹理的长度方向之间具有45度夹角,线宽为8微米,线距为20微米,深度为5微米;
S5、将蚀刻后的3D玻璃盖板取出,放入水中洗净玻璃上的蚀刻液;并将清洗后的玻璃板进行褪镀清洗,去除曝光区域的感光耐酸膜;
S6、在步骤S5得到的3D玻璃的背面通过真空镀膜形成具有特定颜色的镀膜层(折射率为1.53);
S7、在上述镀膜层的表面印刷油墨盖底层。
示例6
S1、提供厚度为5mm的3D玻璃盖板(折射率为1.5),在玻璃盖板的正面及背面喷涂感光耐酸膜(聚酰亚胺膜);
S2、采用电脑排版的方式制备预设图案菲林,然后将预设图案菲林与所述3D玻璃盖板上的感光耐酸膜叠加后放入曝光机中进行曝光,为了形成干涉摩尔纹,正反面的菲林图案不能完全一致,玻璃盖板的正反两面需分两次曝光,获得曝光区域和未曝光区域;
S3、通过平板喷淋线进行显影,去除所述未曝光区域的干膜,其中,显影液为质量浓度为0.5%的碳酸钠溶液;
S4、将经过显影的3D玻璃盖板浸入质量浓度为5%的氢氟酸蚀刻液中2分钟,蚀刻得到具有双面微纳米立体纹理的3D玻璃板,其中,正面立体纹理图形为多个平行设置的条形纹理,线宽为100微米,线距为100微米,深度为100微米;背面立体纹理图形为多个平行设置的条形纹理,且第一立体纹理和第二立体纹理中的条形纹理的长度方向之间具有45度夹角,线宽为30微米,线距为150微米,深度为100微米;
S5、将蚀刻后的3D玻璃盖板取出,放入水中洗净玻璃上的蚀刻液;并将清洗后的玻璃板进行褪镀清洗,去除曝光区域的感光耐酸膜;
S6、在步骤S5得到的3D玻璃的背面通过真空镀膜形成具有特定颜色的镀膜层(折射率为1.45);
S7、在上述镀膜层的表面印刷油墨盖底层。
对比例1
同实施例2,区别在于,玻璃基材仅背面具有纹理,且背面上贴合有装饰膜片,该装饰膜片包括PET(聚对苯二甲酸乙二醇酯)基材和依次形成在PET基材上的UV转印纹理层和盖底油墨层。
对比例2
同实施例2,区别在于,玻璃基材仅背面具有纹理。
性能检测:
1、加速老化试验:对上述实施例和对比例的壳体进行紫外老化测试(如参照ASTM G154),结果显示,实施例1-6和对比例2的壳体试验前后没有明显变化,而对比例1的壳体中PET基材出现变形和开裂现象。
2、观察上述实施例和对比例的壳体的外观:通过观察可以发现,实施例1~6中的壳体均能够呈现清晰和多样化的摩尔纹,而对比例1中的摩尔纹外观清晰度稍差,对比例2中的摩尔纹样式简单,清晰度稍差。
在本发明的描述中,需要理解的是,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本公开的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本公开的限制,本领域的普通技术人员在本公开的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (15)

  1. 一种壳体组件,其特征在于,包括:
    玻璃基体,所述玻璃基体具有相对的第一表面和第二表面,所述第一表面具有微米级第一立体纹理,所述第二表面上具有微米级第二立体纹理,所述第一立体纹理在垂直方向上的正投影和所述第二立体纹理在所述垂直方向上的正投影不完全重叠,以使得所述第一立体纹理和所述第二立体纹理的反射光发生干涉。
  2. 根据权利要求1所述的壳体组件,其特征在于,所述第一立体纹理和所述第二立体纹理向所述玻璃基体内部凹陷。
  3. 根据权利要求1所述的壳体组件,其特征在于,所述第一立体纹理向远离所述第二表面的方向凸起,所述第二立体纹理向所述玻璃基体内部凹陷。
  4. 根据权利要求1~3中任一项所述的壳体组件,其特征在于,满足以下条件的至少一种:
    所述第一立体纹理和所述第二立体纹理的线宽各自独立的为1~100微米;
    所述第一立体纹理和所述第二立体纹理的线距各自独立的为1~150微米;
    所述第一立体纹理和所述第二立体纹理的纹理深度各自独立的为1-100微米。
  5. 根据权利要求1~4中任一项所述的壳体组件,其特征在于,所述第一立体纹理和所述第二立体纹理在所述垂直方向的正投影的形状各自独立的为几何图形和不规则图形中的任意一种,所述几何图形包括圆形、多边形、弓形和多弧形中的至少一种。
  6. 根据权利要求1~5中任一项所述的壳体组件,其特征在于,所述玻璃基体的厚度为0.5-8mm。
  7. 根据权利要求1~6中任一项所述的壳体组件,其特征在于,还包括:
    镀膜层,所述镀膜层设置在所述第一表面上;
    盖底油墨层,所述盖底油墨层设置在所述镀膜层远离所述玻璃基体的表面上。
  8. 根据权利要求1~7中任一项所述的壳体组件,其特征在于,所述镀膜层与所述玻璃基体的折射率不同。
  9. 根据权利要求8所述的壳体组件,其特征在于,所述镀膜层与所述玻璃基体的折射率差值大于等于0.5。
  10. 一种制备壳体组件的方法,其特征在于,包括:
    在玻璃的相对的两个表面上形成具有预定图案的干膜,得到待蚀刻玻璃;
    将所述待蚀刻玻璃浸入蚀刻液中预定时间,以得到玻璃基体,所述玻璃基体具有相对 的第一表面和第二表面,所述第一表面具有蚀刻形成的微米级第一立体纹理,所述第二表面上具有蚀刻形成的微米级第二立体纹理,所述第一立体纹理在垂直方向上的正投影和所述第二立体纹理在所述垂直方向上的正投影不完全重叠,并使得所述第一立体纹理和所述第二立体纹理的反射光发生干涉;
    去除所述玻璃基体上的所述干膜。
  11. 根据权利要求10所述的方法,其特征在于,在玻璃的相对的两个表面上形成具有预定图案的干膜的步骤包括:
    提供整层干膜;
    将预设图案菲林与所述整层干膜叠加后依次进行曝光和显影,获得曝光区域和未曝光区域;
    去除所述未曝光区域的干膜,得到具有所述预定图案的所述干膜;
    将具有所述预定图案的所述干膜贴合于所述玻璃相对的两个表面上。
  12. 根据权利要求10或11所述的方法,其特征在于,所述蚀刻液为5~10%的氢氟酸溶液,所述预定时间为1~10分钟。
  13. 根据权利要求10~12中任一项所述的方法,其特征在于,所述干膜为感光耐酸膜。
  14. 根据权利要求10~13中任一项所述的方法,其特征在于,还包括:
    在所述第一表面上形成镀膜层;
    在所述镀膜层远离所述玻璃基体的表面上形成盖底油墨层。
  15. 一种电子设备,其特征在于,包括:
    权利要求1~9中任一项所述的壳体组件,所述壳体组件限定出容纳空间;
    显示屏,所示显示屏设置在所述容纳空间中。
PCT/CN2020/124756 2019-11-01 2020-10-29 壳体组件及其制备方法和电子设备 WO2021083266A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20882733.7A EP4040928A4 (en) 2019-11-01 2020-10-29 HULL ASSEMBLY AND ASSOCIATED PREPARATION METHOD, AS WELL AS ELECTRONIC DEVICE
US17/725,528 US20220248552A1 (en) 2019-11-01 2022-04-20 Shell assembly and preparation method therefor, and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911061864.3 2019-11-01
CN201911061864.3A CN110856385B (zh) 2019-11-01 2019-11-01 壳体组件及其制备方法和电子设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/725,528 Continuation US20220248552A1 (en) 2019-11-01 2022-04-20 Shell assembly and preparation method therefor, and electronic device

Publications (1)

Publication Number Publication Date
WO2021083266A1 true WO2021083266A1 (zh) 2021-05-06

Family

ID=69599556

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/124756 WO2021083266A1 (zh) 2019-11-01 2020-10-29 壳体组件及其制备方法和电子设备

Country Status (4)

Country Link
US (1) US20220248552A1 (zh)
EP (1) EP4040928A4 (zh)
CN (1) CN110856385B (zh)
WO (1) WO2021083266A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113692157A (zh) * 2021-08-10 2021-11-23 Oppo广东移动通信有限公司 壳体、其制备方法及电子设备
CN114051344A (zh) * 2021-11-05 2022-02-15 Oppo广东移动通信有限公司 壳体、其制备方法及电子设备

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110856385B (zh) * 2019-11-01 2021-06-04 Oppo广东移动通信有限公司 壳体组件及其制备方法和电子设备
CN113710016A (zh) * 2020-05-21 2021-11-26 Oppo广东移动通信有限公司 电子设备的壳体及其制作方法、电子设备
CN114280711B (zh) * 2020-09-28 2023-07-11 比亚迪股份有限公司 透明板材及其制作方法、壳体和移动终端
CN114507015B (zh) * 2020-11-17 2022-11-15 Oppo广东移动通信有限公司 玻璃板材及制备方法,壳体和电子设备
CN113747710B (zh) * 2021-08-27 2023-06-27 维达力实业(深圳)有限公司 盖板及其制备方法、电子设备
CN114423205B (zh) * 2022-01-28 2024-02-06 Oppo广东移动通信有限公司 壳体、其制备方法及电子设备
CN115368024A (zh) * 2022-04-13 2022-11-22 东莞华清光学科技有限公司 一种3d异型玻璃喷涂工艺

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120244321A1 (en) * 2011-03-25 2012-09-27 Hon Hai Precision Industry Co., Ltd. Method for manufacturing a product shell and structure
CN207689700U (zh) * 2018-01-05 2018-08-03 信利光电股份有限公司 一种具有立体视觉图案的盖板
CN109963003A (zh) * 2017-12-26 2019-07-02 华为技术有限公司 一种通信终端外壳及制备方法
CN209336221U (zh) * 2018-07-20 2019-09-03 华为技术有限公司 一种纹理保护膜及终端
CN110809379A (zh) * 2019-11-01 2020-02-18 Oppo广东移动通信有限公司 壳体组件及其制备方法和电子设备
CN110856385A (zh) * 2019-11-01 2020-02-28 Oppo广东移动通信有限公司 壳体组件及其制备方法和电子设备

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4685101B2 (ja) * 2005-07-12 2011-05-18 グラパックジャパン株式会社 立体視シート構成体
CN207304637U (zh) * 2017-09-26 2018-05-01 昇印光电(昆山)股份有限公司 装饰薄膜及电子设备盖板
CN107879638B (zh) * 2017-10-18 2020-04-10 Oppo广东移动通信有限公司 曲面玻璃板材、制备方法、组合试剂及移动终端

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120244321A1 (en) * 2011-03-25 2012-09-27 Hon Hai Precision Industry Co., Ltd. Method for manufacturing a product shell and structure
CN109963003A (zh) * 2017-12-26 2019-07-02 华为技术有限公司 一种通信终端外壳及制备方法
CN207689700U (zh) * 2018-01-05 2018-08-03 信利光电股份有限公司 一种具有立体视觉图案的盖板
CN209336221U (zh) * 2018-07-20 2019-09-03 华为技术有限公司 一种纹理保护膜及终端
CN110809379A (zh) * 2019-11-01 2020-02-18 Oppo广东移动通信有限公司 壳体组件及其制备方法和电子设备
CN110856385A (zh) * 2019-11-01 2020-02-28 Oppo广东移动通信有限公司 壳体组件及其制备方法和电子设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113692157A (zh) * 2021-08-10 2021-11-23 Oppo广东移动通信有限公司 壳体、其制备方法及电子设备
CN114051344A (zh) * 2021-11-05 2022-02-15 Oppo广东移动通信有限公司 壳体、其制备方法及电子设备

Also Published As

Publication number Publication date
EP4040928A4 (en) 2022-12-07
EP4040928A1 (en) 2022-08-10
CN110856385A (zh) 2020-02-28
CN110856385B (zh) 2021-06-04
US20220248552A1 (en) 2022-08-04

Similar Documents

Publication Publication Date Title
WO2021083266A1 (zh) 壳体组件及其制备方法和电子设备
CN110809379A (zh) 壳体组件及其制备方法和电子设备
KR101336935B1 (ko) 커버글라스 및 이의 제조 방법
JP7026785B2 (ja) 高強度指紋防止ガラス、その製造方法、高強度指紋防止ガラスの外装部品およびその製造方法
JP5521655B2 (ja) 反射型スクリーン、投影システム、フロントプロジェクションテレビ及び反射型スクリーンの製造方法
KR20130111269A (ko) 강화 유리 절단 방법
TW202219552A (zh) 具有繞射防眩表面之顯示器製品及其製造方法
CN113966114B (zh) 壳体、其制备方法及电子设备
CN114031304B (zh) 高铝玻璃刻蚀液、防眩光高铝玻璃、壳体组件和电子设备
CN113391381A (zh) 一种具有不同ag组合效果的玻璃盖板及其制备方法
JP5705040B2 (ja) 携帯機器用カバーガラスの製造方法
KR101594877B1 (ko) 커버글라스 및 이의 제조방법
CN102566313A (zh) 一种光刻胶背面曝光工艺
CN116567971A (zh) 壳体、壳体制备方法及电子设备
CN110782779B (zh) 玻璃件及其表面抛光方法、玻璃壳体和电子设备
CN105906218A (zh) 防眩光玻璃的制备方法
US10759694B2 (en) Rigid substrate, touch panel, and processing method of rigid substrate
CN109407431A (zh) 阵列基板及其制备方法、显示面板
CN108372746B (zh) 具有纹理图案的3d玻璃板和其制作方法及移动终端
JP5701703B2 (ja) 携帯機器用カバーガラスの製造方法
JP6256344B2 (ja) ガラス基板の再生処理方法、再生ガラス基板の製造方法及びフォトマスクの製造方法
JP6749609B2 (ja) ガラス基板の製造方法
TW202128587A (zh) 用於製造玻璃基製品之方法及設備
CN107797396B (zh) 导电薄膜对位标记制作方法
CN106908997B (zh) 液晶显示面板制作方法及液晶显示面板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20882733

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020882733

Country of ref document: EP

Effective date: 20220506

NENP Non-entry into the national phase

Ref country code: DE