WO2021083238A1 - 一种低碳烯烃经聚合直接合成高性能基础油的工艺方法 - Google Patents

一种低碳烯烃经聚合直接合成高性能基础油的工艺方法 Download PDF

Info

Publication number
WO2021083238A1
WO2021083238A1 PCT/CN2020/124538 CN2020124538W WO2021083238A1 WO 2021083238 A1 WO2021083238 A1 WO 2021083238A1 CN 2020124538 W CN2020124538 W CN 2020124538W WO 2021083238 A1 WO2021083238 A1 WO 2021083238A1
Authority
WO
WIPO (PCT)
Prior art keywords
alkyl
group
haloalkyl
hydrogenation
aluminum
Prior art date
Application number
PCT/CN2020/124538
Other languages
English (en)
French (fr)
Inventor
周姣龙
刘加帅
朱洁
任鸿平
唐勇
杨建华
Original Assignee
南京中科康润新材料科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201911032648.6A external-priority patent/CN112725018B/zh
Priority claimed from CN201911032604.3A external-priority patent/CN112725017B/zh
Priority claimed from CN201911032665.XA external-priority patent/CN112725055B/zh
Priority claimed from CN201911032664.5A external-priority patent/CN112725028B/zh
Priority claimed from CN201911033537.7A external-priority patent/CN112725029B/zh
Priority claimed from CN201911032644.8A external-priority patent/CN112725054B/zh
Application filed by 南京中科康润新材料科技有限公司 filed Critical 南京中科康润新材料科技有限公司
Publication of WO2021083238A1 publication Critical patent/WO2021083238A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/04Monomers containing three or four carbon atoms
    • C08F10/08Butenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/04Polymerisation in solution
    • C08F2/06Organic solvent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/602Component covered by group C08F4/60 with an organo-aluminium compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/72Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from metals not provided for in group C08F4/44
    • C08F4/80Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from metals not provided for in group C08F4/44 selected from iron group metals or platinum group metals
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G69/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process
    • C10G69/02Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process plural serial stages only
    • C10G69/12Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process plural serial stages only including at least one polymerisation or alkylation step
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M107/00Lubricating compositions characterised by the base-material being a macromolecular compound
    • C10M107/02Hydrocarbon polymers; Hydrocarbon polymers modified by oxidation
    • C10M107/04Polyethene
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M107/00Lubricating compositions characterised by the base-material being a macromolecular compound
    • C10M107/02Hydrocarbon polymers; Hydrocarbon polymers modified by oxidation
    • C10M107/08Hydrocarbon polymers; Hydrocarbon polymers modified by oxidation containing butene

Definitions

  • the invention relates to the technical field of synthetic base oil production, in particular to a process method for directly synthesizing high-performance base oil through polymerization of ethylene and other low-carbon olefins (C 2 -C 4 ).
  • Lubricating oil is an indispensable material in the industry. It is of great value for energy saving, consumption reduction, protection, and long-term efficient operation of equipment. According to statistics, 1/3-1/2 of global industrial energy consumption is caused by friction, and 80% of failed parts are caused by wear. Therefore, high-performance lubricants are useful for reducing wear, reducing energy consumption and sustainable society. Sexual development is of great significance. Since the lubricating oil is composed of 70-95% base oil and 5-30% additives, the performance of the base oil basically determines the quality of the lubricating oil. At present, the internationally used base oils include mineral oil (API I-API III) and synthetic oil (API IV-V).
  • the fully synthetic oil PAO (API IV) has a wide operating temperature range, good viscosity-temperature performance, and high viscosity index. , Low pour point, low evaporation loss, good oxidation stability, environmental friendliness, etc. It is a high-quality lubricating base oil used in many high-end fields.
  • the existing PAO production mainly has the following three production processes: 1) BF 3 + alcohol catalytic system: mainly by 1 polymerization, 2 BF 3 recovery, 3 water washing, 4 atmospheric distillation, 5 hydrogenation, 6 vacuum distillation, 7 Reconciling seven processes; 2) AlCl 3 + alcohol catalyst system: mainly composed of 1 polymerization, 2 sedimentation and cutting, 3 neutralization, 4 filtration, 5 atmospheric distillation, 6 hydrogenation, 7 vacuum distillation, 8 clay refinement , 9Composed of 9 main processes; 3)
  • Metalocene catalyst system mainly consists of 1polymerization, 2quenching-adsorption, 3filtration, 4atmospheric distillation, 5hydrogenation, 6vacuum distillation, 7reconciling 7 main processes Process composition.
  • BF 3 + alcohol catalyst system is mainly used to produce low viscosity PAO
  • AlCl 3 + alcohol mainly produces medium and high viscosity PAO
  • metallocene catalyst system mainly produces high viscosity PAO
  • the polymerization raw materials for PAO synthesized by the above three processes are mainly C 8 , C 10 and C 12 ⁇ -olefins, especially the best quality of PAO synthesized with C 10 (1-decene).
  • Alpha-olefins are mostly derived from ethylene oligomerization.
  • the carbon number of olefins obtained through SHOP process oligomerization conforms to the Flory distribution, and the content of C 8 , C 10 and C 12 is about 40%; after oligomerization, the target ⁇ -olefin is obtained after separation.
  • Catalytic polymerization is performed to obtain PAO, so the total conversion rate of ethylene is relatively low, the overall process is also very complicated, and the process flow is longer, which greatly increases the production cost of PAO.
  • Patent CN201510439004.4 reported using high-temperature Fischer-Tropsch synthesis of ⁇ -olefins and then subjected to separation polymerization, but the yield of ⁇ -olefins obtained by this scheme is also low (45%), and the olefin carbon number is continuously distributed ( Including odd and even carbons at the same time), leading to high initial separation cost and low purity of ⁇ -olefins, especially adjacent odd and even carbons cannot be separated, which affects the stability and quality of product performance. In addition, the cost of purification in the early stage of polymerization is high, and potassium-sodium alloys are required.
  • the existing catalytic systems also have the following problems:
  • the main reason for the metallocene catalyst system is that the cost of the co-catalyst (MAO or perfluorophenyl boron) used is too high.
  • the purpose of the present invention is to provide a process route for producing fully synthetic lubricating base oil by one-step polymerization of low-carbon olefins.
  • the first aspect of the present invention provides a process method for directly preparing base oil by polymerization of low-carbon olefins, which includes the following steps:
  • the polymerization temperature is 40 to 110°C;
  • the polymerization pressure is 0.1 ⁇ 0.7MPa
  • the polymerization reaction time is 1-24 hours;
  • the low-carbon olefin is selected from the following group: ethylene, butene or a combination thereof;
  • the aluminum alkyl a is selected from the group consisting of triethyl aluminum, trimethyl aluminum, diethyl aluminum chloride, ethyl aluminum dichloride, ethyl sesqui aluminum chloride, or a combination thereof;
  • the first solvent is selected from the following group: C 6 ⁇ C 12 alkanes, white oil, toluene, xylene, halogenated C 1 ⁇ C 12 alkanes;
  • the catalyst solution is a solution formed by the complex and the aluminum alkyl b in the second solvent; wherein the molar ratio of the aluminum alkyl b to the complex is 1-100/1;
  • the aluminum alkyl b is selected from the group consisting of triethyl aluminum, triisobutyl aluminum, diethyl aluminum chloride, or a combination thereof;
  • the second solvent is selected from the following group: toluene, halogenated C 1 ⁇ C 12 alkanes;
  • the complex is prepared after coordination of the ligand compound I with a divalent metal salt;
  • the structure of the ligand compound I is:
  • Z and Y are each independently a phenyl group or a substituted phenyl group, or Z and Y together with adjacent carbon atoms form an unsubstituted or substituted group selected from the group consisting of acenaphthyl, phenanthryl and C 5 -C 8 cycloalkyl, wherein the substituted phenyl, acenaphthyl, phenanthryl or cycloalkyl group has 1-5 substituents selected from the group consisting of halogen, C 1 -C 4 alkyl and C 1- C 4 haloalkyl;
  • R 1 is H, halogen, C 1 -C 3 linear alkyl
  • R 2 is halogen, C 1 -C 3 linear alkyl or C 1 -C 3 halogenated linear alkyl
  • R 3 and R 4 are each independently halogen, C 3 -C 8 alkyl, C 3 -C 8 haloalkyl, unsubstituted or substituted phenyl; the substituted phenyl has 1-5 selected from the group consisting of Substituents of the group: halogen, C 1 -C 4 alkyl and C 1 -C 4 haloalkyl;
  • R 5 and R 6 are each independently hydrogen, halogen, nitro, C 1 -C 8 alkyl, C 1 -C 8 haloalkyl, -OR a or -N(R c ) 2 , wherein R a is C 1 -C 8 alkyl, unsubstituted or substituted phenyl, and R c is C 1 -C 4 alkyl or C 1 -C 4 haloalkyl; the substituted phenyl has 1-5 selected from the following group Substituents of: halogen, C 1 -C 4 alkyl and C 1 -C 4 haloalkyl;
  • the divalent metal salt is divalent nickel or divalent palladium metal salt
  • X is independently halogen, C 1 -C 4 alkyl, C 2 -C 6 alkenyl, allyl - OAc, - OTf, or benzyl;
  • the C 1 -C 3 linear alkyl group or C 1 -C 3 halogenated linear alkyl group is preferably methyl, ethyl, chloromethyl and Bromomethyl.
  • the C 3 -C 8 alkyl group and C 3 -C 8 haloalkyl group are preferably branched or cyclic alkyl groups or halogenated alkyl groups.
  • the halogen is preferably fluorine, chlorine and bromine.
  • the complex can be used after being purified from the ligand compound I and the divalent metal salt after coordination, or it can be used directly without purification after the ligand compound I and the divalent metal salt are mixed in-situ. use.
  • the substituted phenyl group has 1 to 3 substituents.
  • Z and Y together with adjacent carbon atoms form an unsubstituted or substituted acenaphthyl group.
  • R 1 and R 2 are each independently selected from the following group: methyl, isopropyl or halogen.
  • the solvent used in the fixed-bed hydrogenation reaction is alkane or a mixture of alkanes.
  • the solvent used in the fixed bed hydrogenation reaction is hexane; more preferably, it is n-hexane, iso-hexane, cyclohexane or a mixture of multiple hexanes.
  • the tubular reactor is a loop tube.
  • the kettle type reactor is a reaction kettle.
  • the complex structure is:
  • R 1 is H, halogen, C 1 -C 3 linear alkyl
  • R 2 is halogen, C 1 -C 3 linear alkyl or C 1 -C 3 halogenated linear alkyl
  • R 3 and R 4 are each independently halogen, C 3 -C 8 alkyl, C 3 -C 8 haloalkyl, unsubstituted or substituted phenyl; the substituted phenyl has 1-5 selected from the group consisting of Substituents of the group: halogen, C 1 -C 4 alkyl and C 1 -C 4 haloalkyl;
  • R 5 and R 6 are each independently halogen, nitro, hydrogen, C 1 -C 8 alkyl, C 1 -C 8 haloalkyl, -OR a or -N(R c ) 2 , wherein R a is C 1 -C 8 alkyl, unsubstituted or substituted phenyl, and R c is C 1 -C 4 alkyl or C 1 -C 4 haloalkyl; the substituted phenyl has 1-5 selected from the following group Substituents of: halogen, C 1 -C 4 alkyl and C 1 -C 4 haloalkyl;
  • the low-carbon olefin is selected from the following group: ethylene, butene, or a combination thereof.
  • the alkyl aluminum a is selected from the group consisting of triethyl aluminum, diethyl aluminum chloride, ethyl aluminum dichloride and ethyl sesqui aluminum chloride ⁇
  • the alkyl aluminum a is triethyl aluminum.
  • the alkyl aluminum a is diethyl aluminum chloride, ethyl aluminum dichloride or ethyl sesqui aluminum chloride.
  • step (1) when ethylene is used as a single raw material, the polymerization temperature is 40-60°C, and the polymerization pressure is 0.1-0.4MPa; when butene is used as a single raw material, the The polymerization temperature is 60-80°C, and the polymerization pressure is 0.4-0.7 MPa.
  • the method further includes solvent recovery and purification steps.
  • step (2) the hydrogenation reaction is completed by a fixed-bed hydrogenation process, wherein the fixed-bed hydrogenation reaction conditions are as follows:
  • Airspeed 0.1 ⁇ 1.2h -1 ;
  • the fixed bed hydrogenation reaction conditions are as follows:
  • Airspeed 0.5 ⁇ 5h -1 ;
  • step (2) the hydrogenation reaction is completed by a kettle-type hydrogenation process, wherein the kettle-type processing process is as follows:
  • Oil concentration 0.2 ⁇ 1.0Kg/L.
  • the kettle type processing technique is as follows:
  • Oil concentration 0.8-0.9Kg/L.
  • step (3) the process parameters of the negative pressure rectification are as follows: rectification temperature: 200-250° C.; rectification absolute pressure: 1-700 Pa.
  • the negative pressure rectification can use a molecular distillation device, a short-path distillation device or any other device that can realize base oil rectification.
  • sequence of the hydrogenation process and the rectification process can be interchanged.
  • step (1) after the polymerization reaction is completed, a post-treatment step is also included: adding a quencher to the mixture after the polymerization reaction is completed, and then filtering, solvent recovery, and decolorization to obtain a clear and transparent mixture.
  • the quencher is alcohol
  • the molar ratio of the quencher (such as alcohol) to the aluminum alkyl 2:1 to 4:1.
  • the quencher is methanol, ethanol, isopropanol, tert-butanol, n-butanol, isobutanol, or a combination thereof.
  • the quencher is water.
  • the quenching agent is wet diatomaceous earth.
  • the equipment used for the filtering is various filtering equipment commonly used in the market.
  • the pore size of the filter used in the filtration is 1 to 5 microns.
  • the liquid-liquid separation equipment used for the solvent recovery can be a simple atmospheric distillation or rectification equipment, or a vacuum distillation or rectification equipment.
  • the equipment used for the decolorization is a fixed bed decolorization column.
  • the filler of the fixed bed can be activated clay, diatomaceous earth, silica, or activated carbon.
  • the packing of the fixed bed is activated clay.
  • the decolorization temperature is 20-50°C.
  • the polymerization temperature is 10-60°C;
  • the polymerization pressure is 0.5 to 1.2 MPa
  • the polymerization reaction time is 1-24 hours;
  • the aluminum alkyl a is selected from the group consisting of triethyl aluminum, trimethyl aluminum, diethyl aluminum chloride, ethyl aluminum dichloride, ethyl sesqui aluminum chloride, or a combination thereof;
  • the first solvent is selected from the following group: C 6 ⁇ C 12 alkanes, white oil, toluene, xylene, halogenated C 1 ⁇ C 12 alkanes;
  • the catalyst solution is a solution formed by the complex and the aluminum alkyl b in the second solvent; wherein the molar ratio of the aluminum alkyl b to the complex is 1-100/1;
  • the aluminum alkyl b is selected from the group consisting of triethyl aluminum, triisobutyl aluminum, diethyl aluminum chloride, or a combination thereof;
  • the second solvent is selected from the following group: toluene, halogenated C 1 ⁇ C 12 alkanes;
  • the complex is prepared by mixing the ligand compound I with a divalent metal salt; wherein,
  • the structure of the ligand compound I is:
  • Z and Y are each independently C 1 -C 4 alkyl or C 1 -C 4 haloalkyl
  • R 1 is H, halogen, C 1 -C 3 linear alkyl or C 1 -C 3 halogenated linear alkyl;
  • R 2 is halogen, C 1 -C 3 linear alkyl or C 1 -C 3 halogenated linear alkyl
  • R 3 and R 4 are each independently C 3 -C 8 isoalkyl, C 3 -C 8 halo isoalkyl, unsubstituted or substituted phenyl; the substituted phenyl has 1-5 One substituent selected from the group consisting of halogen, C 1 -C 4 alkyl and C 1 -C 4 haloalkyl;
  • R 5 , R 6 and R 7 are each independently halogen, nitro, hydrogen, C 1 -C 8 alkyl, C 1 -C 8 haloalkyl, -OR a or -N(R c ) 2 , wherein R a Is C 1 -C 8 alkyl, unsubstituted or substituted phenyl, R c is C 1 -C 4 alkyl or C 1 -C 4 haloalkyl; the substituted phenyl has 1-5 selected from Substituents of the following group: halogen, C 1 -C 4 alkyl and C 1 -C 4 haloalkyl;
  • the divalent metal salt is divalent nickel or divalent palladium metal salt
  • X is independently halogen, C 1 -C 4 alkyl, C 2 -C 6 alkenyl, allyl - OAc, - OTf, or benzyl;
  • the C 1 -C 3 linear alkyl group or C 1 -C 3 halogenated linear alkyl group is preferably methyl, ethyl, chloromethyl and Bromomethyl.
  • the C 3 -C 8 alkyl group and C 3 -C 8 haloalkyl group are preferably branched or cyclic alkyl groups or halogenated alkyl groups.
  • the halogen is preferably fluorine, chlorine and bromine.
  • the complex can be used after being purified from the ligand compound I and the divalent metal salt after coordination, or it can be used directly without purification after the ligand compound I and the divalent metal salt are mixed in-situ. use.
  • the substituted phenyl group has 1 to 3 substituents.
  • R 1 and R 2 are each independently selected from the following group: methyl, isopropyl, and halogen.
  • the low-carbon olefin is selected from the group consisting of ethylene, propylene, or a combination thereof.
  • the complex structure is
  • R 1 is H, halogen, C 1 -C 3 linear alkyl or C 1 -C 3 halogenated linear alkyl;
  • R 2 is halogen, C 1 -C 3 linear alkyl or C 1 -C 3 halogenated linear alkyl
  • R 3 and R 4 are each independently C 3 -C 8 isoalkyl, C 3 -C 8 halo isoalkyl, unsubstituted or substituted phenyl; the substituted phenyl has 1-5 One substituent selected from the group consisting of halogen, C 1 -C 4 alkyl and C 1 -C 4 haloalkyl;
  • R 5 and R 6 are each independently halogen, nitro, hydrogen, C 1 -C 8 alkyl, C 1 -C 8 haloalkyl, -OR a or-
  • R c N (R c) 2, wherein R a is C 1 -C 8 alkyl, unsubstituted or substituted phenyl, R c is C 1 -C 4 alkyl or C 1 -C 4 haloalkyl; said substituted
  • the phenyl group of has 1-5 substituents selected from the group consisting of halogen, C 1 -C 4 alkyl and C 1 -C 4 haloalkyl;
  • the divalent metal salt is a divalent nickel metal salt.
  • step (1) when ethylene is used as a single raw material, the polymerization temperature is 40-60°C, and the polymerization pressure is 0.7-1.2 MPa; when ethylene and propylene are used as polymerization raw materials at the same time, The polymerization temperature is 10-30°C, and the polymerization pressure is 0.5-0.7 MPa.
  • the method further includes solvent recovery and purification steps.
  • step (2) the hydrogenation reaction is completed by a fixed-bed hydrogenation process, wherein the fixed-bed hydrogenation reaction conditions are as follows:
  • Airspeed 1.0 ⁇ 2.0h -1 ;
  • the fixed bed hydrogenation reaction conditions are as follows:
  • Airspeed 1.0 ⁇ 1.5h -1 ;
  • step (2) the hydrogenation reaction is completed by a kettle-type hydrogenation process, wherein the kettle-type processing process is as follows:
  • Oil concentration 0.2 ⁇ 1.0Kg/L.
  • step (3) the process parameters of the rectification are as follows: rectification temperature: 240-280° C.; rectification absolute pressure: 1-700 Pa.
  • the polymerization temperature is 10-60°C;
  • the polymerization pressure is 0.7 to 2.0 MPa
  • the polymerization reaction time is 1-24 hours;
  • the low-carbon olefin is selected from the following group: ethylene, propylene or a combination thereof;
  • the aluminum alkyl a is selected from the group consisting of triethyl aluminum, trimethyl aluminum, diethyl aluminum chloride, ethyl aluminum dichloride, ethyl sesqui aluminum chloride, or a combination thereof;
  • the first solvent is selected from the following group: C 6 ⁇ C 12 alkanes, white oil, toluene, xylene, halogenated C 1 ⁇ C 12 alkanes;
  • the catalyst solution is a solution formed by the complex and the aluminum alkyl b in the second solvent; wherein the molar ratio of the aluminum alkyl b to the complex is 1-100/1;
  • the aluminum alkyl b is selected from the group consisting of triethyl aluminum, triisobutyl aluminum, diethyl aluminum chloride, or a combination thereof;
  • the second solvent is selected from the following group: toluene, halogenated C 1 ⁇ C 12 alkanes;
  • the complex is prepared after coordination of the ligand compound I with a divalent metal salt;
  • the structure of the ligand compound I is:
  • Z is C 1 -C 4 alkyl or C 1 -C 4 haloalkyl
  • Y is C 1 -C 4 alkyl, unsubstituted or substituted phenyl, or Z and Y together with adjacent carbon atoms form an unsubstituted or substituted group selected from the following group: acenaphthyl, phenanthryl and C 5- C 8 cycloalkyl, wherein the substituted phenyl, acenaphthyl, phenanthryl or cycloalkyl group has 1-5 substituents selected from the group consisting of halogen, C 1 -C 4 alkyl and C 1 -C 4 haloalkyl;
  • R 1 is H, halogen, C 1 -C 3 linear alkyl or C 1 -C 3 halogenated linear alkyl;
  • R 2 is H, C 1 -C 3 linear alkyl group and -CH 2 -OR a , wherein R a is C 1 -C 8 alkyl group, unsubstituted or substituted phenyl group;
  • R 3 and R 4 are each independently halogen, C 3 -C 8 alkyl, C 3 -C 8 haloalkyl, diphenylmethyl, unsubstituted or substituted phenyl; the substituted phenyl has 1 -5 substituents selected from the group consisting of halogen, C 1 -C 4 alkyl and C 1 -C 4 haloalkyl and aryl;
  • R 5 and R 6 are each independently halogen, nitro, hydrogen, C 1 -C 8 alkyl, C 1 -C 8 haloalkyl, -OR a or -N(R c ) 2 , wherein R a is C 1 -C 8 alkyl, unsubstituted or substituted phenyl, R c is C 1 -C 4 alkyl or C 1 -C 4 haloalkyl; the substituted phenyl has 1-5 selected from the following group Substituents: halogen, C 1 -C 4 alkyl and C 1 -C 4 haloalkyl;
  • R 7 is halogen, nitro, hydrogen, C 1 -C 8 alkyl, C 1 -C 8 haloalkyl, -OR a , -CH 2 -OR a or -N(R c ) 2 , where R a is C 1 -C 8 alkyl, unsubstituted or substituted phenyl, and R c is C 1 -C 4 alkyl or C 1 -C 4 haloalkyl; the substituted phenyl has 1-5 selected from the group consisting of Substituents of the group: halogen, C 1 -C 4 alkyl and C 1 -C 4 haloalkyl;
  • the divalent metal salt is divalent nickel or divalent palladium metal salt
  • X is independently halogen, C 1 -C 4 alkyl, C 2 -C 6 alkenyl, allyl - OAc, - OTf, or benzyl;
  • the C 1 -C 3 linear alkyl group or C 1 -C 3 halogenated linear alkyl group is preferably methyl, ethyl, chloromethyl and Bromomethyl.
  • the C 3 -C 8 alkyl group and C 3 -C 8 haloalkyl group are preferably branched or cyclic alkyl groups or halogenated alkyl groups.
  • the halogen is preferably fluorine, chlorine and bromine.
  • the complex can be used after being purified from the ligand compound I and the divalent metal salt after coordination, or it can be used directly without purification after the ligand compound I and the divalent metal salt are mixed in-situ. use.
  • the substituted phenyl group has 1 to 3 substituents.
  • Z and Y together with adjacent carbon atoms form an unsubstituted or substituted acenaphthyl group.
  • R 1 and R 2 are each independently selected from the following group: H, methyl, isopropyl or halogen.
  • the complex structure is:
  • R 1 is H, halogen, C 1 -C 3 linear alkyl or C 1 -C 3 halogenated linear alkyl;
  • R 2 is H, C 1 -C 3 linear alkyl or -CH 2 -OR a , wherein R a is C 1 -C 8 alkyl, unsubstituted or substituted phenyl;
  • R 3 and R 4 are each independently halogen, C 3 -C 8 alkyl, C 3 -C 8 haloalkyl, diphenylmethyl, unsubstituted or substituted phenyl; the substituted phenyl has 1 -5 substituents selected from the group consisting of halogen, C 1 -C 4 alkyl and C 1 -C 4 haloalkyl and aryl;
  • R 5 and R 6 are each independently halogen, nitro, hydrogen, C 1 -C 8 alkyl, C 1 -C 8 haloalkyl, -OR a or -N(R c ) 2 , wherein R a is C 1 -C 8 alkyl, unsubstituted or substituted phenyl, R c is C 1 -C 4 alkyl or C 1 -C 4 haloalkyl; the substituted phenyl has 1-5 selected from the following group Substituents: halogen, C 1 -C 4 alkyl and C 1 -C 4 haloalkyl;
  • the divalent metal salt is a divalent nickel metal salt.
  • the low-carbon olefin is selected from the group consisting of ethylene, propylene, or a combination thereof.
  • step (1) when ethylene is used as a single raw material, the polymerization temperature is 40-60°C, and the polymerization pressure is 1.5-2.0 MPa; when propylene is used as a single raw material, the The polymerization temperature is 10-30°C, and the polymerization pressure is 0.7-1.2 MPa.
  • the method further includes solvent recovery and purification steps.
  • step (2) the hydrogenation reaction is completed by a fixed-bed hydrogenation process, wherein the fixed-bed hydrogenation reaction conditions are as follows:
  • Airspeed 1.5 ⁇ 2.5h -1 ;
  • the fixed bed hydrogenation reaction conditions are as follows:
  • Airspeed 1.5 ⁇ 2.0h -1 ;
  • step (2) the hydrogenation reaction is completed by a kettle-type hydrogenation process, wherein the kettle-type processing process is as follows:
  • Oil concentration 0.2 ⁇ 1.0Kg/L.
  • the kettle type processing technique is as follows:
  • Oil concentration 0.8-0.9Kg/L.
  • step (3) the process parameters of the negative pressure rectification are as follows: rectification temperature: 300-350° C.; rectification absolute pressure: 1-700 Pa.
  • the polymerization temperature is 40 to 110°C;
  • the polymerization pressure is 0.1-0.7MPa
  • the polymerization reaction time is 1-24 hours;
  • the low-carbon olefin is selected from the following group: ethylene, butene or a combination thereof;
  • the aluminum alkyl a is selected from the group consisting of triethyl aluminum, trimethyl aluminum, diethyl aluminum chloride, ethyl aluminum dichloride, ethyl sesqui aluminum chloride, or a combination thereof;
  • the first solvent is selected from the following group: C 6 ⁇ C 12 alkanes, white oil, toluene, xylene, halogenated C 1 ⁇ C 12 alkanes;
  • the catalyst solution is a solution formed by the complex and the aluminum alkyl b in the second solvent; wherein the molar ratio of the aluminum alkyl b to the complex is 1-100/1;
  • the aluminum alkyl b is selected from the group consisting of triethyl aluminum, triisobutyl aluminum, diethyl aluminum chloride, or a combination thereof;
  • the second solvent is selected from the following group: toluene, halogenated C 1 ⁇ C 12 alkanes;
  • the complex is prepared by mixing the ligand compound I with a divalent metal salt.
  • the complex is a combination of ligand compound I and a divalent metal salt, or the complex is a complex as shown in II:
  • Y 1 is respectively hydrogen, C 1 -C 8 alkyl or C 1 -C 8 haloalkyl, unsubstituted or substituted phenyl;
  • Y 2 is respectively CR 4 R 5 , NR 6 , O or S, and R 4 , R 5 , and R 6 are each independently H, C 1 -C 4 alkyl or C 1 -C 4 haloalkyl;
  • Y 3 is one or more optional substituent groups located on the 5-7 membered monocyclic ring or the bicyclic or tricyclic group containing the 5-7 membered monocyclic ring, and each Y 3 is independently hydrogen, C 1- C 8 alkyl or C 1 -C 8 haloalkyl, C 5 -C 8 cycloalkyl, unsubstituted or substituted phenyl, unsubstituted or substituted benzyl;
  • Z is selected from the following group: C 1 -C 8 alkyl, C 1 -C 8 haloalkyl, unsubstituted or substituted phenyl, unsubstituted or substituted naphthyl;
  • the "substituted" mentioned in the above definitions means that the group has 1-5 substituents selected from the group consisting of C 1 -C 4 alkyl and C 1 -C 4 haloalkyl, halogen, nitro Group, cyano group, CF 3 , -OR 1 , -N(R 2 ) 2 , -Si(R 3 ) 3, -CH 2 -OR 8 , -SR 9 , -CH 2 -SR 10 , -CH-( R 10 ) 2 , or unsubstituted or substituted with 1-5 substituents selected from the group consisting of C 1 -C 4 alkyl and C 1 -C 4 haloalkyl, wherein R 1 , R 2 , R 3 are each independently a C1-C4 alkyl or C 1 -C 4 haloalkyl; and R 8, R 9 and R 10 are C 1 -C 8 alkyl or phenyl.
  • the divalent metal salt is a divalent nickel metal salt
  • the complex composed of the ligand I and the divalent metal salt has the structural formula shown in II.
  • the halogen is preferably fluorine, chlorine and bromine.
  • the complex can be used after being purified from the ligand compound I and the divalent metal salt after coordination, or it can be used directly without purification after the ligand compound I and the divalent metal salt are mixed in-situ. use.
  • the low-carbon olefin is selected from the following group: ethylene, butene, or a combination thereof.
  • the method further includes solvent recovery and purification steps.
  • step (2) the hydrogenation reaction is completed by a fixed-bed hydrogenation process, wherein the fixed-bed hydrogenation reaction conditions are as follows:
  • Airspeed 0.1 ⁇ 1.2h -1 ;
  • the fixed bed hydrogenation reaction conditions are as follows:
  • Airspeed 0.5 ⁇ 1.0h -1 ;
  • step (2) the hydrogenation reaction is completed by a kettle-type hydrogenation process, wherein the kettle-type processing process is as follows:
  • Oil concentration 0.2 ⁇ 1.0Kg/L.
  • the kettle type processing technique is as follows:
  • Oil concentration 0.8-0.9Kg/L.
  • step (3) the process parameters of the negative pressure rectification are as follows: rectification temperature: 200-250° C.; rectification absolute pressure: 1-700 Pa.
  • the negative pressure fractionation can use a molecular distillation device, a short-path distillation device or any other device that can achieve base oil fractionation.
  • sequence of the hydrogenation process and the rectification process can be interchanged.
  • the polymerization temperature is 10-60°C;
  • the polymerization pressure is 0.5 to 1.2 MPa
  • the polymerization reaction time is 1-24 hours;
  • the aluminum alkyl a is selected from the group consisting of triethyl aluminum, trimethyl aluminum, diethyl aluminum chloride, ethyl aluminum dichloride, ethyl sesqui aluminum chloride, or a combination thereof;
  • the first solvent is selected from the following group: C 6 ⁇ C 12 alkanes, white oil, toluene, xylene, halogenated C 1 ⁇ C 12 alkanes;
  • the catalyst solution is a solution formed by the complex and the aluminum alkyl b in the second solvent; wherein the molar ratio of the aluminum alkyl b to the complex is 1-100/1;
  • the aluminum alkyl b is selected from the group consisting of triethyl aluminum, triisobutyl aluminum, diethyl aluminum chloride, or a combination thereof;
  • the second solvent is selected from the following group: toluene, halogenated C 1 ⁇ C 12 alkanes;
  • the complex is a combination of ligand compound I and a divalent metal salt, or the complex is a complex as shown in II:
  • Y 1 is respectively hydrogen, C 1 -C 8 alkyl or C 1 -C 8 haloalkyl, unsubstituted or substituted phenyl;
  • Y 2 is respectively CR 4 R 5 , NR 6 , O or S, and R 4 , R 5 , and R 6 are each independently H, C 1 -C 4 alkyl or C 1 -C 4 haloalkyl;
  • Y 1 and Y 2 and the CC bond connected to the two together form an unsubstituted or substituted 5-12 membered ring; preferably, Y 1 and Y 2 can be combined with the CC bond connected to the two to form an unsubstituted Or substituted C 6 -C 8 membered ring;
  • Y 3 is one or more optional substituent groups located on the 5-7 membered monocyclic ring or the bicyclic or tricyclic group containing the 5-7 membered monocyclic ring, and each Y 3 is independently hydrogen, C 1- C 8 alkyl or C 1 -C 8 haloalkyl, unsubstituted or substituted phenyl, unsubstituted or substituted benzyl;
  • Z is selected from the following group: C 1 -C 8 alkyl, C 1 -C 8 haloalkyl, unsubstituted or substituted phenyl, unsubstituted or substituted naphthyl;
  • the "substituted" mentioned in the above definitions means that the group has 1-5 substituents selected from the group consisting of C 1 -C 4 alkyl and C 1 -C 4 haloalkyl, halogen, nitro Group, cyano group, CF 3 , -OR 1 , -N(R 2 ) 2 , -Si(R 3 ) 3, -CH 2 -OR 8 , -SR 9 , -CH 2 -SR 10 , -CH-( R 10 ) 2 , or unsubstituted or substituted with 1-5 substituents selected from the group consisting of C 1 -C 4 alkyl and C 1 -C 4 haloalkyl, wherein R 1 , R 2 , R 3 is each independently a C1-C4 alkyl group or a C1-C4 haloalkyl group; and R 8 , R 9 and R 10 are respectively a C 1 -C 8 alkyl group or a
  • the divalent metal salt is a divalent nickel metal salt.
  • X is independently halogen, C 1 -C 4 alkyl, C 2 -C 6 alkenyl, allyl - OAc, - OTf, or benzyl;
  • the halogen is preferably fluorine, chlorine and bromine.
  • the complex can be used after being purified from the ligand compound I and the divalent metal salt after coordination, or it can be used directly without purification after the ligand compound I and the divalent metal salt are mixed in-situ. use.
  • the substituted phenyl group has 1 to 3 substituents.
  • the low-carbon olefin is selected from the group consisting of ethylene, propylene, or a combination thereof.
  • step (1) when ethylene is used as a single raw material, the polymerization temperature is 40-60°C, and the polymerization pressure is 0.7-1.2 MPa; when propylene is used as a single raw material, the The polymerization temperature is 10-30°C, and the polymerization pressure is 0.5-1.0 MPa.
  • the method further includes solvent recovery and purification steps.
  • step (2) the hydrogenation reaction is completed by a fixed-bed hydrogenation process, wherein the fixed-bed hydrogenation reaction conditions are as follows:
  • Airspeed 1.0 ⁇ 2.0h -1 ;
  • the fixed bed hydrogenation reaction conditions are as follows:
  • Airspeed 1.0 ⁇ 1.5h -1 ;
  • step (2) the hydrogenation reaction is completed by a kettle-type hydrogenation process, wherein the kettle-type processing process is as follows:
  • Oil concentration 0.2 ⁇ 1.0Kg/L.
  • the kettle type processing technique is as follows:
  • Oil concentration 0.8-0.9Kg/L.
  • step (3) the process parameters of the rectification are as follows: rectification temperature: 240-280° C.; rectification absolute pressure: 1-700 Pa.
  • the polymerization temperature is 10-60°C;
  • the polymerization pressure is 0.7 to 2.0 MPa
  • the polymerization reaction time is 1-24 hours;
  • the low-carbon olefin is selected from the following group: ethylene, propylene or a combination thereof;
  • the aluminum alkyl a is selected from the group consisting of triethyl aluminum, trimethyl aluminum, diethyl aluminum chloride, ethyl aluminum dichloride, ethyl sesqui aluminum chloride, or a combination thereof;
  • the first solvent is selected from the following group: C 6 ⁇ C 12 alkanes, white oil, toluene, xylene, halogenated C 1 ⁇ C 12 alkanes;
  • the catalyst solution is a solution formed by the complex and the aluminum alkyl b in the second solvent; wherein the molar ratio of the aluminum alkyl b to the complex is 1-100/1;
  • the aluminum alkyl b is selected from the group consisting of triethyl aluminum, triisobutyl aluminum, diethyl aluminum chloride, or a combination thereof;
  • the second solvent is selected from the following group: toluene, halogenated C 1 ⁇ C 12 alkanes;
  • the complex is a combination of ligand compound I and a divalent metal salt, or the complex is a complex as shown in II:
  • Y 1 is respectively hydrogen, C 1 -C 8 alkyl or C 1 -C 8 haloalkyl, unsubstituted or substituted phenyl;
  • Y 2 is respectively CR 4 R 5 , NR 6 , O or S, and R 4 , R 5 , and R 6 are each independently H, C 1 -C 4 alkyl or C 1 -C 4 haloalkyl;
  • Y 3 is one or more optional substituent groups located on the 5-7 membered monocyclic ring or the bicyclic or tricyclic group containing the 5-7 membered monocyclic ring, and each Y 3 is independently hydrogen, C 1- C 8 alkyl, C 1 -C 8 haloalkyl, C 5 -C 8 cycloalkyl, unsubstituted or substituted phenyl, unsubstituted or substituted benzyl;
  • Z is respectively C 1 -C 8 alkyl, C 1 -C 8 haloalkyl, unsubstituted or substituted phenyl, unsubstituted or substituted naphthyl;
  • the "substituted" mentioned in the above definitions means that the group has 1-5 substituents selected from the group consisting of C 1 -C 4 alkyl and C 1 -C 4 haloalkyl, halogen, nitro Group, cyano group, CF 3 , -OR 1 , -N(R 2 ) 2 , -Si(R 3 ) 3, -CH 2 -OR 8 , -SR 9 , -CH 2 -SR 10 , -CH-( R 10 ) 2 , or unsubstituted or substituted with 1-5 substituents selected from the group consisting of C 1 -C 4 alkyl and C 1 -C 4 haloalkyl, wherein R 1 , R 2 , R 3 is each independently a C 1 -C 4 alkyl group or a C 1 -C 4 haloalkyl group; and R 8 , R 9 and R 10 are respectively a C 1 -C 8 alkyl group or
  • the divalent metal salt is a divalent nickel metal salt
  • X is independently halogen, C 1 -C 4 alkyl, C 2 -C 6 alkenyl, allyl - OAc, - OTf, or benzyl;
  • the halogen is preferably fluorine, chlorine and bromine.
  • the complex can be used after being purified from the ligand compound I and the divalent metal salt after coordination, or it can be used directly without purification after the ligand compound I and the divalent metal salt are mixed in-situ. use.
  • the substituted phenyl group has 1 to 3 substituents.
  • step (1) when ethylene is used as a single raw material, the polymerization temperature is 40-60°C, and the polymerization pressure is 1.5-2.0 MPa; when propylene is used as a single raw material, the The polymerization temperature is 10-30°C, and the polymerization pressure is 0.7-1.2 MPa.
  • the method further includes solvent recovery and purification steps.
  • step (2) the hydrogenation reaction is completed by a fixed-bed hydrogenation process, wherein the fixed-bed hydrogenation reaction conditions are as follows:
  • Airspeed 1.5 ⁇ 2.5h -1 ;
  • the fixed bed hydrogenation reaction conditions are as follows:
  • Airspeed 1.8 ⁇ 2.2h -1 ;
  • step (2) the hydrogenation reaction is completed by a kettle-type hydrogenation process, wherein the kettle-type processing process is as follows:
  • Oil concentration 0.2 ⁇ 1.0Kg/L.
  • the kettle type processing technique is as follows:
  • Oil concentration 0.8-0.9Kg/L.
  • step (3) the process parameters of the negative pressure rectification are as follows: rectification temperature: 300-350° C.; rectification absolute pressure: 1-700 Pa.
  • the second aspect of the present invention provides a base oil.
  • the base oil is a low-viscosity base oil
  • the kinematic viscosity of the low-viscosity base oil at 100°C is 4-10 mm 2 /s.
  • the low-viscosity base oil has a kinematic viscosity of 4-10 mm 2 /s at 100°C, an acid value of less than 0.01 mg KOH/g, wherein the NOACK evaporation loss is less than 15%, and the pour point is less than- At 50°C, the viscosity index is higher than 140.
  • the kinematic viscosity of the low-viscosity base oil at 100°C is 4-10 mm 2 /s.
  • the molecular weight distribution of the low-viscosity base oil is less than 2.0, more preferably less than 1.8.
  • the base oil is a high-quality, medium-viscosity base oil, and the kinematic viscosity of the medium-viscosity base oil at 100°C is 20-40 mm 2 /s.
  • the medium viscosity base oil has the following characteristics: acid value is less than 0.01 mg KOH/g, NOACK evaporation loss is less than 3%, pour point is less than -30°C, and viscosity index is more than 150.
  • the molecular weight distribution of the medium viscosity base oil is less than 2.0, more preferably less than 1.8.
  • the base oil is a high-viscosity grade base oil
  • the kinematic viscosity at 100°C of the high-viscosity grade base oil is 100-300 mm 2 /s
  • the acid value is less than 0.01 mg KOH/g, where NOACK evaporation loss is less than 1%, pour point is lower than -20°C, and viscosity index is higher than 170.
  • the kinematic viscosity of the high-viscosity base oil at 100°C is 100-300 mm 2 /s.
  • the molecular weight distribution of the high-viscosity base oil is less than 2.0, more preferably less than 1.8.
  • the base oil is a low-viscosity base oil
  • the kinematic viscosity of the low-viscosity grade base oil at 100°C is 6-10 mm 2 /s
  • the acid value is less than 0.01 mg KOH /g, where NOACK evaporation loss is less than 15%, pour point is less than -50°C, and viscosity index is more than 140.
  • the molecular weight distribution of the low viscosity grade base oil is less than 2.0, more preferably less than 1.8.
  • the low-viscosity grade base oil can be used for motor lubricating oil.
  • the base oil is a medium viscosity base oil, and the kinematic viscosity of the medium viscosity base oil at 100° C. is 20-40 mm 2 /s.
  • the molecular weight distribution of the medium viscosity base oil is less than 2.0, more preferably less than 1.8.
  • the medium viscosity base oil has a kinematic viscosity of 20-40 mm 2 /s at 100°C, an acid value of less than 0.01 mg KOH/g, wherein the NOACK evaporation loss is less than 3%, and the pour point is less than- At 30°C, the viscosity index is higher than 150.
  • the medium viscosity grade base oil has a kinematic viscosity of 2-10 mm 2 /s at 100°C, an acid value of less than 0.01 mg KOH/g, wherein the NOACK evaporation loss is less than 3% and the pour point -30°C, the viscosity index is higher than 150.
  • the base oil is a high-viscosity base oil
  • the kinematic viscosity of the high-viscosity base oil at 100°C is 100-300 mm 2 /s.
  • the molecular weight distribution of the high-viscosity base oil is less than 2.0, more preferably less than 1.8.
  • the high-viscosity grade base oil has a kinematic viscosity of 100-300 mm 2 /s at 100°C, an acid value of less than 0.01 mg KOH/g, wherein the NOACK evaporation loss is less than 1%, and the pour point is less than At -20°C, the viscosity index is higher than 170.
  • the base oil is prepared by the process method described in the first aspect.
  • a method for preparing motor lubricating oil or mechanical lubricating oil is provided, which is characterized in that the base oil is prepared by the method as described in the first aspect of the present invention.
  • the motor lubricating oil is prepared with the described base oil.
  • Figure 1 shows the process flow diagram of the direct polymerization of ethylene to prepare base oil.
  • FIG. 1 shows the molecular weight and molecular weight distribution diagram (GPC) of the low-viscosity base oil LPE6 after molecular distillation in Example 1.
  • FIG. 3 shows the molecular weight and molecular weight distribution diagram (GPC) of the low-viscosity base oil LPE8 after molecular distillation in Example 2.
  • FIG. 4 shows the molecular weight and molecular weight distribution diagram (GPC) of the low-viscosity base oil LPE10 after molecular distillation in Example 3.
  • FIG. 5 shows the molecular weight and molecular weight distribution diagram (GPC) of the medium viscosity base oil LPE30 after molecular distillation in Example 7.
  • Figure 6 shows the molecular weight and molecular weight distribution diagram (GPC) of the medium viscosity base oil LPE28 after molecular distillation in Example 8.
  • Figure 7 shows the molecular weight and molecular weight distribution diagram (GPC) of the high-viscosity base oil LPE100 after molecular distillation in Example 13.
  • Figure 8 shows the molecular weight and molecular weight distribution diagram (GPC) of the high-viscosity base oil LPE200 after molecular distillation in Example 16.
  • Figure 9 shows the molecular weight and molecular weight distribution diagram (GPC) of the low-viscosity base oil LPE6 after molecular distillation in Example 19.
  • Figure 10 shows the molecular weight and molecular weight distribution diagram (GPC) of the low-viscosity base oil LPE7 after molecular distillation in Example 20.
  • FIG 11 shows the molecular weight and molecular weight distribution diagram (GPC) of the low-viscosity base oil LPE8 after molecular distillation in Example 21.
  • Figure 12 shows the molecular weight and molecular weight distribution diagram (GPC) of the medium viscosity base oil LPE30 after molecular distillation in Example 25.
  • GPC molecular weight distribution diagram
  • Figure 13 shows the molecular weight and molecular weight distribution graph (GPC) of the medium viscosity base oil LPE33 after molecular distillation in Example 26.
  • Figure 14 shows the molecular weight and molecular weight distribution diagram (GPC) of the medium viscosity base oil LPE29 after molecular distillation in Example 27.
  • Figure 15 shows the molecular weight and molecular weight distribution diagram (GPC) of the high-viscosity base oil LPE100 after molecular distillation in Example 31.
  • Figure 16 shows the molecular weight and molecular weight distribution diagram (GPC) of the high-viscosity base oil LPE120 after molecular distillation in Example 32.
  • the method of the present invention can directly prepare high-performance, low-viscosity base oils from low-carbon olefins, without the need to use a very complicated or high-cost separation process, and even without the use of a blending process (of course, the high-performance Performance base oil and other high performance base oil for further reconciliation). On this basis, the inventor completed the present invention.
  • C 6 ⁇ C 12 alkanes refers to straight or branched alkanes with 6-12 carbon atoms, including, but not limited to, hexane, heptane, octane and the like. group.
  • C 1 ⁇ C 12 halogenated alkanes refers to linear or branched halogenated alkanes with 1-12 carbon atoms, including, but not limited to: dichloromethane, 1,2-di Chloroethane, 1,1,2,2-tetrachloroethane and similar groups;
  • C 1 -C 4 alkyl refers to a linear or branched alkyl group having 1 to 4 carbon atoms, including, for example, methyl, ethyl, n-propyl, isopropyl, N-butyl, isobutyl. Tert-butyl.
  • C 1 -C 3 linear alkyl group refers to a linear alkyl group having 1 to 3 carbon atoms, including, for example, methyl, ethyl, and n-propyl.
  • C 3 -C 8 alkyl refers to a straight or branched alkyl group having 3-8 carbon atoms, for example, including, but not limited to: n-propyl, isopropyl, n-butyl Group, isobutyl, tert-butyl, n-pentyl and similar groups.
  • C 3 -C 8 haloalkyl refers to a linear or branched haloalkyl group having 3-8 carbon atoms, for example including but not limited to: haloisopropyl, halocyclopropyl And other similar groups.
  • C 1 -C 8 alkyl group refers to a straight or branched chain alkyl group having 1-8 carbon atoms, for example including, but not limited to: methyl, ethyl, n-propyl, Isopropyl, n-butyl, isobutyl. Tert-butyl, pentyl, hexyl and similar groups.
  • C 1 -C 8 haloalkyl refers to a linear or branched haloalkyl group having 1-8 carbon atoms, for example, including, but not limited to: chloromethyl, bromomethyl and the like group.
  • C 5 -C 8 cycloalkyl refers to a cycloalkyl group having 5-8 carbon atoms, for example including, but not limited to: cyclopentyl, cyclohexyl, cycloheptyl and the like .
  • halo refers to substitution by halogen (eg, fluorine, chlorine, bromine, iodine).
  • the lower olefin used in the present invention may be a C 2 -C 4 olefin, for example, ethylene, butene or a combination thereof.
  • the complex used in the polymerization reaction herein can be prepared by coordinating the ligand compound I with a divalent metal salt in an inert solvent.
  • the structure of the ligand compound I is:
  • Z and Y are each independently selected from the following group: C 1 -C 4 alkyl, C 1 -C 4 haloalkyl, phenyl or substituted phenyl, or Z and Y together with adjacent carbon atoms constitute unsubstituted or
  • the substituted group is selected from the following group: acenaphthyl, phenanthryl and C 5 -C 8 cycloalkyl, wherein the substituted phenyl, acenaphthyl, phenanthryl or cycloalkyl has 1-5 selected Substituents from the following group: halogen, C 1 -C 4 alkyl and C 1 -C 4 haloalkyl;
  • R 1 is H, halogen, C 1 -C 3 linear alkyl or C 1 -C 3 halogenated linear alkyl;
  • R 2 is halogen, C 1 -C 3 linear alkyl or C 1 -C 3 halogenated linear alkyl, or -CH 2 -OR a , wherein R a is C 1 -C 8 alkyl, unsubstituted or Substituted phenyl;
  • R 3 and R 4 are each independently halogen, C 3 -C 8 alkyl, C 3 -C 8 haloalkyl, C 3 -C 8 isoalkyl, C 3 -C 8 halo isoalkyl, two Phenylmethyl, unsubstituted or substituted phenyl; the substituted phenyl has 1-5 substituents selected from the group consisting of halogen, C 1 -C 4 alkyl, C 1 -C 4 haloalkyl , And aryl;
  • R 5 , R 6 and R 7 are each independently halogen, nitro, hydrogen, C 1 -C 8 alkyl, C 1 -C 8 haloalkyl, -OR a, -CH 2 -OR a, or -N (R c ) 2 , wherein R a is C 1 -C 8 alkyl, unsubstituted or substituted phenyl; R c is C 1 -C 4 alkyl or C 1 -C 4 haloalkyl; said substituted phenyl Have 1-5 substituents selected from the group consisting of halogen, C 1 -C 4 alkyl and C 1 -C 4 haloalkyl;
  • the substituted phenyl group has 1 to 3 substituents.
  • Z and Y together with adjacent carbon atoms form an unsubstituted or substituted acenaphthyl group.
  • R 1 and R 2 are each independently selected from the following group: methyl, isopropyl or halogen.
  • the divalent metal salt may be divalent nickel or divalent palladium metal salt, for example, including but not limited to: NiCl 2 , NiBr 2 , NiI 2 , (DME)NiBr 2 , (DME)NiCl 2 , (DME) NiI 2 , PdCl 2 , PdBr 2 , Pd(OTf) 2 and Pd(OAc) 2 .
  • the inert solvent can be any solvent that is conventionally used and does not affect the progress of the reaction, including alcohols, aromatic hydrocarbons, aliphatic hydrocarbons, halogenated hydrocarbons, ethers, esters, nitrile solvents, preferably halogenated hydrocarbon solvents, Among them, better results can be obtained in halogenated hydrocarbons and lipid solvents.
  • Preferred examples are dichloromethane, 1,2-dichloroethane, ethyl acetate, and tetrahydrofuran.
  • the complex applicable to the process or preparation method of the present invention has the structure shown in the following formula (II):
  • R 1 is H, halogen, C 1 -C 3 linear alkyl
  • R 2 is halogen, C 1 -C 3 linear alkyl or C 1 -C 3 halogenated linear alkyl
  • R 3 and R 4 are each independently halogen, C 3 -C 8 alkyl, C 3 -C 8 haloalkyl, unsubstituted or substituted phenyl; the substituted phenyl has 1-5 selected from the group consisting of Substituents of the group: halogen, C 1 -C 4 alkyl and C 1 -C 4 haloalkyl;
  • R 5 and R 6 are each independently hydrogen, halogen, nitro, C 1 -C 8 alkyl, C 1 -C 8 haloalkyl, -OR a or -N(R c ) 2 , wherein R a is C 1 -C 8 alkyl, unsubstituted or substituted phenyl, and R c is C 1 -C 4 alkyl or C 1 -C 4 haloalkyl; the substituted phenyl has 1-5 selected from the following group Substituents of: halogen, C 1 -C 4 alkyl and C 1 -C 4 haloalkyl;
  • the complex applicable to the process or preparation method of the present invention has the structure shown in the following formula (II):
  • Z, Y, R 1 , R 2 , R 3 , R 4 , R 5 , R 6 and R 7 are as defined above;
  • X is independently halogen, C 1 -C 4 alkyl, C 2 -C 6 alkenyl, allyl - OAc, - OTf, or benzyl;
  • the C 1 -C 4 alkyl group is preferably methyl; the halogen is preferably bromine, chlorine or iodine.
  • the complex applicable to the process or preparation method of the present invention has the structure shown in the following formula (II):
  • R 1 is H, halogen, C 1 -C 3 linear alkyl or C 1 -C 3 halogenated linear alkyl;
  • R 2 is H, C 1 -C 3 linear alkyl or -CH 2 -OR a , wherein R a is C 1 -C 8 alkyl, unsubstituted or substituted phenyl;
  • R 3 and R 4 are each independently halogen, C 3 -C 8 alkyl, C 3 -C 8 haloalkyl, diphenylmethyl, unsubstituted or substituted phenyl; the substituted phenyl has 1 -5 substituents selected from the group consisting of halogen, C 1 -C 4 alkyl and C 1 -C 4 haloalkyl and aryl;
  • R 5 and R 6 are each independently halogen, nitro, hydrogen, C 1 -C 8 alkyl, C 1 -C 8 haloalkyl, -OR a or -N(R c ) 2 , wherein R a is C 1 -C 8 alkyl, unsubstituted or substituted phenyl, R c is C 1 -C 4 alkyl or C 1 -C 4 haloalkyl; the substituted phenyl has 1-5 selected from the following group Substituents: halogen, C 1 -C 4 alkyl and C 1 -C 4 haloalkyl;
  • X is a hydrocarbyl group, such as methyl or benzyl
  • it can often be obtained from the corresponding chloride or bromide and methyl Grignard reagent or benzyl Grignard reagent under conventional reaction conditions similar to the reaction, and Regardless of whether X in the nickel complex (II) is a halogen or a hydrocarbon group or any other group that can coordinate with nickel, such as an oxygen-containing compound, as long as the complex can form a Ni-C bond or Ni- under the action of an aluminum alkyl The H bond can achieve this catalytic effect.
  • These compounds all have the same active center in the process of catalyzing the polymerization of ethylene, and therefore exhibit the same or similar properties.
  • the complex can be used to catalyze the polymerization of low-carbon (C 2 -C 4 ) olefins after being separated and purified by the ligand compound I and the metal precursor, or it can be used directly from the ligand compound I and the metal precursor.
  • the complex used in the polymerization reaction herein can be prepared in an inert solvent or by coordination of the ligand compound I with a divalent metal salt.
  • the structure of the ligand compound I is:
  • Y 1 is respectively hydrogen, C 1 -C 8 alkyl or C 1 -C 8 haloalkyl, unsubstituted or substituted phenyl;
  • Y 2 is respectively CR 4 R 5 , NR 6 , O or S, and R 4 , R 5 , and R 6 are each independently H, C 1 -C 4 alkyl or C 1 -C 4 haloalkyl;
  • Y 1 and Y 2 and the CC bond connected to the two together form an unsubstituted or substituted 5-12 membered ring; preferably, Y 1 and Y 2 can be combined with the CC bond connected to the two to form an unsubstituted Or substituted C 6 -C 8 membered ring;
  • Y 3 is one or more optional substituent groups located on the 5-7 membered monocyclic ring or the bicyclic or tricyclic group containing the 5-7 membered monocyclic ring, and each Y 3 is independently hydrogen, C 1- C 8 alkyl or C 1 -C 8 haloalkyl, C 5 -C 8 cycloalkyl, unsubstituted or substituted phenyl, unsubstituted or substituted benzyl;
  • Z is selected from the following group: C 1 -C 8 alkyl, C 1 -C 8 haloalkyl, unsubstituted or substituted phenyl, unsubstituted or substituted naphthyl;
  • the "substituted" mentioned in the above definitions means that the group has 1-5 substituents selected from the group consisting of C 1 -C 4 alkyl and C 1 -C 4 haloalkyl, halogen, nitro Group, cyano group, CF 3 , -OR 1 , -N(R 2 ) 2 , -Si(R 3 ) 3, -CH 2 -OR 8 , -SR 9 , -CH 2 -SR 10 , -CH-( R 10 ) 2 , or unsubstituted or substituted with 1-5 substituents selected from the group consisting of C 1 -C 4 alkyl and C 1 -C 4 haloalkyl, wherein R 1 , R 2 , R 3 is each independently a C 1 -C 4 alkyl group or a C 1 -C 4 haloalkyl group; and R 8 , R 9 and R 10 are respectively a C 1 -C 8 alkyl group or
  • the divalent metal salt may be a divalent nickel metal salt, for example, including but not limited to: NiCl 2 , NiBr 2 , NiI 2 , (DME)NiBr 2 , (DME)NiCl 2 , (DME)NiI 2 and the like.
  • the inert solvent can be any solvent that is conventionally used and does not affect the progress of the reaction, including alcohols, aromatic hydrocarbons, aliphatic hydrocarbons, halogenated hydrocarbons, ethers, esters, nitrile solvents, preferably halogenated hydrocarbon solvents, Among them, better results can be obtained in halogenated hydrocarbons and lipid solvents.
  • Preferred examples are dichloromethane, 1,2-dichloroethane, ethyl acetate, and tetrahydrofuran.
  • the complex applicable to the process or preparation method of the present invention has the structure shown in the following formula (II):
  • X is independently halogen, C 1 -C 4 alkyl, C 2 -C 6 alkenyl, allyl - OAc, - OTf, or a benzyl group; said C 1 -C 4 alkyl, preferably methyl; preferably said halogen is bromine, chlorine or iodine.
  • X is a hydrocarbyl group, such as methyl or benzyl
  • it can often be obtained from the corresponding chloride or bromide and methyl Grignard reagent or benzyl Grignard reagent under conventional reaction conditions similar to the reaction, and Regardless of whether X in the nickel complex (II) is a halogen or a hydrocarbon group or any other group that can coordinate with nickel, such as an oxygen-containing compound, as long as the complex can form a Ni-C bond or Ni- under the action of an aluminum alkyl The H bond can achieve this catalytic effect.
  • These compounds all have the same active center in the process of catalyzing the polymerization of ethylene, and therefore exhibit the same or similar properties.
  • the complex can be used to catalyze the polymerization of low-carbon (C 2 -C 4 ) olefins after being separated and purified by the ligand compound I and the metal precursor, or it can be used directly from the ligand compound I and the metal precursor.
  • the preparation method or process of the base oil of the present invention is to select one or more mixtures of the above-mentioned complexes to use one of low-carbon (C 2 -C 4 ) olefins (including ethylene and butene)
  • One or more mixtures are used as raw materials to obtain low-viscosity and high-quality synthetic base oil LPE through polymerization, hydrogenation, rectification and other processes.
  • the preparation method of the present invention includes the following steps:
  • (1) Polymerization At the set polymerization temperature, the first solvent and the aluminum alkyl a are sequentially added to the tubular reactor or the tank reactor, and the low carbon (for example, C 2 -C 4 ) olefins (such as refined olefins) (such as ethylene, butene or a combination thereof), and then multiple batches of catalyst solutions are added to the reactor to carry out polymerization reaction, thereby forming base oil before hydrogenation.
  • the low carbon for example, C 2 -C 4
  • olefins such as refined olefins
  • ethylene, butene or a combination thereof such as ethylene, butene or a combination thereof
  • the catalyst solution can be added in two, three or more batches.
  • the catalyst solution is added in batches at fixed or variable time intervals throughout the polymerization reaction process until the end of the reaction.
  • the polymerization temperature and the polymerization pressure can be controlled within an appropriate range. After 1 to 24 hours of polymerization, the reaction is stopped and the materials are put to the next process.
  • the alkyl aluminum a is selected from the group consisting of triethyl aluminum, trimethyl aluminum, diethyl aluminum chloride, ethyl aluminum dichloride, ethyl sesqui aluminum chloride, or a combination thereof ; More preferably triethyl aluminum, diethyl aluminum chloride, ethyl aluminum dichloride and ethyl sesqui aluminum chloride.
  • the first solvent is commonly used alkane (such as C 6 to C 12 alkane), toluene, xylene or halogenated alkane; preferably, the alkane is hexane and white oil; halogenated
  • alkane may preferably be dichloromethane, 1,2-dichloroethane or 1,1,2,2-tetrachloroethane.
  • the catalyst solution is a solution formed by the complex and the aluminum alkyl b in the second solvent; wherein the molar ratio of the aluminum alkyl b to the complex is 1-100/1;
  • Aluminum b is selected from the following group: triethyl aluminum, triisobutyl aluminum, diethyl aluminum chloride, or a combination thereof;
  • the second solvent is selected from the following group: toluene, halogenated C 6 ⁇ C 12 Of alkanes.
  • the structure of the reactor will have a certain impact on the polymerization efficiency, but will not affect the properties of the polymerization product, that is, the structure of the reactor body may affect the output, but all qualified base oils can be obtained.
  • the process provided in this article is suitable for tank reactors and tubular reactors (such as loops).
  • the tank reactor can be used independently, or multiple tank reactors can be used in series, depending on the specific output requirements.
  • the catalyst used for hydrogenation is a commonly used hydrogenation catalyst, preferably a supported hydrogenation catalyst used in petrochemical industry, such as DC series products, RIW series, supported Raney nickel catalysts, aluminum nickel alloy hydrogenation catalysts, Palladium-carbon catalysts, but not limited to the listed hydrogenation catalysts.
  • the solvent used in the hydrogenation reaction is a common solvent for hydrogenation, including alkanes and mixtures of alkanes, such as white oil, petroleum ether, hexane, etc.; preferably hexane; the hexane may include n-hexane, isomerized hexane, etc. Alkane, cyclohexane, or a mixture of multiple hexanes.
  • the negative pressure rectification can use a conventional rectification tower, molecular distillation equipment or any device available on the market that can achieve liquid fractionation.
  • the preferred process parameters have been described above and will not be repeated here.
  • the quenching method can be selected according to the plant environment and requirements, including direct completion to process (1). Add a small amount of quenching agent to the material, or transfer the liquid generated in step (1) to another kettle and then contact the quenching agent. Conventional silica gel, diatomaceous earth, clay, water, steam, etc. can all be used as quenching The quenching agent can be used alone or in a mixture of several types. The amount can be adjusted as required to meet the requirements of quenching the catalyst to terminate the polymerization. Adding more will not affect the quenching effect, but may aggravate the subsequent process Burden, or cause more waste residue;
  • auxiliary procedures can be added, such as solvent recovery procedures, product decolorization, filtration, etc. All of these auxiliary processes can be used or one or more of them can be used as needed; the auxiliary processes can be used in different process links according to needs;
  • the hydrogenation of oil in process (2) can be carried out before process (3) or after the oil fractionation and cutting is completed according to the working conditions and product requirements. It does not affect product quality, including viscosity, viscosity index and other properties, but it may affect Product Cost.
  • the polymerization reaction temperature is controlled at 40-110°C, the polymerization pressure is 0.1-0.7 MPa, and the polymerization reaction time is 1-24 hours, the reaction is stopped, and the materials are put into the next process.
  • the first solvent can be selected from the following group: C 6 ⁇ C 12 alkanes; toluene, xylene; halogenated C 1 ⁇ C 12 alkanes; preferably selected from the following group: hexane, dichloromethane, 1, 2-Dichloroethane, 1,1,2,2-tetrachloroethane.
  • the amount of the first solvent is determined according to the reaction kettle and the reaction output, and it is generally better to achieve the final product concentration not higher than 70% (v/v).
  • the alkyl aluminum a is selected from the group consisting of triethyl aluminum, trimethyl aluminum, diethyl aluminum chloride, ethyl aluminum dichloride and ethyl sesqui aluminum chloride; preferably triethyl aluminum.
  • the catalyst solution is a solution formed by the complex and aluminum alkyl b in the second solvent; the pre-reaction of the complex and aluminum alkyl b at room temperature before being added to the reaction system is to control the concentration of the catalytic species and control the stability of the polymerization reaction It is an important step for product quality and product quality. In this step, the choice of aluminum alkyl b and the second solvent is very important. It is necessary to ensure that the complex generates a real active species, while ensuring the stability of the active species in the absence of olefins.
  • the aluminum alkyl b in the catalyst solution and the aluminum alkyl a added in the polymerization reactor may be the same or different.
  • the catalyst solution is preferably 0.01 to 0.5M.
  • the molar ratio of the total amount of aluminum to the complex is preferably 10 to 80/1.
  • the reaction temperature is preferably 40 to 110°C.
  • the reaction pressure is preferably 0.1 to 0.7 MPa.
  • the reaction time is preferably 1 to 24 hours.
  • the molar ratio of the total amount of aluminum to the complex in the final polymerization reaction system is preferably 100-800/1.
  • the reaction temperature is preferably 40-60°C.
  • the reaction pressure is preferably 0.7 to 1.2 MPa.
  • the reaction time is preferably 6-10 hours.
  • the quenching agent includes diatomaceous earth, alcohol, silica gel powder, water, preferably alcohol;
  • the molar ratio of the quencher (such as alcohol)/aluminum alkyl 2 ⁇ 4.
  • the fixed bed hydrogenation process can be described as follows:
  • Hydrogenation catalyst all supported hydrogenation catalysts used in petrochemical industry can achieve the ideal hydrogenation effect, such as DC series products, RIW series, supported Raney nickel catalysts, aluminum-nickel alloy hydrogenation catalysts, palladium-carbon catalysts, etc.
  • the preferred hydrogenation conditions are as described above.
  • the kettle-type processing technology can be as follows:
  • Hydrogenation catalyst all supported hydrogenation catalysts used in petrochemical industry can achieve the ideal hydrogenation effect, such as DC series products, RIW series, supported Raney nickel catalysts, aluminum-nickel alloy hydrogenation catalysts, palladium-carbon catalysts, etc.
  • the preferred hydrogenation process parameters are as described above, and the preferred solvent is hexane.
  • Negative pressure rectification the hydrogenated base oil obtained in step (iii) is subjected to molecular rectification through a negative pressure rectification device to obtain a low-viscosity base oil.
  • the preferred molecular distillation process parameters are as shown above.
  • Base oil lubricating base oil
  • various types of base oil can be prepared according to the above-mentioned method or process.
  • the base oil is a low-viscosity base oil (ASTMD445-15a) with a kinematic viscosity of 4-10 mm 2 /s at 100°C.
  • the viscosity index (VI value) of the low-viscosity base oil is higher than 140, the NOACK evaporation loss is lower than 15%, and the pour point is lower than -50°C;
  • the sulfur and nitrogen content of the prepared base oil is usually lower than 5 ppm,
  • the content of various metals is less than 5ppm, the content of other impurities is less than 5ppm, the acid value is less than 0.01mg KOH/g, the water content is less than 50ppm, and the ASTM chromaticity is less than 0.5.
  • the base oil is a medium viscosity base oil (ASTMD445-15a) with a kinematic viscosity of 20-40 mm 2 /s at 100°C.
  • the medium viscosity base oil has a kinematic viscosity of 20-40 mm 2 /s at 100°C, a viscosity index (VI value) higher than 150, NOACK evaporation loss lower than 3%, and a pour point lower than -30°C;
  • the sulfur and nitrogen content of the base oil is usually less than 5ppm, the content of various metals is less than 5ppm, the content of other impurities is less than 5ppm, the acid value is less than 0.01mg KOH/g, the water content is less than 50ppm, and the ASTM color is less than 0.5.
  • the base oil is a high-viscosity base oil (ASTMD445-15a) with a kinematic viscosity of 100-300 mm 2 /s at 100°C.
  • the viscosity index (VI value) of the high-viscosity base oil is higher than 170, the NOACK evaporation loss is lower than 1%, and the pour point is lower than -20°C;
  • the sulfur and nitrogen content of the prepared base oil is usually lower than 5 ppm
  • the content of various metals is less than 5ppm, the content of other impurities is less than 5ppm, the acid value is less than 0.01mg KOH/g, the water content is less than 50ppm, and the ASTM chromaticity is less than 0.5.
  • the base oil is a base oil (ASTMD445-15a) with a kinematic viscosity of 6-10 mm 2 /s at 100°C. Its viscosity index (VI value) is higher than 140, NOACK evaporation loss is lower than 15%, and its pour point is lower than -50°C; the prepared base oil sulfur and nitrogen content is usually lower than 5ppm, and the content of various metals is lower than 5ppm. The content of other impurities is less than 5ppm, the acid value is less than 0.01mg KOH/g, the water content is less than 50ppm, and the ASTM color is less than 0.5.
  • VI value viscosity index
  • VI value kinematic viscosity index
  • NOACK evaporation loss is lower than 15%
  • its pour point is lower than -50°C
  • the prepared base oil sulfur and nitrogen content is usually lower than 5ppm
  • the content of various metals is lower than 5ppm.
  • the content of other impurities is less than 5pp
  • the base oil is a medium viscosity base oil (ASTMD445-15a) with a kinematic viscosity of 20-40 mm 2 /s at 100°C.
  • the medium viscosity base oil has a kinematic viscosity of 20-40 mm 2 /s at 100°C, a viscosity index (VI value) higher than 150, NOACK evaporation loss lower than 3%, and a pour point lower than -30°C;
  • the sulfur and nitrogen content of the base oil is usually less than 5ppm, the content of various metals is less than 5ppm, the content of other impurities is less than 5ppm, the acid value is less than 0.01mg KOH/g, the water content is less than 50ppm, and the ASTM color is less than 0.5.
  • the base oil is a high-viscosity base oil (ASTMD445-15a) with a kinematic viscosity of 100-300 mm 2 /s at 100°C.
  • the viscosity index (VI value) of the high-viscosity base oil is higher than 170, the NOACK evaporation loss is lower than 1%, and the pour point is lower than -20°C;
  • the sulfur and nitrogen content of the prepared base oil is usually lower than 5 ppm
  • the content of various metals is less than 5ppm, the content of other impurities is less than 5ppm, the acid value is less than 0.01mg KOH/g, the water content is less than 50ppm, and the ASTM chromaticity is less than 0.5.
  • the process of the present invention is safe and the production process is less corrosive to equipment. Different from the traditional AlCl 3 + alcohol, BF 3 + alcohol cationic polymerization production method, in this process, the amount of complex added is small ( ⁇ 0.01%), the activity is high, the co-catalyst is easy to remove, and the system does not contain strong corrosive and difficult to remove Chloride.
  • the post-treatment process of the present invention is simple, with less waste water and waste residue.
  • the post-treatment process of the invention is simple, does not need to be washed with water or alkali, or added with a large amount of clay for adsorption, and only needs to be filtered and fixed bed adsorption to obtain oil with low acid value and low impurity content.
  • step (1) of the present invention is a low-viscosity base oil, and the molecular weight distribution of the low-viscosity base oil is narrow, usually less than 1.8 (for example, as Figure 2, Figure 3, Figure 4), whether hydrogenation does not change the GPC results of the oil.
  • the production of low-viscosity base oil can be adjusted through the specific parameter control of the polymerization process and negative pressure rectification separation.
  • the low-viscosity base oil produced by this method can be directly used as the base oil of synthetic lubricating oil.
  • the additives are mixed according to the required ratio (base oil/additive: 100-70/0-30) and used as the final product; the low-viscosity base oil produced by the process of this application can also be combined with other base oils of different viscosities according to specific requirements.
  • Proportion mixing, and mixing with the required additives according to the required proportions and use as the final product; can also be used with II oil, III oil, IV oil and V oil (according to the American Petroleum Institute (API) classification standards) One or more of them are mixed according to the required ratio and used as the final product.
  • API American Petroleum Institute
  • complex A1 or complex B1 will be taken as an example, but it should be understood that the implementation of the method in this application is not limited to using these two complexes as catalysts:
  • the obtained base oil before hydrogenation is hydrogenated through a fixed bed.
  • the hydrogenation catalyst supported catalyst RIW-2; hydrogenation temperature: 180°C; hydrogenation pressure: 4.0MPa; space velocity: 1.0h -1 ; hydrogen Oil ratio: 400 to obtain hydrogenated base oil; then hydrogenated base oil is subjected to molecular distillation through negative pressure, the absolute pressure of the system is 20Pa, and the heating temperature is 200°C to obtain a clear and transparent low-viscosity grade base Oil LPE6, its molecular weight and molecular weight distribution are shown in Figure 2.
  • the basic physical and chemical properties of the obtained low-viscosity grade base oil LPE6 are as follows:
  • the obtained base oil before hydrogenation is hydrogenated through a fixed bed.
  • the hydrogenation catalyst supported catalyst RIW-2; hydrogenation temperature: 180°C; hydrogenation pressure: 4.0MPa; space velocity: 1.0h -1 ; hydrogen Oil ratio: 400 to obtain hydrogenated base oil; then hydrogenated base oil is subjected to molecular distillation through negative pressure, the absolute pressure of the system is 20Pa, and the heating temperature is 200°C to obtain a clear and transparent low-viscosity grade base Oil LPE8, its molecular weight and molecular weight distribution are shown in Figure 3.
  • the obtained base oil before hydrogenation is hydrogenated through a fixed bed.
  • the hydrogenation catalyst supported catalyst RIW-2; hydrogenation temperature: 180°C; hydrogenation pressure: 4.0MPa; space velocity: 1.0h -1 ; hydrogen Oil ratio: 400 to obtain hydrogenated base oil; then hydrogenated base oil is subjected to molecular rectification through negative pressure, the absolute pressure of the system is 20Pa, and the heating temperature is 200°C to obtain a clear and transparent low-viscosity grade base Oil LPE10, its molecular weight and molecular weight distribution are shown in Figure 4.
  • the basic physical and chemical properties of the obtained low-viscosity grade base oil LPE10 are as follows:
  • Example 2 Other conditions are the same as in Example 1. The temperature is changed to 50-60°C to obtain 3.0Kg of low-viscosity grade base oil LPE4.
  • the basic physical and chemical properties of the obtained low-viscosity grade base oil LPE4 are as follows:
  • Example 2 Other conditions were the same as in Example 1.
  • the solvent was changed to hexane to obtain 2.9Kg of low-viscosity grade base oil LPE5.
  • the basic physical and chemical properties of the obtained low-viscosity grade base oil LPE5 are as follows:
  • Example 2 Other conditions are the same as in Example 1.
  • the pressure is changed from 0.3 to 0.4 MPa to obtain 2.88Kg of low-viscosity grade base oil LPE9.
  • the basic physical and chemical properties of the obtained low-viscosity grade base oil LPE9 are as follows:
  • complex A2 or complex B2 will be taken as an example, but it should be understood that the implementation of the method of this application is not limited to using these two complexes as catalysts:
  • the obtained base oil before hydrogenation is hydrogenated through a fixed bed.
  • the hydrogenation catalyst supported catalyst RIW-2; hydrogenation temperature: 200°C; hydrogenation pressure: 4.0MPa; space velocity: 1.2h -1 ; hydrogen Oil ratio: 400 to obtain hydrogenated base oil; then hydrogenated base oil is subjected to molecular rectification through negative pressure, the absolute pressure of the system is 30Pa, and the heating temperature is 250°C to obtain a clear and bright base oil of medium viscosity LPE30, its molecular weight and molecular weight distribution are shown in Figure 2.
  • the basic physical and chemical properties of the obtained medium viscosity grade base oil LPE30 are as follows:
  • the obtained base oil before hydrogenation is hydrogenated through a fixed bed.
  • the hydrogenation catalyst supported catalyst RIW-2; hydrogenation temperature: 200°C; hydrogenation pressure: 4.0MPa; space velocity: 1.2h -1 ; hydrogen Oil ratio: 400 to obtain hydrogenated base oil; then hydrogenated base oil is subjected to molecular rectification through negative pressure, the absolute pressure of the system is 30Pa, and the heating temperature is 250°C to obtain a clear and bright medium-viscosity grade base Oil LPE28, its molecular weight and molecular weight distribution are shown in Figure 3.
  • the basic physical and chemical properties of the obtained medium viscosity grade base oil LPE28 are as follows:
  • the obtained base oil before hydrogenation is hydrogenated through a fixed bed.
  • the hydrogenation catalyst supported catalyst RIW-2; hydrogenation temperature: 200°C; hydrogenation pressure: 4.0MPa; space velocity: 1.2h -1 ; hydrogen Oil ratio: 400 to obtain hydrogenated base oil; then hydrogenated base oil is subjected to molecular rectification through negative pressure, the absolute pressure of the system is 40Pa, and the heating temperature is 250°C to obtain a clear and bright medium-viscosity grade base Oil LPE26.
  • the basic physical and chemical properties of the obtained medium viscosity grade base oil LPE26 are as follows:
  • Example 7 Other conditions are the same as in Example 7. The temperature is changed to 50-60°C to obtain 3.06Kg of medium viscosity base oil LPE32.
  • the basic physical and chemical properties of the obtained medium viscosity base oil LPE32 are as follows:
  • Example 7 Other conditions were the same as in Example 7.
  • the solvent was changed to hexane to obtain 2.89Kg of medium viscosity base oil LPE34.
  • the basic physical and chemical properties of the obtained medium viscosity base oil LPE34 are as follows:
  • Example 7 Other conditions are the same as in Example 7.
  • the pressure is changed from 0.8 to 0.9 MPa to obtain 2.87Kg of medium viscosity base oil LPE36.
  • the basic physical and chemical properties of the obtained medium viscosity base oil LPE36 are as follows:
  • the obtained base oil before hydrogenation is hydrogenated through a fixed bed.
  • the hydrogenation catalyst supported catalyst RIW-2; hydrogenation temperature: 220°C; hydrogenation pressure: 4.0MPa; space velocity: 2.0h -1 ; hydrogen Oil ratio: 300 to obtain hydrogenated base oil; then hydrogenated base oil is subjected to molecular distillation through negative pressure, the absolute pressure of the system is 50Pa, and the heating temperature is 300°C to obtain a clear and transparent high-viscosity grade base Oil LPE100. Its molecular weight and molecular weight distribution are shown in Figure 2.
  • the basic physical and chemical properties of the resulting high-viscosity grade base oil LPE100 are as follows:
  • the obtained base oil before hydrogenation is hydrogenated through a fixed bed.
  • the hydrogenation catalyst supported catalyst RIW-2; hydrogenation temperature: 220°C; hydrogenation pressure: 4.0MPa; space velocity: 2.0h -1 ; hydrogen Oil ratio: 300 to obtain hydrogenated base oil; then hydrogenated base oil is subjected to molecular distillation through negative pressure, the absolute pressure of the system is 50Pa, and the heating temperature is 300°C to obtain a clear and transparent high-viscosity grade base Oil LPE160.
  • the obtained base oil before hydrogenation is hydrogenated through a fixed bed.
  • the hydrogenation catalyst supported catalyst RIW-2; hydrogenation temperature: 220°C; hydrogenation pressure: 4.0MPa; space velocity: 2.0h -1 ; hydrogen Oil ratio: 300 to obtain hydrogenated base oil; then hydrogenated base oil is subjected to molecular distillation through negative pressure, the absolute pressure of the system is 50Pa, and the heating temperature is 300°C to obtain a clear and transparent high-viscosity grade base Oil LPE180.
  • Example 13 Other conditions were the same as in Example 13, and the temperature was changed to 50-60°C to obtain 2.89Kg of high-viscosity grade base oil LPE200, and its molecular weight and molecular weight distribution are shown in Figure 3.
  • the basic physical and chemical properties of the obtained high-viscosity grade base oil LPE200 are as follows:
  • Example 13 Other conditions were the same as in Example 13, and the solvent was changed to heptane to obtain 2.9Kg of high-viscosity grade base oil LPE220.
  • the basic physical and chemical properties of the obtained high-viscosity grade base oil LPE220 are as follows:
  • Example 13 Other conditions were the same as in Example 13, and the pressure was changed to 1.6-1.7 MPa to obtain 2.85 Kg of high-viscosity grade base oil LPE300.
  • the basic physical and chemical properties of the obtained high-viscosity grade base oil LPE300 are as follows:
  • the obtained base oil before hydrogenation is hydrogenated through a fixed bed.
  • the hydrogenation catalyst supported catalyst RIW-2; hydrogenation temperature: 180°C; hydrogenation pressure: 4.0MPa; space velocity: 1.0h -1 ; hydrogen Oil ratio: 400 to obtain hydrogenated base oil; then hydrogenated base oil is subjected to molecular distillation through negative pressure, the absolute pressure of the system is 20Pa, and the heating temperature is 200°C to obtain a clear and transparent low-viscosity grade base Oil LPE6, its molecular weight and molecular weight distribution are shown in Figure 2.
  • the basic physical and chemical properties of the obtained low-viscosity grade base oil LPE6 are as follows:
  • the obtained base oil before hydrogenation is hydrogenated through a fixed bed.
  • the hydrogenation catalyst supported catalyst RIW-2; hydrogenation temperature: 180°C; hydrogenation pressure: 4.0MPa; space velocity: 1.0h -1 ; hydrogen Oil ratio: 400 to obtain hydrogenated base oil; then hydrogenated base oil is subjected to molecular rectification through negative pressure, the absolute pressure of the system is 20Pa, and the heating temperature is 200°C to obtain a clear and transparent low-viscosity grade base Oil LPE7, its molecular weight and molecular weight distribution are shown in Figure 3.
  • the basic physical and chemical properties of the obtained low-viscosity grade base oil LPE7 are as follows:
  • the obtained base oil before hydrogenation is hydrogenated through a fixed bed.
  • the hydrogenation catalyst supported catalyst RIW-2; hydrogenation temperature: 180°C; hydrogenation pressure: 4.0MPa; space velocity: 1.0h -1 ; hydrogen Oil ratio: 400 to obtain hydrogenated base oil; then hydrogenated base oil is subjected to molecular rectification through negative pressure, the absolute pressure of the system is 20Pa, and the heating temperature is 200°C to obtain a clear and transparent low-viscosity grade base Oil LPE8, its molecular weight and molecular weight distribution are shown in Figure 4.
  • the basic physical and chemical properties of the obtained low-viscosity grade base oil LPE8 are as follows:
  • Example 19 Other conditions are the same as in Example 19. The temperature is changed to 50-60°C to obtain 3.1Kg of low-viscosity grade base oil LPE9.
  • the basic physical and chemical properties of the obtained low-viscosity grade base oil LPE9 are as follows:
  • Example 19 Other conditions were the same as in Example 19.
  • the solvent was changed to hexane to obtain 2.95Kg of low-viscosity grade base oil LPE5.
  • the basic physical and chemical properties of the obtained low-viscosity grade base oil LPE5 are as follows:
  • Example 19 Other conditions are the same as in Example 19, and the pressure is changed from 0.3 to 0.4 MPa to obtain 2.89Kg of low-viscosity grade base oil LPE4.
  • the basic physical and chemical properties of the obtained low-viscosity grade base oil LPE4 are as follows:
  • the obtained base oil before hydrogenation is hydrogenated through a fixed bed.
  • the hydrogenation catalyst supported catalyst RIW-2; hydrogenation temperature: 200°C; hydrogenation pressure: 4.0MPa; space velocity: 1.2h -1 ; hydrogen Oil ratio: 400 to obtain hydrogenated base oil; then hydrogenated base oil is subjected to molecular rectification through negative pressure, the absolute pressure of the system is 30Pa, and the heating temperature is 250°C to obtain a clear and bright medium-viscosity grade base Oil LPE30, its molecular weight and molecular weight distribution are shown in Figure 2.
  • the basic physical and chemical properties of the obtained medium viscosity grade base oil LPE30 are as follows:
  • the obtained base oil before hydrogenation is hydrogenated through a fixed bed.
  • the hydrogenation catalyst supported catalyst RIW-2; hydrogenation temperature: 200°C; hydrogenation pressure: 4.0MPa; space velocity: 1.2h -1 ; hydrogen Oil ratio: 400 to obtain hydrogenated base oil; then hydrogenated base oil is subjected to molecular rectification through negative pressure, the absolute pressure of the system is 30Pa, and the heating temperature is 250°C to obtain a clear and bright medium-viscosity grade base Oil LPE33, its molecular weight and molecular weight distribution are shown in Figure 3.
  • the basic physical and chemical properties of the obtained medium viscosity grade base oil LPE33 are as follows:
  • the obtained base oil before hydrogenation is hydrogenated through a fixed bed.
  • the hydrogenation catalyst supported catalyst RIW-2; hydrogenation temperature: 200°C; hydrogenation pressure: 4.0MPa; space velocity: 1.2h -1 ; hydrogen Oil ratio: 400 to obtain hydrogenated base oil; then hydrogenated base oil is subjected to molecular rectification through negative pressure, the absolute pressure of the system is 30Pa, and the heating temperature is 250°C to obtain a clear and bright medium-viscosity grade base Oil LPE29, its molecular weight and molecular weight distribution are shown in Figure 4.
  • the basic physical and chemical properties of the obtained medium viscosity grade base oil LPE29 are as follows:
  • Example 25 Other conditions are the same as in Example 25.
  • the temperature is changed to 50-60°C to obtain 3.08Kg of medium viscosity grade base oil LPE31.
  • the basic physical and chemical properties of the obtained medium viscosity grade base oil LPE31 are as follows:
  • Example 25 Other conditions are the same as in Example 25.
  • the solvent is changed to hexane to obtain 2.9Kg of medium viscosity grade base oil LPE35.
  • the basic physical and chemical properties of the obtained medium viscosity grade base oil LPE35 are as follows:
  • Example 25 Other conditions are the same as in Example 25.
  • the pressure is changed from 0.8 to 0.9 MPa to obtain 2.82Kg of medium viscosity grade base oil LPE37.
  • the basic physical and chemical properties of the obtained medium viscosity grade base oil LPE37 are as follows:
  • the obtained base oil before hydrogenation is hydrogenated through a fixed bed.
  • the hydrogenation catalyst supported catalyst RIW-2; hydrogenation temperature: 220°C; hydrogenation pressure: 4.0MPa; space velocity: 2.0h -1 ; hydrogen Oil ratio: 300 to obtain hydrogenated base oil; then hydrogenated base oil is subjected to molecular distillation through negative pressure, the absolute pressure of the system is 50Pa, and the heating temperature is 300°C to obtain a clear and transparent high-viscosity grade base Oil LPE100, its molecular weight and molecular weight distribution are shown in Figure 2.
  • the basic physical and chemical properties of the obtained high-viscosity grade base oil LPE100 are as follows:
  • the obtained base oil before hydrogenation is hydrogenated through a fixed bed.
  • the hydrogenation catalyst supported catalyst RIW-2; hydrogenation temperature: 220°C; hydrogenation pressure: 4.0MPa; space velocity: 2.0h -1 ; hydrogen Oil ratio: 300 to obtain hydrogenated base oil; then hydrogenated base oil is subjected to molecular distillation through negative pressure, the absolute pressure of the system is 50Pa, and the heating temperature is 300°C to obtain a clear and transparent high-viscosity grade base Oil LPE120, its molecular weight and molecular weight distribution are shown in Figure 3.
  • the basic physical and chemical properties of the obtained high-viscosity grade base oil LPE120 are as follows:
  • the obtained base oil before hydrogenation is hydrogenated through a fixed bed.
  • the hydrogenation catalyst supported catalyst RIW-2; hydrogenation temperature: 220°C; hydrogenation pressure: 4.0MPa; space velocity: 2.0h -1 ; hydrogen Oil ratio: 300 to obtain hydrogenated base oil; then hydrogenated base oil is subjected to molecular distillation through negative pressure, the absolute pressure of the system is 50Pa, and the heating temperature is 300°C to obtain a clear and transparent high-viscosity grade base Oil LPE140.
  • Example 31 Other conditions were the same as in Example 31, and the temperature was changed to 50-60°C to obtain 3.1Kg of high-viscosity grade base oil LPE160.
  • the basic physical and chemical properties of the obtained high-viscosity grade base oil LPE160 are as follows:
  • Example 31 Other conditions were the same as in Example 31, and the solvent was changed to heptane to obtain 2.92Kg of high-viscosity grade base oil LPE220.
  • the basic physical and chemical properties of the obtained high-viscosity grade base oil LPE220 are as follows:
  • Example 31 Other conditions were the same as in Example 31, and the pressure was changed to 1.6-1.7 MPa to obtain 2.9 Kg of high-viscosity grade base oil LPE240.
  • the basic physical and chemical properties of the obtained high-viscosity grade base oil LPE240 are as follows:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

本发明涉及一种经低碳烯烃聚合直接合成高性能基础油的工艺方法。具体地,本发明公开了一种经低碳烯烃直接合成高性能的具有低、中或高粘度的基础油的方法,所述方法包括聚合、加氢、精馏等多个工序。本发明所述的方法原料易得,三废少,减少了生产过程的污染,合成的基础油性能好、生产成本低。

Description

一种低碳烯烃经聚合直接合成高性能基础油的工艺方法 技术领域
本发明涉及合成基础油生产技术领域,具体涉及一种乙烯等低碳烯烃(C 2-C 4)经聚合直接合成高性能基础油的工艺方法。
背景技术
润滑油是工业中不可缺少的物质材料,对于节能降耗、保护、保障设备长期高效运转具有重要价值。据统计全球工业能源消耗量的1/3-1/2是由摩擦所造成的,而且80%的失效零件是因为磨损造成,因此高性能润滑油对于减少磨损、降低能耗以及社会的可持续性发展意义重大。由于润滑油是由70~95%的基础油和5~30%添加剂所组成,因此,基础油的性能基本上决定了润滑油的品质。目前国际上通用的基础油包含矿物油(API I-API III)和合成油(API IV-V),其中全合成油PAO(API IV)具有操作温度范围宽、粘温性能好、粘度指数高、倾点低和蒸发损失小、氧化安定性好、环境友好等特点,是一类高品质的润滑油基础油,应用于许多高端领域。
现有的PAO生产主要有以下三种生产工艺:1)BF 3+醇催化体系:主要由①聚合,②BF 3回收,③水洗,④常压蒸馏,⑤加氢,⑥减压精馏,⑦调和七个工序组成;2)AlCl 3+醇催化体系:主要由①聚合,②沉降切渣,③中和,④过滤,⑤常压蒸馏,⑥加氢,⑦减压精馏,⑧白土精制,⑨调和9个主要工序组成;3)茂金属催化体系:主要由①聚合,②淬灭-吸附,③过滤,④常压蒸馏,⑤加氢,⑥减压精馏,⑦调和7个主要工序组成。其中,BF 3+醇催化体系主要用于生产低粘度的PAO;AlCl 3+醇主要生产中高粘度的PAO;茂金属催化体系主要生产高粘度的PAO。
上述三种工艺合成PAO的聚合原料主要是C 8、C 10和C 12的α-烯烃,尤其以C 10(1-癸烯)合成PAO的质量最好。α-烯烃大多数来源于乙烯齐聚,通过SHOP工艺齐聚得到的烯烃碳数符合Flory分布,C 8、C 10和C 12含量约占40%;经齐聚再分离得到目标α-烯烃后再进行催化聚合得到PAO,因此乙烯的总转化率比较低,整体工艺过程也非常复杂,工艺流程较长,大大增加了PAO的生产成本。
国内生产PAO的原料全部依赖进口,且货源不稳定。也有相关的替代工艺:1)利用裂解制备的混合α-烯烃进行聚合,但是裂解得到的混合α-烯烃的烯烃分布宽,且含有大量内烯烃等不能参与聚合的杂质,所得到的PAO跟用国外原料生产得到的PAO质量差距明显。2)专利CN201510439004.4中报道用高温费托合成的α-烯烃,然后进行分离聚合,不过该方案所得到的α-烯烃的收率也较低(45%),烯烃碳数是连续分布(同时含奇数碳和偶数碳),导致前期分离成本大,α-烯烃的纯度较低,特别是相邻的奇数碳和偶数碳无法分离,影响产品性能的稳定性和质量。此外,聚合前期的纯化成本高,需使用到钾钠合金等。
除上述原料问题外,现有的催化体系的还存在以下几个问题:
1)AlCl 3+醇催化反应体系导致产品分子量分布宽,催化剂不可回收,且因体系存在大量的氯离子,对设备的腐蚀较大,前期需白土中和,后期需再次加入白土精制,因此工艺中产生大量废渣(约占产品的10%)。
2)BF 3+醇催化体系因BF 3毒性大,且腐蚀性强,必须进行催化剂回收,造成回收成本非常高,后处理还会产生大量的废水;
3)茂金属催化体系主要是所用到的助催化剂(MAO或者全氟苯基硼)成本太高。
4)上述PAO生产工艺中在α-烯烃聚合后都需要把不同聚合度的聚α-烯烃先减压精馏切割得到不同馏分(例如:二聚体、三聚体、四聚体、五聚体等多聚体),然后再经过后续调和步骤得到不同粘度等级的PAO产品,由于大多数情况下聚α-烯烃原料为混合烯烃、且聚合度不单一,精细切割不仅增加了设备的投资费用,而且切割后的再调和也使成本进一步增加。
综上所述,现有的工艺流程存在的生产成本高、工艺流程复杂三废多以及原料来源紧张等缺点成为影响PAO大规模生产应用的主要因素。因此,本领域迫切需要开发新工艺实现低成本、低污染地合成高性能基础油。
发明内容
本发明的目的是提供一种由低碳烯烃一步聚合生产全合成润滑基础油的工艺路线。
本发明第一方面提供了一种由低碳烯烃聚合直接制备基础油的工艺方法,包含工序:
(1)聚合:在设定的聚合温度下,向管式反应器或者釜式反应器中依次加入第一溶剂和烷基铝a,在设定的聚合压力下持续通入低碳烯烃,然后多批次向反应器中加入催化剂溶液,进行聚合反应,从而形成加氢前基础油;
(2)加氢:将所述的加氢前基础油经过固定床或者釜式加氢反应器进行加氢反应,从而得到加氢后基础油;
(3)精馏:将所述的加氢后基础油通过负压进行分子精馏,从而得到低、中或高粘度等级的基础油。
在本发明的第一个优选实施方式中,所述聚合温度为40~110℃;
所述聚合压力为0.1~0.7MPa;
所述聚合反应的时间为1~24小时;
所述的低碳烯烃选自下组:乙烯,丁烯或其组合;
所述烷基铝a选自下组:三乙基铝,三甲基铝,二乙基氯化铝,乙基二氯化铝、乙基倍半铝氯化物,或其组合;
所述第一溶剂选自下组:C 6~C 12的烷烃、白油、甲苯、二甲苯、卤代的C 1~C 12的烷烃;
所述催化剂溶液是配合物、烷基铝b在第二溶剂中形成的溶液;其中,烷基铝b和配合物的摩尔比为:1~100/1;
所述的烷基铝b选自下组:三乙基铝、三异丁基铝、二乙基氯化铝,或其组合;
所述第二溶剂选自下组:甲苯、卤代的C 1~C 12的烷烃;
所述配合物为配体化合物I与二价金属盐配位后制得的;其中,
所述配体化合物I的结构为:
Figure PCTCN2020124538-appb-000001
式中,
Z和Y各自独立地为苯基或取代的苯基,或者Z和Y与相邻的碳原子一起构成未取代或取代的选自下组的基团:苊基、菲基和C 5-C 8环烷基,其中,所述的取代的苯基、苊基、菲基或环烷基具有1-5个选自下组的取代基:卤素、C 1-C 4烷基和C 1-C 4卤代烷基;
R 1为H、卤素、C 1-C 3直链烷基;
R 2为卤素、C 1-C 3直链烷基或C 1-C 3卤代直链烷基;
R 3和R 4各自独立地为卤素、C 3-C 8烷基、C 3-C 8卤代烷基、未取代或取代的苯基;所述的取代的苯基具有1-5个选自下组的取代基:卤素、C 1-C 4烷基和C 1-C 4卤代烷基;
R 5和R 6各自独立地为氢、卤素、硝基、C 1-C 8烷基、C 1-C 8卤代烷基、-O-R a或-N(R c) 2,其中R a为C 1-C 8烷基、未取代或取代的苯基,而R c为C 1-C 4烷基或C 1-C 4卤代烷基;所述的取代的苯基具有1-5个选自下组的取代基:卤素、C 1-C 4烷基和C 1-C 4卤代烷基;
并且满足条件:
Figure PCTCN2020124538-appb-000002
Figure PCTCN2020124538-appb-000003
不同。
所述二价金属盐为二价镍或二价钯金属盐;
所述配合物结构式如II所示:
Figure PCTCN2020124538-appb-000004
其中X独立为卤素、C 1-C 4烷基、C 2-C 6烯基、烯丙基
Figure PCTCN2020124538-appb-000005
-OAc、 -OTf或苄基;
在另一优选例中,R 1和R 2中,所述的C 1-C 3直链烷基或C 1-C 3卤代直链烷基优选为甲基、乙基、氯甲基和溴甲基。
在另一优选例中,R 3和R 4中,所述的C 3-C 8烷基、C 3-C 8卤代烷基优选为支链化或环状的烷基或卤代烷基。
在另一优选例中,所述的卤素优选为氟、氯和溴。
在另一优选例中,所述的配合物可以由配体化合物I与二价金属盐配位后经纯化后使用,或者是由配体化合物I与二价金属盐现场混合后不经纯化直接使用。
在另一优选例中,所述的取代的苯基具有1-3个取代基。
在另一优选例中,Z和Y与相邻的碳原子一起构成未取代或取代的苊基。
在另一优选例中,R 1和R 2各自独立地选自下组:甲基、异丙基或卤素。
在另一优选例中,工序(2)中,所述的固定床加氢反应所用的溶剂为烷烃或烷烃混合物。
在另一优选例中,工序(2)中,所述固定床加氢反应所用的溶剂为己烷;更优选为正己烷、异构己烷、环己烷或者多种己烷的混合物。
在另一优选例中,所述的管式反应器为环管。
在另一优选例中,所述的釜式反应器为反应釜。
在另一优选例中,所述的配合物结构为:
Figure PCTCN2020124538-appb-000006
式中,
R 1为H、卤素、C 1-C 3直链烷基;
R 2为卤素、C 1-C 3直链烷基或C 1-C 3卤代直链烷基;
R 3和R 4各自独立地为卤素、C 3-C 8烷基、C 3-C 8卤代烷基、未取代或取代的苯基;所述的取代的苯基具有1-5个选自下组的取代基:卤素、C 1-C 4烷基和C 1-C 4卤代烷基;
R 5和R 6各自独立地为卤素、硝基、氢、C 1-C 8烷基、C 1-C 8卤代烷基、-O-R a或-N(R c) 2,其中R a为C 1-C 8烷基、未取代或取代的苯基,而R c为C 1-C 4烷基或C 1-C 4卤代烷基;所述的取代的苯基具有1-5个选自下组的取代基:卤素、C 1-C 4烷基和C 1-C 4卤代烷基;
并且满足条件:
Figure PCTCN2020124538-appb-000007
Figure PCTCN2020124538-appb-000008
不同。
在另一优选例中,所述的低碳烯烃选自下组:乙烯,丁烯,或其组合。
在另一优选例中,工序(1)中,所述的烷基铝a选自下组:三乙基铝,二乙基氯化铝,乙基二氯化铝和乙基倍半铝氯化物。
在另一优选例中,工序(1)中,所述的烷基铝a为三乙基铝。
在另一优选例中,工序(1)中,所述的烷基铝a为二乙基氯化铝,乙基二氯化铝或乙基倍半铝氯化物。
在另一优选例中,工序(1)中,当乙烯做单一原料时,所述聚合温度为40~60℃,所述聚合压力为0.1~0.4MPa;当丁烯做单一原料时,所述的聚合温度为60~80℃,所述的聚合压力为0.4~0.7MPa。
在另一优选例中,所述方法还包含溶剂的回收与净化工序。
在另一优选例中,工序(2)中,所述的加氢反应是通过固定床加氢工艺完成,其中,所述的固定床加氢反应条件如下:
加氢温度:150~200℃;
加氢压力:4.0~6.0MPa;
空速:0.1~1.2h -1
氢油比:300~500。
在另一优选例中,所述的固定床加氢反应条件如下:
加氢温度:150~250℃;
加氢压力:3~5MPa;
空速:0.5~5h -1
氢油比:300~500。
在另一优选例中,工序(2)中,所述的加氢反应是通过釜式加氢工艺完成,其中,所述的釜式加工工艺如下:
加氢温度:80~150℃;
加氢压力:2.0~4.0MPa;
油的浓度:0.2~1.0Kg/L。
在另一优选例中,所述的釜式加工工艺如下:
加氢温度:100~200℃;
加氢压力:2.0~6.0MPa;
油的浓度:0.8-0.9Kg/L。
在另一优选例中,工序(3)中,所述负压精馏的工艺参数如下:精馏温度:200~250℃;精馏绝压:1~700Pa。
在另一优选例中,工序(3)中,所述的负压精馏可以使用分子蒸馏装置、短程蒸馏装置或者其它任何可实现基础油精馏的装置。
在另一优选例中,所述的加氢工序和精馏工序的顺序可以互换。
在另一优选例中,工序(1)中,在聚合反应结束后还包括后处理步骤:往聚合反应完成后的混合物中加入淬灭剂,再经过过滤、溶剂回收、脱色,从而得到澄清透明的加氢前基础油;其中,所述的淬灭剂选自下组:硅藻土,醇,硅胶粉末,水,或其组合。
在另一优选例中,所述的淬灭剂为醇。
在另一优选例中,所述的淬灭剂(如醇)和烷基铝的摩尔比=2:1~4:1。
在另一优选例中,所述的淬灭剂是甲醇,乙醇,异丙醇,叔丁醇,正丁醇,异丁醇,或其组合。
在另一优选例中,所述的淬灭剂为水。
在另一优选例中,所述的淬灭剂为湿硅藻土。
在另一优选例中,所述的过滤所使用的设备为市场上通用的各种过滤设备。
在另一优选例中,所述的过滤所使用的滤网的孔径为1~5微米。
在另一优选例中,所述的溶剂回收所使用的液液分离设备可以为简单的常压蒸馏或精馏设备,也可以是减压蒸馏或精馏设备。
在另一优选例中,所述的脱色所使用的设备为固定床脱色柱。
在另一优选例中,所述的固定床的填充物可以为活性白土,硅藻土,二氧化硅,活性炭。
在另一优选例中,所述的固定床的填充物为活性白土。
在另一优选例中,所述的脱色的温度为20-50℃。
在本发明的第二个优选实施方式中,所述聚合温度为10~60℃;
所述聚合压力为0.5~1.2MPa;
所述聚合反应的时间为1~24小时;
所述烷基铝a选自下组:三乙基铝,三甲基铝,二乙基氯化铝,乙基二氯化铝、乙基倍半铝氯化物,或其组合;
所述第一溶剂选自下组:C 6~C 12的烷烃、白油、甲苯、二甲苯、卤代的C 1~C 12的烷烃;
所述催化剂溶液是配合物、烷基铝b在第二溶剂中形成的溶液;其中,烷基铝b和配合物的摩尔比为:1~100/1;
所述的烷基铝b选自下组:三乙基铝、三异丁基铝、二乙基氯化铝,或其组合;
所述第二溶剂选自下组:甲苯、卤代的C 1~C 12的烷烃;
所述配合物为配体化合物I与二价金属盐混合后制得;其中,
所述配体化合物I的结构为:
Figure PCTCN2020124538-appb-000009
式中,
Z和Y各自独立地为C 1-C 4烷基或C 1-C 4卤代烷基;
R 1为H、卤素、C 1-C 3直链烷基或C 1-C 3卤代直链烷基;
R 2为卤素、C 1-C 3直链烷基或C 1-C 3卤代直链烷基;
R 3和R 4各自独立地为C 3-C 8异构烷基、C 3-C 8卤代异构烷基、未取代或取代的苯基;所述的取代的苯基具有1-5个选自下组的取代基:卤素、C 1-C 4烷基和C 1-C 4卤代烷基;
R 5、R 6和R 7各自独立地为卤素、硝基、氢、C 1-C 8烷基、C 1-C 8卤代烷基、-O-R a或-N(R c) 2,其中R a为C 1-C 8烷基、未取代或取代的苯基,R c为C 1-C 4烷基或C 1-C 4卤代烷基;所述的取代的苯基具有1-5个选自下组的取代基:卤素、C 1-C 4烷基和C 1-C 4卤代烷基;
并且满足条件:
Figure PCTCN2020124538-appb-000010
Figure PCTCN2020124538-appb-000011
不同。
所述二价金属盐为二价镍或二价钯金属盐;
所述配合物结构式如II所示:
Figure PCTCN2020124538-appb-000012
其中X独立为卤素、C 1-C 4烷基、C 2-C 6烯基、烯丙基
Figure PCTCN2020124538-appb-000013
-OAc、 -OTf或苄基;
在另一优选例中,R 1和R 2中,所述的C 1-C 3直链烷基或C 1-C 3卤代直链烷基优选为甲基、乙基、氯甲基和溴甲基。
在另一优选例中,R 3和R 4中,所述的C 3-C 8烷基、C 3-C 8卤代烷基优选为支链化或环状的烷基或卤代烷基。
在另一优选例中,所述的卤素优选为氟、氯和溴。
在另一优选例中,所述的配合物可以由配体化合物I与二价金属盐配位后经纯化后使用,或者是由配体化合物I与二价金属盐现场混合后不经纯化直接使用。
在另一优选例中,所述的取代的苯基具有1-3个取代基。
在另一优选例中,R 1和R 2各自独立地选自下组:甲基、异丙基、卤素。
在另一优选例中,所述的低碳烯烃选自下组:乙烯,丙烯,或其组合。
在另一优选例中,所述的配合物结构为
Figure PCTCN2020124538-appb-000014
式中,
R 1为H、卤素、C 1-C 3直链烷基或C 1-C 3卤代直链烷基;
R 2为卤素、C 1-C 3直链烷基或C 1-C 3卤代直链烷基;
R 3和R 4各自独立地为C 3-C 8异构烷基、C 3-C 8卤代异构烷基、未取代或取代的苯基;所述的取代的苯基具有1-5个选自下组的取代基:卤素、C 1-C 4烷基和C 1-C 4卤代烷基;
R 5和R 6各自独立地为卤素、硝基、氢、C 1-C 8烷基、C 1-C 8卤代烷基、-O-R a或-
N(R c) 2,其中R a为C 1-C 8烷基、未取代或取代的苯基,R c为C 1-C 4烷基或C 1-C 4卤代烷基;所述的取代的苯基具有1-5个选自下组的取代基:卤素、C 1-C 4烷基和C 1-C 4卤代烷基;
并且满足条件:
Figure PCTCN2020124538-appb-000015
Figure PCTCN2020124538-appb-000016
不同。
所述二价金属盐为二价镍金属盐。
在另一优选例中,工序(1)中,当乙烯做单一原料时,所述聚合温度为40~60℃,所述聚合压力为0.7~1.2MPa;当乙烯和丙烯同时作为聚合原料时,所述的聚合温度为10~30℃,所述的聚合压力为0.5~0.7MPa。
在另一优选例中,所述方法还包含溶剂的回收与净化工序。
在另一优选例中,工序(2)中,所述的加氢反应是通过固定床加氢工艺完成,其中,所述的固定床加氢反应条件如下:
加氢温度:170~220℃;
加氢压力:3.0~5.0MPa;
空速:1.0~2.0h -1
氢油比:300~400。
在另一优选例中,所述的固定床加氢反应条件如下:
加氢温度:180~210℃;
加氢压力:3.5~5.5MPa;
空速:1.0~1.5h -1
氢油比:300~400。
在另一优选例中,工序(2)中,所述的加氢反应是通过釜式加氢工艺完成,其中,所述的釜式加工工艺如下:
加氢温度:100~180℃;
加氢压力:2.0~6.0MPa;
油的浓度:0.2~1.0Kg/L。
在另一优选例中,工序(3)中,所述精馏的工艺参数如下:精馏温度:240~280℃;精馏绝压:1~700Pa。
在本发明的第三个优选实施方式中,所述聚合温度为10~60℃;
所述聚合压力为0.7~2.0MPa;
所述聚合反应的时间为1~24小时;
所述的低碳烯烃选自下组:乙烯,丙烯或其组合;
所述烷基铝a选自下组:三乙基铝,三甲基铝,二乙基氯化铝,乙基二氯化铝、乙基倍半铝氯化物,或其组合;
所述第一溶剂选自下组:C 6~C 12的烷烃、白油、甲苯、二甲苯、卤代的C 1~C 12的烷烃;
所述催化剂溶液是配合物、烷基铝b在第二溶剂中形成的溶液;其中,烷基铝b和配合物的摩尔比为:1~100/1;
所述的烷基铝b选自下组:三乙基铝、三异丁基铝、二乙基氯化铝,或其组合;
所述第二溶剂选自下组:甲苯、卤代的C 1~C 12的烷烃;
所述配合物为配体化合物I与二价金属盐配位后制得的;其中,
所述配体化合物I的结构为:
Figure PCTCN2020124538-appb-000017
式中,
Z为C 1-C 4烷基或C 1-C 4卤代烷基;
Y为C 1-C 4烷基,未取代或取代的苯基,或者Z和Y与相邻的碳原子一起构成未取代或取代的选自下组的基团:苊基、菲基和C 5-C 8环烷基,其中,所述的取代的苯基、苊基、菲基或环烷基具有1-5个选自下组的取代基:卤素、C 1-C 4烷基和C 1-C 4卤代烷基;
R 1为H、卤素、C 1-C 3直链烷基或C 1-C 3卤代直链烷基;
R 2为H、C 1-C 3直链烷基和-CH 2-O-R a,其中R a为C 1-C 8烷基、未取代或取代的苯基;
R 3和R 4各自独立地为卤素、C 3-C 8烷基、C 3-C 8卤代烷基、二苯基甲基、未取代或取代的苯基;所述的取代的苯基具有1-5个选自下组的取代基:卤素、C 1-C 4烷基和C 1-C 4卤代烷基和芳基;
R 5和R 6各自独立地为卤素、硝基、氢、C 1-C 8烷基、C 1-C 8卤代烷基、-O-R a或-N(R c) 2,其中R a为C 1-C 8烷基、未取代或取代的苯基,R c为C 1-C 4烷基或C 1-C 4卤代烷基;所述的取代的苯基具有1-5个选自下组的取代基:卤素、C 1-C 4烷基和C 1-C 4卤代烷基;
R 7为卤素、硝基、氢、C 1-C 8烷基、C 1-C 8卤代烷基、-O-R a、-CH 2-O-R a或-N(R c) 2,其中R a为C 1-C 8烷基、未取代或取代的苯基,而R c为C 1-C 4烷基或C 1-C 4卤代烷基;所述的取代的苯基具有1-5个选自下组的取代基:卤素、C 1-C 4烷基和C 1-C 4卤代烷基;
并且满足条件:
Figure PCTCN2020124538-appb-000018
Figure PCTCN2020124538-appb-000019
不同。
所述二价金属盐为二价镍或二价钯金属盐;
所述配合物结构式如II所示:
Figure PCTCN2020124538-appb-000020
其中X独立为卤素、C 1-C 4烷基、C 2-C 6烯基、烯丙基
Figure PCTCN2020124538-appb-000021
-OAc、 -OTf或苄基;
在另一优选例中,R 1和R 2中,所述的C 1-C 3直链烷基或C 1-C 3卤代直链烷基优选为甲基、乙基、氯甲基和溴甲基。
在另一优选例中,R 3和R 4中,所述的C 3-C 8烷基、C 3-C 8卤代烷基优选为支链化或环 状的烷基或卤代烷基。
在另一优选例中,所述的卤素优选为氟、氯和溴。
在另一优选例中,所述的配合物可以由配体化合物I与二价金属盐配位后经纯化后使用,或者是由配体化合物I与二价金属盐现场混合后不经纯化直接使用。
在另一优选例中,所述的取代的苯基具有1-3个取代基。
在另一优选例中,Z和Y与相邻的碳原子一起构成未取代或取代的苊基。
在另一优选例中,R 1和R 2各自独立地选自下组:H、甲基、异丙基或卤素。
在另一优选例中,所述的配合物结构为:
Figure PCTCN2020124538-appb-000022
式中,
R 1为H、卤素、C 1-C 3直链烷基或C 1-C 3卤代直链烷基;
R 2为H、C 1-C 3直链烷基或-CH 2-O-R a,其中R a为C 1-C 8烷基、未取代或取代的苯基;
R 3和R 4各自独立地为卤素、C 3-C 8烷基、C 3-C 8卤代烷基、二苯基甲基、未取代或取代的苯基;所述的取代的苯基具有1-5个选自下组的取代基:卤素、C 1-C 4烷基和C 1-C 4卤代烷基和芳基;
R 5和R 6各自独立地为卤素、硝基、氢、C 1-C 8烷基、C 1-C 8卤代烷基、-O-R a或-N(R c) 2,其中R a为C 1-C 8烷基、未取代或取代的苯基,R c为C 1-C 4烷基或C 1-C 4卤代烷基;所述的取代的苯基具有1-5个选自下组的取代基:卤素、C 1-C 4烷基和C 1-C 4卤代烷基;
并且满足条件:
Figure PCTCN2020124538-appb-000023
Figure PCTCN2020124538-appb-000024
不同。
所述二价金属盐为二价镍金属盐。
在另一优选例中,所述的低碳烯烃选自下组:乙烯,丙烯,或其组合。
在另一优选例中,工序(1)中,当乙烯做单一原料时,所述聚合温度为40~60℃,所述聚合压力为1.5~2.0MPa;当丙烯做单一原料时,所述的聚合温度为10~30℃,所述的聚合压力为0.7~1.2MPa。
在另一优选例中,所述方法还包含溶剂的回收与净化工序。
在另一优选例中,工序(2)中,所述的加氢反应是通过固定床加氢工艺完成,其中,所述的固定床加氢反应条件如下:
加氢温度:220~300℃;
加氢压力:2.0~4.0MPa;
空速:1.5~2.5h -1
氢油比:200~300。
在另一优选例中,所述的固定床加氢反应条件如下:
加氢温度:250~300℃;
加氢压力:2.0~3.0MPa;
空速:1.5~2.0h -1
氢油比:200~300。
在另一优选例中,工序(2)中,所述的加氢反应是通过釜式加氢工艺完成,其中,所述的釜式加工工艺如下:
加氢温度:100~200℃;
加氢压力:2.0~6.0MPa;
油的浓度:0.2~1.0Kg/L。
在另一优选例中,所述的釜式加工工艺如下:
加氢温度:100~200℃;
加氢压力:2.0~6.0MPa;
油的浓度:0.8-0.9Kg/L。
在另一优选例中,工序(3)中,所述负压精馏的工艺参数如下:精馏温度:300~350℃;精馏绝压:1~700Pa。
在本发明的第四个优选实施方式中,所述聚合温度为40~110℃;
所述聚合压力为0.1-0.7MPa;
所述聚合反应的时间为1~24小时;
所述的低碳烯烃选自下组:乙烯,丁烯或其组合;
所述烷基铝a选自下组:三乙基铝,三甲基铝,二乙基氯化铝,乙基二氯化铝、乙基倍半铝氯化物,或其组合;
所述第一溶剂选自下组:C 6~C 12的烷烃、白油、甲苯、二甲苯、卤代的C 1~C 12的烷烃;
所述催化剂溶液是配合物、烷基铝b在第二溶剂中形成的溶液;其中,烷基铝b和配合物的摩尔比为:1~100/1;
所述的烷基铝b选自下组:三乙基铝、三异丁基铝、二乙基氯化铝,或其组合;
所述第二溶剂选自下组:甲苯、卤代的C 1~C 12的烷烃;
所述配合物为配体化合物I与二价金属盐混合后制得的。
在另一优选例中,所述配合物为配体化合物I与二价金属盐的组合,或所述的配合物为如II所示的配合物:
Figure PCTCN2020124538-appb-000025
式中,
Y 1分别为氢、C 1-C 8烷基或C 1-C 8卤代烷基、未取代或取代的苯基;
Y 2分别为CR 4R 5、NR 6、O或S,R 4、R 5、R 6各自独立地为H、C 1-C 4烷基或C 1-C 4卤代烷基;
Figure PCTCN2020124538-appb-000026
为未取代或取代的5-7元单环、或含所述5-7元单环的双环或三环基团,其中该5-7元单环含有1-3个N、O或S原子且含有至少一个N;
Y 3为位于所述5-7元单环或含所述5-7元单环的双环或三环基团上的一个或多个任意取代基团,各Y 3独立为氢、C 1-C 8烷基或C 1-C 8卤代烷基、C 5-C 8环烷基、未取代或取代的苯基、未取代或取代的苄基;
Z选自下组:C 1-C 8烷基、C 1-C 8卤代烷基、未取代或取代的苯基、未取代或取代的萘基;
其中,上述各定义中所述的“取代的”指所述基团具有1-5个选自下组的取代基:C 1-C 4烷基和C 1-C 4卤代烷基、卤素、硝基、氰基、CF 3、-O-R 1、-N(R 2) 2、-Si(R 3) 3、-CH 2-O-R 8、-SR 9、-CH 2-S-R 10、-CH-(R 10) 2、或未取代或被1-5个选自下组的取代基取代的苯基:C 1-C 4烷基和C 1-C 4卤代烷基,其中R 1、R 2、R 3各自独立地为C1-C4烷基或C 1-C 4卤代烷基;而R 8、R 9和R 10分别为C 1-C 8烷基或苯基。
所述二价金属盐为二价镍金属盐;
所述配体I和二价金属盐组成的配合物具有如II所示的结构式。
在另一优选例中,所述的卤素优选为氟、氯和溴。
在另一优选例中,所述的配合物可以由配体化合物I与二价金属盐配位后经纯化后使用,或者是由配体化合物I与二价金属盐现场混合后不经纯化直接使用。
在另一优选例中,所述的低碳烯烃选自下组:乙烯,丁烯,或其组合。
在另一优选例中,所述方法还包含溶剂的回收与净化工序。
在另一优选例中,工序(2)中,所述的加氢反应是通过固定床加氢工艺完成,其中,所述的固定床加氢反应条件如下:
加氢温度:150~200℃;
加氢压力:4.0~6.0MPa;
空速:0.1~1.2h -1
氢油比:300~500。
在另一优选例中,所述的固定床加氢反应条件如下:
加氢温度:150~250℃;
加氢压力:3~5MPa;
空速:0.5~1.0h -1
氢油比:300~500。
在另一优选例中,工序(2)中,所述的加氢反应是通过釜式加氢工艺完成,其中,所述的釜式加工工艺如下:
加氢温度:100~200℃;
加氢压力:2.0~6.0MPa;
油的浓度:0.2~1.0Kg/L。
在另一优选例中,所述的釜式加工工艺如下:
加氢温度:100~200℃;
加氢压力:2.0~6.0MPa;
油的浓度:0.8-0.9Kg/L。
在另一优选例中,工序(3)中,所述负压精馏的工艺参数如下:精馏温度:200~250℃;精馏绝压:1~700Pa。
在另一优选例中,工序(3)中,所述的负压分馏可以使用分子蒸馏装置、短程蒸馏装置或者其它任何可实现基础油分馏的装置。
在另一优选例中,所述的加氢工序和精馏工序的顺序可以互换。
在本发明的第五个优选实施方式中,所述聚合温度为10~60℃;
所述聚合压力为0.5~1.2MPa;
所述聚合反应的时间为1~24小时;
所述烷基铝a选自下组:三乙基铝,三甲基铝,二乙基氯化铝,乙基二氯化铝、乙基倍半铝氯化物,或其组合;
所述第一溶剂选自下组:C 6~C 12的烷烃、白油、甲苯、二甲苯、卤代的C 1~C 12的烷烃;
所述催化剂溶液是配合物、烷基铝b在第二溶剂中形成的溶液;其中,烷基铝b和配合物的摩尔比为:1~100/1;
所述的烷基铝b选自下组:三乙基铝、三异丁基铝、二乙基氯化铝,或其组合;
所述第二溶剂选自下组:甲苯、卤代的C 1~C 12的烷烃;
所述配合物为配体化合物I与二价金属盐的组合,或所述的配合物为如II所示的配合物:
Figure PCTCN2020124538-appb-000027
式中,
Y 1分别为氢、C 1-C 8烷基或C 1-C 8卤代烷基、未取代或取代的苯基;
Y 2分别为CR 4R 5、NR 6、O或S,R 4、R 5、R 6各自独立地为H、C 1-C 4烷基或C 1-C 4卤代烷基;
或者Y 1与Y 2,及两者共同相连的C-C键共同形成未取代或取代的5-12元环;较佳的,Y 1和Y 2可以与两者共同相连的C-C键共同构成未取代或取代的C 6-C 8元环;
Figure PCTCN2020124538-appb-000028
为与Y 2共同构成的未取代或取代的5-7元单环、或含所述5-7元单环的双环或三环基团,其中该5-7元单环含有1-3个N、O或S原子且含有至少一个N;
Y 3为位于所述5-7元单环或含所述5-7元单环的双环或三环基团上的一个或多个任意取代基团,各Y 3独立为氢、C 1-C 8烷基或C 1-C 8卤代烷基、未取代或取代的苯基、未取代或取代的苄基;
Z选自下组:C 1-C 8烷基、C 1-C 8卤代烷基、未取代或取代的苯基、未取代或取代 的萘基;
其中,上述各定义中所述的“取代的”指所述基团具有1-5个选自下组的取代基:C 1-C 4烷基和C 1-C 4卤代烷基、卤素、硝基、氰基、CF 3、-O-R 1、-N(R 2) 2、-Si(R 3) 3、-CH 2-O-R 8、-SR 9、-CH 2-S-R 10、-CH-(R 10) 2、或未取代或被1-5个选自下组的取代基取代的苯基:C 1-C 4烷基和C 1-C 4卤代烷基,其中R 1、R 2、R 3各自独立地为C1-C4烷基或C1-C4卤代烷基;而R 8、R 9和R 10分别为C 1-C 8烷基或苯基。
所述二价金属盐为二价镍金属盐。
其中X独立为卤素、C 1-C 4烷基、C 2-C 6烯基、烯丙基
Figure PCTCN2020124538-appb-000029
-OAc、 -OTf或苄基;
在另一优选例中,所述的卤素优选为氟、氯和溴。
在另一优选例中,所述的配合物可以由配体化合物I与二价金属盐配位后经纯化后使用,或者是由配体化合物I与二价金属盐现场混合后不经纯化直接使用。
在另一优选例中,所述的取代的苯基具有1-3个取代基。
在另一优选例中,所述的低碳烯烃选自下组:乙烯,丙烯,或其组合。
在另一优选例中,工序(1)中,当乙烯做单一原料时,所述聚合温度为40~60℃,所述聚合压力为0.7~1.2MPa;当丙烯做单一原料时,所述的聚合温度为10~30℃,所述的聚合压力为0.5~1.0MPa。
在另一优选例中,所述方法还包含溶剂的回收与净化工序。
在另一优选例中,工序(2)中,所述的加氢反应是通过固定床加氢工艺完成,其中,所述的固定床加氢反应条件如下:
加氢温度:170~220℃;
加氢压力:3.0~5.0MPa;
空速:1.0~2.0h -1
氢油比:300~400。
在另一优选例中,所述的固定床加氢反应条件如下:
加氢温度:180~210℃;
加氢压力:3.5~4.5MPa;
空速:1.0~1.5h -1
氢油比:300~400。
在另一优选例中,工序(2)中,所述的加氢反应是通过釜式加氢工艺完成,其中,所述的釜式加工工艺如下:
加氢温度:100~200℃;
加氢压力:2.0~6.0MPa;
油的浓度:0.2~1.0Kg/L。
在另一优选例中,所述的釜式加工工艺如下:
加氢温度:100~200℃;
加氢压力:2.0~6.0MPa;
油的浓度:0.8-0.9Kg/L。
在另一优选例中,工序(3)中,所述精馏的工艺参数如下:精馏温度:240~280℃;精馏绝压:1~700Pa。
在本发明的第六个优选实施方式中,所述聚合温度为10~60℃;
所述聚合压力为0.7~2.0MPa;
所述聚合反应的时间为1~24小时;
所述的低碳烯烃选自下组:乙烯,丙烯或其组合;
所述烷基铝a选自下组:三乙基铝,三甲基铝,二乙基氯化铝,乙基二氯化铝、乙基倍半铝氯化物,或其组合;
所述第一溶剂选自下组:C 6~C 12的烷烃、白油、甲苯、二甲苯、卤代的C 1~C 12的烷烃;
所述催化剂溶液是配合物、烷基铝b在第二溶剂中形成的溶液;其中,烷基铝b和配合物的摩尔比为:1~100/1;
所述的烷基铝b选自下组:三乙基铝、三异丁基铝、二乙基氯化铝,或其组合;
所述第二溶剂选自下组:甲苯、卤代的C 1~C 12的烷烃;
所述配合物为配体化合物I与二价金属盐的组合,或所述的配合物为如II所示的配合物:
Figure PCTCN2020124538-appb-000030
式中,
Y 1分别为氢、C 1-C 8烷基或C 1-C 8卤代烷基、未取代或取代的苯基;
Y 2分别为CR 4R 5、NR 6、O或S,R 4、R 5、R 6各自独立地为H、C 1-C 4烷基或C 1-C 4卤代烷基;
Figure PCTCN2020124538-appb-000031
为未取代或取代的5-7元单环、或含所述5-7元单环的双环或三环基团(如螺环结构),其中该5-7元单环含有1-3个N、O或S原子且含有至少一个N;
Y 3为位于所述5-7元单环或含所述5-7元单环的双环或三环基团上的一个或多个任意取代基团,各Y 3独立为氢、C 1-C 8烷基、C 1-C 8卤代烷基、C 5-C 8环烷基、未取代或取代的苯基、未取代或取代的苄基;
Z分别为C 1-C 8烷基、C 1-C 8卤代烷基、未取代或取代的苯基、未取代或取代的萘基;
其中,上述各定义中所述的“取代的”指所述基团具有1-5个选自下组的取代基:C 1-C 4烷基和C 1-C 4卤代烷基、卤素、硝基、氰基、CF 3、-O-R 1、-N(R 2) 2、-Si(R 3) 3、-CH 2-O-R 8、-SR 9、-CH 2-S-R 10、-CH-(R 10) 2、或未取代或被1-5个选自下组的取代基取代的苯基:C 1-C 4烷基和C 1-C 4卤代烷基,其中R 1、R 2、R 3各自独立地为C 1-C 4烷基或C 1-C 4卤代烷基;而R 8、R 9和R 10分别为C 1-C 8烷基或苯基。
所述二价金属盐为二价镍金属盐;
其中X独立为卤素、C 1-C 4烷基、C 2-C 6烯基、烯丙基
Figure PCTCN2020124538-appb-000032
-OAc、 -OTf或苄基;
在另一优选例中,所述的卤素优选为氟、氯和溴。
在另一优选例中,所述的配合物可以由配体化合物I与二价金属盐配位后经纯化后使用,或者是由配体化合物I与二价金属盐现场混合后不经纯化直接使用。
在另一优选例中,所述的取代的苯基具有1-3个取代基。
在另一优选例中,工序(1)中,当乙烯做单一原料时,所述聚合温度为40~60℃,所述聚合压力为1.5~2.0MPa;当丙烯做单一原料时,所述的聚合温度为10~30℃,所述的聚合压力为0.7~1.2MPa。
在另一优选例中,所述方法还包含溶剂的回收与净化工序。
在另一优选例中,工序(2)中,所述的加氢反应是通过固定床加氢工艺完成,其中,所述的固定床加氢反应条件如下:
加氢温度:220~300℃;
加氢压力:2.0~4.0MPa;
空速:1.5~2.5h -1
氢油比:200~300。
在另一优选例中,所述的固定床加氢反应条件如下:
加氢温度:220~250℃;
加氢压力:3~4MPa;
空速:1.8~2.2h -1
氢油比:200~300。
在另一优选例中,工序(2)中,所述的加氢反应是通过釜式加氢工艺完成,其中,所述的釜式加工工艺如下:
加氢温度:100~200℃;
加氢压力:2.0~6.0MPa;
油的浓度:0.2~1.0Kg/L。
在另一优选例中,所述的釜式加工工艺如下:
加氢温度:100~200℃;
加氢压力:2.0~6.0MPa;
油的浓度:0.8-0.9Kg/L。
在另一优选例中,工序(3)中,所述负压精馏的工艺参数如下:精馏温度:300~350℃;精馏绝压:1~700Pa。
本发明第二方面,提供了一种基础油。
在本发明的第一个优选实施方式中,所述的基础油是低粘度基础油,所述的低粘度基础油100℃时运动粘度为4~10mm 2/s。
在另一优选例中,所述的低粘度基础油100℃时运动粘度为4~10mm 2/s,酸值小于0.01mg KOH/g,其中NOACK蒸发损失低于15%,倾点低于-50℃,粘度指数高于140。
在另一优选例中,所述的低粘度基础油100℃时运动粘度为4~10mm 2/s。
在另一优选例中,所述的低粘度基础油的分子量分布小于2.0,更优小于1.8。
在本发明的第二个优选实施方式中,所述的基础油是高品质、中等粘度的基础油,所述的中等粘度基础油100℃时运动粘度为20~40mm 2/s。
在另一优选例中,所述中等粘度基础油具有以下特征:酸值小于0.01mg KOH/g,NOACK蒸发损失低于3%,倾点低于-30℃,粘度指数高于150。
在另一优选例中,所述的中等粘度基础油的分子量分布小于2.0,更优小于1.8。
在本发明的第三个优选实施方式中,所述的基础油是高粘度等级基础油,所述的高粘度等级基础油100℃时运动粘度为100~300mm 2/s,酸值小于0.01mg KOH/g,其中NOACK蒸发损失低于1%,倾点低于-20℃,粘度指数高于170。
在另一优选例中,所述的高粘度等级基础油100℃时运动粘度为100~300mm 2/s。
在另一优选例中,所述的高粘度基础油的分子量分布小于2.0,更优小于1.8。
在本发明的第四个优选实施方式中,所述的基础油是低粘度基础油,所述的低粘度等级基础油100℃时运动粘度为6~10mm 2/s,酸值小于0.01mg KOH/g,其中NOACK蒸发损失低于15%,倾点低于-50℃,粘度指数高于140。
在另一优选例中,所述的低粘度等级基础油的分子量分布小于2.0,更优小于1.8。
在另一优选例中,所述的低粘度等级基础油可以用于机动润滑油。
在本发明的第五个优选实施方式中,所述的基础油是中等粘度的基础油,所述的中等粘度基础油100℃时运动粘度为20~40mm 2/s。
在另一优选例中,所述的中等粘度基础油的分子量分布小于2.0,更优小于1.8。
在另一优选例中,所述的中等粘度基础油100℃时运动粘度为20~40mm 2/s,酸值小于0.01mg KOH/g,其中NOACK蒸发损失低于3%,倾点低于-30℃,粘度指数高于150。
在另一优选例中,所述的中等粘度等级基础油100℃时运动粘度为2~10mm 2/s,酸值小于0.01mg KOH/g,其中NOACK蒸发损失低于3%,倾点低于-30℃,粘度指数高于150。
在本发明的第六个优选实施方式中,所述的基础油是高粘度基础油,所述的高粘度等级基础油100℃时运动粘度为100~300mm 2/s。
在另一优选例中,所述的高粘度基础油的分子量分布小于2.0,更优小于1.8。
在另一优选例中,所述的高粘度等级基础油100℃时运动粘度为100~300mm 2/s,酸值小于0.01mg KOH/g,其中NOACK蒸发损失低于1%,倾点低于-20℃,粘度指数高于170。在另一优选例中,所述的基础油由第一方面所述工艺方法制得。
在本发明的第三方面,提供了一种机动润滑油或机械润滑油的制备方法,其特征在于,用如本发明第一方面所述的方法制备得到基础油;和
用所述的基础油制备机动润滑油。
应理解,在本发明范围内中,本发明的上述各技术特征和在下文(如实施例)中具体描述的各技术特征之间都可以互相组合,从而构成新的或优选的技术方案。限于篇幅,在此不再一一累述。
附图说明
图1显示了乙烯直接聚合制备基础油的工艺流程图。
图2显示了实施例1中分子蒸馏后,低粘度基础油LPE6的分子量及分子量分布图(GPC)。
图3显示了实施例2中分子蒸馏后,低粘度基础油LPE8的分子量及分子量分布图(GPC)。
图4显示了实施例3中分子蒸馏后,低粘度基础油LPE10的分子量及分子量分布图(GPC)。
图5显示了实施例7中分子蒸馏后,中等粘度基础油LPE30的分子量及分子量分布图(GPC)。
图6显示了实施例8中分子蒸馏后,中等粘度基础油LPE28的分子量及分子量分布图(GPC)。
图7显示了实施例13中分子蒸馏后,高粘度基础油LPE100的分子量及分子量分布图(GPC)。
图8显示了实施例16中分子蒸馏后,高粘度基础油LPE200的分子量及分子量分布图(GPC)。
图9显示了实施例19中分子蒸馏后,低粘度基础油LPE6的分子量及分子量分布图(GPC)。
图10显示了实施例20中分子蒸馏后,低粘度基础油LPE7的分子量及分子量分布图(GPC)。
图11显示了实施例21中分子蒸馏后,低粘度基础油LPE8的分子量及分子量分布图(GPC)。
图12显示了实施例25中分子蒸馏后,中等粘度基础油LPE30的分子量及分子量分布图(GPC)。
图13显示了实施例26中分子蒸馏后,中等粘度基础油LPE33的分子量及分子量分布图(GPC)。
图14显示了实施例27中分子蒸馏后,中等粘度基础油LPE29的分子量及分子量分布图(GPC)。
图15显示了实施例31中分子精馏后,高粘度基础油LPE100的分子量及分子量分布图(GPC)。
图16显示了实施例32中分子精馏后,高粘度基础油LPE120的分子量及分子量分布图(GPC)。
具体实施方式
本发明人经过广泛而深入的研究,发现通过控制聚合工艺,包括催化物种的形成方式,聚合反应的温度和压力,并在进一步氢化后,通过简单地精馏工序,即可获得低粘度等级的基础油。本发明的方法可以直接从低碳烯烃制备得到高性能、低粘度的基础油,而无需采用十分复杂或高成本的分离工艺,更无需采用调和工艺(当然进一步地,还可以将本公开的高性能基础油与其他高性能基础油作进一步的调和)。在此基础上,发明人完成了本发明。
术语
如本文所用,术语“C 6~C 12的烷烃”是指具有6-12个碳原子的直链或支链的烷烃,例如包括,但不限于:己烷、庚烷、辛烷等类似基团。
如本文所用,术语“C 1~C 12的卤代烷烃”是指具有1-12个碳原子的直链或支链的卤代烷烃,例如包括,但不限于:二氯甲烷、1,2-二氯乙烷、1,1,2,2-四氯乙烷等类似基团;
如本文所用,术语“C 1-C 4烷基”是指具有1-4个碳原子的直链或支链的烷基,例如包括,甲基、乙基、正丙基、异丙基、正丁基、异丁基。叔丁基。
如本文所用,术语“C 1-C 3直链烷基”是指具有1-3个碳原子的直链烷基,例如包括,甲基、乙基、正丙基。
如本文所用,术语“C 3-C 8烷基”是指具有3-8个碳原子的直链或支链的烷基,例如 包括,但不限于:正丙基、异丙基、正丁基、异丁基、叔丁基、正戊基等类似基团。
如本文所用,术语“C 3-C 8卤代烷基”是指具有3-8个碳原子的直链或支链的卤代烷基,例如包括但不限于:卤代异丙基、卤代环丙基等类似基团。
如本文所用,术语“C 1-C 8烷基”是指具有1-8个碳原子的直链或支链的烷基,例如包括,但不限于:甲基、乙基、正丙基、异丙基、正丁基、异丁基。叔丁基、戊基、己基等类似基团。
如本文所用,术语“C 1-C 8卤代烷基”是指具有1-8个碳原子的直链或支链的卤代烷基,例如包括,但不限于:氯甲基、溴甲基等类似基团。
如本文所用,术语“C 5-C 8环烷基”是指具有5-8个碳原子的环烷基,例如包括,但不限于:环戊基、环己基、环庚基等类似基团。
如本文所用,术语“卤代的”或“卤代”是指被卤素(如氟、氯、溴、碘)取代。
低碳烯烃
本发明所用的低碳烯烃可以是C 2-C 4烯烃,例如,乙烯,丁烯或其组合。
配合物及其制备方法
本文用于聚合反应的配合物可在惰性溶剂中将配体化合物I与二价金属盐经配位制得。
所述配体化合物I的结构为:
Figure PCTCN2020124538-appb-000033
式中,
Z和Y各自独立地选自下组:C 1-C 4烷基、C 1-C 4卤代烷基、苯基或取代的苯基,或者Z和Y与相邻的碳原子一起构成未取代或取代的选自下组的基团:苊基、菲基和C 5-C 8环烷基,其中,所述的取代的苯基、苊基、菲基或环烷基具有1-5个选自下组的取代基:卤素、C 1-C 4烷基和C 1-C 4卤代烷基;
R 1为H、卤素、C 1-C 3直链烷基或C 1-C 3卤代直链烷基;
R 2为卤素、C 1-C 3直链烷基或C 1-C 3卤代直链烷基,或-CH 2-O-R a,其中R a为C 1-C 8烷基、未取代或取代的苯基;
R 3和R 4各自独立地为卤素、C 3-C 8烷基、C 3-C 8卤代烷基、C 3-C 8异构烷基、C 3-C 8卤代异构烷基、二苯基甲基、未取代或取代的苯基;所述的取代的苯基具有1-5个选自下组的取代基:卤素、C 1-C 4烷基、C 1-C 4卤代烷基、和芳基;
R 5、R 6和R 7各自独立地为卤素、硝基、氢、C 1-C 8烷基、C 1-C 8卤代烷基、-O-R a、-CH 2-O-R a或-N(R c) 2,其中R a为C 1-C 8烷基、未取代或取代的苯基;R c为C 1-C 4烷基或C 1-C 4卤代烷基;所述的取代的苯基具有1-5个选自下组的取代基:卤素、C 1-C 4烷基和C 1-C 4卤代烷基;
并且满足条件:
Figure PCTCN2020124538-appb-000034
Figure PCTCN2020124538-appb-000035
不同。
在另一优选例中,所述的取代的苯基具有1-3个取代基。
在另一优选例中,Z和Y与相邻的碳原子一起构成未取代或取代的苊基。
在另一优选例中,R 1和R 2各自独立地选自下组:甲基、异丙基或卤素。
所述的二价金属盐可以是二价镍或二价钯金属盐,例如,包括但不限于:NiCl 2、NiBr 2、NiI 2、(DME)NiBr 2、(DME)NiCl 2、(DME)NiI 2、PdCl 2、PdBr 2、Pd(OTf) 2和Pd(OAc) 2
所述的惰性溶剂可以是常规用到的、不影响该反应进行的任何溶剂,包括醇、芳香烃、脂肪烃、卤代烃、醚、酯类、腈类溶剂,优选卤代烃类溶剂,其中在卤代烃和脂类溶剂中可以取得更优的结果,较佳的例子有二氯甲烷、1,2-二氯乙烷、乙酸乙酯、四氢呋喃。
例如本发明的工艺或制备方法所适用的配合物具有如下式(II)所示的结构:
Figure PCTCN2020124538-appb-000036
式中,
R 1为H、卤素、C 1-C 3直链烷基;
R 2为卤素、C 1-C 3直链烷基或C 1-C 3卤代直链烷基;
R 3和R 4各自独立地为卤素、C 3-C 8烷基、C 3-C 8卤代烷基、未取代或取代的苯基;所述的取代的苯基具有1-5个选自下组的取代基:卤素、C 1-C 4烷基和C 1-C 4卤代烷基;
R 5和R 6各自独立地为氢、卤素、硝基、C 1-C 8烷基、C 1-C 8卤代烷基、-O-R a或-N(R c) 2,其中R a为C 1-C 8烷基、未取代或取代的苯基,而R c为C 1-C 4烷基或C 1-C 4卤代烷基;所述的取代的苯基具有1-5个选自下组的取代基:卤素、C 1-C 4烷基和C 1-C 4卤代烷基;
并且满足条件:
Figure PCTCN2020124538-appb-000037
Figure PCTCN2020124538-appb-000038
不同。
例如本发明的工艺或制备方法所适用的配合物具有如下式(II)所示的结构:
Figure PCTCN2020124538-appb-000039
式中,Z、Y、R 1、R 2、R 3、R 4、R 5、R 6和R 7定义同前;
X独立为卤素、C 1-C 4烷基、C 2-C 6烯基、烯丙基
Figure PCTCN2020124538-appb-000040
-OAc、 -OTf或苄基;
所述的C 1-C 4烷基优选甲基;所述的卤素优选溴、氯或碘。
例如本发明的工艺或制备方法所适用的配合物具有如下式(II)所示的结构:
Figure PCTCN2020124538-appb-000041
式中,
R 1为H、卤素、C 1-C 3直链烷基或C 1-C 3卤代直链烷基;
R 2为H、C 1-C 3直链烷基或-CH 2-O-R a,其中R a为C 1-C 8烷基、未取代或取代的苯基;
R 3和R 4各自独立地为卤素、C 3-C 8烷基、C 3-C 8卤代烷基、二苯基甲基、未取代或取代的苯基;所述的取代的苯基具有1-5个选自下组的取代基:卤素、C 1-C 4烷基和C 1-C 4卤代烷基和芳基;
R 5和R 6各自独立地为卤素、硝基、氢、C 1-C 8烷基、C 1-C 8卤代烷基、-O-R a或-N(R c) 2,其中R a为C 1-C 8烷基、未取代或取代的苯基,R c为C 1-C 4烷基或C 1-C 4卤代烷基;所述的取代的苯基具有1-5个选自下组的取代基:卤素、C 1-C 4烷基和C 1-C 4卤代烷基;
并且满足条件:
Figure PCTCN2020124538-appb-000042
Figure PCTCN2020124538-appb-000043
不同。
当X为烃基时,例如为甲基或苄基时,常常可以由相应的氯化物或溴化物与甲基格氏试剂或苄基格氏试剂在常规的类似反应的反应条件下作用得到,且无论镍配合物(II)中X是卤素或者烃基或者其他任何可以与镍配位的基团,例如含氧化合物,只要该配合物在烷基铝的作用下可以形成Ni-C键或者Ni-H键,即可以实现这个催化作用,这些化合物在催化乙烯聚合的过程中均具有相同的活性中心,并因此而表现出相同或相似的性质。
所述配合物的具体合成方法可参考CN201110126431.9和WO2012155764。
所述配合物可以在由配体化合物I和金属前体配位后经分离提纯后用于催化低碳(C 2-C 4)烯烃的聚合,也可以直接使用由配体化合物I和金属前体现场混合得到的配合物溶液催化低碳(C 2-C 4)烯烃的聚合,在其余聚合工艺相同的情况下两种方式对聚合结果及产品性质并不产生显著影响。
本文用于聚合反应的配合物可在惰性溶剂中,也可以将配体化合物I与二价金属盐经配位制得。
所述配体化合物I的结构为:
Figure PCTCN2020124538-appb-000044
式中,
Y 1分别为氢、C 1-C 8烷基或C 1-C 8卤代烷基、未取代或取代的苯基;
Y 2分别为CR 4R 5、NR 6、O或S,R 4、R 5、R 6各自独立地为H、C 1-C 4烷基或C 1-C 4卤代烷基;
或者Y 1与Y 2,及两者共同相连的C-C键共同形成未取代或取代的5-12元环;较佳的,Y 1和Y 2可以与两者共同相连的C-C键共同构成未取代或取代的C 6-C 8元环;
Figure PCTCN2020124538-appb-000045
为未取代或取代的5-7元单环、或含所述5-7元单环的双环或三环基团,其中该5-7元单环含有1-3个N、O或S原子且含有至少一个N;
Y 3为位于所述5-7元单环或含所述5-7元单环的双环或三环基团上的一个或多个任意取代基团,各Y 3独立为氢、C 1-C 8烷基或C 1-C 8卤代烷基、C 5-C 8环烷基、未取代或取代的苯基、未取代或取代的苄基;
Z选自下组:C 1-C 8烷基、C 1-C 8卤代烷基、未取代或取代的苯基、未取代或取代的萘基;
其中,上述各定义中所述的“取代的”指所述基团具有1-5个选自下组的取代基:C 1-C 4烷基和C 1-C 4卤代烷基、卤素、硝基、氰基、CF 3、-O-R 1、-N(R 2) 2、-Si(R 3) 3、-CH 2-O-R 8、-SR 9、-CH 2-S-R 10、-CH-(R 10) 2、或未取代或被1-5个选自下组的取代基取代的苯基:C 1-C 4烷基和C 1-C 4卤代烷基,其中R 1、R 2、R 3各自独立地为C 1-C 4烷基或C 1-C 4卤代烷基;而R 8、R 9和R 10分别为C 1-C 8烷基或苯基。
所述的二价金属盐可以是二价镍金属盐,例如,包括但不限于:NiCl 2、NiBr 2、NiI 2、(DME)NiBr 2、(DME)NiCl 2、(DME)NiI 2等。
所述的惰性溶剂可以是常规用到的、不影响该反应进行的任何溶剂,包括醇、芳香烃、脂肪烃、卤代烃、醚、酯类、腈类溶剂,优选卤代烃类溶剂,其中在卤代烃和脂类溶剂中可以取得更优的结果,较佳的例子有二氯甲烷、1,2-二氯乙烷、乙酸乙酯、四氢呋喃。
例如本发明的工艺或制备方法所适用的配合物具有如下式(II)所示的结构:
Figure PCTCN2020124538-appb-000046
其中X独立为卤素、C 1-C 4烷基、C 2-C 6烯基、烯丙基
Figure PCTCN2020124538-appb-000047
-OAc、 -OTf或苄基;所述的C 1-C 4烷基优选甲基;所述的卤素优选溴、氯或碘。
当X为烃基时,例如为甲基或苄基时,常常可以由相应的氯化物或溴化物与甲基格氏试剂或苄基格氏试剂在常规的类似反应的反应条件下作用得到,且无论镍配合物(II)中X是卤素或者烃基或者其他任何可以与镍配位的基团,例如含氧化合物,只要该配合物在烷基铝的作用下可以形成Ni-C键或者Ni-H键,即可以实现这个催化作用,这些化合物在催化乙烯聚合的过程中均具有相同的活性中心,并因此而表现出相同或相似的性质。
所述配合物的具体合成方法可参考CN201410555078X。
所述配合物可以在由配体化合物I和金属前体配位后经分离提纯后用于催化低碳(C 2- C 4)烯烃的聚合,也可以直接使用由配体化合物I和金属前体现场混合得到的配合物溶液催化低碳(C 2-C 4)烯烃的聚合,在其余聚合工艺相同的情况下两种方式对聚合结果及产品性质并不产生显著影响。
基础油(润滑基础油)的制备方法
本发明所述的基础油的制备方法或工艺是在上述配合物中选择一种或者多种的混合物作用下,以低碳(C 2-C 4)烯烃(包括乙烯、丁烯)中的一种或者多种的混合物为原料,经过聚合、加氢、精馏等工序获得低粘度和高品质的合成基础油LPE。
本发明的制备方法包括如下所示的工序:
(1)聚合:在设定的聚合温度下,向管式反应器或者釜式反应器中依次加入第一溶剂和烷基铝a,在设定的聚合压力下持续通入低碳(例如,C 2-C 4)烯烃(如精制合格的烯烃)(如乙烯、丁烯或者其组合),然后多批次向反应器中加入催化剂溶液,进行聚合反应,从而形成加氢前基础油。
催化剂溶液可以两次、三次或更多批次加入。
催化剂溶液在整个聚合反应过程中以固定的或不固定的时间间隔分批加入,直至反应结束为止。
聚合工序中,可控制聚合温度和聚合压力在合适的范围,聚合反应1~24小时后,停止反应,将物料放至下一个工序。
聚合工序中,所述烷基铝a选自下组:三乙基铝,三甲基铝,二乙基氯化铝,乙基二氯化铝、乙基倍半铝氯化物,或其组合;更优选三乙基铝,二乙基氯化铝,乙基二氯化铝和乙基倍半铝氯化物。
聚合工序中,所述的第一溶剂为聚合常用的烷烃(如C 6~C 12的烷烃)、甲苯、二甲苯或卤代的烷烃;优选地,烷烃为己烷和白油;卤代的烷烃可优选为二氯甲烷、1,2-二氯乙烷或1,1,2,2-四氯乙烷。
聚合工序中,所述催化剂溶液是配合物、烷基铝b在第二溶剂中形成的溶液;其中,烷基铝b和配合物的摩尔比为:1~100/1;所述的烷基铝b选自下组:三乙基铝、三异丁基铝、二乙基氯化铝,或其组合;所述的第二溶剂选自下组:甲苯、卤代的C 6~C 12的烷烃。
聚合工序中,反应器的结构对聚合效率会产生一定的影响,但是不会影响聚合产物的性质,即釜体的结构可能影响产量,但是均可以得到合格的基础油。本文所提供的工艺适用于釜式反应器和管式反应器(如环管)。釜式反应器可以独立使用,也可以多个釜式反应器串联使用,视具体产量需求而定。
(2)加氢:将聚合工序获得的加氢前基础油经过固定床或者釜式加氢反应器进行加氢反应,从而得到加氢基础油。具体的加氢工艺在上文中已经详细描述,此处不再一一赘述。
加氢工序中,加氢所用的催化剂为常用的加氢催化剂,优选石油化工所用的负载型加氢催化剂,如DC系列产品、RIW系列、负载型兰尼镍催化剂、铝镍合金加氢催化剂、钯炭催化剂等,但不限于所列举的这几种加氢催化剂。
加氢工序中,加氢反应所用的溶剂为氢化常用溶剂,包括烷烃及烷烃混合物,例如白油、石油醚、己烷等;优选己烷;所述的己烷可包括正己烷、异构己烷、环己烷或者多种己烷的混合物。
(3)精馏:在前一步工序得到的反应混合物中加入白土,过滤,滤液再通过负压进行分子 精馏,从而得到低粘度等级的基础油。
其中,所述负压精馏可以使用常规精馏塔,也可以使用分子蒸馏设备或者市场上可获得的任何能够实现液体分馏的装置。优选的工艺参数在上文中已有描述,此处不再一一赘述。
为了保证工艺的长期稳定运行,在工序(1)结束后也可以选择先淬灭反应再进行工序(2),淬灭的方式可以根据厂区环境以及要求等选择,包含直接向工序(1)完成的物料里加入少量淬灭剂,或者将工序(1)生成的液体转移至另一个釜中再与淬灭剂接触,常规的硅胶、硅藻土、白土、水、蒸汽等均可以作为淬灭剂使用,淬灭剂可以一种单独使用或者几种混合使用,其用量可以根据需要调节,能满足淬灭催化剂终止聚合即可,加入更多不影响淬灭效果,但是有可能加重后续工序的负担,或者造成较多的废渣;
此外,为了保证油的品质、色度和工艺的稳定、节约成本,还可以增加一些辅助工序,例如,溶剂回收工序、产品脱色、过滤等。这些辅助工序可以使用全部也可以根据需要使用其中的一个或者多个;辅助工序可以依据需要在不同的工艺环节中使用;
工序(2)对油品的氢化可以依据工况条件以及产品需求在工序(3)之前进行或者油品分馏切割完成后进行,不影响产品质量,包括粘度、粘度指数等性能,但有可能影响产品成本。
现结合图1对乙烯直接聚合制备基础油的工艺流程图描述如下:
(i)聚合:在设定的聚合温度下,向管式反应器或者釜式反应器中依次加入第一溶剂和烷基铝a,在设定的聚合压力下持续通入精制合格的乙烯,多批次向反应器中加入催化剂溶液,进行聚合反应,从而形成加氢前基础油;
控制聚合反应温度在40~110℃,聚合反应压力0.1~0.7MPa,聚合反应时间1~24小时,停止反应,将物料放至下一个工序。
所述的第一溶剂可选自下组:C 6~C 12的烷烃;甲苯,二甲苯;卤代C 1~C 12的烷烃;优选选自下组:己烷,二氯甲烷、1,2-二氯乙烷、1,1,2,2-四氯乙烷。
所述的第一溶剂用量依据反应釜和反应产量而定,一般以达到最终产品浓度不高于70%(v/v)为佳。
所述的烷基铝a选自下组:三乙基铝,三甲基铝,二乙基氯化铝,乙基二氯化铝和乙基倍半铝氯化物;优选三乙基铝。
所述催化剂溶液是配合物、烷基铝b在第二溶剂中形成的溶液;配合物与烷基铝b在加入反应体系前在室温下的预反应是控制催化物种浓度、控制聚合反应的稳定性以及产品质量的重要步骤,该步骤中烷基铝b和第二溶剂的选择很重要,要保证配合物生成真正的活性物种、同时又要保证活性物种在没有烯烃存在状态下的稳定性,所述催化剂溶液中的烷基铝b与聚合反应釜中加入的烷基铝a可以相同也可以不同,是三乙基铝、三异丁基铝、二乙基氯化铝或其中两种或多种的混合物;烷基铝b和配合物的摩尔比为1~100/1;所述的第二溶剂选自甲苯或卤代的C 6~C 12的烷烃;催化剂溶液的浓度优选0.01~0.5M。
最终聚合反应体系中可以采用任意合适的参数,例如在一个优选的实施方式中,总铝量和配合物的摩尔比优选10~80/1。
所述的反应温度优选为40~110℃。
所述的反应压力优选为0.1~0.7MPa。
所述的反应时间优选为1~24小时。
在另一个优选的实施方式中,最终聚合反应体系中总铝量和配合物的摩尔比优选100~800/1。
所述的反应温度优选为40~60℃。
所述的反应压力优选为0.7~1.2MPa。
所述的反应时间优选为6~10小时。
(ii)后处理:往上述步骤反应完成后的混合物中加入淬灭剂,然后经过过滤,溶剂回收,脱色,从而得到澄清透明的加氢前基础油。
所述的淬灭剂有硅藻土,醇,硅胶粉末,水,优选醇;
所述的淬灭剂(如醇)/烷基铝的摩尔比=2~4。
(iii)加氢:将上述步骤得到的加氢前基础油经过固定床或者釜式加氢反应器进行加氢反应,得到加氢后基础油。
所述的固定床加氢工艺可如下所述:
加氢催化剂:石油化工所用的负载型加氢催化剂均可以达到理想的氢化效果,如DC系列产品、RIW系列、负载型兰尼镍催化剂、铝镍合金加氢催化剂、钯炭催化剂等。优选的加氢条件如上文中所述。
所述的釜式加工工艺可如下所述:
加氢催化剂:石油化工所用的负载型加氢催化剂均可以达到理想的氢化效果,如DC系列产品、RIW系列、负载型兰尼镍催化剂、铝镍合金加氢催化剂、钯炭催化剂等。优选的加氢工艺参数如上文中所述,优选的溶剂为己烷。
(iv)负压精馏:将工序(iii)得到的加氢后基础油通过负压精馏设备进行分子精馏,从而得到低粘度等级的基础油。优选的分子精馏工艺参数如上文中所示。
基础油(润滑基础油)
本发明按照上述方法或工艺可以制备得到各种不同型号的基础油。
在本发明的第一个优选实施方式中,所述的基础油是100℃时运动粘度为4~10mm 2/s的低粘度基础油(ASTMD445-15a)。其中,所述的低粘度基础油的粘度指数(VI值)高于140,NOACK蒸发损失低于15%,倾点低于-50℃;所制备的基础油硫、氮含量通常低于5ppm,各种金属含量均低于5ppm,其它杂质含量低于5ppm,酸值低于0.01mg KOH/g,水含量低于50ppm,ASTM色度<0.5。
在本发明的第二个优选实施方式中,所述的基础油是100℃时运动粘度为20~40mm 2/s的中等粘度基础油(ASTMD445-15a)。其中,所述的中等粘度基础油100℃时运动粘度为20~40mm 2/s,粘度指数(VI值)高于150,NOACK蒸发损失低于3%,倾点低于-30℃;所制备的基础油硫、氮含量通常低于5ppm,各种金属含量均低于5ppm,其它杂质含量低于5ppm,酸值低于0.01mg KOH/g,水含量低于50ppm,ASTM色度<0.5。
在本发明的第三个优选实施方式中,所述的基础油是100℃时运动粘度为100~300mm 2/s的高粘度基础油(ASTMD445-15a)。其中,所述的高粘度基础油的粘度指数(VI值)高于170,NOACK蒸发损失低于1%,倾点低于-20℃;所制备的基础油硫、氮含量通常低于5ppm,各种金属含量均低于5ppm,其它杂质含量低于5ppm,酸值低于0.01mg KOH/g,水含量低于50ppm,ASTM色度<0.5。
在本发明的第四个优选实施方式中,所述的基础油是100℃时运动粘度为6~10mm 2/s的基础油(ASTMD445-15a)。其粘度指数(VI值)高于140,NOACK蒸发损失低于15%,倾点低于-50℃;所制备的基础油硫、氮含量通常低于5ppm,各种金属含量均低于5ppm,其它杂质含量低于5ppm,酸值低于0.01mg KOH/g,水含量低于50ppm,ASTM色度<0.5。
在本发明的第五个优选实施方式中,所述的基础油是100℃时运动粘度为20~40mm 2/s的中等粘度基础油(ASTMD445-15a)。其中,所述的中等粘度基础油100℃时运动粘度为20~ 40mm 2/s,粘度指数(VI值)高于150,NOACK蒸发损失低于3%,倾点低于-30℃;所制备的基础油硫、氮含量通常低于5ppm,各种金属含量均低于5ppm,其它杂质含量低于5ppm,酸值低于0.01mg KOH/g,水含量低于50ppm,ASTM色度<0.5。
在本发明的第六个优选实施方式中,所述的基础油是100℃时运动粘度为100~300mm 2/s的高粘度基础油(ASTMD445-15a)。其中,所述的高粘度基础油的粘度指数(VI值)高于170,NOACK蒸发损失低于1%,倾点低于-20℃;所制备的基础油硫、氮含量通常低于5ppm,各种金属含量均低于5ppm,其它杂质含量低于5ppm,酸值低于0.01mg KOH/g,水含量低于50ppm,ASTM色度<0.5。
本发明的主要优点包括:
(1)采用低碳(C 2-C 4)烯烃(包括乙烯、丁烯或者其混合物)作为原料,直接制备全合成的基础油。由于原料均为聚合级烯烃,所制备的全合成基础油清洁,其硫、氮含量通常低于5ppm,各种金属含量均低于5ppm,其它杂质含量低于5ppm,酸值低于0.01mg KOH/g,粘度指数大于140,倾点低于-50℃,水含量低于50ppm,ASTM色度<0.5。
此外,本工艺路线中采取C 4以内的烯烃作为原料,原料来源充足,廉价;避免了乙烯齐聚制备、分离C 8-C 12的α-烯烃过程,特别是当用乙烯为原料时,乙烯转化为油的效率高(>80%),在工艺优化的条件下乙烯转化率可以超过95%,极大地降低了基础油的成本。
(2)本发明的工艺通过工序调节易于制备低粘度的合成油。
(3)本发明的工艺安全、生产过程对设备腐蚀性小。与传统的AlCl 3+醇,BF 3+醇阳离子聚合生产方式不同,本工艺中配合物加入量少(≤0.01%),活性高,助催化剂易除去,体系不含有腐蚀性强且难以除去的氯离子。
(4)本发明的工艺后处理工艺简单,废水、废渣少。本发明后处理工艺简单,不需要经过水洗或者碱洗,或者加入大量的白土吸附,只需经过过滤、固定床吸附就能得到酸值低,杂质含量少的油。
(5)凝胶渗透色谱(GPC)分析显示本发明工序(1)所得到的基础油为低粘度基础油,且所述的低粘度的基础油的分子量分布窄,通常低于1.8(例如如图2、图3、图4所示),加氢与否并不改变油品的GPC结果。通过聚合工艺以及负压精馏分离的具体参数控制可以调节生产低粘度等级的基础油,利用该法生产的低粘度基础油可以直接作为合成润滑油的基础油使用,根据用途不同,与所需要的添加剂按照所需比例(基础油/添加剂:100-70/0-30)混合后作为最终产品使用;也可以按照需要将本申请工艺生产的低粘度基础油与其他不同粘度的基础油按照特定比例混合,并与所需要的添加剂按照所需比例混合并作为最终产品使用;也可以与II类油、III类油、IV类油以及V类油(按照美国石油协会(API)分类标准)中的一种或者多种按照所需比例混合并作为最终产品使用。
下面结合具体实施,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。下列实施例中未注明具体条件的实验方法,通常按照常规条件,或按照制造厂商所建议的条件。除非另外说明,否则百分比和份数按重量计算。本发明实施例中所用原料或仪器,若非特别说明,均市售可得。
以下实施例中,将以配合物A1或配合物B1为例说明,但应理解,本申请方法的实施不限于以这两个配合物作为催化剂:
Figure PCTCN2020124538-appb-000048
实施例1
20L升反应釜中,在40~50℃下,加入二氯甲烷10L,三乙基铝300mmol,控制反应釜内聚合压力在0.2~0.3MPa下持续地通入乙烯,分批次将催化剂溶液100mL(Et 3Al/配合物A:30/l(摩尔比),溶剂:己烷,浓度为0.01M)加入反应釜中开始聚合;聚合时间6小时后停止反应,乙烯消耗3.4Kg。往所得的反应液加入乙醇600mmol,过滤、脱色,负压脱除溶剂,得到3.1Kg澄清透亮的加氢前的基础油,产率为91%,乙烯转化率99%。
将所得的加氢前的基础油通过固定床加氢,加氢的催化剂:负载型催化剂RIW-2;加氢温度:180℃;加氢压力:4.0MPa;空速:1.0h -1;氢油比:400,得到加氢后的基础油;再将加氢后的基础油通过负压进行分子精馏,体系的绝压为20Pa,加热温度200℃,得到澄清透亮的低粘度等级的基础油LPE6,其分子量和分子量分布如图2所示。
所得的低粘度等级基础油LPE6的基础理化性能如下表:
  LPE6 测试标准/方法
比重15.6/15.6℃(g/cm 3) 0.824 GB/T 1884-2000
运动粘度40℃(mm 2/s) 28.8 GB/T 265-1988
运动粘度100℃(mm 2/s) 5.7 GB/T 265-1988
VI值 141 GB/T 1995-1988
倾点(℃) -55 GB/T 3535-2006
开口闪点(℃) 245 GB/T 3536-2008
诺亚克蒸发损失(%) <10.5 ASTM D5800-15a
酸值(mg KOH/g) <0.01 GB/T 4925-2002
分子量M W(g/mol) 465 GPC
分子量分布 1.17 GPC
实施例2
20L升反应釜中,在50~60℃下,加入二氯甲烷10L,三乙基铝300mmol,控制反应釜内聚合压力在0.4~0.5MPa下通入丁烯200g和乙烯,将催化剂溶液100mL((iBu 3Al/Et 3Al)(1/1)/配合物B:40/l(摩尔比),溶剂:己烷,浓度为0.01M)加入反应釜内开始聚合,聚合时间10小时后停止反应,乙烯消耗3.1Kg。往所得的反应液加入乙醇600mmol,脱色,脱除溶剂,得到2.98Kg澄清透亮的加氢前的基础油,产率为90.3%,转化率为98.5%。
将所得的加氢前的基础油通过固定床加氢,加氢的催化剂:负载型催化剂RIW-2;加氢温度:180℃;加氢压力:4.0MPa;空速:1.0h -1;氢油比:400,得到加氢后的基础油;再将加氢后的基础油通过负压进行分子精馏,体系的绝压为20Pa,加热温度200℃,得到澄 清透亮的低粘度等级的基础油LPE8,其分子量和分子量分布如图3所示。
所得的低粘度等级基础油LPE8的基础理化性能如下表:
  LPE8 测试标准/方法
比重15.6/15.6℃(g/cm 3) 0.818 GB/T 1884-2000
运动粘度40℃(mm 2/s) 29.6 GB/T 265-1988
运动粘度100℃(mm 2/s) 5.9 GB/T 265-1988
VI值 148 GB/T 1995-1988
倾点(℃) -52 GB/T 3535-2006
开口闪点(℃) 245 GB/T 3536-2008
诺亚克蒸发损失(%) <10.5 ASTM D5800-15a
酸值(mg KOH/g) <0.01 GB/T 4925-2002
分子量M W(g/mol) 489 GPC
分子量分布 1.24 GPC
实施例3
20L升反应釜中,在60~70℃下,加入1,1,2,2-四氯乙烷10L,二乙基氯化铝300mmol,控制反应釜内聚合压力在0.5~0.6MPa下通入丁烯,分批次将催化剂溶液100mL(Et 3Al/配合物A:50/l(摩尔比),溶剂:己烷,浓度为0.01M)加入反应釜内开始聚合;聚合时间4小时后停止反应,丁烯消耗3.1Kg。往所得的反应液加入乙醇600mmol,然后过滤,层析脱色,脱除溶剂,得到2.8Kg澄清透亮的加氢前的基础油,产率为90.8%,丁烯转化率为98.6%。
将所得的加氢前的基础油通过固定床加氢,加氢的催化剂:负载型催化剂RIW-2;加氢温度:180℃;加氢压力:4.0MPa;空速:1.0h -1;氢油比:400,得到加氢后的基础油;再将加氢后的基础油通过负压进行分子精馏,体系的绝压为20Pa,加热温度200℃,得到澄清透亮的低粘度等级的基础油LPE10,其分子量和分子量分布如图4所示。
所得的低粘度等级基础油LPE10的基础理化性如下表:
  LPE10 测试标准/方法
比重15.6/15.6℃(g/cm 3) 0.828 GB/T 1884-2000
运动粘度40℃(mm 2/s) 36.9 GB/T 265-1988
运动粘度100℃(mm 2/s) 6.9 GB/T 265-1988
VI值 146 GB/T 1995-1988
倾点(℃) -57 GB/T 3535-2006
开口闪点(℃) 245 GB/T 3536-2008
诺亚克蒸发损失(%) <10.5 ASTM D5800-15a
酸值(mg KOH/g) <0.01 GB/T 4925-2002
分子量M W(g/mol) 506 GPC
分子量分布 1.14 GPC
实施例4
其它条件同实施例1,所述的温度改为50~60℃,得到3.0Kg的低粘度等级基础油LPE4,所得的低粘度等级基础油LPE4的基础理化性能如下表:
  LPE4 测试标准/方法
比重15.6/15.6℃(g/cm 3) 0.815 GB/T 1884-2000
运动粘度40℃(mm 2/s) 29.5 GB/T 265-1988
运动粘度100℃(mm 2/s) 5.9 GB/T 265-1988
VI值 148 GB/T 1995-1988
倾点(℃) -59 GB/T 3535-2006
开口闪点(℃) 245 GB/T 3536-2008
诺亚克蒸发损失(%) <10.5 ASTM D5800-15a
酸值(mg KOH/g) <0.01 GB/T 4925-2002
分子量M W(g/mol) 501 GPC
分子量分布 1.2 GPC
实施例5
其它条件同实施例1,所述的溶剂改为己烷,得到2.9Kg的低粘度等级基础油LPE5,所得的低粘度等级基础油LPE5的基础理化性能如下表:
  LPE5 测试标准/方法
比重15.6/15.6℃(g/cm 3) 0.819 GB/T 1884-2000
运动粘度40℃(mm 2/s) 22.5 GB/T 265-1988
运动粘度100℃(mm 2/s) 4.9 GB/T 265-1988
VI值 147 GB/T 1995-1988
倾点(℃) -55 GB/T 3535-2006
开口闪点(℃) 245 GB/T 3536-2008
诺亚克蒸发损失(%) <10.5 ASTM D5800-15a
酸值(mg KOH/g) <0.01 GB/T 4925-2002
分子量M W(g/mol) 512 GPC
分子量分布 1.12 GPC
实施例6
其它条件同实施例1,所述的压力改为0.3~0.4MPa,得到2.88Kg的低粘度等级基础油LPE9,所得的低粘度等级基础油LPE9的基础理化性能如下表:
  LPE9 测试标准/方法
比重15.6/15.6℃(g/cm 3) 0.820 GB/T 1884-2000
运动粘度40℃(mm 2/s) 44.5 GB/T 265-1988
运动粘度100℃(mm 2/s) 7.9 GB/T 265-1988
VI值 149 GB/T 1995-1988
倾点(℃) -55 GB/T 3535-2006
开口闪点(℃) 245 GB/T 3536-2008
诺亚克蒸发损失(%) <10.5 ASTM D5800-15a
酸值(mg KOH/g) <0.01 GB/T 4925-2002
分子量M W(g/mol) 498 GPC
分子量分布 1.3 GPC
以下实施例中,将以配合物A2或配合物B2为例说明,但应理解,本申请方法的实施不限于以这两个配合物作为催化剂:
Figure PCTCN2020124538-appb-000049
实施例7
20L升反应釜中,在40~50℃下,加入二氯甲烷10L,三乙基铝300mmol,控制反应釜内聚合压力在0.7~0.8MPa下持续地通入乙烯,分批次将催化剂溶液100mL(Et 3Al/配合物A:30/l(摩尔比),溶剂:己烷,浓度为0.01M)加入反应釜中开始聚合;聚合时间6小时后停止反应,乙烯消耗3.3Kg。往所得的反应液加入乙醇600mmol,过滤、脱色,负压脱除溶剂,得到3.04Kg澄清透亮的加氢前的基础油,产率为92%,乙烯转化率99%。
将所得的加氢前的基础油通过固定床加氢,加氢的催化剂:负载型催化剂RIW-2;加氢温度:200℃;加氢压力:4.0MPa;空速:1.2h -1;氢油比:400,得到加氢后的基础油;再将加氢后的基础油通过负压进行分子精馏,体系的绝压为30Pa,加热温度250℃,得到澄清透亮的中等粘度的基础油LPE30,其分子量和分子量分布如图2所示。
所得的中等粘度等级基础油LPE30的基础理化性能如下表:
Figure PCTCN2020124538-appb-000050
实施例8
20L升反应釜中,在50~60℃下,加入二氯甲烷10L,三乙基铝300mmol,控制反应釜内聚合压力在0.6~0.7MPa下通入丙烯400g和乙烯,将催化剂溶液100mL((iBu 3Al/Et 3Al)(1/1)/配合物B:40/l(摩尔比),溶剂:己烷,浓度为0.01M)加入反应釜内开始聚合,聚合时间10小时后停止反应,乙烯消耗3.1Kg。往所得的反应液加入乙醇600mmol,脱色,脱除溶剂,得到3.2Kg澄清透亮的加氢前的基础油,产率为91.3%,转化率为98.9%。
将所得的加氢前的基础油通过固定床加氢,加氢的催化剂:负载型催化剂RIW-2;加氢 温度:200℃;加氢压力:4.0MPa;空速:1.2h -1;氢油比:400,得到加氢后的基础油;再将加氢后的基础油通过负压进行分子精馏,体系的绝压为30Pa,加热温度250℃,得到澄清透亮的中等粘度等级的基础油LPE28,其分子量和分子量分布如图3所示。
所得的中等粘度等级基础油LPE28的基础理化性能如下表:
Figure PCTCN2020124538-appb-000051
实施例9
20L升反应釜中,在20~30℃下,加入1,1,2,2-四氯乙烷10L,二乙基氯化铝300mmol,控制反应釜内聚合压力在0.5~0.6MPa下通入丙烯,分批次将催化剂溶液100mL(Et 3Al/配合物A:50/l(摩尔比),溶剂:己烷,浓度为0.01M)加入反应釜内开始聚合;聚合时间4小时后停止反应,丙烯消耗3.1Kg。往所得的反应液加入乙醇600mmol,然后过滤,层析脱色,脱除溶剂,得到2.81Kg澄清透亮的加氢前的基础油,产率为90.6%,丙烯转化率为98.5%。
将所得的加氢前的基础油通过固定床加氢,加氢的催化剂:负载型催化剂RIW-2;加氢温度:200℃;加氢压力:4.0MPa;空速:1.2h -1;氢油比:400,得到加氢后的基础油;再将加氢后的基础油通过负压进行分子精馏,体系的绝压为40Pa,加热温度250℃,得到澄清透亮的中等粘度等级的基础油LPE26。
所得的中等粘度等级基础油LPE26的基础理化性能如下表:
Figure PCTCN2020124538-appb-000052
实施例10
其它条件同实施例7,所述的温度改为50~60℃,得到3.06Kg的中等粘度基础油LPE32,所得的中等粘度基础油LPE32的基础理化性能如下表:
Figure PCTCN2020124538-appb-000053
实施例11
其它条件同实施例7,所述的溶剂改为己烷,得到2.89Kg的中等粘度基础油LPE34,所得的中等粘度基础油LPE34的基础理化性如下表:
Figure PCTCN2020124538-appb-000054
实施例12
其它条件同实施例7,所述的压力改为0.8~0.9MPa,得到2.87Kg的中等粘度基础油LPE36,所得的中等粘度基础油LPE36的基础理化性能如下表:
Figure PCTCN2020124538-appb-000055
Figure PCTCN2020124538-appb-000056
以下实施例中将以配合物A3或配合物B3为例说明,但应理解,本申请方法的实施不限于以这两个配合物作为催化剂:
Figure PCTCN2020124538-appb-000057
实施例13
20L升反应釜中,在40~50℃下,加入二氯甲烷10L,三乙基铝300mmol,控制反应釜内聚合压力在1.5~1.6MPa下持续地通入乙烯,分批次将催化剂溶液100mL(Et 3Al/配合物A:30/l(摩尔比),溶剂:己烷,浓度为0.01M)加入反应釜中开始聚合;聚合时间6小时后停止反应,乙烯消耗3.5Kg。往所得的反应液加入乙醇600mmol,过滤、脱色,负压脱除溶剂,得到3.2Kg澄清透亮的加氢前的基础油,产率为91.4%,乙烯转化率98.3%。
将所得的加氢前的基础油通过固定床加氢,加氢的催化剂:负载型催化剂RIW-2;加氢温度:220℃;加氢压力:4.0MPa;空速:2.0h -1;氢油比:300,得到加氢后的基础油;再将加氢后的基础油通过负压进行分子精馏,体系的绝压为50Pa,加热温度300℃,得到澄清透亮的高粘度等级的基础油LPE100。其分子量和分子量分布如图2所示。所得的高粘度等级的基础油LPE100的基础理化性能如下表:
  LPE100 测试标准/方法
比重15.6/15.6℃(g/cm 3) 0.829 GB/T 1884-2000
运动粘度40℃(mm 2/s) 1058.7 GB/T 265-1988
运动粘度100℃(mm 2/s) 103.6 GB/T 265-1988
VI值 192 GB/T 1995-1988
倾点(℃) -25 GB/T 3535-2006
开口闪点(℃) 298 GB/T 3536-2008
诺亚克蒸发损失(%) <1.0 ASTM D5800-15a
酸值(mg KOH/g) 0.01 GB/T 4925-2002
分子量M W(g/mol) 1558 GPC
分子量分布 1.4 GPC
实施例14
20L升反应釜中,在50~60℃下,加入二氯甲烷10L,三乙基铝300mmol,控制反应釜内聚合压力在1.0~1.2MPa下通入丙烯300g和乙烯,将催化剂溶液100mL((iBu 3Al/Et 3Al)(1/1)/配合物B:40/l(摩尔比),溶剂:己烷,浓度为0.01M)加入反应釜内开始聚合,聚合时间10小时后停止反应,乙烯消耗3.1Kg。往所得的反应液加入乙醇600mmol,脱色,脱除溶剂,得到3.08Kg澄清透亮的加氢前的基础油,产率为90.8%,转化率为98.8%。
将所得的加氢前的基础油通过固定床加氢,加氢的催化剂:负载型催化剂RIW-2;加氢温度:220℃;加氢压力:4.0MPa;空速:2.0h -1;氢油比:300,得到加氢后的基础油;再将加氢后的基础油通过负压进行分子精馏,体系的绝压为50Pa,加热温度300℃,得到澄清透亮的高粘度等级的基础油LPE160。
所得的高粘度等级的基础油LPE160的基础理化性能如下表:
  LPE160 测试标准/方法
比重15.6/15.6℃(g/cm 3) 0.825 GB/T 1884-2000
运动粘度40℃(mm 2/s) 1976 GB/T 265-1988
运动粘度100℃(mm 2/s) 163 GB/T 265-1988
VI值 196 GB/T 1995-1988
倾点(℃) -20 GB/T 3535-2006
开口闪点(℃) 305 GB/T 3536-2008
诺亚克蒸发损失(%) <1.0 ASTM D5800-15a
酸值(mg KOH/g) 0.01 GB/T 4925-2002
分子量M W(g/mol) 2138 GPC
分子量分布 1.3 GPC
实施例15
20L升反应釜中,在20~30℃下,加入1,1,2,2-四氯乙烷10L,二乙基氯化铝300mmol,控制反应釜内聚合压力在0.7~0.8MPa下通入丙烯,分批次将催化剂溶液100mL(Et 3Al/配合物A:50/l(摩尔比),溶剂:己烷,浓度为0.01M)加入反应釜内开始聚合;聚合时间4小时后停止反应,丙烯消耗3.1Kg。往所得的反应液加入乙醇600mmol,然后过滤,层析脱色,脱除溶剂,得到2.8Kg澄清透亮的加氢前的基础油,产率为91%,丙烯转化率为98.1%。
将所得的加氢前的基础油通过固定床加氢,加氢的催化剂:负载型催化剂RIW-2;加氢温度:220℃;加氢压力:4.0MPa;空速:2.0h -1;氢油比:300,得到加氢后的基础油;再将加氢后的基础油通过负压进行分子精馏,体系的绝压为50Pa,加热温度300℃,得到澄清透亮的高粘度等级的基础油LPE180。
所得的高粘度等级的基础油LPE180的基础理化性能如下表:
  LPE180 测试标准/方法
比重15.6/15.6℃(g/cm 3) 0.825 GB/T 1884-2000
运动粘度40℃(mm 2/s) 2249 GB/T 265-1988
运动粘度100℃(mm 2/s) 181 GB/T 265-1988
VI值 199 GB/T 1995-1988
倾点(℃) -19 GB/T 3535-2006
开口闪点(℃) 305 GB/T 3536-2008
诺亚克蒸发损失(%) <1.0 ASTM D5800-15a
酸值(mg KOH/g) 0.01 GB/T 4925-2002
分子量M W(g/mol) 2338 GPC
分子量分布 1.3 GPC
实施例16
其它条件同实施例13,所述的温度改为50~60℃,得到2.89Kg的高粘度等级基础油LPE200,其分子量和分子量分布如图3所示。所得的高粘度等级基础油LPE200的基础理化性能如下表:
  LPE200 测试标准/方法
比重15.6/15.6℃(g/cm 3) 0.821 GB/T 1884-2000
运动粘度40℃(mm 2/s) 2788 GB/T 265-1988
运动粘度100℃(mm 2/s) 204 GB/T 265-1988
VI值 196 GB/T 1995-1988
倾点(℃) -18 GB/T 3535-2006
开口闪点(℃) 310 GB/T 3536-2008
诺亚克蒸发损失(%) <1.0 ASTM D5800-15a
酸值(mg KOH/g) 0.01 GB/T 4925-2002
分子量M W(g/mol) 2889 GPC
分子量分布 1.4 GPC
实施例17
其它条件同实施例13,所述的溶剂改为庚烷,得到2.9Kg的高粘度等级基础油LPE220。所得的高粘度等级基础油LPE220的基础理化性能如下表:
  LPE220 测试标准/方法
比重15.6/15.6℃(g/cm 3) 0.821 GB/T 1884-2000
运动粘度40℃(mm 2/s) 3233 GB/T 265-1988
运动粘度100℃(mm 2/s) 225 GB/T 265-1988
VI值 196 GB/T 1995-1988
倾点(℃) -18 GB/T 3535-2006
开口闪点(℃) 310 GB/T 3536-2008
诺亚克蒸发损失(%) <1.0 ASTM D5800-15a
酸值(mg KOH/g) 0.01 GB/T 4925-2002
分子量M W(g/mol) 2698 GPC
分子量分布 1.4 GPC
实施例18
其它条件同实施例13,所述的压力改为1.6~1.7MPa,得到2.85Kg的高粘度等级基础油LPE300。所得的高粘度等级基础油LPE300的基础理化性能如下表:
  LPE300 测试标准/方法
比重15.6/15.6℃(g/cm 3) 0.830 GB/T 1884-2000
运动粘度40℃(mm 2/s) 4972 GB/T 265-1988
运动粘度100℃(mm 2/s) 298 GB/T 265-1988
VI值 197 GB/T 1995-1988
倾点(℃) -15 GB/T 3535-2006
开口闪点(℃) 310 GB/T 3536-2008
诺亚克蒸发损失(%) <1.0 ASTM D5800-15a
酸值(mg KOH/g) 0.01 GB/T 4925-2002
分子量M W(g/mol) 3287 GPC
分子量分布 1.5 GPC
以下实施例中将以配合物A4或配合物B4为例说明,但应理解,本申请方法的实施不限于以这两个配合物作为催化剂:
Figure PCTCN2020124538-appb-000058
实施例19
20L升反应釜中,在50~60℃下,加入二氯甲烷10L,三乙基铝300mmol,控制反应釜内聚合压力在0.2~0.3MPa下持续地通入乙烯,分批次将催化剂溶液100mL(Et 3Al/配合物A:30/l(摩尔比),溶剂:己烷,浓度为0.01M)加入反应釜中开始聚合;聚合时间5小时后停止反应,乙烯消耗3.3Kg。往所得的反应液加入乙醇600mmol,过滤、脱色,负压脱除溶剂,得到3.0Kg澄清透亮的加氢前的基础油,产率为91.5%,乙烯转化率99%。
将所得的加氢前的基础油通过固定床加氢,加氢的催化剂:负载型催化剂RIW-2;加氢温度:180℃;加氢压力:4.0MPa;空速:1.0h -1;氢油比:400,得到加氢后的基础油;再将加氢后的基础油通过负压进行分子精馏,体系的绝压为20Pa,加热温度200℃,得到澄清透亮的低粘度等级的基础油LPE6,其分子量和分子量分布如图2所示。所得的低粘度等级基础油LPE6的基础理化性能如下表:
  LPE6 测试标准/方法
比重15.6/15.6℃(g/cm 3) 0.826 GB/T 1884-2000
运动粘度40℃(mm 2/s) 32.5 GB/T 265-1988
运动粘度100℃(mm 2/s) 6.2 GB/T 265-1988
VI值 142 GB/T 1995-1988
倾点(℃) -53 GB/T 3535-2006
开口闪点(℃) 245 GB/T 3536-2008
诺亚克蒸发损失(%) <10.5 ASTM D5800-15a
酸值(mg KOH/g) <0.01 GB/T 4925-2002
分子量M w(g/mol) 466 GPC
分子量分布 1.2 GPC
实施例20
20L升反应釜中,在60~70℃下,加入二氯甲烷10L,三乙基铝300mmol,控制反应釜内聚合压力在0.4~0.5M Pa下通入丁烯200g和乙烯,将催化剂溶液100mL((iBu 3Al/Et 3Al)(1/1)/配合物B:40/l(摩尔比),溶剂:己烷,浓度为0.01M)加入反应釜内开始聚合,聚合时间10小时后停止反应,乙烯消耗3.1Kg。往所得的反应液加入乙醇600mmol,脱色,脱除溶剂,得到3.0Kg澄清透亮的加氢前的基础油,产率为90.8%,乙烯转化率为98.5%。
将所得的加氢前的基础油通过固定床加氢,加氢的催化剂:负载型催化剂RIW-2;加氢温度:180℃;加氢压力:4.0MPa;空速:1.0h -1;氢油比:400,得到加氢后的基础油;再将加氢后的基础油通过负压进行分子精馏,体系的绝压为20Pa,加热温度200℃,得到澄清透亮的低粘度等级的基础油LPE7,其分子量和分子量分布如图3所示。所得的低粘度等级基础油LPE7的基础理化性能如下表:
  LPE7 测试标准/方法
比重15.6/15.6℃(g/cm 3) 0.828 GB/T 1884-2000
运动粘度40℃(mm 2/s) 40 GB/T 265-1988
运动粘度100℃(mm 2/s) 7.2 GB/T 265-1988
VI值 145 GB/T 1995-1988
倾点(℃) -55 GB/T 3535-2006
开口闪点(℃) 245 GB/T 3536-2008
诺亚克蒸发损失(%) <10.5 ASTM D5800-15a
酸值(mg KOH/g) <0.01 GB/T 4925-2002
分子量M w(g/mol) 487 GPC
分子量分布 1.3 GPC
实施例21
20L升反应釜中,在70~80℃下,加入1,1,2,2-四氯乙烷10L,二乙基氯化铝300mmol,控制反应釜内聚合压力在0.5~0.6MPa下通入丁烯,分批次将催化剂溶液100mL(Et 3Al/配合物A:50/l(摩尔比),溶剂:己烷,浓度为0.01M)加入反应釜内开始聚合;聚合时间4小时后停止反应,丁烯消耗3.0Kg。往所得的反应液加入乙醇600mmol,然后过滤,层析脱色,脱除溶剂,得到2.7Kg澄清透亮的加氢前的基础油,产率为90.1%,丁烯转化率为98.2%。
将所得的加氢前的基础油通过固定床加氢,加氢的催化剂:负载型催化剂RIW-2;加氢温度:180℃;加氢压力:4.0MPa;空速:1.0h -1;氢油比:400,得到加氢后的基础油;再将加氢后的基础油通过负压进行分子精馏,体系的绝压为20Pa,加热温度200℃,得到澄清透亮的低粘度等级的基础油LPE8,其分子量和分子量分布如图4所示。所得的低粘度等级基础油LPE8的基础理化性能如下表:
  LPE8 测试标准/方法
比重15.6/15.6℃(g/cm 3) 0.829 GB/T 1884-2000
运动粘度40℃(mm 2/s) 45.2 GB/T 265-1988
运动粘度100℃(mm 2/s) 7.8 GB/T 265-1988
VI值 143 GB/T 1995-1988
倾点(℃) -53 GB/T 3535-2006
开口闪点(℃) 245 GB/T 3536-2008
诺亚克蒸发损失(%) <10.5 ASTM D5800-15a
酸值(mg KOH/g) <0.01 GB/T 4925-2002
分子量M w(g/mol) 489 GPC
分子量分布 1.1 GPC
实施例22
其它条件同实施例19,所述的温度改为50~60℃,得到3.1Kg的低粘度等级基础油LPE9,所得的低粘度等级基础油LPE9的基础理化性能如下表:
  LPE9 测试标准/方法
比重15.6/15.6℃(g/cm 3) 0.823 GB/T 1884-2000
运动粘度40℃(mm 2/s) 41.5 GB/T 265-1988
运动粘度100℃(mm 2/s) 7.5 GB/T 265-1988
VI值 148 GB/T 1995-1988
倾点(℃) -56 GB/T 3535-2006
开口闪点(℃) 245 GB/T 3536-2008
诺亚克蒸发损失(%) <10.5 ASTM D5800-15a
酸值(mg KOH/g) <0.01 GB/T 4925-2002
分子量M w(g/mol) 502 GPC
分子量分布 1.2 GPC
实施例23
其它条件同实施例19,所述的溶剂改为己烷,得到2.95Kg的低粘度等级基础油LPE5,所得的低粘度等级基础油LPE5的基础理化性能如下表:
  LPE5 测试标准/方法
比重15.6/15.6℃(g/cm 3) 0.820 GB/T 1884-2000
运动粘度40℃(mm 2/s) 34.3 GB/T 265-1988
运动粘度100℃(mm 2/s) 6.5 GB/T 265-1988
VI值 145 GB/T 1995-1988
倾点(℃) -53 GB/T 3535-2006
开口闪点(℃) 245 GB/T 3536-2008
诺亚克蒸发损失(%) <10.5 ASTM D5800-15a
酸值(mg KOH/g) <0.01 GB/T 4925-2002
分子量M w(g/mol) 516 GPC
分子量分布 1.2 GPC
实施例24
其它条件同实施例19,所述的压力改为0.3~0.4MPa,得到2.89Kg的低粘度等级基础油LPE4,所得的低粘度等级基础油LPE4的基础理化性能如下表:
  LPE4 测试标准/方法
比重15.6/15.6℃(g/cm 3) 0.827 GB/T 1884-2000
运动粘度40℃(mm 2/s) 32.9 GB/T 265-1988
运动粘度100℃(mm 2/s) 6.4 GB/T 265-1988
VI值 149 GB/T 1995-1988
倾点(℃) -51 GB/T 3535-2006
开口闪点(℃) 245 GB/T 3536-2008
诺亚克蒸发损失(%) <10.5 ASTM D5800-15a
酸值(mg KOH/g) <0.01 GB/T 4925-2002
分子量M w(g/mol) 521 GPC
分子量分布 1.1 GPC
以下实施例中将以配合物A5或配合物B5为例说明,但应理解,本申请方法的实施不限于以这两个配合物作为催化剂:
Figure PCTCN2020124538-appb-000059
实施例25
20L升反应釜中,在40~50℃下,加入二氯甲烷10L,三乙基铝300mmol,控制反应釜内聚合压力在0.7~0.8MPa下持续地通入乙烯,分批次将催化剂溶液100mL(Et 3Al/配合物A:30/l(摩尔比),溶剂:己烷,浓度为0.01M)加入反应釜中开始聚合;聚合时间4小时后停止反应,乙烯消耗3.5Kg。往所得的反应液加入乙醇600mmol,过滤、脱色,负压脱除溶剂,得到3.2Kg澄清透亮的加氢前的基础油,产率为91%,乙烯转化率98.5%。
将所得的加氢前的基础油通过固定床加氢,加氢的催化剂:负载型催化剂RIW-2;加氢温度:200℃;加氢压力:4.0MPa;空速:1.2h -1;氢油比:400,得到加氢后的基础油;再将加氢后的基础油通过负压进行分子精馏,体系的绝压为30Pa,加热温度250℃,得到澄清透亮的中等粘度等级的基础油LPE30,其分子量和分子量分布如图2所示。所得的中等粘度等级基础油LPE30的基础理化性能如下表:
Figure PCTCN2020124538-appb-000060
Figure PCTCN2020124538-appb-000061
实施例26
20L升反应釜中,在30~40℃下,加入二氯甲烷10L,三乙基铝300mmol,控制反应釜内聚合压力在0.6~0.7MPa下通入丙烯300g和乙烯,将催化剂溶液100mL((iBu 3Al/Et 3Al)(1/1)/配合物B:40/l(摩尔比),溶剂:己烷,浓度为0.01M)加入反应釜内开始聚合,聚合时间8小时后停止反应,乙烯消耗3.2Kg。往所得的反应液加入乙醇600mmol,脱色,脱除溶剂,得到2.9Kg澄清透亮的加氢前的基础油,产率为90.6%,乙烯转化率为98.2%。
将所得的加氢前的基础油通过固定床加氢,加氢的催化剂:负载型催化剂RIW-2;加氢温度:200℃;加氢压力:4.0MPa;空速:1.2h -1;氢油比:400,得到加氢后的基础油;再将加氢后的基础油通过负压进行分子精馏,体系的绝压为30Pa,加热温度250℃,得到澄清透亮的中等粘度等级的基础油LPE33,其分子量和分子量分布如图3所示。所得的中等粘度等级基础油LPE33的基础理化性能如下表:
Figure PCTCN2020124538-appb-000062
实施例27
20L升反应釜中,在20~30℃下,加入1,1,2,2-四氯乙烷10L,二乙基氯化铝300mmol,控制反应釜内聚合压力在0.5~0.6MPa下通入丙烯,分批次将催化剂溶液100mL(Et 3Al/配合物A:50/l(摩尔比),溶剂:己烷,浓度为0.01M)加入反应釜内开始聚合;聚合时间5小时后停止反应,丙烯消耗3.1Kg。往所得的反应液加入乙醇600mmol,然后过滤,层析脱色,脱除溶剂,得到2.8Kg澄清透亮的加氢前的基础油,产率为90.2%,丙烯转化率为98.3%。
将所得的加氢前的基础油通过固定床加氢,加氢的催化剂:负载型催化剂RIW-2;加氢温度:200℃;加氢压力:4.0MPa;空速:1.2h -1;氢油比:400,得到加氢后的基础油;再将加氢后的基础油通过负压进行分子精馏,体系的绝压为30Pa,加热温度250℃,得到澄清透亮的中等粘度等级的基础油LPE29,其分子量和分子量分布如图4所示。所得的中等粘 度等级的基础油LPE29的基础理化性能如下表:
Figure PCTCN2020124538-appb-000063
实施例28
其它条件同实施例25,所述的温度改为50~60℃,得到3.08Kg的中等粘度等级基础油LPE31,所得的中等粘度等级基础油LPE31的基础理化性能如下表:
Figure PCTCN2020124538-appb-000064
实施例29
其它条件同实施例25,所述的溶剂改为己烷,得到2.9Kg的中等粘度等级基础油LPE35,所得的中等粘度等级基础油LPE35的基础理化性能如下表:
Figure PCTCN2020124538-appb-000065
Figure PCTCN2020124538-appb-000066
实施例30
其它条件同实施例25,所述的压力改为0.8~0.9MPa,得到2.82Kg的中等粘度等级基础油LPE37,所得的中等粘度等级基础油LPE37的基础理化性能如下表:
Figure PCTCN2020124538-appb-000067
以下实施例中将以配合物A6或配合物B6为例说明,但应理解,本申请方法的实施不限于以这两个配合物作为催化剂:
Figure PCTCN2020124538-appb-000068
实施例31
20L升反应釜中,在40~50℃下,加入二氯甲烷10L,三乙基铝300mmol,控制反应釜内聚合压力在1.0~1.2MPa下持续地通入乙烯,分批次将催化剂溶液100mL(Et 3Al/配合物A:30/l(摩尔比),溶剂:己烷,浓度为0.01M)加入反应釜中开始聚合;聚合时间6小时后停止反应,乙烯消耗3.3Kg。往所得的反应液加入乙醇600mmol,过滤、脱色,负压脱除溶剂,得到3.0Kg澄清透亮的加氢前的基础油,产率为91%,乙烯转化率98.5%。
将所得的加氢前的基础油通过固定床加氢,加氢的催化剂:负载型催化剂RIW-2;加氢温度:220℃;加氢压力:4.0MPa;空速:2.0h -1;氢油比:300,得到加氢后的基础油;再将加氢后的基础油通过负压进行分子精馏,体系的绝压为50Pa,加热温度300℃,得到澄清透亮的高粘度等级的基础油LPE100,其分子量和分子量分布如图2所示。所得的高粘度 等级基础油LPE100的基础理化性能如下表:
  LPE100 测试标准/方法
比重15.6/15.6℃(g/cm 3) 0.829 GB/T 1884-2000
运动粘度40℃(mm 2/s) 1036 GB/T 265-1988
运动粘度100℃(mm 2/s) 101.6 GB/T 265-1988
VI值 191 GB/T 1995-1988
倾点(℃) -25 GB/T 3535-2006
开口闪点(℃) 298 GB/T 3536-2008
诺亚克蒸发损失(%) <1.0 ASTM D5800-15a
酸值(mg KOH/g) 0.01 GB/T 4925-2002
分子量M W(g/mol) 958 GPC
分子量分布 1.4 GPC
实施例32
20L升反应釜中,在50~60℃下,加入二氯甲烷10L,三乙基铝300mmol,控制反应釜内聚合压力在0.8~1.0MPa下通入丙烯300g和乙烯,将催化剂溶液100mL((iBu 3Al/Et 3Al)(1/1)/配合物B:40/l(摩尔比),溶剂:己烷,浓度为0.01M)加入反应釜内开始聚合,聚合时间10小时后停止反应,乙烯消耗3.2Kg。往所得的反应液加入乙醇600mmol,脱色,脱除溶剂,得到3.2Kg澄清透亮的加氢前的基础油,产率为91.5%,转化率为99%。
将所得的加氢前的基础油通过固定床加氢,加氢的催化剂:负载型催化剂RIW-2;加氢温度:220℃;加氢压力:4.0MPa;空速:2.0h -1;氢油比:300,得到加氢后的基础油;再将加氢后的基础油通过负压进行分子精馏,体系的绝压为50Pa,加热温度300℃,得到澄清透亮的高粘度等级的基础油LPE120,其分子量和分子量分布如图3所示。所得的高粘度等级基础油LPE120的基础理化性能如下表:
  LPE120 测试标准/方法
比重15.6/15.6℃(g/cm 3) 0.830 GB/T 1884-2000
运动粘度40℃(mm 2/s) 3210 GB/T 265-1988
运动粘度100℃(mm 2/s) 195 GB/T 265-1988
VI值 175 GB/T 1995-1988
倾点(℃) -23 GB/T 3535-2006
开口闪点(℃) 298 GB/T 3536-2008
诺亚克蒸发损失(%) <1.0 ASTM D5800-15a
酸值(mg KOH/g) 0.01 GB/T 4925-2002
分子量M W(g/mol) 1220 GPC
分子量分布 1.6 GPC
实施例33
20L升反应釜中,在20~30℃下,加入1,1,2,2-四氯乙烷10L,二乙基氯化铝300mmol,控制反应釜内聚合压力在0.7~0.8MPa下通入丙烯,分批次将催化剂溶液100mL(Et 3Al/配合物A:50/l(摩尔比),溶剂:己烷,浓度为0.01M)加入反应釜内开始聚合;聚合时间4小时后 停止反应,丙烯消耗3.2Kg。往所得的反应液加入乙醇600mmol,然后过滤,层析脱色,脱除溶剂,得到2.9Kg澄清透亮的加氢前的基础油,产率为91.2%,丙烯转化率为98.6%。
将所得的加氢前的基础油通过固定床加氢,加氢的催化剂:负载型催化剂RIW-2;加氢温度:220℃;加氢压力:4.0MPa;空速:2.0h -1;氢油比:300,得到加氢后的基础油;再将加氢后的基础油通过负压进行分子精馏,体系的绝压为50Pa,加热温度300℃,得到澄清透亮的高粘度等级的基础油LPE140。
所得的高粘度等级基础油LPE140的基础理化性能如下表:
  LPE140 测试标准/方法
比重15.6/15.6℃(g/cm 3) 0.832 GB/T 1884-2000
运动粘度40℃(mm 2/s) 1572 GB/T 265-1988
运动粘度100℃(mm 2/s) 141.6 GB/T 265-1988
VI值 198 GB/T 1995-1988
倾点(℃) -22 GB/T 3535-2006
开口闪点(℃) 305 GB/T 3536-2008
诺亚克蒸发损失(%) <1.0 ASTM D5800-15a
酸值(mg KOH/g) 0.01 GB/T 4925-2002
分子量M W(g/mol) 1939 GPC
分子量分布 1.5 GPC
实施例34
其它条件同实施例31,所述的温度改为50~60℃,得到3.1Kg的高粘度等级基础油LPE160。所得的高粘度等级基础油LPE160的基础理化性能如下表:
  LPE160 测试标准/方法
比重15.6/15.6℃(g/cm 3) 0.825 GB/T 1884-2000
运动粘度40℃(mm 2/s) 1986 GB/T 265-1988
运动粘度100℃(mm 2/s) 162 GB/T 265-1988
VI值 195 GB/T 1995-1988
倾点(℃) -20 GB/T 3535-2006
开口闪点(℃) 305 GB/T 3536-2008
诺亚克蒸发损失(%) <1.0 ASTM D5800-15a
酸值(mg KOH/g) 0.01 GB/T 4925-2002
分子量M W(g/mol) 2138 GPC
分子量分布 1.3 GPC
实施例35
其它条件同实施例31,所述的溶剂改为庚烷,得到2.92Kg的高粘度等级基础油LPE220。所得的高粘度等级基础油LPE220的基础理化性能如下表:
  LPE220 测试标准/方法
比重15.6/15.6℃(g/cm 3) 0.821 GB/T 1884-2000
运动粘度40℃(mm 2/s) 3258 GB/T 265-1988
运动粘度100℃(mm 2/s) 225 GB/T 265-1988
VI值 196 GB/T 1995-1988
倾点(℃) -18 GB/T 3535-2006
开口闪点(℃) 310 GB/T 3536-2008
诺亚克蒸发损失(%) <1.0 ASTM D5800-15a
酸值(mg KOH/g) 0.01 GB/T 4925-2002
分子量M W(g/mol) 2698 GPC
分子量分布 1.4 GPC
实施例36
其它条件同实施例31,所述的压力改为1.6~1.7MPa,得到2.9Kg的高粘度等级基础油LPE240。所得的高粘度等级基础油LPE240的基础理化性能如下表:
  LPE240 测试标准/方法
比重15.6/15.6℃(g/cm 3) 0.822 GB/T 1884-2000
运动粘度40℃(mm 2/s) 3665 GB/T 265-1988
运动粘度100℃(mm 2/s) 243 GB/T 265-1988
VI值 196 GB/T 1995-1988
倾点(℃) -17 GB/T 3535-2006
开口闪点(℃) 310 GB/T 3536-2008
诺亚克蒸发损失(%) <1.0 ASTM D5800-15a
酸值(mg KOH/g) 0.01 GB/T 4925-2002
分子量M W(g/mol) 2901 GPC
分子量分布 1.5 GPC
在本发明提及的所有文献都在本申请中引用作为参考,就如同每一篇文献被单独引用作为参考那样。此外应理解,在阅读了本发明的上述讲授内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。

Claims (20)

  1. 一种由低碳烯烃聚合直接制备基础油的工艺方法,其特征在于,包含工序:
    (1)聚合:在设定的聚合温度下,向管式反应器或者釜式反应器中依次加入第一溶剂和烷基铝a,在设定的聚合压力下持续通入低碳烯烃,然后多批次向反应器中加入催化剂溶液,进行聚合反应,从而形成加氢前基础油;
    (2)加氢:将所述的加氢前基础油经过固定床或者釜式加氢反应器进行加氢反应,从而得到加氢后基础油;
    (3)精馏:将所述的加氢后基础油通过负压进行分子精馏,从而得到低粘度等级的基础油。
  2. 如权利要求1所述的方法,其特征在于,所述聚合温度为40~110℃;
    所述聚合压力为0.1~0.7MPa;
    所述聚合反应的时间为1~24小时;
    所述的低碳烯烃选自下组:乙烯,丁烯或其组合;
    所述烷基铝a选自下组:三乙基铝,三甲基铝,二乙基氯化铝,乙基二氯化铝、乙基倍半铝氯化物,或其组合;
    所述第一溶剂选自下组:C 6~C 12的烷烃、白油、甲苯、二甲苯、卤代的C 1~C 12的烷烃;
    所述催化剂溶液是配合物、烷基铝b在第二溶剂中形成的溶液;其中,烷基铝b和配合物的摩尔比为:1~100/1;
    所述的烷基铝b选自下组:三乙基铝、三异丁基铝、二乙基氯化铝,或其组合;
    所述第二溶剂选自下组:甲苯、卤代的C 1~C 12的烷烃;
    所述配合物为配体化合物I与二价金属盐混合后制得;其中,
    所述配体化合物I的结构为:
    Figure PCTCN2020124538-appb-100001
    式中,
    Z和Y各自独立地为苯基或取代的苯基,或者Z和Y与相邻的碳原子一起构成未取代或取代的选自下组的基团:苊基、菲基,和C 5-C 8环烷基,其中,所述的取代的苯基、苊基、菲基或环烷基具有1-5个选自下组的取代基:卤素、C 1-C 4烷基和C 1-C 4卤代烷基;
    R 1为H、卤素、C 1-C 3直链烷基;
    R 2为卤素、C 1-C 3直链烷基或C 1-C 3卤代直链烷基;
    R 3和R 4各自独立地为卤素、C 3-C 8烷基、C 3-C 8卤代烷基、未取代或取代的苯基;所述的取代的苯基具有1-5个选自下组的取代基:卤素、C 1-C 4烷基和C 1-C 4卤代烷基;
    R 5和R 6各自独立地为氢、卤素、硝基、C 1-C 8烷基、C 1-C 8卤代烷基、-O-R a或-N(R c) 2,其中R a为C 1-C 8烷基、未取代或取代的苯基,而R c为C 1-C 4烷基或C 1-C 4卤代烷基;所述的取代的苯基具有1-5个选自下组的取代基:卤素、C 1-C 4烷基和C 1-C 4卤代烷基;
    R 7为卤素、硝基、氢、C 1-C 8烷基、C 1-C 8卤代烷基、-O-R a、-CH 2-O-R a或-N(R c) 2, 其中R a为C 1-C 8烷基、未取代或取代的苯基,而R c为C 1-C 4烷基或C 1-C 4卤代烷基;所述的取代的苯基具有1-5个选自下组的取代基:卤素、C 1-C 4烷基和C 1-C 4卤代烷基;
    并且满足条件:
    Figure PCTCN2020124538-appb-100002
    Figure PCTCN2020124538-appb-100003
    不同;
    所述二价金属盐为二价镍或二价钯金属盐;
    所述配合物结构式如II所示:
    Figure PCTCN2020124538-appb-100004
    其中X独立为卤素、C 1-C 4烷基、C 2-C 6烯基、烯丙基
    Figure PCTCN2020124538-appb-100005
    -OAc、 -OTf或苄基。
  3. 如权利要求1所述的工艺方法,其特征在于,所述的配合物结构为
    Figure PCTCN2020124538-appb-100006
    式中,
    R 1为H、卤素、C 1-C 3直链烷基;
    R 2为卤素、C 1-C 3直链烷基或C 1-C 3卤代直链烷基;
    R 3和R 4各自独立地为卤素、C 3-C 8烷基、C 3-C 8卤代烷基、未取代或取代的苯基;所述的取代的苯基具有1-5个选自下组的取代基:卤素、C 1-C 4烷基和C 1-C 4卤代烷基;
    R 5和R 6各自独立地为卤素、硝基、氢、C 1-C 8烷基、C 1-C 8卤代烷基、-O-R a或-N(R c) 2,其中R a为C 1-C 8烷基、未取代或取代的苯基,而R c为C 1-C 4烷基或C 1-C 4卤代烷基;所述的取代的苯基具有1-5个选自下组的取代基:卤素、C 1-C 4烷基和C 1-C 4卤代烷基;
    并且满足条件:
    Figure PCTCN2020124538-appb-100007
    Figure PCTCN2020124538-appb-100008
    不同。
  4. 如权利要求2所述的工艺方法,其特征在于,工序(1)中,当乙烯做单一原料时,所述聚合温度为40~60℃,所述聚合压力为0.1~0.4MPa;当丁烯做单一原料时,所述的聚合温度为60~80℃,所述的聚合压力为0.4~0.7MPa。
  5. 如权利要求2所述的工艺方法,其特征在于,工序(2)中,所述的加氢反应是通过固定床加氢工艺或釜式加工工艺完成,其中,所述的固定床加氢反应条件如下:
    加氢温度:150~200℃;
    加氢压力:4.0~6.0MPa;
    空速:0.1~1.2h -1
    氢油比:300~500;
    所述的釜式加工工艺如下:
    加氢温度:80~150℃;
    加氢压力:2.0~4.0MPa;
    油的浓度:0.2~1.0Kg/L。
  6. 如权利要求1所述的方法,其特征在于,
    所述聚合温度为10~60℃;
    所述聚合压力为0.7~2.0MPa;
    所述聚合反应的时间为1~24小时;
    所述的低碳烯烃选自下组:乙烯,丙烯或其组合;
    所述烷基铝a选自下组:三乙基铝,三甲基铝,二乙基氯化铝,乙基二氯化铝、乙基倍半铝氯化物,或其组合;
    所述第一溶剂选自下组:C 6~C 12的烷烃、白油、甲苯、二甲苯、卤代的C 1~C 12的烷烃;
    所述催化剂溶液是配合物、烷基铝b在第二溶剂中形成的溶液;其中,烷基铝b和配合物的摩尔比为:1~100/1;
    所述的烷基铝b选自下组:三乙基铝、三异丁基铝、二乙基氯化铝,或其组合;
    所述第二溶剂选自下组:甲苯、卤代的C 1~C 12的烷烃;
    所述配合物为配体化合物I与二价金属盐配位后制得;其中,
    所述配体化合物I的结构为:
    Figure PCTCN2020124538-appb-100009
    式中,
    Z为C 1-C 4烷基或C 1-C 4卤代烷基;
    Y为C 1-C 4烷基,未取代或取代的苯基,或者Z和Y与相邻的碳原子一起构成未取代或取代的选自下组的基团:苊基、菲基和C 5-C 8环烷基,其中,所述的取代的苯基、苊基、菲基或环烷基具有1-5个选自下组的取代基:卤素、C 1-C 4烷基和C 1-C 4卤代烷基;
    R 1为H、卤素、C 1-C 3直链烷基或C 1-C 3卤代直链烷基;
    R 2为H、C 1-C 3直链烷基或-CH 2-O-R a,其中R a为C 1-C 8烷基、未取代或取代的苯基;
    R 3和R 4各自独立地为卤素、C 3-C 8烷基、C 3-C 8卤代烷基、二苯基甲基、未取代或取代的苯基;所述的取代的苯基具有1-5个选自下组的取代基:卤素、C 1-C 4烷基和C 1-C 4卤代烷基和芳基;
    R 5和R 6各自独立地为卤素、硝基、氢、C 1-C 8烷基、C 1-C 8卤代烷基、-O-R a或-N(R c) 2,其中R a为C 1-C 8烷基、未取代或取代的苯基,R c为C 1-C 4烷基或C 1-C 4卤代烷基;所述的取代的苯基具有1-5个选自下组的取代基:卤素、C 1-C 4烷基和C 1-C 4卤代烷基;
    R 7为卤素、硝基、氢、C 1-C 8烷基、C 1-C 8卤代烷基、-O-R a、-CH 2-O-R a或-N(R c) 2, 其中R a为C 1-C 8烷基、未取代或取代的苯基,而R c为C 1-C 4烷基或C 1-C 4卤代烷基;所述的取代的苯基具有1-5个选自下组的取代基:卤素、C 1-C 4烷基和C 1-C 4卤代烷基;
    并且满足条件:
    Figure PCTCN2020124538-appb-100010
    Figure PCTCN2020124538-appb-100011
    不同;
    所述二价金属盐为二价镍或二价钯金属盐;
    所述配合物结构式如II所示:
    Figure PCTCN2020124538-appb-100012
    其中X独立为卤素、C 1-C 4烷基、C 2-C 6烯基、烯丙基
    Figure PCTCN2020124538-appb-100013
    -OAc、 -OTf或苄基。
  7. 如权利要求6所述的工艺方法,其特征在于,所述的配合物结构为
    Figure PCTCN2020124538-appb-100014
    式中,
    R 1为H、卤素、C 1-C 3直链烷基或C 1-C 3卤代直链烷基;
    R 2为H、C 1-C 3直链烷基和-CH 2-O-R a,其中R a为C 1-C 8烷基、未取代或取代的苯基;
    R 3和R 4各自独立地为卤素、C 3-C 8烷基、C 3-C 8卤代烷基、二苯基甲基、未取代或取代的苯基;所述的取代的苯基具有1-5个选自下组的取代基:卤素、C 1-C 4烷基和C 1-C 4卤代烷基和芳基;
    R 5和R 6各自独立地为卤素、硝基、氢、C 1-C 8烷基、C 1-C 8卤代烷基、-O-R a或-N(R c) 2,其中R a为C 1-C 8烷基、未取代或取代的苯基,R c为C 1-C 4烷基或C 1-C 4卤代烷基;所述的取代的苯基具有1-5个选自下组的取代基:卤素、C 1-C 4烷基和C 1-C 4卤代烷基;
    并且满足条件:
    Figure PCTCN2020124538-appb-100015
    Figure PCTCN2020124538-appb-100016
    不同。
  8. 如权利要求6所述的工艺方法,其特征在于,工序(1)中,当乙烯做单一原料时,所述聚合温度为40~60℃,所述聚合压力为1.5~2.0MPa;当丙烯做单一原料时,所述的聚合温度为10~30℃,所述的聚合压力为0.7~1.2MPa。
  9. 如权利要求6所述的工艺方法,其特征在于,工序(2)中,所述的加氢反应是通过固定床加氢工艺或釜式加工工艺完成,其中,所述的固定床加氢反应条件如下:
    加氢温度:220~300℃;
    加氢压力:2.0~4.0MPa;
    空速:1.5~2.5h -1
    氢油比:200~300;
    所述的釜式加工工艺如下:
    加氢温度:100~200℃;
    加氢压力:2.0~6.0MPa;
    油的浓度:0.2~1.0Kg/L。
  10. 如权利要求1所述的工艺方法,其特征在于,
    所述聚合温度为40~110℃;
    所述聚合压力为0.1~0.7MPa;
    所述聚合反应的时间为1~24小时;
    所述的低碳烯烃选自下组:乙烯,丁烯或其组合;
    所述烷基铝a选自下组:三乙基铝,三甲基铝,二乙基氯化铝,乙基二氯化铝、乙基倍半铝氯化物,或其组合;
    所述第一溶剂选自下组:C 6~C 12的烷烃、白油、甲苯、二甲苯、卤代的C 1~C 12的烷烃;
    所述催化剂溶液是配合物、烷基铝b在第二溶剂中形成的溶液;其中,烷基铝b和配合物的摩尔比为:1~100/1;
    所述的烷基铝b选自下组:三乙基铝、三异丁基铝、二乙基氯化铝,或其组合;
    所述第二溶剂选自下组:甲苯、卤代的C 1~C 12的烷烃;
    所述配合物为配体化合物I与二价金属盐的组合,或所述的配合物为如II所示的配合物:
    Figure PCTCN2020124538-appb-100017
    式中,
    Y 1分别为氢、C 1-C 8烷基或C 1-C 8卤代烷基、未取代或取代的苯基;
    Y 2分别为CR 4R 5、NR 6、O或S,R 4、R 5、R 6各自独立地为H、C 1-C 4烷基或C 1-C 4卤代烷基;
    Figure PCTCN2020124538-appb-100018
    为未取代或取代的5-7元单环、或含所述5-7元单环的双环或三环基团,其中该5-7元单环含有1-3个N、O或S原子,且含有至少一个N;
    Y 3为位于所述5-7元单环或含所述5-7元单环的双环或三环基团上的一个或多个任意取代基团,各Y 3独立为氢、C 1-C 8烷基、C 1-C 8卤代烷基、C 5-C 8环烷基、未取代或取代的苯基、未取代或取代的苄基;
    Z分别为C 1-C 8烷基、C 1-C 8卤代烷基、未取代或取代的苯基、未取代或取代的萘基;
    其中,上述各定义中所述的“取代的”指所述基团具有1-5个选自下组的取代基:C 1-C 4烷基和C 1-C 4卤代烷基、卤素、硝基、氰基、CF 3、-O-R 1、-N(R 2) 2、-Si(R 3) 3、-CH 2-O-R 8、-SR 9、-CH 2-S-R 10、-CH-(R 10) 2、或未取代或被1-5个选自下组的取代基取代的苯基:C 1-C 4烷基和C 1-C 4卤代烷基,其中R 1、R 2、R 3各自独立地为C 1-C 4烷基或C 1-C 4卤代烷基;而R 8、R 9和R 10分别为C 1-C 8烷基或苯基;
    所述二价金属盐为二价镍金属盐;
    其中X独立为卤素、C 1-C 4烷基、C 2-C 6烯基、烯丙基
    Figure PCTCN2020124538-appb-100019
    -OAc、 -OTf或苄基。
  11. 如权利要求10所述的工艺方法,其特征在于,工序(1)中,当乙烯做单一原料时,所述聚合温度为40~60℃,所述聚合压力为0.1~0.4MPa;当丁烯做单一原料时,所述的聚合温度为60~80℃,所述的聚合压力为0.4~0.7MPa。
  12. 如权利要求10所述的工艺方法,其特征在于,工序(2)中,所述的加氢反应是通过固定床加氢工艺或釜式加工工艺完成,其中,所述的固定床加氢反应条件如下:
    加氢温度:150~200℃;
    加氢压力:4.0~6.0MPa;
    空速:0.1~1.2h -1
    氢油比:300~500;
    所述的釜式加工工艺如下:
    加氢温度:100~200℃;
    加氢压力:2.0~6.0MPa;
    油的浓度:0.2~1.0Kg/L。
  13. 如权利要求1所述的工艺方法,其特征在于,
    所述聚合温度为10~60℃;
    所述聚合压力为0.5~1.2MPa;
    所述聚合反应的时间为1~24小时;
    所述的低碳烯烃选自下组:乙烯,丙烯或其组合;
    所述烷基铝a选自下组:三乙基铝,三甲基铝,二乙基氯化铝,乙基二氯化铝、乙基倍半铝氯化物,或其组合;
    所述第一溶剂选自下组:C 6~C 12的烷烃、白油、甲苯、二甲苯、卤代的C 1~C 12的烷烃;
    所述催化剂溶液是配合物、烷基铝b在第二溶剂中形成的溶液;其中,烷基铝b和配合物的摩尔比为:1~100/1;
    所述的烷基铝b选自下组:三乙基铝、三异丁基铝、二乙基氯化铝,或其组合;
    所述第二溶剂选自下组:甲苯、卤代的C 1~C 12的烷烃;
    所述配合物为配体化合物I与二价金属盐的组合,或所述的配合物为如II所示的配合物:
    Figure PCTCN2020124538-appb-100020
    Figure PCTCN2020124538-appb-100021
    式中,
    Y 1分别为氢、C 1-C 8烷基或C 1-C 8卤代烷基、未取代或取代的苯基;
    Y 2分别为CR 4R 5、NR 6、O或S,R 4、R 5、R 6各自独立地为H、C 1-C 4烷基或C 1-C 4卤代烷基;
    Figure PCTCN2020124538-appb-100022
    为未取代或取代的5-7元单环、或含所述5-7元单环的双环或三环基团,其中该5-7元单环含有1-3个N、O或S原子,且含有至少一个N;
    Y 3为位于所述5-7元单环或含所述5-7元单环的双环或三环基团上的一个或多个任意取代基团,各Y 3独立为氢、C 1-C 8烷基或C 1-C 8卤代烷基、未取代或取代的苯基、未取代或取代的苄基;
    Z选自下组:C 1-C 8烷基、C 1-C 8卤代烷基、未取代或取代的苯基、未取代或取代的萘基;
    其中,上述各定义中所述的“取代的”指所述基团具有1-5个选自下组的取代基:C 1-C 4烷基和C 1-C 4卤代烷基、卤素、硝基、氰基、CF 3、-O-R 1、-N(R 2) 2、-Si(R 3) 3、-CH 2-O-R 8、-SR 9、-CH 2-S-R 10、-CH-(R 10) 2、或未取代或被1-5个选自下组的取代基取代的苯基:C 1-C 4烷基和C 1-C 4卤代烷基,其中R 1、R 2、R 3各自独立地为C1-C4烷基或C1-C4卤代烷基;而R 8、R 9和R 10分别为C 1-C 8烷基或苯基;
    所述二价金属盐为二价镍金属盐;
    其中X独立为卤素、C 1-C 4烷基、C 2-C 6烯基、烯丙基
    Figure PCTCN2020124538-appb-100023
    -OAc、 -OTf或苄基。
  14. 如权利要求13所述的工艺方法,其特征在于,工序(1)中,当乙烯做单一原料时,所述聚合温度为40~60℃,所述聚合压力为0.7~1.2MPa;当丙烯做单一原料时,所述的聚合温度为10~30℃,所述的聚合压力为0.5~1.0MPa。
  15. 如权利要求1所述的工艺方法,其特征在于,工序(2)中,所述的加氢反应是通过固定床加氢工艺或釜式加工工艺完成,其中,所述的固定床加氢反应条件如下:
    加氢温度:170~220℃;
    加氢压力:3.0~5.0MPa;
    空速:1.0~2.0h -1
    氢油比:300~400;
    所述的釜式加工工艺如下:
    加氢温度:100~200℃;
    加氢压力:2.0~6.0MPa;
    油的浓度:0.2~1.0Kg/L。
  16. 如权利要求1所述的工艺方法,其特征在于,所述聚合温度为10~60℃;
    所述聚合压力为0.7~2.0MPa;
    所述聚合反应的时间为1~24小时;
    所述的低碳烯烃选自下组:乙烯,丙烯或其组合;
    所述烷基铝a选自下组:三乙基铝,三甲基铝,二乙基氯化铝,乙基二氯化铝、乙基倍半铝氯化物,或其组合;
    所述第一溶剂选自下组:C 6~C 12的烷烃、白油、甲苯、二甲苯、卤代的C 1~C 12的烷烃;
    所述催化剂溶液是配合物、烷基铝b在第二溶剂中形成的溶液;其中,烷基铝b和配合物的摩尔比为:1~100/1;
    所述的烷基铝b选自下组:三乙基铝、三异丁基铝、二乙基氯化铝,或其组合;
    所述第二溶剂选自下组:甲苯、卤代的C 1~C 12的烷烃;
    所述配合物为配体化合物I与二价金属盐配位后制得;其中,
    所述配合物为配体化合物I与二价金属盐的组合,或所述的配合物为如II所示的配合物:
    Figure PCTCN2020124538-appb-100024
    式中,
    Y 1分别为氢、C 1-C 8烷基或C 1-C 8卤代烷基、未取代或取代的苯基;
    Y 2分别为CR 4R 5、NR 6、O或S,R 4、R 5、R 6各自独立地为H、C 1-C 4烷基或C 1-C 4卤代烷基;
    Figure PCTCN2020124538-appb-100025
    为未取代或取代的5-7元单环、或含所述5-7元单环的双环或三环基团,其中该5-7元单环含有1-3个N、O或S原子且含有至少一个N;
    Y 3为位于所述5-7元单环,或含所述5-7元单环的双环或三环基团上的一个或多个任意取代基团,各Y 3独立为氢、C 1-C 8烷基、C 1-C 8卤代烷基、C 5-C 8环烷基、未取代或取代的苯基、未取代或取代的苄基;
    Z分别为C 1-C 8烷基、C 1-C 8卤代烷基、未取代或取代的苯基、未取代或取代的萘基;
    其中,上述各定义中所述的“取代的”指所述基团具有1-5个选自下组的取代基:C 1-C 4烷基和C 1-C 4卤代烷基、卤素、硝基、氰基、CF 3、-O-R 1、-N(R 2) 2、-Si(R 3) 3、-CH 2-O-R 8、-SR 9、-CH 2-S-R 10、-CH-(R 10) 2、或未取代或被1-5个选自下组的取代基取代的苯基:C 1-C 4烷基和C 1-C 4卤代烷基,其中R 1、R 2、R 3各自独立地为C1-C4烷基或C 1-C 4卤代烷基;而R 8、R 9和R 10分别为C 1-C 8烷基或苯基;
    所述二价金属盐为二价镍金属盐;
    其中X独立为卤素、C 1-C 4烷基、C 2-C 6烯基、烯丙基
    Figure PCTCN2020124538-appb-100026
    -OAc、 -OTf或苄基。
  17. 如权利要求16所述的工艺方法,其特征在于,工序(1)中,当乙烯做单一原料时,所述聚合温度为40~60℃,所述聚合压力为1.0~1.5MPa;当丙烯做单一原料时,所述的聚合温度为10~30℃,所述的聚合压力为0.7~1.2MPa。
  18. 如权利要求16所述的工艺方法,其特征在于,工序(2)中,所述的加氢反应是通过固定床加氢工艺或釜式加氢工艺完成,其中,所述的固定床加氢反应条件如下:
    加氢温度:220~300℃;
    加氢压力:2.0~4.0MPa;
    空速:1.5~2.5h -1
    氢油比:200~300;
    所述的釜式加工工艺如下:
    加氢温度:100~200℃;
    加氢压力:2.0~6.0MPa;
    油的浓度:0.2~1.0Kg/L。
  19. 如权利要求1所述的工艺方法,其特征在于,工序(1)中,在聚合反应结束后还包括后处理步骤:往聚合反应完成后的混合物中加入淬灭剂,再经过过滤、溶剂回收、脱色,从而得到澄清透明的加氢前基础油;其中,所述的淬灭剂选自下组:硅藻土,醇,硅胶粉末,水,或其组合。
  20. 如权利要求1所述的工艺方法,其特征在于,所述方法制备得到的基础油选自下组:
    低粘度基础油,100℃时运动粘度为4~10mm 2/s,酸值小于0.01mgKOH/g,其中NOACK蒸发损失低于15%,倾点低于-50℃,粘度指数高于140;或
    低粘度等级基础油,100℃时运动粘度为6~10mm 2/s,酸值小于0.01mgKOH/g,其中NOACK蒸发损失低于15%,倾点低于-50℃,粘度指数高于140;或
    中等粘度基础油,100℃时运动粘度为20~40mm 2/s,酸值小于0.01mgKOH/g,其中NOACK蒸发损失低于3%,倾点低于-30℃,粘度指数高于150;或
    高粘度基础油,100℃时运动粘度为100~300mm 2/s,酸值小于0.01mgKOH/g,其中NOACK蒸发损失低于1%,倾点低于-20℃,粘度指数高于170。
PCT/CN2020/124538 2019-10-28 2020-10-28 一种低碳烯烃经聚合直接合成高性能基础油的工艺方法 WO2021083238A1 (zh)

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
CN201911032648.6A CN112725018B (zh) 2019-10-28 2019-10-28 一种低碳烯烃经聚合直接合成高性能中等粘度基础油的工艺方法
CN201911032604.3A CN112725017B (zh) 2019-10-28 2019-10-28 一种低碳烯烃经聚合直接合成高性能高粘度基础油的工艺方法
CN201911032665.XA CN112725055B (zh) 2019-10-28 2019-10-28 一种低碳烯烃经聚合直接合成高性能中等粘度基础油的工艺方法
CN201911032644.8 2019-10-28
CN201911032648.6 2019-10-28
CN201911033537.7 2019-10-28
CN201911032664.5A CN112725028B (zh) 2019-10-28 2019-10-28 一种低碳烯烃经聚合直接合成高性能低粘度基础油的工艺方法
CN201911033537.7A CN112725029B (zh) 2019-10-28 2019-10-28 一种低碳烯烃经聚合直接合成高性能低粘度基础油的工艺方法
CN201911032644.8A CN112725054B (zh) 2019-10-28 2019-10-28 一种低碳烯烃经聚合直接合成高性能高粘度基础油的工艺方法
CN201911032665.X 2019-10-28
CN201911032604.3 2019-10-28
CN201911032664.5 2019-10-28

Publications (1)

Publication Number Publication Date
WO2021083238A1 true WO2021083238A1 (zh) 2021-05-06

Family

ID=75714876

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/124538 WO2021083238A1 (zh) 2019-10-28 2020-10-28 一种低碳烯烃经聚合直接合成高性能基础油的工艺方法

Country Status (1)

Country Link
WO (1) WO2021083238A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3798284A (en) * 1969-12-30 1974-03-19 Snam Progetti Process for the preparation of synthetic lubricating oils from olefins
GB2314518A (en) * 1996-06-28 1998-01-07 Sumitomo Chemical Co Catalyst system and method for the reaction of olefin
CN1181089A (zh) * 1995-01-24 1998-05-06 纳幕尔杜邦公司 α-烯烃和烯烃聚合物及其制备方法
CN101134702A (zh) * 2007-09-07 2008-03-05 北京化工大学 一种烯烃齐聚物的制备方法
CN101205235A (zh) * 2006-12-20 2008-06-25 中国科学院化学研究所 一种金属配合物及其制备方法与应用
CN102786435A (zh) * 2011-05-16 2012-11-21 中国科学院上海有机化学研究所 一类由烯烃制备高支化烷烃的催化体系
CN103304717A (zh) * 2012-03-15 2013-09-18 西安艾姆高分子材料有限公司 一种乙烯和α-烯烃共聚制备高粘度指数合成润滑油的方法和用途
CN109593149A (zh) * 2017-09-30 2019-04-09 中国石化扬子石油化工有限公司 一种α-二亚胺镍烯烃聚合催化剂及其制备方法和应用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3798284A (en) * 1969-12-30 1974-03-19 Snam Progetti Process for the preparation of synthetic lubricating oils from olefins
CN1181089A (zh) * 1995-01-24 1998-05-06 纳幕尔杜邦公司 α-烯烃和烯烃聚合物及其制备方法
GB2314518A (en) * 1996-06-28 1998-01-07 Sumitomo Chemical Co Catalyst system and method for the reaction of olefin
CN101205235A (zh) * 2006-12-20 2008-06-25 中国科学院化学研究所 一种金属配合物及其制备方法与应用
CN101134702A (zh) * 2007-09-07 2008-03-05 北京化工大学 一种烯烃齐聚物的制备方法
CN102786435A (zh) * 2011-05-16 2012-11-21 中国科学院上海有机化学研究所 一类由烯烃制备高支化烷烃的催化体系
CN103304717A (zh) * 2012-03-15 2013-09-18 西安艾姆高分子材料有限公司 一种乙烯和α-烯烃共聚制备高粘度指数合成润滑油的方法和用途
CN109593149A (zh) * 2017-09-30 2019-04-09 中国石化扬子石油化工有限公司 一种α-二亚胺镍烯烃聚合催化剂及其制备方法和应用

Similar Documents

Publication Publication Date Title
JP4914894B2 (ja) 低粘度ポリ−アルファ−オレフィンの生成プロセス
JP6931378B2 (ja) 新規なポリオレフィン触媒およびその使用
CA3090994A1 (en) Catalyst systems and processes for poly alpha-olefin having high vinylidene content
CN114845980A (zh) 二聚物选择性金属茂催化剂、非芳族烃可溶性活化剂和用其制备聚α-烯烃低聚物的方法
CN111019734A (zh) 一种聚α-烯烃基础油及其制备方法
CN102648219A (zh) 由壬烯生产低聚物
EP3841188A1 (en) Manufacturing a base stock from ethanol
EP2756007A1 (en) Process for alkane oligomerization
WO2021083238A1 (zh) 一种低碳烯烃经聚合直接合成高性能基础油的工艺方法
CN105062555A (zh) 一种煤制α-烯烃为原料合成茂金属聚α-烯烃的方法
CN111013611B (zh) 一种烯烃聚合催化剂的制备方法、聚α-烯烃基础油的制备方法
CN113039221B (zh) 聚α-烯烃三聚物的制备方法
CN111286385B (zh) 一种润滑油基础油的合成方法
CN112725054B (zh) 一种低碳烯烃经聚合直接合成高性能高粘度基础油的工艺方法
CN112725055B (zh) 一种低碳烯烃经聚合直接合成高性能中等粘度基础油的工艺方法
CN112725017B (zh) 一种低碳烯烃经聚合直接合成高性能高粘度基础油的工艺方法
CN112725018B (zh) 一种低碳烯烃经聚合直接合成高性能中等粘度基础油的工艺方法
CN112725028B (zh) 一种低碳烯烃经聚合直接合成高性能低粘度基础油的工艺方法
CN112725029B (zh) 一种低碳烯烃经聚合直接合成高性能低粘度基础油的工艺方法
CN114075305B (zh) 一种聚烯烃润滑油基础油及其制备方法
CN106046255B (zh) 古马隆树脂的生产系统及方法
CN114702530B (zh) 咪唑桥联茂金属、催化剂及其制备和应用
CN112029021A (zh) 一种制备高级润滑油mPAO的系统和方法
CN116410780A (zh) 高黏度茂金属聚α-烯烃基础油的合成方法及其产物和应用
CN117866003A (zh) 一种包含萘环桥连的金属配合物及其用于催化烯烃聚合的用途

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20881082

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20881082

Country of ref document: EP

Kind code of ref document: A1