WO2021082960A1 - 一种溶质非完全溶解方式超声辅助制备氧化锌量子点的方法 - Google Patents

一种溶质非完全溶解方式超声辅助制备氧化锌量子点的方法 Download PDF

Info

Publication number
WO2021082960A1
WO2021082960A1 PCT/CN2020/121785 CN2020121785W WO2021082960A1 WO 2021082960 A1 WO2021082960 A1 WO 2021082960A1 CN 2020121785 W CN2020121785 W CN 2020121785W WO 2021082960 A1 WO2021082960 A1 WO 2021082960A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrasonic
quantum dots
zinc oxide
solute
oxide quantum
Prior art date
Application number
PCT/CN2020/121785
Other languages
English (en)
French (fr)
Inventor
钟蓉
周建华
孙浩然
仇成功
潘晓铭
郑蓓蓉
王杨波
Original Assignee
温州大学激光与光电智能制造研究院
温州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 温州大学激光与光电智能制造研究院, 温州大学 filed Critical 温州大学激光与光电智能制造研究院
Publication of WO2021082960A1 publication Critical patent/WO2021082960A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/54Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing zinc or cadmium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G9/00Compounds of zinc
    • C01G9/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer

Definitions

  • the invention belongs to the field of semiconductor nano materials, and specifically relates to a method for preparing zinc oxide quantum dots.
  • Quantum dot refers to a functional nanomaterial whose semiconductor particle size is small enough to be between 1-20 nm on a three-dimensional scale.
  • Quantum dots are generally spherical or quasi-spherical, and are usually composed of group IV, II-VI or III-V elements. The size effect of quantum dots causes them to have optoelectronic properties that are usually not available in macroscopic bulk materials. By applying a certain light pressure or electric field to quantum dots, they will emit light of specific wavelengths or frequencies.
  • Common quantum dot materials include cadmium sulfide quantum dots, cadmium selenide quantum dots, cadmium telluride quantum dots, lead sulfide quantum dots and so on.
  • zinc oxide (ZnO) quantum dots Compared with general quantum dots, zinc oxide (ZnO) quantum dots have the advantages of non-toxic, harmless, and environmentally friendly. At the same time, zinc oxide has a wide band gap (3.2eV) and strong exciton binding energy (60meV), which is a semiconductor material with important application value. It is currently used in many areas, such as photocatalysis, sensors, solar cells, biomedicine, ceramic materials, rubber industry, etc.
  • the current methods for preparing zinc oxide quantum dots are mainly sol-gel method and hydrothermal synthesis method.
  • the specific treatment methods of this kind of method include high temperature treatment, reflux high-power stirring, etc., and the energy consumption and cost are relatively high.
  • the preparation of the precursor part particularly emphasizes the need to completely dissolve the solute and prepare a completely transparent and clear solution before the quantum dots can be prepared. This leads to a longer preparation process time, limits its promotion and application, and also hinders the study of the nucleation mechanism in the field of quantum dots.
  • the technical problem to be solved by the present invention is to provide a method for preparing zinc oxide quantum dots assisted by ultrasound in a solute incomplete dissolution mode.
  • the technical solution adopted by the present invention includes the following preparation methods:
  • Step 1 Place the zinc-containing inorganic salt in an alcoholic organic solvent in an ultrasonic environment to form a ZnO precursor suspension A;
  • Step 2 Fully dissolve the strong base in an alcoholic organic solvent in a stirring environment to obtain a clear solution B;
  • Step 3 In an ultrasonic environment, add the clear solution B obtained in step 2 dropwise to the suspension A obtained in step 1, and allow it to fully react in an ultrasonic environment.
  • the reaction time is 10-40 min to obtain solution C ;
  • Step 4 Add the solution C after the reaction in step 3 to the non-polar solvent, leave it to settle, centrifuge at a certain speed, remove the supernatant to obtain the initial precipitate, and then add the alcoholic organic solvent, and ultrasonic Disperse the sediment in the environment;
  • Step 5 Repeat step 4 more than twice to obtain pure ZnO quantum dot precipitate
  • Step 6 Place the ZnO quantum dot precipitate obtained in Step 5 in a vacuum dryer for annealing treatment to obtain ZnO powder.
  • the method for preparing zinc oxide quantum dots by ultrasonic-assisted solute incomplete dissolution is characterized in that: in steps 1 and 3, the ultrasonic power of the ultrasonic wave is 200-500W, the ultrasonic time is 10-40min, and the ultrasonic temperature is 40-70°C.
  • the method for preparing zinc oxide quantum dots with the aid of ultrasonic-assisted solute dissolution is characterized in that: in steps 1 and 2, the alcoholic organic solvent is absolute ethanol, and its purity is chromatographic purity.
  • the method for preparing zinc oxide quantum dots by ultrasonic-assisted solute incomplete dissolution is characterized in that: in step 1, the concentration of zinc salt in suspension A is 0.01-0.4 mol/L, and the The zinc-containing inorganic salt is zinc acetate dihydrate.
  • the method for preparing zinc oxide quantum dots by ultrasonic-assisted solute incomplete dissolution is characterized in that: in step 2, the strong base is lithium hydroxide monohydrate, and its molar solution concentration in the solution is 0.2- 0.5mol/L.
  • the method for preparing zinc oxide quantum dots by ultrasonic-assisted solute incomplete dissolution is characterized in that: in step 1, the amount ratio of the zinc salt of the zinc-containing inorganic salt to the alkali substance is 1:0.2-1: 1.
  • step 3 the clear solution B obtained in step 2 is added dropwise to the suspension described in step 1 through a constant pressure separatory funnel.
  • Solution C is obtained from solution A.
  • the method for preparing zinc oxide quantum dots by ultrasonic-assisted solute incomplete dissolution is characterized in that: in step 4, the non-polar organic solvent is: n-heptane, n-hexane, toluene, methylene chloride, chloroform In one of them, the volume ratio of the alcohol organic solvent to the non-polar solvent is 1:2-1:4.
  • the method for preparing zinc oxide quantum dots by ultrasonic-assisted solute dissolution is characterized in that: in step 4, the centrifugal speed is 2000-6000 r/min, and the centrifugal time is 10-20 min.
  • the method for preparing zinc oxide quantum dots by ultrasonic-assisted solute incomplete dissolution is characterized in that: in step 6, the annealing temperature is 50-100° C., and the equipment used is a vacuum drying oven.
  • the method for preparing zinc oxide quantum dots with the aid of ultrasonic-assisted solute dissolution is characterized in that the ultrasonic environment is composed of an ultrasonic generating device with a water circulation constant temperature system.
  • the method for preparing zinc oxide quantum dots by ultrasonic-assisted solute incomplete dissolution is characterized in that steps 1, 2 and 3 are carried out in a mixed environment composed of an ultrasonic environment and a stirring environment, respectively.
  • the ultrasonic-assisted preparation method can promote the growth and nucleation of quantum dots.
  • the method is safe, non-toxic, and environmentally friendly.
  • the prepared quantum dots have the advantages of good particle uniformity, high quantum yield, and good luminescence performance.
  • Figure 1 is a TEM image of zinc oxide quantum dots prepared by the method of the present invention.
  • Figure 2 is an HRTEM image of zinc oxide quantum dots prepared by the method of the present invention.
  • Figure 3 is an XRD pattern of zinc oxide quantum dots prepared by the method of the present invention.
  • Figure 4 is an electron diffraction pattern of zinc oxide quantum dots prepared by the method of the present invention.
  • Fig. 5 is a diagram showing the luminescence of zinc oxide quantum prepared by the method of the present invention.
  • Step 1 Weigh 1.6 g of zinc acetate dihydrate, add it to 50 mL of absolute ethanol (its purity is chromatographically pure), and mix for 20 minutes in an ultrasonic environment to form a ZnO precursor suspension A. During this period, the ultrasonic power of the ultrasonic generator is controlled to be 300W and the ultrasonic temperature is 40°C, so that the zinc acetate dihydrate and the absolute ethanol are fully mixed.
  • Step 2 Weigh 0.38 g of lithium hydroxide monohydrate, add it to 25 mL of absolute ethanol (its purity is chromatographically pure), and stir at room temperature for 30 minutes to form a colorless and transparent lye, and a clear solution B is obtained.
  • Step 3 In an ultrasonic environment, add the clear solution B obtained in step 2 dropwise to the suspension A obtained in step 1, and allow it to fully react in an ultrasonic environment, and the reaction time is 20 minutes to obtain solution C. During this period, the ultrasonic power of the ultrasonic generator is controlled to be 300 W and the ultrasonic temperature is 40° C., so that the clear solution B and the suspension A are fully reacted.
  • Step 4 Add the solution C after the reaction in Step 3 to the non-polar solvent according to the volume ratio of 1:2, and let it settle for 20 minutes. After the precipitate is completely precipitated, the liquid is centrifuged at a speed of 4000 r/min, and then the supernatant liquid is removed to obtain the initial precipitate. Subsequently, 10 mL of anhydrous ethanol solution was added, and it was re-dispersed in anhydrous ethanol by sonicating for 2 minutes to form a colorless transparent liquid.
  • Step 5 Repeat the process of step 4 three times to obtain a pure ZnO quantum dot precipitate, which is recorded as liquid D.
  • Step 6 Place the ZnO quantum dot precipitate obtained in Step 5 in a vacuum dryer for annealing treatment to obtain ZnO powder.
  • the annealing temperature is 50-100°C, and the equipment used is a vacuum drying oven.
  • the zinc oxide quantum dots with a particle size of 1-10 nm, a fluorescence range of 370-690 nm, and a quantum yield >50% can be obtained by using the above method.
  • the concentration of the zinc acetate dihydrate is 0.01-0.4 mol/L, so as to appropriately scale up when the optimal concentration is obtained.
  • the strong base is lithium hydroxide monohydrate, and the molar solution concentration in the solution is 0.2-0.5 mol/L, so as to obtain the optimum concentration. enlarge.
  • the ratio of the amount of the zinc salt of the zinc-containing inorganic salt to the alkali substance is 1:0.2-1:1, so as to appropriately scale up when the optimal ratio is obtained.
  • step 3 the clear solution B obtained in step 2 is added dropwise to the suspension A of step 1 through a constant pressure separatory funnel to obtain solution C.
  • the dropwise addition is to ensure product uniformity and ensure The nucleation and growth process of the quantum dot reaction makes the reaction product more uniform.
  • the non-polar organic solvent is one of n-heptane, n-hexane, toluene, dichloromethane, and chloroform.
  • the quantum dots prepared by the above reaction have no ligands on the surface, so the product can be obtained by changing the polarity system of the solution. Compared with the addition of long-chain ligands (such as oleic acid) during the synthesis process, the operation is easier, and the modification of the ligands usually leads to changes in the surface groups of the quantum dots, which is not conducive to subsequent operations.
  • the ultrasonic environment is constituted by an ultrasonic generator with a water circulation constant temperature system.
  • Ultrasound has significant advantages over traditional magnetic and mechanical stirring methods.
  • the frequency of the ultrasound is very large, which can more fully mix the products evenly and ensure the experimental results.
  • the temperature control method with its own water circulation is used, so that the ultrasonic generator device can be prepared for temperature control and heat preservation.
  • step 1 step 2, and step 3 they are carried out in a mixed environment composed of an ultrasonic environment and a stirring environment, respectively, so that the solution is fully dissolved and reacted.
  • the liquid D is dripped onto the XRD sample stage, and after drying, the test result with the XRD equipment is shown in FIG. 3.
  • Each diffraction peak corresponds to the ZnO standard card 36-1451. It can be seen that the sample peak has no large peak shift, indicating that the ZnO precursor has been completely converted into ZnO quantum dots, and the XRD diffraction peaks are strong and the peak shape is sharper. It shows that the crystallinity of the sample is better.
  • the liquid D was dropped onto the carbon mesh support net, and after drying, the results of testing with a transmission electron microscope are shown in Figure 1.
  • Figure 1 There is no obvious agglomeration among the particles, and the particles are uniform in shape (spherical), and the distribution is relatively uniform.
  • Figure 2 it can be seen (Figure 2) that the prepared sample has clear lattice fringes, indicating that its crystallization is in good condition.
  • the average particle size of the prepared sample is 4nm.
  • the prepared ZnO quantum dots have a hexagonal wurtzite structure, and there are no other polycrystalline or amorphous structures.
  • the volume ratio of the alcoholic organic solvent to the non-polar solvent is in the range of 1:2-1:4; in steps 1 and 3, the ultrasonic power is 200-500W, and the ultrasonic time is 10-40min, the ultrasonic temperature is in the range of 40-70°C; in step 4, the centrifugal speed is 2000-6000r/min, and the centrifugal time is in the range of 10-20min. Both can achieve the effects of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Optics & Photonics (AREA)
  • Materials Engineering (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Luminescent Compositions (AREA)

Abstract

一种溶质非完全溶解方式超声辅助制备氧化锌量子点的方法,包括如下步骤:步骤1:在超声波环境中将含锌无机盐置于醇类有机溶剂中,形成ZnO前驱体悬浊液A;步骤2:将强碱在搅拌环境中充分溶解在醇类有机溶剂中,获得澄清溶液B;步骤3:在超声波环境中,将步骤2所得的澄清溶液B逐滴加入步骤1所得的悬浊液A中,在超声波环境下实现充分反应,反应时间为10-40min,获得溶液C;步骤4:将步骤3反应后的溶液C加入到非极性溶剂中,静置沉淀,在一定速度下离心后,移去上清液,获得初始沉淀物,随后加入醇类有机溶剂,在超声环境中分散该沉淀物;步骤5:重复步骤4两次以上,可得到纯净的ZnO量子点沉淀物;步骤6:将步骤5得到的ZnO量子点沉淀物置于真空干燥机中进行退火处理,得到ZnO粉末。

Description

一种溶质非完全溶解方式超声辅助制备氧化锌量子点的方法 技术领域
本发明属于半导体纳米材料领域,具体涉及一种制备氧化锌量子点的方法。
背景技术
量子点(quantum dot)是指半导体粒径足够小,在三维尺度上介于1-20nm之间的一种功能性纳米材料。量子点一般为球形或者类球形,通常由Ⅳ、Ⅱ-Ⅵ或Ⅲ-V族元素组成。量子点的尺寸效应导致其通常具有宏观块体材料所不具备的光电特性,通过对量子点施加一定的光压或电场,它们便会发出特定波长或频率的光。通常的量子点材料有硫化镉量子点、硒化镉量子点、碲化镉量子点、硫化铅量子点等。相对于一般量子点,氧化锌(ZnO)量子点具有无毒无害、环境友好等优势。同时氧化锌具有较宽的禁带宽度(3.2eV)较强的激子结合能(60meV),是一种具有重要应用价值的半导体材料。目前在多个方面有所应用,例如光催化、传感器、太阳能电池、生物医药、陶瓷材料、橡胶工业等。
目前制备氧化锌量子点的方法主要为溶胶凝胶法和水热合成法。这类方法具体的处理手段包括高温处理、回流高功率搅拌等,能耗及成本较高。同时在目前已有的ZnO量子点的制备方法中,都特别强调在制备前驱体部分特别强调需要将溶质完全溶解,且制备完全透明澄清的溶液后,才能制备出量子点。这导致所需的制备过程时间较长,限制其推广和应用,同时也阻碍了对于量子点领域的成核机理的研究。
发明内容
本发明要解决的技术问题是提供一种溶质非完全溶解方式超声辅助制备氧化锌量子点的方法。
为解决上述问题,本发明采用的技术方案,包括的制备方法如下:
步骤1:在超声波环境中将含锌无机盐置于醇类有机溶剂中,形成ZnO前驱体悬浊液A;
步骤2:将强碱在搅拌环境中充分溶解在醇类有机溶剂中,获得澄清溶液B;
步骤3:在超声波环境中,将步骤2所得的澄清溶液B逐滴加入步骤1所得的悬浊液A中,并任其在超声波环境下实现充分反应,反应时间为10-40min,获得溶液C;
步骤4:将步骤3反应后的溶液C加入到非极性溶剂中,静置沉淀,在一定速度下离心后,移去上清液,获得初始沉淀物,随后加入醇类有机溶剂,在超声环境中分散该沉淀物;
步骤5:重复步骤4两次以上,可得到纯净的ZnO量子点沉淀物;
步骤6:将步骤5得到的ZnO量子点沉淀物置于真空干燥机中进行退火处理,得到ZnO粉末。
所述的溶质非完全溶解方式超声辅助制备氧化锌量子点的方法,其特征在于:在步骤1、3中,所述超声波的超声功率为200-500W、超声时间为10-40min、超声温度为40-70℃。
所述的溶质非完全溶解方式超声辅助制备氧化锌量子点的方法,其特征在于:在步骤1、2中,所述醇类有机溶剂为无水乙醇,其纯度为色谱纯。
所述的溶质非完全溶解方式超声辅助制备氧化锌量子点的方法,其特征在于:在步骤1中,所述的悬浊液A中锌盐的浓度为0.01-0.4mol/L,所采用的含锌无机盐为二水合醋酸锌。
所述的溶质非完全溶解方式超声辅助制备氧化锌量子点的方法,其特征在于:在步骤2中,所述的强碱为一水氢氧化锂,其在溶液中的摩尔溶液浓度为0.2-0.5mol/L。
所述的溶质非完全溶解方式超声辅助制备氧化锌量子点的方法,其特征在于:在步骤1中,所述含锌无机盐的锌盐与碱的物质的量比为1:0.2-1:1。
所述的溶质非完全溶解方式超声辅助制备氧化锌量子点的方法,其特征在于:在步骤3中,通过恒压分液漏斗将步骤2所得的澄清溶液B逐滴加入步骤1所述悬浊液A中获得溶液C。
所述的溶质非完全溶解方式超声辅助制备氧化锌量子点的方法,其特征在于:在步骤4中,所述非极性有机溶剂为:正庚烷、正己烷、甲苯、二氯甲烷、氯仿中的其中一种,所用醇类有机溶剂与该非极性溶剂的体积比为1:2-1:4。
所述的溶质非完全溶解方式超声辅助制备氧化锌量子点的方法,其特征在于:在步骤4中,离心速度为2000-6000r/min、离心时间为10-20min。
所述的溶质非完全溶解方式超声辅助制备氧化锌量子点的方法,其特征在在于:在步骤6,所述退火温度为50-100℃,所使用的设备为真空干燥箱。
所述的溶质非完全溶解方式超声辅助制备氧化锌量子点的方法,其特征在于:所述超声波环境由一种带水循环恒温系统的超声波发生装置构成。
所述的溶质非完全溶解方式超声辅助制备氧化锌量子点的方法,其特征在于:在步骤1、步骤2、步骤3中,分别在由超声波环境和搅拌环境组成的混合环境中进行。
本发明的溶质非完全溶解方式超声辅助制备氧化锌量子点的方法优点如下:
1、本专利依托2016年国家重点研发计划项目-科技部政府间国际科技创新合作重点专项(中美):“改进纳米元器件薄膜均一性的控制策略和方法研究”的项目所支持,项目编号:2016YFE0105900。相对于传统的化学方法,超声的辅助处理可以加快氧化锌量子点的合成速度,操作简便,成本较低。所制备的量子点发光强度和量子点产率高。
2、采用超声辅助的制备方法可以促进量子点的生长成核,该方法安全无毒、环境友好,制备的量子点具有颗粒均匀性好、量子产率高、发光性能好等优点。
附图说明
图1是本发明方法所制备的氧化锌量子点的TEM图;
图2是本发明方法所制备的氧化锌量子点的HRTEM图;
图3是本发明方法所制备的氧化锌量子点的XRD图;
图4是本发明方法所制备的氧化锌量子点的电子衍射图;
图5是本发明方法所制备的氧化锌量子的发光情况图。
具体实施方式
参照图1-5所示,本发明的溶质非完全溶解方式超声辅助制备氧化锌量子点的方法,具体步骤如下:
步骤1:称取1.6g二水合醋酸锌,加入到50mL的无水乙醇(其纯度为色谱纯)中,在超声波环境中混合20min,形成ZnO前驱体悬浊液A,。期间,控制超声波发生装置的超声功率为300W、超声温度为40℃,使得二水合醋酸锌与无水乙醇之间的充分混合。
步骤2:称取0.38g一水合氢氧化锂,加入到25mL的无水乙醇(其纯度为色谱纯)中,室温下搅拌30min,形成无色透明的碱液,获得澄清溶液B。
步骤3:在超声波环境中,将步骤2所得的澄清溶液B逐滴加入步骤1所得的悬浊液A中,并任其在超声波环境下实现充分反应,反应时间为20min,获得溶液C。期间,控制超声波发生装置的超声功率为300W、超声温度为40℃,使得所述澄清溶液B和悬浊液A之间得到充分反应。
步骤4:按照1:2的体积比将步骤3反应后的溶液C加入到非极性溶剂中,静置沉淀20分钟。待沉淀完全析出后,以4000r/min的速度离心该液体后,再移去上层清液,获得初始沉淀物。随后加入10mL的无水乙醇溶液,超声2min使其再分散于无水乙醇中,形成无色透明液体。
步骤5:重复步骤4过程3次,可得到纯净的ZnO量子点沉淀物,记作液D。
步骤6:将步骤5得到的ZnO量子点沉淀物置于真空干燥机中进行退火处理,得 到ZnO粉末。退火温度为50-100℃,所使用的设备为真空干燥箱。
采用上述方法制备可获得,粒径为1-10nm荧光范围为370-690nm,量子产率>50%的氧化锌量子点。
优选的,在步骤1中,所述的二水合醋酸锌的浓度为0.01-0.4mol/L,以在得到最优浓度的情况下适当放大。
优选的,在步骤2中,所述的强碱为一水氢氧化锂其在溶液中的摩尔溶液浓度为的摩尔溶液浓度为0.2-0.5mol/L,以在得到最优浓度的情况下适当放大。
优选的,在步骤1中,所述含锌无机盐的锌盐与碱的物质的量比为1:0.2-1:1,以在得到最优比例的情况下适当放大。
优选的,在步骤3中,通过恒压分液漏斗将步骤2所得的澄清溶液B逐滴加入步骤1所述悬浊液A中获得溶液C,逐滴滴加是为了保证产物均匀性,保证量子点反应过程中成核及生长过程,使得反应产物更加均匀。
优选的,在步骤4中,所述非极性有机溶剂为:正庚烷、正己烷、甲苯、二氯甲烷、氯仿中的其中一种。上述反应所制备的量子点,表面未修饰配体,因而可以通过改变溶液极性体系的方式来获得产物。相比合成过程中加入长链配体(如油酸)来说,操作更加简便,同时因为配体的修饰通常会导致量子点表面基团的改变,不利于后续操作。
优选的,所述超声波环境由一种带水循环恒温系统的超声波发生装置构成。超声波相对于传统磁力、机械搅拌方式具有显著的优势。超声波的频率很大,能够更加充分的使得产物混合均匀,保证实验结果。但是由于超声波发生器装置的限制,其不能准确的控制反应的温度及变化,因此使用自带水循环的控温方式,使得超声波发生装置能够准备控温、保温。
优选的,在步骤1、步骤2、步骤3中,分别在由超声波环境和搅拌环境组成的混合环境中进行,使得溶液得到充分溶解和反应。
下面通过检测例进一步说明本发明的有益效果:将液D滴加到XRD样品台上,干燥后用XRD设备进行测试的结果如图3所示。各衍射峰分别对应ZnO标准卡片36-1451,可以看出样品峰无较大峰偏移,说明ZnO前驱体已经完全转化为ZnO量子点,且XRD的各衍射峰较强,峰型较尖锐。说明该样品的结晶性较好。
将液D滴加至碳网支撑网上,干燥后用透射电子显微镜进行测试的结果如图1所示,粒子之间没有明显的团聚聚集,其颗粒形貌一致(为球形),分布较均匀。根据其HRTEM结果可以看出(图2)所制备样品清晰的晶格条纹,说明其结晶状况良好,经统计可以得到所制样品的粒径平均值为4nm。根据其电子衍射图样(图4)所示,所制备的ZnO量子点为六方纤锌矿结构,不存在其他多晶或者非晶体结构。
上述方案中,所用醇类有机溶剂与该非极性溶剂的体积比在1:2-1:4范围内;在步骤1、3中,所述超声波的超声功率在200-500W、超声时间在10-40min、超声温度在40-70℃范围内;在步骤4中,离心速度在2000-6000r/min、离心时间在10-20min范围内。均能实现本发明的效果。
上所述,并非对本发明做任何形式上的限制,虽然本发明已以较佳实施案例揭示如上,然而并非用以限定本发明,任何熟悉本专业的技术人员,在不脱离本发明技术方案范围内,当可利用上述揭示的结构及技术内容做出些许的更动或修饰为等同变化的等效实施案例,但是凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施案例所作的任何简单修改、等同变化与修饰,均仍属本发明技术方案范围。

Claims (10)

  1. 一种溶质非完全溶解方式超声辅助制备氧化锌量子点的方法,所述氧化锌量子点的粒径范围为1-10nm、荧光范围为370-690nm、量子产率>50%,其特征在于,制备方法如下:
    步骤1:在超声波环境中将含锌无机盐置于醇类有机溶剂中,形成ZnO前驱体悬浊液A;
    步骤2:将强碱在搅拌环境中充分溶解在醇类有机溶剂中,获得澄清溶液B;
    步骤3:在超声波环境中,将步骤2所得的澄清溶液B逐滴加入步骤1所得的悬浊液A中,并任其在超声波环境下实现充分反应,反应时间为10-40min,获得溶液C;
    步骤4:将步骤3反应后的溶液C加入到非极性溶剂中,静置沉淀,在一定速度下离心后,移去上清液,获得初始沉淀物,随后加入醇类有机溶剂,在超声环境中分散该沉淀物;
    步骤5:重复步骤4两次以上,可得到纯净的ZnO量子点沉淀物;
    步骤6:将步骤5得到的ZnO量子点沉淀物置于真空干燥机中进行退火处理,得到ZnO粉末。
  2. 根据权利要求1所述的溶质非完全溶解方式超声辅助制备氧化锌量子点的方法,其特征在于:在步骤1、3中,所述超声波的超声功率为200-500W、超声时间为10-40min、超声温度为40-70℃。
  3. 根据权利要求1所述的溶质非完全溶解方式超声辅助制备氧化锌量子点的方法,其特征在于:在步骤1、2中,所述醇类有机溶剂为无水乙醇,其纯度为色谱纯。
  4. 根据权利要求1所述的溶质非完全溶解方式超声辅助制备氧化锌量子点的方法,其特征在于:在步骤1中,所述的悬浊液A中含锌无机盐的浓度为0.01-0.4mol/L,所采用的含锌无机盐为二水合醋酸锌。
  5. 根据权利要求1所述的溶质非完全溶解方式超声辅助制备氧化锌量子点的方法,其特征在于:在步骤2中,所述的强碱为一水氢氧化锂,其在溶液中的摩尔溶液浓度为0.2-0.5mol/L。
  6. 根据权利要求1所述的溶质非完全溶解方式超声辅助制备氧化锌量子点的方法,其特征在于:在步骤1中,所述含锌无机盐的锌盐与碱的物质的量比为1:0.2-1:1。
  7. 根据权利要求1所述的溶质非完全溶解方式超声辅助制备氧化锌量子点的方法,其特征在于:在步骤3中,通过恒压分液漏斗将步骤2所得的澄清溶液B逐滴加入步骤1所述悬浊液A中获得溶液C。
  8. 根据权利要求1所述的溶质非完全溶解方式超声辅助制备氧化锌量子点的方法,其特征在于:在步骤4中,所述非极性有机溶剂为:正庚烷、正己烷、甲苯、二氯甲烷、氯仿中的其中一种,所用醇类有机溶剂与该非极性溶剂的体积比为1:2-1:4。
  9. 根据权利要求1所述的溶质非完全溶解方式超声辅助制备氧化锌量子点的方法,其特征在于:在步骤4中,离心速度为2000-6000r/min、离心时间为10-20min。
  10. 根据权利要求1所述的溶质非完全溶解方式超声辅助制备氧化锌量子点的方法,其特征在在于:在步骤6,所述退火温度为50-100℃,所使用的设备为真空干燥箱。
PCT/CN2020/121785 2019-10-31 2020-10-19 一种溶质非完全溶解方式超声辅助制备氧化锌量子点的方法 WO2021082960A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911055564.4 2019-10-31
CN201911055564.4A CN110776908A (zh) 2019-10-31 2019-10-31 一种溶质非完全溶解方式超声辅助制备氧化锌量子点的方法

Publications (1)

Publication Number Publication Date
WO2021082960A1 true WO2021082960A1 (zh) 2021-05-06

Family

ID=69388309

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/121785 WO2021082960A1 (zh) 2019-10-31 2020-10-19 一种溶质非完全溶解方式超声辅助制备氧化锌量子点的方法

Country Status (2)

Country Link
CN (1) CN110776908A (zh)
WO (1) WO2021082960A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110776908A (zh) * 2019-10-31 2020-02-11 温州大学激光与光电智能制造研究院 一种溶质非完全溶解方式超声辅助制备氧化锌量子点的方法
CN114686232B (zh) * 2020-12-30 2023-12-26 Tcl科技集团股份有限公司 一种量子点的筛分方法及量子点发光二极管

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102206486A (zh) * 2011-04-11 2011-10-05 北京理工大学 一种ZnO量子点的制备方法
CN110776908A (zh) * 2019-10-31 2020-02-11 温州大学激光与光电智能制造研究院 一种溶质非完全溶解方式超声辅助制备氧化锌量子点的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108611088A (zh) * 2018-05-22 2018-10-02 温州大学苍南研究院 一种超声化学法制备ZnO量子点的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102206486A (zh) * 2011-04-11 2011-10-05 北京理工大学 一种ZnO量子点的制备方法
CN110776908A (zh) * 2019-10-31 2020-02-11 温州大学激光与光电智能制造研究院 一种溶质非完全溶解方式超声辅助制备氧化锌量子点的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MEULENKAMP E A: "SYNTHESIS AND GROWTH OF ZNO NANOPARTICLES", JOURNAL OF PHYSICAL CHEMISTRY. B, MATERIALS, SURFACES, INTERFACES AND BIOPHYSICAL, WASHINGTON, DC, US, vol. 102, no. 29, 16 July 1998 (1998-07-16), US, pages 5566 - 5572, XP009073795, ISSN: 1089-5647, DOI: 10.1021/jp980730h *
YANG WEIMIN; ZHANG BING; DING NAN; DING WENHAO; WANG LIXI; YU MINGXUN; ZHANG QITU: "Fast synthesize ZnO quantum dots via ultrasonic method", ULRASONICS SONOCHEMISTRY, BUTTERWORTH-HEINEMANN., GB, vol. 30, 1 January 1900 (1900-01-01), GB, pages 103 - 112, XP029351500, ISSN: 1350-4177, DOI: 10.1016/j.ultsonch.2015.11.015 *

Also Published As

Publication number Publication date
CN110776908A (zh) 2020-02-11

Similar Documents

Publication Publication Date Title
Shi et al. Growth of flower-like ZnO on ZnO nanorod arrays created on zinc substrate through low-temperature hydrothermal synthesis
CN106732668A (zh) 一种花状二硫化钼/氧化铜复合纳米材料的水热制备方法
CN100490967C (zh) 一种硅酸铋粉体光催化剂的制备方法
WO2021082960A1 (zh) 一种溶质非完全溶解方式超声辅助制备氧化锌量子点的方法
Phuruangrat et al. Controlling morphologies and growth mechanism of hexagonal prisms with planar and pyramid tips of ZnO microflowers by microwave radiation
CN113087016A (zh) 一种棒状硫化铋/还原氧化石墨烯复合材料的制备方法
CN103864139A (zh) 三维分层多级花状二氧化锡微球的制备方法
Moulahi et al. Controlled synthesis of nano-ZnO via hydro/solvothermal process and study of their optical properties
Shi et al. Shape evolution, photoluminescence and degradation properties of novel Cu 2 O micro/nanostructures
Shen et al. Preparation and characterization of ultrafine zinc oxide powder by hydrothermal method
CN103274458B (zh) 一维项链状二氧化钛纳米晶体及其制备方法
CN101319404B (zh) 一种制备空心球状硫化镉纳米晶的方法
CN107020055B (zh) 一种SiO2@ZnO核壳结构多足小球纳米复合材料的制备方法及其应用
CN101941677B (zh) 一种氧化锰表面改性的氧化锌纳米棒材的制备方法
CN105236472A (zh) 一种SnO2纳米线阵列的制备方法
CN108545960A (zh) 一种Y掺杂ZnO纳米棒阵列制备方法
CN105018918A (zh) 一种ZnO纳米管阵列的生长方法
CN105970323B (zh) 一种抗静电粉末及其制备方法
CN112374528A (zh) 一种石墨烯表面负载氧化锌纳米颗粒复合材料及其制备方法与应用
CN101117237A (zh) 一种制备六角星形硫化铅纳米晶的方法
JP2021517548A (ja) 量子ドットの製造方法
Gong et al. Facile aqueous synthesis and growth mechanism of CdTe nanorods
CN110643353B (zh) 一种超声辅助制备核壳型氧化锌量子点的方法
CN100365170C (zh) 四方型结构SnO2单分散纳米单晶及合成方法
CN111943253B (zh) 一种碗状氧化锌及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20882991

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20882991

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20882991

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 15/03/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20882991

Country of ref document: EP

Kind code of ref document: A1