WO2021082382A1 - 微胶囊及其制备方法和应用 - Google Patents

微胶囊及其制备方法和应用 Download PDF

Info

Publication number
WO2021082382A1
WO2021082382A1 PCT/CN2020/088467 CN2020088467W WO2021082382A1 WO 2021082382 A1 WO2021082382 A1 WO 2021082382A1 CN 2020088467 W CN2020088467 W CN 2020088467W WO 2021082382 A1 WO2021082382 A1 WO 2021082382A1
Authority
WO
WIPO (PCT)
Prior art keywords
microcapsules
microcapsule
layer
probiotic
particles
Prior art date
Application number
PCT/CN2020/088467
Other languages
English (en)
French (fr)
Inventor
张�杰
俞伟祖
任宪峰
石红丽
康佳琪
孙亚婷
樊梦原
王鹤楠
马莉
张志尧
郑利君
王旭
董阳
刘叶婷
王志涛
李源
李文清
白皓雪
Original Assignee
内蒙古蒙牛乳业(集团)股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201911036790.8A external-priority patent/CN111134330A/zh
Priority claimed from CN201911036807.XA external-priority patent/CN111134331A/zh
Priority claimed from CN201911043504.0A external-priority patent/CN111134332A/zh
Priority claimed from CN201911043477.7A external-priority patent/CN111150068A/zh
Application filed by 内蒙古蒙牛乳业(集团)股份有限公司 filed Critical 内蒙古蒙牛乳业(集团)股份有限公司
Priority to CA3156603A priority Critical patent/CA3156603A1/en
Priority to AU2020373489A priority patent/AU2020373489B2/en
Priority to US17/773,437 priority patent/US20220395466A1/en
Priority to EP20883408.5A priority patent/EP4042881A4/en
Publication of WO2021082382A1 publication Critical patent/WO2021082382A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/5089Processes
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/135Bacteria or derivatives thereof, e.g. probiotics
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23PSHAPING OR WORKING OF FOODSTUFFS, NOT FULLY COVERED BY A SINGLE OTHER SUBCLASS
    • A23P10/00Shaping or working of foodstuffs characterised by the products
    • A23P10/30Encapsulation of particles, e.g. foodstuff additives
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23PSHAPING OR WORKING OF FOODSTUFFS, NOT FULLY COVERED BY A SINGLE OTHER SUBCLASS
    • A23P10/00Shaping or working of foodstuffs characterised by the products
    • A23P10/30Encapsulation of particles, e.g. foodstuff additives
    • A23P10/35Encapsulation of particles, e.g. foodstuff additives with oils, lipids, monoglycerides or diglycerides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/20Carboxylic acids, e.g. valproic acid having a carboxyl group bound to a chain of seven or more carbon atoms, e.g. stearic, palmitic, arachidic acids
    • A61K31/202Carboxylic acids, e.g. valproic acid having a carboxyl group bound to a chain of seven or more carbon atoms, e.g. stearic, palmitic, arachidic acids having three or more double bonds, e.g. linolenic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/715Polysaccharides, i.e. having more than five saccharide radicals attached to each other by glycosidic linkages; Derivatives thereof, e.g. ethers, esters
    • A61K31/716Glucans
    • A61K31/721Dextrans
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/715Polysaccharides, i.e. having more than five saccharide radicals attached to each other by glycosidic linkages; Derivatives thereof, e.g. ethers, esters
    • A61K31/716Glucans
    • A61K31/722Chitin, chitosan
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/14Blood; Artificial blood
    • A61K35/16Blood plasma; Blood serum
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/20Milk; Whey; Colostrum
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • A61K36/82Theaceae (Tea family), e.g. camellia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/40Transferrins, e.g. lactoferrins, ovotransferrins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/4841Filling excipients; Inactive ingredients
    • A61K9/4866Organic macromolecular compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/5005Wall or coating material
    • A61K9/5015Organic compounds, e.g. fats, sugars
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/5005Wall or coating material
    • A61K9/5021Organic macromolecular compounds
    • A61K9/5036Polysaccharides, e.g. gums, alginate; Cyclodextrin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/5005Wall or coating material
    • A61K9/5021Organic macromolecular compounds
    • A61K9/5052Proteins, e.g. albumin
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K40/00Shaping or working-up of animal feeding-stuffs
    • A23K40/30Shaping or working-up of animal feeding-stuffs by encapsulating; by coating
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2400/00Lactic or propionic acid bacteria
    • A23V2400/11Lactobacillus
    • A23V2400/113Acidophilus
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2400/00Lactic or propionic acid bacteria
    • A23V2400/11Lactobacillus
    • A23V2400/125Casei
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2400/00Lactic or propionic acid bacteria
    • A23V2400/11Lactobacillus
    • A23V2400/133Curvatus
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2400/00Lactic or propionic acid bacteria
    • A23V2400/11Lactobacillus
    • A23V2400/137Delbrueckii
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2400/00Lactic or propionic acid bacteria
    • A23V2400/11Lactobacillus
    • A23V2400/143Fermentum
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2400/00Lactic or propionic acid bacteria
    • A23V2400/11Lactobacillus
    • A23V2400/145Gasseri
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2400/00Lactic or propionic acid bacteria
    • A23V2400/11Lactobacillus
    • A23V2400/147Helveticus
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2400/00Lactic or propionic acid bacteria
    • A23V2400/11Lactobacillus
    • A23V2400/151Johnsonii
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2400/00Lactic or propionic acid bacteria
    • A23V2400/11Lactobacillus
    • A23V2400/165Paracasei
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2400/00Lactic or propionic acid bacteria
    • A23V2400/11Lactobacillus
    • A23V2400/169Plantarum
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2400/00Lactic or propionic acid bacteria
    • A23V2400/11Lactobacillus
    • A23V2400/173Reuteri
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2400/00Lactic or propionic acid bacteria
    • A23V2400/11Lactobacillus
    • A23V2400/175Rhamnosus
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2400/00Lactic or propionic acid bacteria
    • A23V2400/11Lactobacillus
    • A23V2400/181Salivarius
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2400/00Lactic or propionic acid bacteria
    • A23V2400/21Streptococcus, lactococcus
    • A23V2400/249Thermophilus
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2400/00Lactic or propionic acid bacteria
    • A23V2400/51Bifidobacterium
    • A23V2400/513Adolescentes
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2400/00Lactic or propionic acid bacteria
    • A23V2400/51Bifidobacterium
    • A23V2400/515Animalis
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2400/00Lactic or propionic acid bacteria
    • A23V2400/51Bifidobacterium
    • A23V2400/517Bifidum
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2400/00Lactic or propionic acid bacteria
    • A23V2400/51Bifidobacterium
    • A23V2400/519Breve
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2400/00Lactic or propionic acid bacteria
    • A23V2400/51Bifidobacterium
    • A23V2400/529Infantis
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2400/00Lactic or propionic acid bacteria
    • A23V2400/51Bifidobacterium
    • A23V2400/533Longum

Definitions

  • This application belongs to the field of food biotechnology. More specifically, this application relates to a microcapsule and a preparation method thereof, in particular to a multilayer microcapsule containing an active substance and a preparation method thereof. This application also relates to a probiotic microcapsule and a preparation method thereof.
  • the probiotic microcapsule has one or more layers of embedding structure.
  • the present application relates to a composite wall material for probiotic microcapsules, probiotic microcapsules, and a preparation method thereof.
  • This application also relates to a food or health product containing probiotic microcapsules, including dairy products, fermented flavored foods, beverages, chocolates, candies, baked foods, fruit and vegetable juice foods, etc.
  • probiotic microcapsule soft particle includes a probiotic microcapsule coconut fiber fruit soft particle and a probiotic microcapsule gel ball soft particle.
  • Functional food is very important for improving physical fitness and nutritional intervention for chronic diseases. It covers nutritious foods, formula foods for special medical purposes, special dietary foods, health foods and functional general foods, etc., and is the most market demand and development potential in the health industry. Gold plate. In the context of general health, the restructuring and integration of the functional food industry will provide consumers with a complete whole-process health solution.
  • Functional ingredients contained in functional foods include: functional polysaccharides (including chitosan, tea polysaccharides, dietary fiber, etc.); functional lipids (including polyunsaturated fatty acids such as DHA, etc.); functional proteins/peptides/ Amino acids (such as taurine, lactoferrin, immunoglobulin, etc.); microecological regulators (including probiotics, prebiotics, synbiotics); and vitamins and minerals.
  • microencapsulation technology is an effective and promising method.
  • By forming one or more layers of capsule-like protective film around the embedded active material it can significantly improve the disadvantages of the active material.
  • the survival rate in the environment and can partially cover up the bad flavor of the embedded material.
  • the coating material, the embedding method, the granulation method and the drying method in the preparation process are very important for the function of the microcapsule.
  • the existing microcapsule coating materials are mostly edible gum materials such as gelatin, pectin, sodium alginate, etc., which are often eaten in large quantities and have certain side effects on special populations such as infants and the elderly.
  • Single-layer microcapsules are the most commonly used form of microcapsules. However, regardless of the particle surface bacteria content or water and gas barrier properties, single-layer microcapsules are weaker than double-layer or multi-layer microcapsules, which makes their stability relatively low. .
  • the purpose of this application includes providing a safe, non-toxic, no side effect, small particle size, rich in active substances, microcapsules, and it has good stability under normal temperature conditions and has a sustained release effect. ; Moreover, it can be added to products with high water activity.
  • probiotics as a kind of living microorganisms that have a certain promoting effect on the health of the host, have multiple physiological functions in terms of treatment and health care.
  • ordinary probiotics such as bifidobacteria are relatively fragile and are easily affected by surrounding environmental factors.
  • the direct addition of spore probiotics to the product can easily affect the state, quality and shelf life of the product. Therefore, the current probiotic products Most of them need to be stored in low temperature refrigeration, so as to maximize the number of active probiotics, and the number of colonies will decrease with time.
  • probiotics in the field of food and dairy products, products with probiotics added in the field of dairy products, for example, due to pasteurization in room temperature yogurt, all kinds of probiotics in the product have been killed, and lactic acid bacteria are no longer available
  • low-temperature yogurt products due to the poor resistance of lactic acid bacteria and other probiotics, they are affected by gastric acid and enzymes, resulting in a sharp decrease in the number of probiotics that enter the intestines and cannot effectively exert their probiotic effects. .
  • this application adopts microencapsulation technology to embed probiotics.
  • the probiotics can be significantly improved in adverse environments.
  • the survival rate of the microcapsules, among them, the selection of wall materials, embedding methods, granulation methods and drying methods are very important to the protective effect of microcapsules.
  • adding probiotic microcapsules to food or health products can protect the activity of probiotics, effectively prevent the environment from affecting the survival of probiotics, and at the same time can greatly reduce the impact of gastric acid and enzymes, so that probiotics can reach the human intestines. Maintain a relatively high number and activity during the channel.
  • the present application relates to a microcapsule and a preparation method thereof, and in particular to a multilayer microcapsule containing an embedded active substance and a preparation method thereof.
  • a microcapsule having one or more layers of embedding structure, comprising: a pill core and optionally at least one shell covering the pill core; wherein, the pill core includes embedded The substance and the microcapsule core material, and the at least one shell covering the pellet core includes one, two or more layers of wall material.
  • the outer diameter of the pellet core of the microcapsule is about 50-500 ⁇ m (preferably about 50 to about 300 ⁇ m), and the outer diameter of the single-layer or multi-layer coated microcapsules is about 200 to about 1000 ⁇ m (preferably about 100 to about 500 ⁇ m). ).
  • the embedded substance includes a functional active substance
  • the active substance is selected from one of functional polysaccharides, functional lipids, functional proteins/peptides/amino acids, microecological regulators, vitamins and minerals Or multiple.
  • the functional polysaccharide is selected from one or more of chitosan, tea polysaccharide, dietary fiber, and dextran; preferably, the functional lipid is selected from one of lecithin, EPA and DHA One or more; preferably, the functional protein/peptide/amino acid is selected from one or more of taurine, lactoferrin, immunoglobulin, and whey protein peptide; preferably, the probiotic The regulator is selected from one or more of probiotics, prebiotics, and synbiotics.
  • the preparation method of the above microcapsules includes the following steps:
  • Primary pellet core preparation uniformly mix the embedded material and the microcapsule core material, optionally solidify and filter to collect wet particles, and then dry to obtain primary pellet core dry particles; and optionally
  • the step (1) is preferably by extrusion spheronization granulation method, centrifugal granulation method, acute angle extrusion granulation method, or fluidized bed spray granulation method (preferably extrusion spheronization granulation method or centrifugal granulation method) Method) to prepare pellet cores, and the obtained pellet cores are dried and collected.
  • the step (2) is preferably to coat the wall material by means of fluidized bed spray.
  • a specific embodiment includes the method of combining extrusion spheronization core (centrifugal granulation core) and fluidized spray coating to prepare microcapsule particles; in this way, spherical particles with good roundness can be produced.
  • the outer layer of the particles can also achieve the effect of blocking water and odor and protect the embedded active material, and the particles prepared in this way can be subsequently added to the aqueous product without being affected.
  • the extrusion spheronization granulation method or the centrifugal granulation method is used to prepare a round and spherical primary pellet core, and then the water-blocking coating layer material and the hydrophilic coating layer material are uniformly fluidized to the surface of the spherical pellet core.
  • Subsequent fluidization of the water-blocking coating layer prevents the microcapsule particles from disintegrating when exposed to water, and protects the embedded material from contacting the outside world (such as water or other solvents), thereby prolonging the shelf life of the microcapsule particles in aqueous products.
  • One of the objectives of this application includes providing a solid dry particle microcapsule that can be stored for a long time under normal temperature conditions, using one, double or multi-layer wall material to embed probiotics into solid particles of 50-500 ⁇ m, using and
  • the preservation conditions are less affected by the environment and can be applied to the fields of medicine, health care products and food.
  • the microcapsules obtained in the present application are especially double-layer and multi-layer coated microcapsules.
  • the amount of viable bacteria in the microcapsules is significantly increased, and the particle size is uniform and shiny. It can be stored for a long time under normal temperature conditions, for example, after 30 days, 60 days or 120 days, the amount of viable bacteria in the microcapsules decreases slightly, and the amount of viable bacteria is still high.
  • microcapsules are resistant to acid, which increases the number of probiotic bacteria that eventually enter the intestinal tract.
  • the microcapsules also have good hydrophobicity, and the residual bacteria on the surface of the particles are lower, thereby reducing the probability of leakage of probiotics.
  • Another object of the present application is to provide a method for preparing probiotic microcapsules, the probiotic microcapsules having one or more layers of embedding structure, including the following steps:
  • the above-mentioned single-layer microcapsule dry particles are used as core particles, and a layer of wall material is uniformly coated outside the core particles (preferably by fluidized bed spray granulation method), and optionally sprayed
  • the solidifying liquid solidifies the capsule wall, drying the prepared microcapsules (preferably drying in a fluidized bed), collecting the dry particles of the double-layer microcapsules or continuing to coat them again or more.
  • the above-mentioned double-layer or multi-layer probiotic microcapsules wherein the outer diameter of the core particles obtained after the first layer coating is about 50-500 ⁇ m (preferably about 50-about 300 ⁇ m), the double-layer or multi-layer microcapsules The outer diameter is about 200 to about 1000 ⁇ m (preferably about 100 to about 500 ⁇ m).
  • the present application also relates to the pretreatment method of the wall material in the preparation method of the probiotic microcapsules, which includes: mixing the wall material with water, fully dissolving the wall material, and performing alternate cooling and heating treatments to form a stable gel.
  • the wall material is mixed with water, and stirred at a low temperature of about 2 to 8°C for 4 to 16 hours, and more preferably, the whey protein solution is further heat-treated at about 75 to 96°C for about 30 to 180 minutes; It is more preferable to cool immediately, at a cooling temperature of -20 to 4°C; store at 4°C for more than 10-60 hours to obtain a whey protein gel solution. More preferably, the wall material is whey protein.
  • the present application also relates to a probiotic microcapsule.
  • the probiotic microcapsule has a one-layer or multi-layer embedding structure, which is prepared according to the above-mentioned preparation method of the probiotic microcapsule.
  • the probiotic microcapsules of the present application can be used in the food and health product industries such as dietary supplements.
  • This application also relates to the application of probiotic microcapsules as food additives, such as heat-processed foods or frozen foods, preferably fermented flavored foods, beverages, chocolates, sweets such as chewing gum, baked foods such as pudding, fruit and vegetable juice foods, etc.
  • the probiotic microcapsules of the present application are dairy additives, and more preferably added to milk, yogurt, cheese, ice cream, milk powder, and dairy beverages.
  • the added amount of microcapsules containing probiotics is 0.03 to 0.15%.
  • Another object of the application is to provide a method for preparing the probiotic microcapsules.
  • the method used in this application is a combination of extrusion granulation and fluidized bed spray granulation. Compared with the common granulation method currently used, the probiotic microcapsule particles obtained are denser and more hydrophobic. The residual bacteria on the surface are lower, thereby reducing the probability of probiotic leakage, the number of viable bacteria within the same shelf life is more, and the scope of use of microcapsules is expanded.
  • the probiotic microcapsules have one or more layers of embedding structure, including: mycelium particles and optionally at least one layer covering the The outer shell of the mycelium particles, wherein the mycelium particles comprise a core material and a first layer of wall material, the core material comprises one or more probiotic powder or bacterial sludge, and the core material is covered by the first layer of wall material.
  • the wall material is covered, and the at least one layer of the shell covering the core particles includes one, two or more layers of wall material, which are respectively a second layer of wall material, a third layer of wall material or more Layer wall material, which includes the following steps:
  • Preparation of single-layer microcapsules Optionally mix and granulate the bacterial powder or bacterial mud with the binder, and then uniformly mix with the first wall material (preferably the acute angle extrusion granulation method) and optionally solidify and filter Collect wet granules and dry them to obtain monolayer microcapsule dry granules; and optionally
  • the above-mentioned single-layer microcapsule dry particles are used as core particles, and a layer of wall material is uniformly coated outside the core particles (preferably by fluidized bed spray granulation method), and optionally sprayed
  • the curing liquid solidifies the capsule wall and does not dissolve in water, and the prepared microcapsules are dried (preferably dried in a fluidized bed), and the dry particles of the double-layer microcapsules are collected or continue to be coated again or more times.
  • Another object of the present application is to provide a method for preparing probiotic microcapsules, which uses fluidized bed granulation and spray fluidization as the main granulation of microcapsules and multiple embedding methods of microcapsules: it uses powder The edible solid phase components such as probiotics in the form of granular or granular form, with the binder solution as the liquid phase component, are made into the core material through fluidized granulation, and then the core material is sprayed and coated through a fluidized bed. One or more layers of wall material uniformly wrap the core material to obtain probiotic microcapsules with one or more layers of embedding structure.
  • This application uses a fluidized bed process to prepare probiotic microcapsules, which can greatly reduce the moisture and water activity in the microcapsule production process, and is particularly suitable for preparing microcapsules for components that are sensitive to moisture.
  • the middle layer wall material of the microcapsule can effectively protect and isolate the core material from contact with moisture and air, even when the microcapsule is placed in a water-based liquid, it can effectively prevent moisture from entering The core of the microcapsule; the outer wall material can effectively wrap and stabilize the overall structure of the microcapsule.
  • the microcapsule When the microcapsule is placed in a water-based liquid, it can help the microcapsule to be suspended in the liquid.
  • One of the objectives of this application is to provide a product containing probiotic microcapsules, including food or health products containing probiotic microcapsules, such as milk and dairy products containing probiotic microcapsules, fermented flavored foods, beverages, chocolate, Candies, baked goods, fruit and vegetable juice foods, etc.
  • food or health products of this application also include but are not limited to the following products: meat, fish, poultry and game; meat juices; pickled, frozen, dried and cooked fruits and vegetables; jellies, jams, preserves; eggs; Milk and dairy products; edible oils and fats.
  • the microcapsules are solid dry particles microcapsules that can be stored for a long time under normal temperature conditions.
  • the probiotics are embedded into solid particles of 50-500 ⁇ m by using one, double or multi-layer wall materials.
  • the application and storage conditions are affected by the environment. The impact is small, and it can be applied to the fields of medicine, health care products and food.
  • the microcapsules obtained in the present application are especially double-layer and multi-layer coated microcapsules.
  • the amount of viable bacteria in the microcapsules is significantly increased, and the particle size is uniform and shiny. It can be stored for a long time under normal temperature conditions, for example, after 30 days, 60 days or 120 days, the amount of viable bacteria in the microcapsules decreases slightly, and the amount of viable bacteria is still high.
  • microcapsules are resistant to acid, which increases the number of probiotic bacteria that eventually enter the intestinal tract.
  • the microcapsules also have good hydrophobicity, and the residual bacteria on the surface of the particles are lower, thereby reducing the probability of leakage of probiotics.
  • Another object of this application is to provide a method for preparing food or health products containing probiotic microcapsules, which includes the following steps:
  • probiotic microcapsules to foods or health products, including but not limited to dairy products containing probiotic microcapsules, fermented flavored foods, beverages, chocolates, candies, baked foods, Fruit and vegetable juice foods are preferably added to milk, yogurt, cheese, ice cream, milk powder, and dairy beverages;
  • the added amount of microcapsules containing probiotics is 0.02 to 1%.
  • probiotic microcapsule soft particle which includes probiotic microcapsule coconut fiber fruit soft particle and probiotic microcapsule gel ball soft particle
  • the probiotic microcapsule coconut fiber fruit soft particle includes : One or more of coconut water, coconut milk, coconut jam, sucrose, white sugar, fructose syrup, Acetobacter xylinum, acidity regulator, probiotic microcapsules, ethanol and purified water, preferably, wherein the sucrose content is About 5-10%, the content of white sugar is about 3-5%, the content of fructose syrup is about 0-5%, the content of ammonium dihydrogen phosphate is about 0.3-0.8%, the content of Acetobacter xylinum is about 0.1-0.5%, The acidity regulator content is about 1-5%.
  • the probiotic microcapsule gel ball soft particles include: white sugar, sodium alginate, xanthan gum, konjac gum, carrageenan, solidified liquid (containing calcium lactate and calcium chloride), probiotic microcapsules, pigments, purified water
  • white granulated sugar is about 10-15%
  • sodium alginate is about 0.5-1%
  • xanthan gum is about 0.1-0.3%
  • konjac gum is about 0.1-0.2%.
  • the concentration of calcium lactate is about 1-3%.
  • the probiotic microcapsules are solid dry microcapsules that can be stored for a long time under normal temperature conditions.
  • the probiotics are embedded into solid particles of 50-500 ⁇ m by using one, double or multi-layer wall materials.
  • the application and storage conditions are subject to The environmental impact is small, and it can be applied to the fields of medicine, health care products and food.
  • the microcapsules are especially double-layer and multi-layer coated microcapsules, the amount of viable bacteria in the microcapsules is significantly increased, and the particle size is uniform and shiny. It can be stored for a long time under normal temperature conditions, for example, after 30 days, 60 days or 120 days, the amount of viable bacteria in the microcapsules decreases slightly, and the amount of viable bacteria is still high.
  • microcapsules are resistant to acid, which increases the number of probiotic bacteria that eventually enter the intestinal tract.
  • the microcapsules also have good hydrophobicity, and the residual bacteria on the surface of the particles are lower, thereby reducing the probability of leakage of probiotics.
  • the probiotic microcapsule soft particles described in the present application have both coconut fruit functionality and probiotic properties, and have rich nutrition, excellent flavor, good chewing mouthfeel, and strong probiotic survival and function. Compared with the existing products containing coconut soft particles, this product can not only maintain higher stability under normal temperature shelf storage conditions for at least 6 months, but also has a higher number of probiotics and bacterial activity, which fully guarantees the product after consumption The number of probiotics that reach the human intestines truly exerts a better probiotic effect.
  • microcapsules added to this product adopt the method of embedding microcapsules in coconut fruit. Compared with the direct addition of microcapsules, this product not only increases the functional properties of coconuts, but also provides secondary protection for probiotics, making the survival rate of probiotics count higher than directly adding microcapsules, and the effect is better. At the same time, the crisp coconut taste fully guarantees the taste and taste of the final product.
  • the microcapsules added in this product are also added to the sodium alginate solution and dropped into the solidified liquid to form pellets of calcium alginate encapsulated probiotic microcapsules.
  • a and/or B when used to link open ending words such as “includes”, in one embodiment, it may only refer to A (optionally including other than B In another embodiment, it can only refer to B (optionally including components other than A); in yet another embodiment, it refers to A and B (optionally including other components) and the like.
  • Probiotics the type of probiotics in the probiotic microcapsules of this application, use any probiotics approved by the state as the protection object of the microcapsule embedded core material. Including: Bifidobacterium adolescentis, Bifidobacterium animalis (Bifidobacterium lactis), Bifidobacterium bifidum, Bifidobacterium breve, Bifidobacterium infantis, Bifidobacterium longum, Lactobacillus acidophilus, Lactobacillus casei, Curly milk Bacillus, Lactobacillus delbrueckii subsp. Bulgaria, Lactobacillus delbrueckii subsp.
  • lactis Lactobacillus fermentum, Lactobacillus gasseri, Lactobacillus helveticus, Lactobacillus johnsonii, Lactobacillus paracasei, Lactobacillus plantarum, Lactobacillus reuteri , Lactobacillus rhamnosus, Lactobacillus salivarius, Streptococcus thermophilus, Bacillus coagulans and other probiotics. The details are shown in Attached Tables A-D.
  • Wall material The encapsulated material used to coat, protect or control the release of the core material is called the wall material, capsule wall or capsule shell of the microcapsule.
  • the wall material is the material that constitutes the outer shell of the microcapsule, and can also be called coating or packaging material.
  • wall materials When choosing a wall material, consider the properties of the wall material itself, such as permeability, stability, mechanical strength, solubility, polymerizability, electrical properties, hygroscopicity and film-forming properties, etc.
  • properties of the wall material itself such as permeability, stability, mechanical strength, solubility, polymerizability, electrical properties, hygroscopicity and film-forming properties, etc.
  • core material of biologically active materials it is also It is important to consider the toxicity of the wall material and the compatibility with the core material.
  • wall materials that are non-toxic, have good film-forming properties or spherical properties, low immunogenicity, good biocompatibility, degradable, and non-toxic side effects of the product are selected.
  • film-forming materials that have good biocompatibility with live bacteria, enteric materials that can be used in foods, film-forming materials with moisture barrier properties, and film-forming materials with oxygen barrier properties.
  • Edible protein including animal protein such as milk protein, egg protein, casein, vegetable protein such as gluten protein, etc.;
  • the wall material of the probiotic microcapsules of the present application is selected from whey protein:
  • WPI whey protein concentrate
  • WPI whey protein isolate
  • WPI whey protein peptides, especially whey protein isolate (WPI); among them, WPI is a further process based on whey protein concentrate (WPC)
  • WPC whey protein concentrate
  • the processed high-purity whey protein has a purity of more than 90%, is easier to digest and absorb, is safe, non-toxic, and has no side effects;
  • Milk protein including casein or whey protein.
  • Whey protein refers to the protein dissolved and dispersed in whey, accounting for about 18% to 20% of milk protein, and can be divided into two parts: heat stable and heat unstable whey protein.
  • WPC Whey Protein Concentrate
  • whey powder After the whey is directly dried, whey powder can be obtained, in which the whey protein is extremely low, generally more than ten percent, not more than 30 percent.
  • the product of whey after clarification, ultrafiltration, drying and other processes is concentrated whey protein. The different degree of filtration can obtain products with protein concentration ranging from 34-80%.
  • WPI Whey Protein Isolate
  • Whey protein isolate is a high-purity whey protein obtained by further processing on the basis of concentrated whey protein, with a purity of more than 90%. It is expensive, 2-3 times that of whey protein concentrate, but it is also easier to digest and absorb.
  • the real beauty of whey protein isolate lies in its nutritional value. It has a high content of high-quality protein, which can provide high-quality protein for certain people with specific needs, such as infants and hospitalized patients.
  • the biologically active compounds contained in whey protein isolate such as ⁇ -lactalbumin and ⁇ -lactoglobulin, lactoferrin and immunoglobulin, have injected fresh vitality into the market.
  • Whey protein peptide is a hydrolysate of whey protein and the essence of whey protein. It can participate in the process of muscle synthesis faster in the body.
  • the wall material of the probiotic microcapsules of the present application is selected from one or a combination of the following:
  • Vegetable protein including oilseed protein, legume protein, gluten protein, etc.
  • oilseed protein includes: peanut protein, sesame protein, rapeseed protein, sunflower protein, cotton seed protein, safflower protein, coconut protein, etc.;
  • legume protein includes: soy protein, broad bean protein, pea protein, mung bean protein, adzuki bean protein, kidney bean protein, etc.;
  • gluten protein includes: rice (indica rice, japonica rice, glutinous rice) protein, wheat (wheat, barley, oats, rye) protein, corn gluten, sorghum protein, millet protein, millet protein, yellow rice protein, buckwheat protein, etc.
  • potato protein including sweet potato protein, potato protein, yam protein, taro protein, tapioca protein, etc.;
  • zein includes zein, corn germ protein, etc.;
  • the wall material of the probiotic microcapsules of the present application is selected from zein, including zein and corn germ protein, and zein is especially preferred.
  • oils and fats are collectively referred to as oils and fats, which are esters formed by aliphatic carboxylic acids and glycerin. Those that are liquid at room temperature are called oils, and those that are solid or semi-solid are called fats. Most natural oils and fats are mixed glycerides. Most of the oil obtained from plant seeds is oil, and most of the animal products are fat.
  • fatty acids various natural fatty acid molecules are straight-chain fatty acids composed of different carbon chains (4-24C). With some exceptions, all carbon atoms are in double numbers. There are two classifications of such fatty acids: one is to divide fatty acids into short-chain (4-6C), medium-chain (8-12C) and long-chain (above 12C) fatty acids based on the number of carbon atoms. The other is to divide fatty acids into saturated and unsaturated fatty acids.
  • the general molecular formula of saturated fatty acids is C n H 2n O 2
  • unsaturated fatty acids have 1, 2, 3 or more double bonds
  • their general molecular formula is C n H 2n-2 O 2 , CnH 2n-4 O 2.
  • linoleic acid, linolenic acid and arachidonic acid with more than two double bonds are called polyunsaturated fatty acids.
  • polyunsaturated fatty acids there are also cyclic fatty acids, the oleic acid and the oleic acid of maple seeds in maple oil.
  • the fatty acids in the fats and oils in this application are mostly saturated or unsaturated fatty acids with even number of carbon atoms. Commonly used are saturated acids such as myristic acid (C14), palmitic acid (C16), and stearic acid (C18). Palmitoleic acid (C16, monoene), oleic acid (C18, monoene), linoleic acid (C18, diene), linolenic acid (C18, triene) and other unsaturated acids. Certain fats and oils contain several special fatty acids, such as tung oleic acid in tung oil, rape acid in rape oil, ricinoleic acid in castor oil, and citrus acid in coconut oil.
  • fat is divided into animal fat and vegetable fat.
  • animal fats There are two major types of animal fats, one is aquatic animal fats, such as fish, shrimp, seals, and the other is terrestrial animal fats, most of which contain saturated fatty acids and a relatively small amount of unsaturated fatty acids.
  • Vegetable fats such as cottonseed oil, peanut oil, rapeseed oil, soybean oil, etc., mainly contain unsaturated fatty acids, and the content of polyunsaturated fatty acids (linoleic acid) is very high, accounting for 40-50% of the total fat.
  • the fatty acids in coconut oil are mainly saturated fatty acids.
  • MCT Medium chain triglyceride
  • C6 caproic acid
  • C12 lauric acid
  • a structural lipid of fatty acids, natural MCT is mainly derived from vegetable oils such as coconut oil and palm oil.
  • SCT short-chain fatty acid triglycerides
  • LCT long-chain fatty acid triglycerides
  • Palm oil also known as palm oil and palm oil, including: crude palm oil (CPO), palm meal (PE), crude palm kernel oil (CPKO), palm kernel meal (PKE), refined palm oil (RBD PO) , Palm oil salad oil (RBD PKO), palmitoleic acid (PFAD), palm oil (abbreviated as OLEAN), palm stearin (abbreviated as STEARINE or ST), etc. Palm oil is semi-solid at room temperature, and its consistency and melting point largely depend on the content of free fatty acids. Palm oil with low acid value is often called soft oil, and oil with high acid value is called hard oil.
  • the wall material of the probiotic microcapsules of the present application is preferably selected from palm oil, particularly preferably about 33°C palm oil, about 40°C palm oil, about 44°C palm oil, about 52°C palm oil, about 58°C palm oil, more preferably Palm oil having a melting point above about 40°C, especially palm oil having a melting point of about 40-50°C, such as palm oil having a melting point of about 40°C.
  • the wall material of the probiotic microcapsules of the present application is selected from one or a combination of the following:
  • Vegetable oil including cocoa butter, cocoa butter, rapeseed oil, soybean oil, corn oil, peanut oil, cottonseed oil, sunflower oil, palm oil (solid palm oil or liquid palm oil), palm kernel oil, coconut oil, etc.; or
  • Animal oil lard, tallow, fish oil, milk fat, mutton fat, etc.
  • the wall material of the probiotic microcapsules of the present application is selected from fats with a melting point above about 40°C, especially fats with a melting point of about 40-50°C, such as palm oil or MCT with a melting point of about 40°C.
  • MCT medium chain triglycerides
  • cocoa butter substitutes palm oil, lecithin, palm oil monoglycerides
  • hydrogenated fats such as: hydrogenated palm oil, hardened oil, Hydrogenated soybean oil
  • a melting point of about 40°C or higher preferably a melting point of about 40-50°C.
  • polysaccharides corn syrup, pectin, gum arabic, chitosan, acetylated mono- and diglyceride fatty acid esters, konjac gum, carrageenan, wax or gelatin.
  • Enteric wall material Enteric solubility refers to the process in which microcapsules pass through the stomach environment without being destroyed or degraded, and finally enter the intestine.
  • the wall material disintegrates, dissolves or degrades, resulting in the release of the core material inside the capsule.
  • the enteric wall material can be a single wall material or a composite wall material. Including shellac, pectin, sodium alginate, monoglycerides, triglycerides, hydrogenated fats (such as palm oil, hydrogenated palm oil, hardened oil, hydrogenated soybean oil, etc.).
  • the wall material of the probiotic microcapsules of the present application has enteric properties.
  • the composite wall material of the present application refers to a wall material with better performance by mixing two or more of the aforementioned wall materials.
  • the composite wall material of the present application has a good synergistic effect, which is beneficial to improve the stability and compactness of the microcapsules containing these components in the wall material, improve the quality of the microcapsule products, and promote the application of the microcapsule technology in various industries.
  • Hydrocolloid usually refers to a macromolecular substance that can be dissolved in water and fully hydrated under certain conditions to form a viscous, slippery or jelly solution. It is widely used in food, medicine, chemical industry and many other fields. Hydrocolloids can be divided into: plant secretions, such as gum, guar gum, gum arabic, etc.; microbial fermentation and metabolites, such as xanthan gum, gellan gum, etc.; seaweed extracts, such as carrageenan, Agar, alginate, etc.
  • Pectin is a natural polysaccharide polymer compound extracted from plant cell walls. Citrus peel, apple paste, beet pulp, etc. are the most common raw materials for extracting pectin. According to the ratio of esterified galacturonic acid groups in the pectin molecule, it can be divided into high methoxy pectin (including high methoxy water-soluble tomato pectin and high methoxy citrus pectin, etc.) and low methyl Pectin-based (the degree of esterification is 50% as a distinguishing value).
  • the curing agent in this application includes at least one of the following compounds: sodium acetate, glacial acetic acid, citric acid, sodium citrate, calcium salt, surfactant.
  • the curing agent is preferably a mixture of sodium acetate, glacial acetic acid and surfactant, so that the protein can form an irreversible chemical gel under the combined action of non-covalent bonds and covalent bonds (such as disulfide bonds), and combine with surface activity
  • the role of the agent improves the gel strength and stability of the protein particles in the dispersed phase.
  • the curing agent has a concentration of about 0.5 mol/L, a pH of about 4.5 to about 5.3, and contains a surfactant that accounts for about 0.01% to 0.1% of the volume of the curing liquid solution.
  • Adhesives including starch, modified starch, compressible starch, dextrin, lactose, animal gums such as gelatin, acacia, sucrose, tragacanth, liquid glucose, shellac, peel gum, rosin, hydroxymethyl cellulose Sodium, methyl cellulose, povidone, hydroxypropyl cellulose, ethyl cellulose, hydroxypropyl methyl cellulose, polyethylene glycol, microcrystalline cellulose, inorganic salts, etc.
  • the preferred binder for the probiotic microcapsules used in the present application is starch, and the preferred binder concentration is 5%-20%.
  • a microcapsule having one or more layers of embedding structure, comprising: a pellet core and optionally at least one shell covering the pellet core;
  • the pellet core includes an embedded substance and a microcapsule core material
  • the at least one shell covering the pellet core includes one, two or more layers of wall material.
  • the outer diameter of the pellet core of the microcapsule is about 50-500 ⁇ m (preferably about 50 to about 300 ⁇ m), and the outer diameter of the single-layer or multi-layer coated microcapsules is about 200 to about 1000 ⁇ m. (Preferably about 100 to about 500 ⁇ m).
  • the embedded substance includes a functional active substance selected from the group consisting of functional polysaccharides, functional lipids, functional proteins/peptides/amino acids, microecological regulators, vitamins And one or more of minerals.
  • a functional active substance selected from the group consisting of functional polysaccharides, functional lipids, functional proteins/peptides/amino acids, microecological regulators, vitamins And one or more of minerals.
  • the weight ratio of the embedded substance to the microcapsule core material is 1:6-1:2.5 (more preferably 1:5-1:4).
  • the functional polysaccharide is selected from one or more of chitosan, tea polysaccharide, dietary fiber, and dextran; preferably, the functional lipid is selected from lecithin, One or more of EPA and DHA; preferably, the functional protein/peptide/amino acid is selected from one or more of taurine, lactoferrin, immunoglobulin, and whey protein peptide; preferably Preferably, the microecological regulator is selected from one or more of probiotics, prebiotics, and synbiotics.
  • the wall material is selected from one or a combination of the following:
  • Vegetable protein such as soy protein, rice protein, wheat protein, zein, etc.; preferably zein, or
  • Animal protein such as whey protein, casein, etc.; preferably whey protein concentrate (WPC), whey protein isolate (WPI) or whey protein peptide, especially whey protein isolate (WPI); or
  • Fats and oils such as fats and oils with a melting point of 40°C or higher, preferably with a melting point of 40-50°C, particularly preferably palm oil, medium chain glycerides (MCT), and hydrogenated fats and oils (e.g., hydrogenated palm oil, hardened oil, hydrogenated soybean oil) , Lecithin, cocoa butter substitutes, palm oil monoglycerides, coconut oil, soybean oil, peanut oil, sunflower oil, or
  • MCT medium chain glycerides
  • glycerin oleic acid
  • sodium alginate shellac
  • CMC-Na gellan
  • xanthan gum k-carrageenan
  • cellulose acetate phthalate maltodextrin
  • starch paste Refined, sucrose, lactose, dextran, corn syrup, pectin, gum arabic, chitosan, acetylated mono- and diglyceride fatty acid esters, konjac gum, carrageenan, wax or gelatin, etc.
  • the wall material is selected from whey protein or oil, particularly preferably WPI or MCT.
  • the microcapsule core material includes one or a combination of the following:
  • Vegetable protein such as soy protein, rice protein, wheat protein, zein, etc.; preferably zein, or
  • Animal protein such as whey protein, casein, etc.; preferably whey protein concentrate (WPC), whey protein isolate (WPI) or whey protein peptide, especially whey protein isolate (WPI); or
  • Fats and oils such as fats and oils with a melting point of 40°C or higher, preferably with a melting point of 40-50°C, particularly preferably palm oil, medium chain glycerides (MCT), and hydrogenated fats and oils (e.g., hydrogenated palm oil, hardened oil, hydrogenated soybean oil) , Lecithin, cocoa butter substitutes, palm oil monoglycerides, coconut oil, soybean oil, peanut oil, sunflower oil, or
  • MCT medium chain glycerides
  • MCC microcrystalline cellulose
  • glycerin glycerin
  • oleic acid sodium alginate
  • shellac CMC-Na
  • gellan xanthan gum
  • k-carrageenan cellulose acetate phthalate
  • Maltodextrin starch, dextrin, sucrose, lactose, dextran, corn syrup, pectin, acacia, chitosan, acetylated mono and diglyceride fatty acid esters, konjac gum, carrageenan, wax or gelatin Wait.
  • the microcapsule core material includes microcrystalline cellulose (MCC).
  • MMC microcrystalline cellulose
  • the embedded substance includes probiotics
  • the probiotics are selected from Bifidobacterium adolescentis, Bifidobacterium animalis (Bifidobacterium lactis), Bifidobacterium bifidum, Bifidobacterium breve, Bifidobacterium infantis, Bifidobacterium longum, Lactobacillus acidophilus Lactobacillus casei, Lactobacillus crispatus, Lactobacillus delbrueckii subsp. Bulgaria, Lactobacillus delbrueckii subsp.
  • lactis Lactobacillus fermentum, Lactobacillus gasseri, Lactobacillus helveticus, Lactobacillus johnsonii, Lactobacillus paracasei, Lactobacillus plantarum , Lactobacillus reuteri, Lactobacillus rhamnosus, Lactobacillus salivarius, Streptococcus thermophilus, Bacillus coagulans and other probiotics.
  • the microcapsule particles of the present application are (light) yellow spherical particles with a particle size of 300-500 microns. It is mainly composed of three parts: a primary pellet core, a water-blocking coating layer and a hydrophilic coating layer. Among them, the number of embedding layers can be selected according to the characteristics of the embedding material, and the minimum layer is one layer.
  • the multi-layered embedded microcapsule particles are mainly for the purpose of not affecting the product environment when the embedded substance is added to the product, and does not affect the product. At the same time, for some functional substances (such as probiotics) that have an effect in the human small intestine, the microcapsules can promote their sustained release.
  • the primary pellet core is mainly composed of embedded functional (active) substances and microcapsule core materials.
  • the main function of this structure is to make the embedded material into spherical particles, so that the subsequent water-blocking coating layer and hydrophilic coating layer can better coat the outside of the pellet core to form uniform spherical particles.
  • the embedded substance may be a hydrophilic or hydrophobic functional component (for example: functional protein, functional oil, vitamin, probiotics, etc.).
  • the embedded substance is mixed with the microcapsule core material in a ratio of (1:3-4:1) according to its characteristics (such as viscosity, etc.).
  • the core material of the microcapsules is mainly microcrystalline cellulose (MCC), which can be optionally added or replaced with sucrose, lactose, chitosan, etc.
  • MMC microcrystalline cellulose
  • the embedded material and the microcapsule core material are uniformly mixed to form a 250-450 micron primary pellet core.
  • the main function of the water-blocking coating layer is to block the embedded material from the moisture in the product (or environment), and to protect the embedded material from being affected by gastric acid to reach the human intestine.
  • the water-blocking coating layer is mainly based on gliadin, and substances that can increase the plasticity and toughness of gliadin are added at a ratio of 3%-10% to improve the performance of the water-blocking coating layer, including glycerin, oleic acid, etc. substance.
  • the gliadin can be dissolved by 50-75% ethanol, and the specific ratio is affected by the tolerance of the embedded substance to ethanol.
  • the number of water-blocking coating layers can be determined according to the size of the embedded material affected by water.
  • the outermost layer of the microcapsule is a hydrophilic coating layer.
  • the main function of this layer is that the microcapsule particles can be uniformly added to the aqueous product without agglomeration, thereby ensuring the uniformity of the addition of microcapsule particles in the product.
  • This layer is mainly composed of hydrophilic polysaccharides with film-forming properties as embedding wall materials, such as gum, soybean polysaccharides or isolated whey protein.
  • a method for preparing microcapsules, the microcapsules having one or more layers of embedding structure including the following steps:
  • Primary pellet core preparation uniformly mix the embedded material and the microcapsule core material, optionally solidify and filter to collect the wet particles, and then dry to obtain a primary pellet core; and optionally
  • the step (1) is by extrusion spheronization granulation method, centrifugal granulation method, acute angle extrusion granulation method, or fluidized bed spray granulation method (preferably extrusion spheronization method) Granulation method or centrifugal granulation method) to prepare pellet cores, and the obtained pellet cores are dried and collected.
  • the step (2) is to coat the wall material by means of fluidized bed spray.
  • a preparation method of probiotic microcapsules includes the following steps: primary core making; secondary fluidization.
  • the one-time core-making scheme is as described in 1 or 1'below.
  • the scheme of secondary fluidization is as described in 2.
  • the raw materials include (based on 1000 parts by weight of dry microcapsules): 10-30 parts by weight of probiotic bacteria mud or powder, 90-70 parts by weight of microcrystalline cellulose (MCC), 100 parts by weight of water (or water and ethanol) Mixed solution), optional addition of sucrose, lactose, chitosan, etc.
  • Bacterial powder/bacteria mud and microcrystalline cellulose are evenly mixed and added to the wet granulation pot for pre-mixing for 10 minutes;
  • the pellets are dried in a fluidized bed or oven, and the drying temperature is 45-50°C.
  • the distribution of the pellets produced later will be uneven, and the bacterial count of the produced microcapsule particles will be too different. If the feeding speed and the extrusion speed do not match, and suitable strips cannot be extruded, subsequent pelletization cannot be performed. If the spheronization speed is not appropriate, a regular spherical pellet core cannot be formed, and a cylindrical or elliptical pellet core may be formed, which is not conducive to the subsequent fluidization of the water blocking layer and the addition of the product.
  • Raw materials 10-30 parts by weight of probiotic bacteria mud or powder, 90-70 parts by weight of microcrystalline cellulose (MCC), 27-21 parts by weight of water (or hydroxypropyl methylcellulose (HPMC)), optional Add sucrose, lactose, chitosan, etc.
  • MCC microcrystalline cellulose
  • HPMC hydroxypropyl methylcellulose
  • the pellets are dried in a fluidized bed, and the drying temperature is 45-50°C.
  • the bacterial count of the finished microcapsule particles will be uneven, resulting in the particles not reaching standardization. If the ratio of bacterial powder and microcrystalline cellulose is not appropriate, spherical particles cannot be rolled out in the centrifugal granulator, and they will remain in powder state or aggregate into agglomerates. If the ratio of binder to dry matter is not appropriate, spherical particles cannot be rolled out in the centrifugal granulator, and the particles will aggregate into agglomerates. If the rotating speed of the centrifugal turntable is not suitable, the primary pellet core of suitable size cannot be formed, and the pellet core may be too large or too small, which is not conducive to subsequent fluidization and product addition.
  • Raw materials water blocking coating layer solution 1: 75% alcohol 600-800 parts by weight, gliadin 150-180 parts by weight, oleic acid 70-100 parts by weight; water blocking coating layer solution 2: 75% alcohol 600-800 Parts by weight, 150-180 parts by weight of prolamin, 30-50 parts by weight of oleic acid; optional water-blocking coating layer 3: medium-chain triglycerides (MCT) with 1.8% particle mass; hydrophilic coating layer solution: 95-97 parts by weight of water and 3-5 parts by weight of pectin (can be replaced by other polysaccharides with film-forming properties).
  • MCT medium-chain triglycerides
  • the coating sequence of the water blocking coating is not fixed; the hydrophilic coating layer is fluidized on the outermost layer of the particles.
  • MCT layer Infiltrate the particles in MCT for 16 hours.
  • the coating solution is heated to 25 to 75°C, the fluidized bed inlet temperature is 60 to 80°C, and the air volume is between 20-100.
  • a spray gun is used to atomize the water-blocking coating solution and spray it into the fluidized bed, so that the droplets uniformly wrap the core particles after core making, and are dried in the fluidized bed to form a single layer of water-blocking particles.
  • the water-blocking coating layer solution can be sprayed uniformly outside the single-layer water-blocking particles to form double-layer or multi-layer water-blocking coating particles.
  • hydrophilic coating layer solution is sprayed outside the double-layer or multilayer microcapsule particles.
  • the prepared microcapsules are dried in a fluidized bed. Each time about 50kg of dried particles are fluidized. According to the degree of adhesion between the particles, after each fluidization for 15-20 minutes, use a 40-mesh screen sizer After that, the particles under the sieve continue to be fluidized, and the particles on the sieve are discarded.
  • the key steps include: after each fluidized 400 mL of the coating solution, pass through a 50-80 mesh screen, and discard particles larger than 50 mesh and smaller than 80 mesh.
  • the inlet air temperature of the fluidized bed is too high, the entrapped material will lose its activity. If the inlet air temperature of the fluidized bed is too low, the particles will stick to each other. The air volume of the fluidized bed is too low, and the particles cannot be blown up in the fluidized bed and cannot evenly wrap the fluidized wall material. The air volume of the fluidized bed is too high, and the particles are blown down and stuck on the filter bag and cannot continue to be fluidized. The atomization pressure is not appropriate, and the wall material cannot be evenly wrapped on the pellet core. A batch of fluidization greater than 400mL will cause the adhered particles in the fluidized bed to continue to adhere and affect the final yield. So after every 400ml of fluidization, the adhered particles are separated in time through the screen.
  • Raw materials whey protein powder: 200-400 parts by weight; microcrystalline cellulose: 600-800 parts by weight; water blocking coating layer solution 1: 75% alcohol 600-800 parts by weight, prolamin 150-180 parts by weight, 70-100 parts by weight of oleic acid; water-blocking coating layer solution 2: 600-800 parts by weight of 75% alcohol, 150-180 parts by weight of prolamin, and 30-50 parts by weight of oleic acid.
  • Optional water-blocking coating layer 3 medium chain triglyceride (MCT) with 1.8% particle mass.
  • Hydrophilic coating layer solution 95-97 parts by weight of water, 3-5 parts by weight of pectin (can be replaced by other polysaccharides with film-forming properties).
  • the whey protein peptide powder and microcrystalline cellulose are evenly mixed and added to the wet granulation pot for pre-mixing for 10 minutes.
  • the pellets are dried in a fluidized bed or oven, and the drying temperature is 45-50°C.
  • MCT layer Infiltrate the particles in MCT for 16 hours.
  • the coating solution is heated to 25 to 75°C, the fluidized bed inlet temperature is 60 to 80°C, and the air volume is between 20-100.
  • a spray gun is used to atomize the water-blocking coating solution and spray it into the fluidized bed, so that the droplets uniformly wrap the core particles after core making, and are dried in the fluidized bed to form a single layer of water-blocking particles.
  • the water-blocking coating layer solution can be sprayed uniformly outside the single-layer water-blocking particles to form double-layer or multi-layer water-blocking coating particles.
  • hydrophilic coating layer solution is sprayed outside the double-layer or multilayer microcapsule particles.
  • the prepared microcapsules are dried in a fluidized bed. Each time about 50kg of dried particles are fluidized. According to the degree of adhesion between the particles, after each fluidization for 15-20 minutes, use a 40-mesh screen sizer After that, the particles under the sieve continue to be fluidized, and the particles on the sieve are discarded.
  • the present application relates to a probiotic microcapsule.
  • the probiotic microcapsule has one or more layers of embedding structure, and includes: mycelium particles and optionally at least one shell covering the mycelium particles, wherein:
  • the mycelium particles include a core material and a first layer of wall material, the core material includes one or more probiotic powder or bacterial sludge, and the core material is covered by the first layer of wall material;
  • the at least one shell covering the fungus core particles includes one, two or more layers of wall materials, which are respectively a second layer of wall material, a third layer of wall material, or more layers of wall material.
  • the above-mentioned bacteria core particles further include a binder.
  • the weight ratio of the composition of the above microcapsules is: about 50 to 500 parts by weight of bacterial mud or powder; and about 150 to 950 parts by weight of the first layer of wall material
  • the second layer of wall material is about 0 to 350 parts by weight
  • the third layer of wall material is about 0 to 350 parts by weight
  • the fourth layer of wall material is about 0 to 260 parts by weight.
  • the probiotic sludge or powder is about 50 to about 500 parts by weight, more preferably: about 100 parts by weight, about 150 parts by weight, about 200 parts by weight, about 250 parts by weight, about 300 parts by weight, about 350 parts by weight, about 400 parts by weight, about 450 parts by weight or any range therebetween, particularly preferably about 250 to about 400 parts by weight;
  • the first wall material is about 150 to about 950 parts by weight, more preferably: about 200 parts by weight, about 250 parts by weight, about 300 parts by weight, about 350 parts by weight, about 400 parts by weight, about 450 parts by weight, about 500 parts by weight Parts, about 550 parts by weight, about 600 parts by weight, about 650 parts by weight, about 700 parts by weight, about 750 parts by weight, about 800 parts by weight, about 850 parts by weight, about 900 parts by weight, or any range therebetween, particularly preferably about 450 to about 750 parts by weight;
  • the optional second wall material is about 0 to about 350 parts by weight, more preferably: about 100 parts by weight, about 150 parts by weight, about 200 parts by weight, about 250 parts by weight, about 300 parts by weight or any range therebetween, Especially preferably about 200 to about 300 parts by weight;
  • the optional third layer is about 0 to about 350 parts by weight, more preferably: about 100 parts by weight, about 150 parts by weight, about 200 parts by weight, about 250 parts by weight, about 260 parts by weight, about 300 parts by weight, or any in between The range is particularly preferably about 200 to about 300 parts by weight;
  • the optional fourth layer is about 0 to about 250 parts by weight, more preferably: about 100 parts by weight, about 150 parts by weight, about 200 parts by weight, about 250 parts by weight, about 260 parts by weight, about 250 parts by weight, or any in between The range is particularly preferably about 100 to about 250 parts by weight.
  • the probiotics are selected from Bifidobacterium adolescentis, Bifidobacterium animalis (Bifidobacterium lactis), Bifidobacterium bifidum, Bifidobacterium breve, Bifidobacterium infantis, Bifidobacterium longum, and Lactobacillus acidophilus cheese Lactobacillus, Lactobacillus crispatus, Lactobacillus delbrueckii subsp. Bulgaria, Lactobacillus delbrueckii subsp.
  • lactis Lactobacillus fermentum, Lactobacillus gasseri, Lactobacillus helveticus, Lactobacillus johnsonii, Lactobacillus paracasei, Lactobacillus plantarum, One or more of probiotics such as Lactobacillus reuteri, Lactobacillus rhamnosus, Lactobacillus salivarius, Streptococcus thermophilus, Bacillus coagulans and the like.
  • the wall material of the probiotic microcapsules is selected from one or more combinations of edible protein, oil, or other materials.
  • the above-mentioned edible protein is selected from one or more combinations of animal protein or plant protein:
  • animal protein is any animal protein suitable for the probiotic microcapsules of the present application, such as one or more combinations of any animal protein defined in the present application, preferably milk protein, egg protein, casein, etc., more preferably Whey protein, including whey protein concentrate (WPC), whey protein isolate (WPI) or whey protein peptides, especially whey protein isolate (WPI);
  • WPC whey protein concentrate
  • WPI whey protein isolate
  • the plant protein is any plant protein suitable for the probiotic microcapsules of the present application, for example, one or more combinations of any plant protein defined in the present application, including oilseed protein, legume protein, gluten protein, etc.,
  • oilseed protein is preferably: peanut protein, sesame protein, rapeseed protein, sunflower protein, cotton seed protein, safflower protein, coconut protein, etc.;
  • bean protein is preferably: soy protein, broad bean protein, pea protein, mung bean protein, adzuki bean protein, kidney bean protein, etc.;
  • the gluten protein is preferably: rice (indica rice, japonica rice, glutinous rice) protein, wheat (wheat, barley, oat, rye) protein, zein, sorghum protein, millet protein, millet protein, yellow rice protein, buckwheat protein, etc.
  • potato protein including sweet potato protein, potato protein, yam protein, taro protein, tapioca protein, etc.;
  • zein is preferably zein, corn germ protein and the like.
  • the above fat is any fat suitable for the probiotic microcapsules of the present application, for example, one or more combinations of the fats and oils defined in the present application, preferably selected from one or more combinations of the following:
  • the wall material of the probiotic microcapsules of the present application is selected from one or a combination of the following:
  • Vegetable oil including cocoa butter, cocoa butter, rapeseed oil, soybean oil, corn oil, peanut oil, cottonseed oil, sunflower oil, palm oil (solid palm oil or liquid palm oil), palm kernel oil, coconut oil, etc.; or
  • Animal oil lard, tallow, fish oil, milk fat, mutton fat, etc.
  • the wall material of the probiotic microcapsules of the present application is selected from fats with a melting point above 40°C, especially fats with a melting point of 40-50°C, such as palm oil or MCT with a melting point of 40°C.
  • MCT medium chain triglycerides
  • cocoa butter substitutes palm oil, lecithin, palm oil monoglycerides
  • hydrogenated fats such as: hydrogenated palm oil, hardened oil, Hydrogenated soybean oil
  • their melting point is preferably 40°C or higher, particularly preferably a melting point of 40-50°C.
  • palm oil with a melting point of 40°C or higher especially palm oil with a melting point of 40-50°C, such as palm oil with a melting point of 40°C.
  • the above-mentioned other materials are selected from sodium alginate, shellac, CMC-Na, gellan, xanthan gum, k-carrageenan, cellulose acetate phthalate, maltodextrin, starch, dextrin , Sucrose, lactose, dextran, corn syrup, pectin, gum arabic, chitosan, acetylated mono- and diglyceride fatty acid esters, konjac gum, carrageenan, wax or gelatin, etc. .
  • the above-mentioned probiotic microcapsules have one or more layers of embedding structure, including: mycelium particles and a shell covering the mycelium particles, wherein the mycelium particles include a core material and The first layer of wall material, the core material includes one or more probiotic powder or bacterial sludge, the core material is covered by the first layer of wall material, and the layer covers the mycelium
  • the shell of the particle includes a second wall material, an optional third wall material and an optional fourth wall material; optionally, the above-mentioned mycelium particles further include a binder.
  • the above-mentioned first wall material is oil or whey protein (WPI) or a combination thereof.
  • the above-mentioned probiotic microcapsules have one or more layers of embedding structure, wherein the wall material of the second layer is WPI or grease or a combination thereof.
  • the probiotic microcapsules described above have one or more layers of embedding structure, wherein the first layer of wall material is WPI, preferably about 150 to about 950 parts by weight, more preferably: about 300 to 750 Parts by weight
  • the optional second wall material is WPI, preferably about 0-350 parts by weight, more preferably about 300-350 parts by weight; or
  • the optional second wall material is fat, preferably fat with a melting point of 40-50°C, especially palm oil or MCT, preferably, it is about 0-350 parts by weight, more preferably about 150, 200 or 300 parts by weight Copies
  • the optional third layer wall material is WPI, preferably about 0-350 parts by weight, more preferably about 250, 260 parts by weight; or
  • the optional third layer of wall material is fat, preferably fat with a melting point of 40-50°C, especially palm oil or MCT, preferably, it is about 0-350 parts by weight, more preferably about 150, 200 or 300 parts by weight Copies
  • the optional fourth wall material is WPI, preferably about 0 to 250 parts by weight, more preferably about 300 to 350 parts by weight.
  • the wall material of the probiotic microcapsule is a composite wall material selected from a combination of multiple materials.
  • the present application also relates to a method for preparing probiotic microcapsules.
  • the probiotic microcapsules have one or more layers of embedding structure, including: mycelium particles and optionally at least one layer of encapsulation.
  • the first layer of wall material is covered, and the at least one layer of the outer shell covering the core particles includes one, two or more layers of wall material, which are respectively the second layer of wall material and the third layer of wall material Or more layers of wall materials;
  • the above-mentioned bacteria core particles further include a binder
  • the preparation of the probiotic microcapsules includes the following steps:
  • the above-mentioned single-layer microcapsule dry particles are used as core particles, and a layer of wall material is uniformly coated outside the core particles (preferably by fluidized bed spray granulation method), and optionally sprayed
  • the solidifying liquid solidifies the capsule wall, drying the prepared microcapsules (preferably drying in a fluidized bed), collecting the dry particles of the double-layer microcapsules or continuing to coat them again or more.
  • the probiotic microcapsules obtained by the above-mentioned method are based on 1000 parts by weight of dry microcapsules,
  • the probiotic sludge or powder is about 50 to about 500 parts by weight, more preferably: about 50 parts by weight, about 100 parts by weight, about 150 parts by weight, about 200 parts by weight, about 250 parts by weight, about 300 parts by weight, about 350 parts by weight, about 400 parts by weight, about 450 parts by weight, about 500 parts by weight, or any range therebetween, particularly preferably about 250 to about 400 parts by weight;
  • the first wall material is about 150 to about 950 parts by weight, more preferably: about 200 parts by weight, about 250 parts by weight, about 300 parts by weight, about 350 parts by weight, about 400 parts by weight, about 450 parts by weight, about 500 parts by weight Parts, about 550 parts by weight, about 600 parts by weight, about 650 parts by weight, about 700 parts by weight, about 750 parts by weight, about 800 parts by weight, about 850 parts by weight, about 900 parts by weight, about 950 parts by weight, or any in between In the range, about 450 to about 750 parts by weight is especially preferred;
  • the optional second layer wall material is about 0 to about 350 parts by weight, more preferably: about 100 parts by weight, about 150 parts by weight, about 200 parts by weight, about 250 parts by weight, about 300 parts by weight, about 350 parts by weight or Any range therebetween, especially preferably about 200-300 parts by weight;
  • the optional third layer is about 0 to about 350 parts by weight, more preferably: about 100 parts by weight, about 150 parts by weight, about 200 parts by weight, about 250 parts by weight, about 260 parts by weight, about 300 parts by weight, about 350 parts by weight Parts or any range therebetween, particularly preferably about 200 to about 300 parts by weight.
  • the ratio of bacterial powder or bacterial mud to the first wall material is about 1:1 to about 1:19, preferably about 1:1, about 1:1. 1:2, about 1:3, about 1:4, about 1:5, about 1:6, about 1:7, about 1:8, about 1:9, about 1:10, about 1:11, about 1:12, about 1:13, about 1:14, about 1:15, about 1:16, about 1:17, about 1:18, about 1:19, or any range therebetween, particularly preferably about 1: 3 ⁇ 4:6.
  • this application also relates to a method for preparing probiotic microcapsules, the probiotic microcapsules having one or more layers of embedding structure, including the following steps:
  • a binder to the sludge or powder for granulation
  • pre-treat the first wall material :
  • the first wall material is mixed with water, and stirred at a low temperature of about 2 to 8°C for about 4 to 16 hours, and the preferred rotation speed is about 170 to 240 per minute;
  • the first wall material is further subjected to about 75 to about 96°C (preferably about 75°C, about 76°C, about 77°C, about 78°C, about 79°C, about 80°C, about 81°C, about 82°C).
  • the preferred rotation speed is 85 to 115 rpm/min;
  • the above-mentioned first wall material is WPI, preferably about 150 to about 950 parts by weight, more preferably: about 300 to 750 parts by weight;
  • the ratio of bacterial powder or bacterial mud to the first wall material is 2-10:8-16;
  • the single-layer microcapsule dry particles obtained in step (1) are used as core particles and mixed with the second wall material to prepare double-layer microcapsules.
  • the second wall material is preferably grease (preferably with a melting point of 40-50°C). Fat, especially palm oil or MCT) or whey protein, preferably about 0-350 parts by weight;
  • step f Dry the microcapsules made in step f and collect the double-layer microcapsule dry particles
  • step (2) The double-layer microcapsules obtained in step (2) are continuously coated for the third or more times according to the aforementioned method;
  • the third wall material is preferably fat (preferably fat with a melting point of 40-50°C, especially palm oil or MCT) or whey protein, preferably about 0-350 parts by weight.
  • the above-mentioned preparation method of probiotic microcapsules wherein the wet particles prepared in the step of (1) the first layer of microcapsules are dried and the particle size is ⁇ 400um, preferably 50-300um.
  • an extrusion granulation method is used.
  • a fluidized bed granulation method is used.
  • the method for preparing the above-mentioned probiotic microcapsules wherein the curing agent in the step of (1) the coating of the first layer of microcapsules is selected from sodium acetate, citric acid, sodium citrate, calcium salt, glacial acetic acid and One or a mixture of several surfactants.
  • the curing agent is an acetic acid-sodium acetate buffer solution, and Tween-20 accounting for about 0.01% to about 0.1% of the volume of the curing agent solution is added.
  • the curing agent solution has a concentration of about 0.5 mol/L and a pH of about 4.5 to about 5.3.
  • the present invention also relates to a method for preparing probiotic microcapsules.
  • the probiotic microcapsules have one or more layers of embedding structure, and include: mycelium particles and optionally at least one layer covering the mycelium particles Shell, wherein the core particles include a core material and a first layer of wall material, the core material includes one or more probiotic powder or bacterial sludge, and the core material is covered by the first layer of wall material Covering, and the at least one shell covering the core particles includes two or more layers of wall materials, which are respectively a second layer of wall material, a third layer of wall material or more layers of wall material, including The following steps:
  • Preparation of single-layer microcapsules Optionally mix and granulate the bacterial powder or bacterial mud with the binder, and then uniformly mix with the first wall material (preferably the acute angle extrusion granulation method) and optionally solidify and filter Collect wet granules and dry them to obtain monolayer microcapsule dry granules; and optionally
  • the above-mentioned single-layer microcapsule dry particles are used as core particles, and a layer of wall material is uniformly coated outside the core particles (preferably by fluidized bed spray granulation method), and optionally sprayed
  • the curing liquid solidifies the capsule wall and does not dissolve in water, and the prepared microcapsules are dried (preferably dried in a fluidized bed), and the dry particles of the double-layer microcapsules are collected or continue to be coated again or more times.
  • the present invention also relates to a method for preparing probiotic microcapsules.
  • the probiotic microcapsules have one or more layers of embedding structure and include the following steps:
  • Coating of the first layer of microcapsules fully mix the first wall material with probiotic powder or sludge and then granulate, optionally drip into the curing agent solution to solidify, filter and collect the microcapsule particles and optionally Drying the obtained microcapsules to obtain bacteria core particles; and optionally
  • step (3) Optionally, continue coating the microcapsules obtained in step (2) in a fluidized bed for a third or more times.
  • the first wall material is whey protein
  • the whey protein is subjected to a pre-denaturation treatment: the whey protein is mixed with water, and it is fully dissolved. Alternate heat and cold treatments form a stable gel.
  • the whey protein is mixed with water, and stirred at a low temperature of 2 to 8°C for 4 to 16 hours, and the rotation speed is 170 to 240 per minute;
  • the whey protein solution is further subjected to about 75 to about 96°C (preferably about 75°C, about 76°C, about 77°C, about 78°C, about 79°C, about 80°C, about 81°C, about 82°C, about 83°C, about 84°C, about 85°C, about 86°C, about 87°C, about 88°C, about 89°C, about 90°C, about 91°C, about 92°C, about 93°C, about 94°C, about 95°C , About 96°C, or any range therebetween), about 30 to about 180 minutes of heat treatment (preferably about 35, about 40, about 45, about 50, about 55, about 60, about 65, about 70, about 75, about 80, about 85, about 90, about 95, about 100, about 105, about 110, about 115, about 120, about 125, about 130, about 135, about 140, about 145, about 150, about 155, about 160, About
  • the cooling temperature is about -20 to about 4°C; about 4°C for about 12 to about 60 hours (preferably about 12, about 13, about 14, about 15, about 16, about 17, about 18, about 19 , About 20, about 21, about 22, about 23, about 24, about 25, about 26, about 27, about 28, about 29, about 30, about 31, about 32, about 33, about 34, about 35, about 36, about 37, about 38, about 39, about 40, about 41, about 42, about 43, about 44, about 45, about 46, about 47, about 48, about 49, about 50, about 51, about 52, about 53, about 54, about 55, about 56, about 57, about 58, about 59, about 60 hours, or any range therebetween) to obtain a whey protein gel solution.
  • an extrusion granulation method is used.
  • an acute angle extrusion granulation method is used to granulate to obtain whey protein coated microcapsules.
  • the pore diameter of the extrusion nozzle is about 150 to about 750 ⁇ m (preferably about 150, about 200, about 250, about 300, about 350, about 400, about 450, about 500, about 550, about 600, about 650, about 700, about 750 ⁇ m or any range therebetween), preferably the nozzle is about 150 to about 200 ⁇ m and about 300 to about 500 ⁇ m in combination, and the voltage is about 1500 to about 1800mv (preferably about 1300, about 1400, about 1500, about 1600, about 1700, about 1800 mv or any range therebetween), a frequency of about 1300 to about 1500 Hz (preferably about 1300, about 1400, about 1500 or any range therebetween), and a pressure of about 290 to about 330 mbar.
  • the method for preparing the above-mentioned probiotic microcapsules wherein the curing agent in the step of (1) the coating of the first layer of microcapsules is selected from sodium acetate, citric acid, sodium citrate, calcium salt, glacial acetic acid and One or a mixture of several surfactants.
  • the curing agent is an acetic acid-sodium acetate buffer solution, and Tween-20 accounting for about 0.01% to about 0.1% of the volume of the curing agent solution is added.
  • the curing agent solution has a concentration of about 0.5 mol/L and a pH of about 4.5 to about 5.3.
  • the method for preparing the above-mentioned probiotic microcapsules wherein, in the step of (2) the second layer of microcapsules coating, the second layer of wall material is WPI or fat (preferably palm oil or MCT) or Its composition.
  • the fluidized bed method is used for the second coating, preferably the temperature is raised to 25 to 75°C.
  • the inlet temperature of the fluidized bed is preferably 30 to 80 degrees Celsius.
  • the method for preparing the probiotic microcapsules described above wherein, in the step of (2) the second layer of microcapsules, the wall material of the second layer is oil, and the oil is preferably palm oil or medium-chain triglyceride. Ester (MCT), and the microcapsules obtained in step (2) are further coated with WPI for the third time.
  • MCT Ester
  • the above-mentioned double-layer or multi-layer probiotic microcapsules wherein the outer diameter of the core particles obtained after the first layer coating is about 50-500 ⁇ m (preferably about 50-about 300 ⁇ m), the double-layer or multi-layer microcapsules The outer diameter is about 200 to about 1000 ⁇ m (preferably about 100 to about 500 ⁇ m).
  • the present invention relates to a preparation method of probiotic microcapsules.
  • the probiotic microcapsules have one or more layers of embedding structure, including: mycocore particles and optionally at least one shell covering the mycocore particles , wherein the core particles include a core material and a first layer of wall material, the core material includes one or more probiotic powder or bacterial sludge, and the core material is covered by the first layer of wall material , And the at least one shell covering the fungus core particles includes one, two or more layers of wall materials, which are respectively a second layer of wall material, a third layer of wall material or more layers of wall material, wherein , Including the following steps:
  • Preparation of single-layer microcapsules Optionally mix and granulate bacterial powder or bacterial sludge with a binder, and then uniformly mix with the first wall material by the fluidized bed spray granulation method, and optionally solidify and filter to collect Dry the wet granules to obtain single-layer microcapsule dry granules; and optionally
  • the present invention also relates to a method for preparing probiotic microcapsules.
  • the probiotic microcapsules have one or more layers of embedding structure and include the following steps:
  • Microcapsule core material granulation mixing bacterial powder or bacterial sludge with binding solution and spraying and granulating through a fluidized bed to form granules, which account for about 5-95% of the weight of the finished microcapsule;
  • the bonding solution is prepared as follows:
  • Dissolve the binder in warm water keep it warm at about 80 degrees Celsius for about 1 hour after fully dissolving, and stir continuously, with a concentration of about 5 to 25%, preferably about 5%, about 6%, about 7%, about 8 %, about 9%, about 10%, about 11%, about 12%, about 13%, about 14%, about 15%, about 16%, about 17%, about 18%, about 19%, about 20% , About 21%, about 22%, about 23%, about 24%, about 25%, or any range of the period;
  • the temperature of the adhesive is about 30 to 80°C.
  • Sieving select a standard sieve with the required mesh, preferably with a particle size of about 50-400 microns; automatically or manually sieving out the particles with the particle size distribution range as the core particles of the microcapsules, proceed to the next step Coating treatment;
  • the undersize material can be returned to the fluidized bed to continue granulation, and the oversize material can be ground to make fine powder and then added back to the fluidized bed to continue granulation;
  • the second layer of wall material is uniformly coated on the outside of the single layer microcapsules, and the curing liquid is sprayed to solidify the capsule walls and do not dissolve in water.
  • the capsules continue to be dried in the fluidized bed, and the dry particles of the double-layer microcapsules are collected or continue to be coated with the third wall material or more secondary wall materials in the fluidized bed.
  • the probiotic sludge or powder is about 50 to about 500 parts by weight, more preferably: about 100 parts by weight, about 150 parts by weight, about 200 parts by weight, about 250 parts by weight, about 300 parts by weight, about 350 parts by weight, about 400 parts by weight, about 450 parts by weight or any range therebetween, particularly preferably about 250 to about 400 parts by weight;
  • the first wall material is about 150 to about 950 parts by weight, more preferably: about 200 parts by weight, about 250 parts by weight, about 300 parts by weight, about 350 parts by weight, about 400 parts by weight, about 450 parts by weight, about 500 parts by weight Parts, about 550 parts by weight, about 600 parts by weight, about 650 parts by weight, about 700 parts by weight, about 750 parts by weight, about 800 parts by weight, about 850 parts by weight, about 900 parts by weight, or any range therebetween, particularly preferably about 450 to about 750 parts by weight;
  • the optional second wall material is about 0 to about 350 parts by weight, more preferably: about 100 parts by weight, about 150 parts by weight, about 200 parts by weight, about 250 parts by weight, about 300 parts by weight or any range therebetween, Especially preferably about 200 to about 300 parts by weight;
  • the optional third layer is about 0 to about 350 parts by weight, more preferably: about 100 parts by weight, about 150 parts by weight, about 200 parts by weight, about 250 parts by weight, about 260 parts by weight, about 300 parts by weight, or any in between The range is particularly preferably about 200 to about 300 parts by weight;
  • the optional fourth layer is about 0 to about 250 parts by weight, more preferably: about 100 parts by weight, about 150 parts by weight, about 200 parts by weight, about 250 parts by weight, about 260 parts by weight, about 250 parts by weight, or any in between The range is particularly preferably about 100 to about 250 parts by weight.
  • the above-mentioned probiotics are any probiotics suitable for the probiotic microcapsules of the present invention, such as the probiotics defined in the present invention, particularly preferably: Bifidobacterium adolescentis, Bifidobacterium animalis (Bifidobacterium lactis), two Bifidobacterium, Bifidobacterium breve, Bifidobacterium infantis, Bifidobacterium longum, Lactobacillus acidophilus, Lactobacillus casei, Lactobacillus crispatus, Lactobacillus delbrueckii subsp. bulgaricus, Lactobacillus delbruecki subsp.
  • lactis fermented milk Bacillus, Lactobacillus gasseri, Lactobacillus helveticus, Lactobacillus johnsonii, Lactobacillus paracasei, Lactobacillus plantarum, Lactobacillus reuteri, Lactobacillus rhamnosus, Lactobacillus salivarius, Streptococcus thermophilus, Bacillus coagulans, etc.
  • One or more of the probiotics are included in the probiotics.
  • the first wall material is protein (preferably WPI)
  • the second wall material is protein (preferably WPI)
  • the optional third wall material is Protein (preferably WPI) or oil;
  • the above-mentioned grease is grease with a melting point of 40-50°C;
  • MCT medium chain triglycerides
  • cocoa butter substitutes cocoa butter, palm oil, lecithin
  • palm oil monoglycerides hydrogenated fats (such as: hydrogenated palm oil, Hardened oil, hydrogenated soybean oil), etc.;
  • the coating is carried out with grease, which is selected from any grease involved in the present invention, and the percentage of the grease in the above-mentioned probiotic preparation method to the weight of the finished microcapsule is 0.25%-50%.
  • the present invention relates to a preparation method of probiotic microcapsules.
  • the probiotic microcapsules have one or more layers of embedding structure and include the following steps:
  • Dissolve the binder preferably starch
  • the binder preferably starch
  • warm water keep it at about 30-80°C for about 1 hour after being fully dissolved, and stir continuously, preferably at 30°C, 35°C, 40°C, 45°C, 50°C Keep warm at °C, 55°C, 60°C, 70°C, 75°C, 80°C or any range of temperature during the period;
  • the preferred concentration is about 5-25%, preferably 5%, 6%, 7%, 8%, 9%, 10%, 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19%, 20%, 21%, 22%, 23%, 24%, 25%, or any range of the period;
  • the probiotic bacteria powder into the fluidized bed, start the air intake to make the powder circulate, spray the binding solution into the fluidized bed through the spray gun atomization, and combine the droplets with the powder to make particles;
  • the probiotic powder is about 50 to about 500 parts by weight, more preferably about 250 to about 400 parts by weight;
  • the inlet air temperature of the fluidized bed is preferably about 30 to 80°C;
  • the first wall material is preferably grease sprayed into the fluidized bed by spray gun atomization, so that the wall material evenly wraps the particles;
  • the fat is palm oil or MCT, which is about 200 to about 350 parts by weight;
  • the second wall material is whey protein, preferably 150 to 950 parts by weight; more preferably 300 to 750 parts by weight;
  • Pre-denaturing the whey protein mixing the whey protein with water, fully dissolving, and performing alternate cold and heat treatments to form a stable gel;
  • the whey protein is mixed with water, and stirred at a low temperature of about 2 to 8°C for about 4 to 16 hours, preferably at a rotation speed of 170 to 240 per minute;
  • the whey protein solution is further subjected to about 75 to about 96°C (preferably about 75°C, about 76°C, about 77°C, about 78°C, about 79°C, about 80°C, about 81°C, about 82°C, about 83°C, about 84°C, about 85°C, about 86°C, about 87°C, about 88°C, about 89°C, about 90°C, about 91°C, about 92°C, about 93°C, about 94°C, about 95°C , About 96°C, or any range therebetween), about 30 to about 180 minutes of heat treatment (preferably about 35, about 40, about 45, about 50, about 55, about 60, about 65, about 70, about 75, about 80, about 85, about 90, about 95, about 100, about 105, about 110, about 115, about 120, about 125, about 130, about 135, about 140, about 145, about 150, about 155, about 160, About
  • the cooling temperature is about -20 to about 4°C; about 4°C for about 12 to about 60 hours (preferably about 12, about 13, about 14, about 15, about 16, about 17, about 18, about 19 , About 20, about 21, about 22, about 23, about 24, about 25, about 26, about 27, about 28, about 29, about 30, about 31, about 32, about 33, about 34, about 35, about 36, about 37, about 38, about 39, about 40, about 41, about 42, about 43, about 44, about 45, about 46, about 47, about 48, about 49, about 50, about 51, about 52, about 53, about 54, about 55, about 56, about 57, about 58, about 59, about 60 hours, or any range therebetween) to obtain a whey protein gel solution;
  • the resulting whey protein gel solution is heated to about 25 to 75°C (preferably about 25°C, about 30°C, about 35°C, about 40°C, about 45°C, about 50°C, about 60°C, about 65°C, about 70°C, about 75°C, or any range therebetween), atomized and sprayed into the fluidized bed by a spray gun, so that the droplets uniformly wrap the particles obtained in step d;
  • Solidification take the solidification liquid and spray it into the fluidized bed through a spray gun to make the droplets evenly wrap the particles obtained in step e;
  • step f Drying: the microcapsules prepared in step f are dried in a fluidized bed for about 1-30 minutes, and the particles are taken out when the moisture content reaches ⁇ 8%;
  • Probiotic microcapsule soft particles and preparation method thereof are provided.
  • a probiotic microcapsule soft particle which comprises the probiotic microcapsule according to the above solution, which includes probiotic microcapsule coconut fiber fruit soft particles and probiotic microcapsule gel ball soft particles.
  • the probiotic microcapsules based on the total weight of the probiotic microcapsule soft particles, contain about 0.2 to 0.5% by weight.
  • the probiotic microcapsule soft particles also contain one or more of coconut water, coconut milk, coconut jam, sucrose, white sugar, fructose syrup, xylobacillus, acidity regulator, ethanol and water,
  • sucrose is about 5-10%
  • the content of white granulated sugar is about 3-5%
  • the content of fructose syrup is about 0-5%
  • the content of ammonium dihydrogen phosphate is about 0.3-0.8%
  • the content of Acetobacter xylinum It is about 0.1-0.5%
  • the content of acidity regulator is about 1-5%.
  • the probiotic microcapsule gel ball soft particles according to the above-mentioned solution also contain white granulated sugar, sodium alginate, xanthan gum, konjac gum, carrageenan, curing liquid (containing calcium lactate and calcium chloride), probiotics
  • white granulated sugar is about 10-15%
  • sodium alginate is about 0.5-1%
  • xanthan gum is about 0.1-0.3%
  • konjac gum is about 0.1-0.2%
  • the concentration of calcium lactate in the solidification liquid is about 1-3%.
  • the present invention also relates to a probiotic microcapsule coconut fiber soft granule, which comprises the above-mentioned probiotic microcapsule described herein, wherein, based on the probiotic microcapsule-containing coconut fiber soft granule
  • the total weight of the granules contains about 0.2-0.5% by weight of probiotic microcapsules, and also contains coconut water, coconut milk, coconut jam, sucrose, white sugar, fructose syrup, Acetobacter xylinum, acidity regulator, ethanol and One or more of water, preferably, wherein the content of sucrose is about 5-10%, the content of white sugar is about 3-5%, the content of fructose syrup is about 0-5%, and the content of ammonium dihydrogen phosphate is about 0.3 -0.8%, the content of Acetobacter xylinum is about 0.1-0.5%, and the content of acidity regulator is about 1-5%.
  • the present invention also relates to a probiotic microcapsule gel ball soft particle, which comprises the probiotic microcapsule described herein, wherein the probiotic microcapsule gel ball soft particle is based on the probiotic microcapsule containing probiotic microcapsule.
  • the total weight of the particles contains about 0.2 to 0.5% by weight of probiotic microcapsules.
  • they also contain white granulated sugar, sodium alginate, xanthan gum, konjac gum, carrageenan, and curing liquid (containing calcium lactate).
  • the content of white sugar is about 10-15%
  • sodium alginate is about 0.5-1%
  • xanthan gum is about 0.1 -0.3%
  • konjac gum is about 0.1-0.2%
  • the concentration of calcium lactate in the solidified liquid is about 1-3%.
  • the application also relates to a food or health product containing probiotic microcapsules, which comprises the above-mentioned probiotic microcapsules described herein.
  • the food or health care product is selected from one or more of dairy products, fermented flavored foods, beverages, chocolates, candies, baked foods or fruit and vegetable juice foods.
  • the probiotic microcapsules Preferably, in the food or health product containing probiotic microcapsules, based on the total weight of the food or health product containing probiotic microcapsules, the probiotic microcapsules contain 0.02 to 1% by weight, preferably 0.04 ⁇ 0.5%, more preferably 0.06 ⁇ 0.15%;
  • the probiotic microcapsule-containing food or health product further contains honey, and the honey has a carrier function of adding microcapsules.
  • the content is about 80% by weight. -99.9% honey.
  • This application also relates to a food or health product containing probiotic microcapsules, wherein the food or health product containing probiotic microcapsules is yogurt, preferably, the yogurt also includes raw milk and/or reconstituted milk, Stabilizer, acidity regulator, leavening agent. More preferably, the yogurt comprises: based on the total weight of the probiotic microcapsule-containing yogurt, about 89-94% of raw milk/compounded milk, about 5.5-10.9% of white sugar, and about 0.1-0.5% of stabilizer , Starter is about 30-100U/ton and probiotic microcapsules are about 0.02-0.5% (preferably 0.06-0.15%).
  • this application also relates to a food or health product containing probiotic microcapsules, wherein the food or health product containing probiotic microcapsules is cheese, preferably, the cheese also includes raw milk , Edible salt, starter or rennet; more preferably, the cheese contains about 0.8-1.8% of edible salt, about 0.001-0.005% of starter, about 0.001-0.005% of rennet, and probiotic microcapsules About 0.02-0.5% (preferably about 0.06-0.15%), the rest is raw milk.
  • the cheese also includes raw milk , Edible salt, starter or rennet; more preferably, the cheese contains about 0.8-1.8% of edible salt, about 0.001-0.005% of starter, about 0.001-0.005% of rennet, and probiotic microcapsules About 0.02-0.5% (preferably about 0.06-0.15%), the rest is raw milk.
  • this application also relates to a method for preparing food or health products containing probiotic microcapsules, which includes the following steps:
  • the probiotic microcapsules are added to food or health products.
  • the amount of the probiotic-containing microcapsules is about 0.02-1%, preferably about 0.04-0.5%, more preferably 0.06- 0.15%.
  • this application relates to a method for preparing a food or health product containing probiotic microcapsules
  • the food or health product containing probiotic microcapsules is yogurt
  • the yogurt is prepared according to a conventional method, wherein, Before the last pasteurization, the probiotic microcapsules are added to the prepared product, or after the last pasteurization, the probiotic microcapsules are sterilized and added to the prepared product .
  • the steps of aseptic treatment include:
  • the ratio of microcapsule to honey is about 1:1000 to 1:10, more preferably about 1:500 to 1:10, about 1:100 to 1:10 or about 1:50 ⁇ 1:10.
  • the above-mentioned mixed microcapsule particles are treated with ultraviolet sterilization or hydrogen peroxide treatment.
  • the ultraviolet treatment intensity is about 1000 to 20000 J/L, more preferably about 5000 to 20000 J/L, about 10000 to 20000 J/L, About 15000 ⁇ 20000J/L.
  • this application relates to a method for preparing a food or health product containing probiotic microcapsules, the food or health product containing probiotic microcapsules is yogurt, and the yogurt is prepared as follows:
  • b Mix the raw materials other than the fermentation strains, microcapsules, and honey into ingredients to prepare a mixture of fermented milk.
  • the temperature of the ingredients is preferably about 40-80°C, and then cooling is preferably below about 20°C;
  • step e and before step f transfer the product obtained in step e to the tank to be filled and put into probiotic microcapsule particles, and stir for 15 minutes;
  • step h and after step g add sterilized probiotic microcapsules; or,
  • step h and before step i the sterilized probiotic microcapsules are added.
  • this application relates to a method for preparing a food or health product containing probiotic microcapsules, the food or health product containing probiotic microcapsules is cheese, and the cheese is prepared according to a conventional method, including:
  • the raw milk is cleaned, standardized, and pasteurized
  • step b After the pasteurized raw milk in step b is cooled to about 32-43°C, the sterilized probiotic microcapsules are added; or
  • step d After step d and before step e, the sterilized probiotic microcapsules are added.
  • the present application relates to a method for preparing food or health products containing probiotic microcapsules.
  • the food or health products containing probiotic microcapsules are processed cheeses, and the processed cheeses are processed according to conventional methods. Preparation, including:
  • step g after pasteurization in step g and before step h, add sterilized probiotic microcapsules; or
  • step g and after step f add probiotic microcapsules.
  • this application relates to a method for preparing a food or health product containing probiotic microcapsules.
  • the food or health product containing probiotic microcapsules is a milk beverage prepared according to a conventional method.
  • the probiotic capsules are added before the final sterilization, or the sterilized probiotic microcapsules are added after the final sterilization.
  • this application relates to a method for preparing a food or health product containing probiotic microcapsules.
  • the food or health product containing probiotic microcapsules is a milk beverage prepared according to a conventional method.
  • the sterilized probiotic microcapsules are added after the final homogenization
  • this application relates to a method for preparing a food or health product containing probiotic microcapsules.
  • the food or health product containing probiotic microcapsules is a solid dairy product.
  • the products are prepared in the usual way, including:
  • the probiotic microcapsules are added before the step of the fluidized bed.
  • the present application relates to a method for preparing food or health products containing probiotic microcapsules.
  • the food or health products containing probiotic microcapsules are solid beverages.
  • the solid beverages are prepared in a conventional manner, including: :
  • the probiotic microcapsules are added after the fluidized bed step.
  • this application relates to a method for preparing a food or health product containing probiotic microcapsules.
  • the food or health product containing probiotic microcapsules is ice cream.
  • the ice cream is prepared in a conventional manner and includes:
  • the probiotic capsules are added after the aging step.
  • the curing agent solution is 6818ml with a concentration of 0.5mol/L.
  • the curing agent is a mixture of sodium acetate, glacial acetic acid and Tween-20. Sodium acetate is 137g, glacial acetic acid is 100ml, Tween-20 is 2.9g, and water is 6718g.
  • Granulation uniformly mix and granulate the pretreated WPI and the probiotic powder
  • Solidification the droplets or particles obtained from the above granulation are formed into wet granules in the solidification liquid, and the solidification time is at least 10 minutes;
  • the microcapsules obtained in this example are single-layer microcapsules, the amount of viable bacteria in the microcapsules reaches 1.3 ⁇ 10 10 cfu/g, the particle size is 300 um, and the particle size is uniform and shiny. After 30 days of storage at room temperature, the amount of viable bacteria in the microcapsules decreased to 9.2 ⁇ 10 9 cfu/g; after 60 days, the amount of viable bacteria in the microcapsules decreased to 7.7 ⁇ 10 9 cfu/g; after 120 days, the amount of viable bacteria in the microcapsules decreased It was 4.8 ⁇ 10 9 cfu/g; the bacterial residue on the outer surface of the capsule was 2.3 ⁇ 10 6 cfu/g.
  • the amount of viable bacteria contained was reduced to 8.8 ⁇ 10 9 cfu/g, and the weight of the microcapsule dry particles increased by 19% after absorbing water for 48 hours.
  • the curing agent solution is 6818ml with a concentration of 0.5mol/L.
  • the curing agent is a mixture of sodium acetate, glacial acetic acid and Tween-20. 137g of sodium acetate, 100ml of glacial acetic acid, 2.9g of Tween-20, and 6818g of water.
  • Granulation uniformly mix and granulate the pretreated WPI and the probiotic powder
  • Solidification the droplets or particles obtained from the above granulation are formed into wet granules in the solidification liquid, and the solidification time is at least 10 minutes;
  • the microcapsules obtained in this comparative example are single-layer microcapsules, the amount of viable bacteria in the microcapsules reaches 4.8 ⁇ 10 9 cfu/g, the particle size is 330um, the particle size is uneven, there is tailing, and the gloss is not good.
  • the amount of viable bacteria in the microcapsules decreased to 8.2 ⁇ 10 8 cfu/g, and after 60 days, the amount of viable bacteria in the microcapsules decreased to 6.1 ⁇ 10 7 cfu/g, and the amount of viable bacteria in the microcapsules decreased after 120 days. It was 3.8 ⁇ 10 6 cfu/g, and the residual bacteria on the outer surface of the capsule was 3.6 ⁇ 10 6 cfu/g.
  • the amount of viable bacteria contained was reduced to 4.1 ⁇ 10 7 cfu/g, and the weight of the microcapsule dry particles increased by 65% after absorbing water for 48 hours.
  • 6068g of water including 3641g for the first wall material and 2427g for the second wall material;
  • the curing agent solution is 6818ml with a concentration of 0.5mol/L.
  • the curing agent is a mixture of sodium acetate, glacial acetic acid and Tween-20. Sodium acetate 137g, glacial acetic acid 100ml, Tween-20 2.9g, water 6718g.
  • Granulation uniformly mix and granulate the pretreated WPI and the probiotic powder
  • Solidification the droplets or particles obtained from the above granulation are formed into wet granules in the solidification liquid, and the solidification time is at least 10 minutes;
  • Fluidized bed spray granulation method 300g WPI is pretreated in accordance with the above to obtain a whey protein solution or gel solution, heated to 50 °C, mixed with the particles in step g, and uniformly package the particles in step g
  • the inlet air temperature of the fluidized bed is 65°C, and the air volume is set according to the batch weight and fluidization state of the WPI.
  • the particles are dried in the fluidized bed after solidification.
  • the microcapsules obtained in this example are double-layer microcapsules, the amount of viable bacteria in the microcapsules reaches 1.3 ⁇ 10 10 cfu/g, the particle size is 330 um, and the particle size is uniform and shiny. After 30 days of storage at room temperature, the amount of viable bacteria in the microcapsules decreased to 9.8 ⁇ 10 9 cfu/g, after 60 days, the amount of viable bacteria in the microcapsules decreased to 8.8 ⁇ 10 9 cfu/g, and after 120 days, the amount of viable bacteria in the microcapsules decreased to 7.2 ⁇ 10 9 cfu/g, and the residual bacteria on the outer surface of the capsule was 2.2 ⁇ 10 4 cfu/g.
  • the amount of viable bacteria contained was reduced to 9.0 ⁇ 10 9 cfu/g, and the weight of the microcapsule dry particles increased by 9% after absorbing water for 48 hours.
  • 4450g of water including 2427g for the first wall material and 2023g for the third wall material;
  • the curing agent solution is 5000ml, the concentration is 0.5mol/L, and the curing agent is a mixture of sodium acetate, glacial acetic acid and Tween-20.
  • the curing agent is a mixture of sodium acetate, glacial acetic acid and Tween-20.
  • Granulation uniformly mix and granulate the pretreated WPI and the probiotic powder
  • Solidification the droplets or particles obtained from the above granulation are formed into wet granules in the solidification liquid, and the solidification time is at least 10 minutes;
  • Two-layer oil film spraying heat 200g of liquid MCT grease to 55°C, the fluidized bed inlet temperature is 40°C, the air volume is set according to the batch weight and fluidization state of the MCT solution, and the fluidized bed is dried to obtain double-layer oil particles;
  • Three-layer WPI spraying mix 250g WPI with 2023g water to make a whey protein solution (or a gel solution if necessary).
  • the solution is heated to 50°C, the fluidized bed inlet temperature is 40°C, and the air volume is based on WPI
  • the batch weight and fluidization state of the solution are set, and the particles are dried in the fluidized bed after solidification.
  • the microcapsules obtained in this example are three-layer microcapsules, the amount of viable bacteria in the microcapsules reaches 1.3 ⁇ 10 10 cfu/g, the particle size is 330 um, and the particle size is uniform and shiny. After 30 days of storage at room temperature, the amount of viable bacteria in the microcapsules decreased to 1.3 ⁇ 10 10 cfu/g, after 60 days, the amount of viable bacteria in the microcapsules decreased to 9.8 ⁇ 10 9 cfu/g, and after 120 days, the amount of viable bacteria in the microcapsules decreased to 8.8 ⁇ 10 9 cfu/g, and the bacterial residue on the outer surface of the capsule is 1.2 ⁇ 10 3 cfu/g.
  • the amount of viable bacteria contained was reduced to 1.0 ⁇ 10 10 cfu/g, and the weight of the microcapsule dry particles increased by 1% after absorbing water for 48 hours.
  • WPI 550g, concentration 11%
  • Bacillus coagulans powder 250g;
  • Curing agent solution 0.5mol/L, pH-4.6
  • Granulation Mix the probiotic powder, binder solution and MCT evenly to make the oil droplets evenly wrap the particles;
  • step e Add the whey protein solution to make the droplets evenly encapsulate the particles obtained in step e;
  • the microcapsules obtained in this example are double-layer microcapsules, the amount of viable bacteria in the microcapsules reaches 1.3 ⁇ 10 10 cfu/g, the particle size is 150-250 ⁇ m, and the particle size is uniform and shiny.
  • the amount of viable bacteria in the microcapsules decreased to 9.3 ⁇ 10 9 cfu/g; after 60 days, the amount of viable bacteria in the microcapsules decreased to 7.5 ⁇ 10 9 cfu/g; after 120 days, the amount of viable bacteria in the microcapsules decreased It was 4.8 ⁇ 10 9 cfu/g; the bacterial residue on the outer surface of the capsule was 2.3 ⁇ 10 6 cfu/g.
  • the amount of viable bacteria contained was reduced to 8.8 ⁇ 10 9 cfu/g, and the weight of the microcapsule dry particles increased by 15% after absorbing water for 48 hours.
  • WPI 550g, concentration 11%
  • Curing agent solution 0.5mol/L, pH-4.6
  • Granulation Mix the probiotic powder, binder solution and MCT evenly to make the oil droplets evenly wrap the particles;
  • step e Add the whey protein solution to make the droplets evenly encapsulate the particles obtained in step e;
  • the microcapsules obtained in this comparative example are double-layer microcapsules, the amount of viable bacteria in the microcapsules reaches 4.8 ⁇ 10 9 cfu/g, the particle size is 150-250 ⁇ m, the particle size is uneven, there is tailing, and the gloss is poor.
  • the amount of viable bacteria in the microcapsules decreased to 8.2 ⁇ 10 8 cfu/g, and after 60 days, the amount of viable bacteria in the microcapsules decreased to 6.1 ⁇ 10 7 cfu/g, and the amount of viable bacteria in the microcapsules decreased after 120 days. It was 3.8 ⁇ 10 6 cfu/g, and the residual bacteria on the outer surface of the capsule was 3.6 ⁇ 10 6 cfu/g.
  • the amount of viable bacteria contained was reduced to 4.1 ⁇ 10 7 cfu/g, and the weight of the microcapsule dry particles increased by 50% after absorbing water for 48 hours.
  • WPI 550g, concentration 11%
  • Curing agent solution 0.5mol/L, pH-4.6
  • Granulation Mix the probiotic powder, binder solution and MCT evenly to make the oil droplets evenly wrap the particles;
  • step e Add the whey protein solution to make the droplets evenly encapsulate the particles obtained in step e;
  • the microcapsules obtained in this comparative example are single-layer microcapsules, the amount of viable bacteria in the microcapsules reaches 5.4 ⁇ 10 9 cfu/g, the particle size is 150-250 ⁇ m, the particle size is uneven, and the tail is good.
  • the amount of viable bacteria in the microcapsules decreased to 5.2 ⁇ 10 8 cfu/g.
  • the amount of viable bacteria in the microcapsules decreased to 3.0 ⁇ 10 7 cfu/g.
  • 120 days the amount of viable bacteria in the microcapsules decreased. It is 2.2 ⁇ 10 6 cfu/g, and the residual bacteria on the outer surface of the capsule is 1.6 ⁇ 10 6 cfu/g.
  • the amount of viable bacteria contained was reduced to 3.1 ⁇ 10 7 cfu/g, and the weight of the microcapsule dry particles increased by 50% after absorbing water for 48 hours.
  • Curing agent solution 0.5mol/L, pH-4.6
  • Granulation Mix the probiotic powder, binder solution and MCT evenly to make the oil droplets evenly wrap the particles;
  • step e Add the whey protein solution to make the droplets evenly encapsulate the particles obtained in step e;
  • the microcapsules obtained in this example are three-layer microcapsules, the amount of viable bacteria in the microcapsules reaches 1.3 ⁇ 10 10 cfu/g, the particle size is 150-250 ⁇ m, and the particle size is uniform and shiny. After 30 days of storage at room temperature, the amount of viable bacteria in the microcapsules decreased to 9.9 ⁇ 10 9 cfu/g, after 60 days, the amount of viable bacteria in the microcapsules decreased to 8.9 ⁇ 10 9 cfu/g, and after 120 days, the amount of viable bacteria in the microcapsules decreased to 7.2 ⁇ 10 9 cfu/g, and the residual bacteria on the outer surface of the capsule is 0 cfu/g.
  • the amount of viable bacteria contained was reduced to 9.0 ⁇ 10 9 cfu/g, and the weight of the microcapsule dry particles increased by 5% after absorbing water for 48 hours.
  • Curing agent solution 0.5mol/L, pH-4.6
  • Granulation Mix the probiotic powder, binder solution and MCT evenly to make the oil droplets evenly wrap the particles;
  • step e Add the whey protein solution to make the droplets evenly encapsulate the particles obtained in step e;
  • the microcapsules obtained in this example are four-layer microcapsules, the amount of viable bacteria in the microcapsules reaches 1.3 ⁇ 10 10 cfu/g, the particle size is 150-400 ⁇ m, and the particle size is uniform and shiny. After 30 days of storage at room temperature, the amount of viable bacteria in the microcapsules remained at 1.3 ⁇ 10 10 cfu/g. After 60 days, the amount of viable bacteria in the microcapsules decreased to 9.8 ⁇ 10 9 cfu/g. After 120 days, the amount of viable bacteria in the microcapsules decreased to 9.0 ⁇ 10 9 cfu/g, and the residual bacteria on the outer surface of the capsule is 0 cfu/g.
  • the amount of viable bacteria contained was reduced to 1.0 ⁇ 10 10 cfu/g, and the weight of the microcapsule dry particles increased by 1% after absorbing water for 48 hours.
  • WPI 750g, concentration 11%
  • Curing agent solution 0.5mol/L, pH-4.6
  • Granulation Mix the probiotic powder, binder solution and WPI uniformly to make WPI evenly coat the particles;
  • the microcapsules obtained in this embodiment are double-layer microcapsules, the amount of viable bacteria in the microcapsules reaches 1.0 ⁇ 10 10 cfu/g, the particle size is 150-250 ⁇ m, and the particle size is uniform and shiny. After 30 days of storage at room temperature, the amount of viable bacteria in the microcapsules decreased to 8.9 ⁇ 10 9 cfu/g, and after 60 days, the amount of viable bacteria in the microcapsules decreased to 7.0 ⁇ 10 9 cfu/g, and the amount of viable bacteria in the microcapsules decreased after 120 days. It was 4.5 ⁇ 10 9 cfu/g, and the residual bacteria on the outer surface of the capsule was 3.8 ⁇ 10 6 cfu/g.
  • the amount of viable bacteria contained was reduced to 8.2 ⁇ 10 9 cfu/g, and the weight of the microcapsule dry particles increased by 10% after absorbing water for 48 hours.
  • WPI 750g, concentration 11%
  • Curing agent solution 0.5mol/L, pH-4.6
  • Granulation Mix the probiotic powder, binder solution and WPI uniformly to make WPI evenly coat the particles;
  • the double-layer microcapsule particles of this comparative example were not shaped, and the solidified liquid was mostly flocculent.
  • WPI 550g, concentration 11%
  • Curing agent solution 0.5mol/L, pH-4.6
  • Granulation Mix the probiotic powder, binder solution and MCT evenly to make the oil droplets evenly wrap the particles;
  • step e Add the whey protein solution to make the droplets evenly encapsulate the particles obtained in step e;
  • the microcapsules obtained in this example are double-layer microcapsules, the amount of viable bacteria in the microcapsules reaches 1.2 ⁇ 10 10 cfu/g, the particle size is 150-250 ⁇ m, the particle size is uneven, and the tail is good.
  • the amount of viable bacteria in the microcapsules decreased to 9.0 ⁇ 10 9 cfu/g, and after 60 days, the amount of viable bacteria in the microcapsules decreased to 7.4 ⁇ 10 9 cfu/g, and the amount of viable bacteria in the microcapsules decreased after 120 days. It was 4.6 ⁇ 10 9 cfu/g, and the residual bacteria on the outer surface of the capsule was 4.2 ⁇ 10 6 cfu/g.
  • the amount of viable bacteria contained was reduced to 8.0 ⁇ 10 9 cfu/g, and the weight of the microcapsule dry particles increased by 15% after absorbing water for 48 hours.
  • test results of the microcapsule particles of the present embodiment A1-A8 and the comparative example A1-A4 are as follows:
  • the raw materials other than the fermentation bacteria, microcapsules, and honey are mixed into ingredients to prepare a mixture of fermented milk.
  • the temperature of the ingredients is preferably about 40-80°C, and then cooling is preferably below about 20°C;
  • homogenize homogeneous pressure is preferably about 150-200bar
  • high-temperature and long-term sterilization preferably at a sterilization temperature of 95°C, and a sterilization time of 300 seconds
  • step e the product obtained in step e is transferred to the tank to be filled and directly put into probiotic microcapsule particles, and stirred for 15 minutes.
  • a Mix the raw materials other than the fermentation strains, microcapsules, and honey into ingredients to prepare a mixture of fermented milk.
  • the temperature of the ingredients is preferably about 40 to 80°C, and then cooling is preferably below about 20°C;
  • homogenize homogeneous pressure is preferably about 150-200bar
  • high-temperature and long-term sterilization preferably at a sterilization temperature of 95°C, and a sterilization time of 300 seconds
  • step g and after step f the sterilized probiotic microcapsules are added.
  • honey is used as a carrier to sterilize probiotic microcapsules
  • sterile online addition is used. Examples and comparisons are as follows:
  • Bacillus coagulans is 90 billion CFU/g.
  • Gliadin is zein, which is easily soluble in 75-92% ethanol.
  • the extrusion spheronization granulator consists of a wet mixing granulator and a low-shear vertical extrusion spheronization machine.
  • the wet mixing granulator is the mixing of dry powder and the mixing of dry powder and water to make raw materials into wet materials.
  • Low-shear vertical extrusion spheronization machine is to extrude, cut, and shape the wet material to obtain a regular round pellet core.
  • Pill core 200g of Bacillus coagulans, 800g of microcrystalline cellulose, 1000g of water.
  • Water blocking coating layer solution 1 Gliadin 288g, oleic acid 112g, 75% ethanol 1200g.
  • Water blocking coating layer solution 2 gliadin 54.4g, glycerin 12.8g, 75% ethanol 252.8g.
  • Hydrophilic coating layer solution 110g pectin, 2090g water.
  • Stop the extrusion motor adjust the spheronization speed to 400rpm, start the spheronization motor for spheronization for 100s; the extruded strip soft material is poured into the spheronization cylinder at one time.
  • the pellets are dried in a fluidized bed at a drying temperature of 45-50°C. Get a pill core.
  • the fluidized bed spray granulation method is adopted: the fluidized bed inlet air temperature is set to 55°C, the air volume is 32, and the atomization pressure is 2.5.
  • microcapsules obtained in this example are three-layered microcapsules, the amount of viable bacteria in the microcapsule reaches 1.3 ⁇ 10 10 cfu/g, the amount of viable bacteria outside the microcapsule reaches 7.8 ⁇ 10 3 cfu/g, the particle size is 180-270 ⁇ m, and the particle size Uniform, beige and shiny.
  • the amount of viable bacteria in the microcapsules decreased to 1.2 ⁇ 10 10 cfu/g, after 60 days, the amount of viable bacteria in the microcapsules decreased to 1.15 ⁇ 10 10 cfu/g, and after 120 days, the amount of viable bacteria in the microcapsules decreased to 1.05 ⁇ 10 10 cfu/g, and the bacterial residue on the outer surface of the capsule was 4.5 ⁇ 10 3 cfu/g.
  • the amount of viable bacteria contained in the microcapsules was reduced to 1.1 ⁇ 10 10 cfu/g after 2 hours of incubation in the simulated gastric juice.
  • Pill core 200g of Bacillus coagulans, 800g of microcrystalline cellulose, 1000g of water.
  • Water blocking coating layer solution 1 Gliadin 270g, oleic acid 105g, 75% ethanol 1125g.
  • Water blocking coating layer solution 2 gliadin 54.4g, glycerin 12.8g, 75% ethanol 252.8g.
  • Hydrophilic coating layer solution 110g pectin, 2090g water.
  • Stop the extrusion motor adjust the spheronization speed to 400rpm, start the spheronization motor for spheronization for 100s; the extruded strip soft material is poured into the spheronization cylinder at one time.
  • the pellets are dried in a fluidized bed at a drying temperature of 45-50°C. Get a pill core.
  • the fluidized bed spray granulation method is adopted: the fluidized bed inlet air temperature is set to 55°C, the air volume is 32, and the atomization pressure is 2.5.
  • microcapsules obtained in this example are three-layered microcapsules, the amount of viable bacteria in the microcapsule reaches 1.35 ⁇ 10 10 cfu/g, the amount of viable bacteria outside the microcapsule reaches 8.2 ⁇ 10 3 cfu/g, the particle size is 180-270 ⁇ m, and the particle size Uniform, beige and shiny.
  • the amount of viable bacteria in the microcapsules decreased to 1.28 ⁇ 10 10 cfu/g, after 60 days, the amount of viable bacteria in the microcapsules decreased to 1.14 ⁇ 10 10 cfu/g, and after 120 days, the amount of viable bacteria in the microcapsules decreased to 1.0 ⁇ 10 10 cfu/g, and the residual bacteria on the outer surface of the capsule was 4.0 ⁇ 10 3 cfu/g.
  • the amount of viable bacteria contained in the microcapsules was reduced to 1.05 ⁇ 10 10 cfu/g after incubating for 2 hours in the simulated gastric juice.
  • Pill core 200g of Bacillus coagulans, 800g of microcrystalline cellulose, 1000g of water.
  • Water blocking coating layer solution 1 Gliadin 292.5g, oleic acid 157.5g, 75% ethanol 1200g.
  • Water blocking coating layer solution 2 gliadin 54.4g, glycerin 12.8g, 75% ethanol 252.8g.
  • Hydrophilic coating layer solution 110g pectin, 2090g water.
  • the pellets are dried in a fluidized bed at a drying temperature of 45-50°C. Get a pill core.
  • the fluidized bed spray granulation method is adopted: the fluidized bed inlet air temperature is set to 55°C, the air volume is 32, and the atomization pressure is 2.5.
  • microcapsules obtained in this example are three-layer microcapsules, the amount of viable bacteria in the microcapsule is 1.2 ⁇ 10 10 cfu/g, the amount of viable bacteria outside the microcapsule is 7.5 ⁇ 10 3 cfu/g, the particle size is 180-270 ⁇ m, and the particle size Uniform, beige and shiny.
  • the amount of viable bacteria in the microcapsules decreased to 1.1 ⁇ 10 10 cfu/g, after 60 days, the amount of viable bacteria in the microcapsules decreased to 9.8 ⁇ 10 9 cfu/g, and after 120 days, the amount of viable bacteria in the microcapsules decreased to 1.0 ⁇ 10 10 cfu/g, and the residual bacteria on the outer surface of the capsule is 7 ⁇ 10 3 cfu/g.
  • the amount of viable bacteria contained in the microcapsules was reduced to 1.15 ⁇ 10 10 cfu/g after incubating for 2 hours in the simulated gastric juice.
  • Pill core 180g of Bacillus coagulans, 820g of microcrystalline cellulose, 1000g of water.
  • Water blocking coating layer solution 1 Gliadin 288g, oleic acid 112g, 75% ethanol 1200g.
  • Water blocking coating layer solution 2 gliadin 54.4g, glycerin 12.8g, 75% ethanol 252.8g.
  • Hydrophilic coating layer solution 110g pectin, 2090g water.
  • the pellets are dried in a fluidized bed at a drying temperature of 45-50°C. Get a pill core.
  • the fluidized bed spray granulation method is adopted: the fluidized bed inlet air temperature is set to 55°C, the air volume is 32, and the atomization pressure is 2.5.
  • microcapsules obtained in this example are three-layered microcapsules, the amount of viable bacteria in the microcapsule is 1.25 ⁇ 10 10 cfu/g, the amount of viable bacteria outside the microcapsule is 7.5 ⁇ 10 3 cfu/g, the particle size is 180-270 ⁇ m, and the particle size Uniform, beige and shiny.
  • the amount of viable bacteria in the microcapsules decreased to 1.13 ⁇ 10 10 cfu/g, after 60 days, the amount of viable bacteria in the microcapsules decreased to 1.0 ⁇ 10 10 cfu/g, and after 120 days, the amount of viable bacteria in the microcapsules decreased to 9.9 ⁇ 109 cfu/g, and the bacterial residue on the outer surface of the capsule is 4.5 ⁇ 10 3 cfu/g.
  • the amount of viable bacteria contained in the microcapsules was reduced to 1.0 ⁇ 10 10 cfu/g after incubating for 2 hours in the simulated gastric juice.
  • Pill core 200g of Bacillus coagulans, 800g of microcrystalline cellulose, 1000g of water.
  • Water blocking coating layer solution 1 Gliadin 288g, oleic acid 112g, 75% ethanol 1200g.
  • Water blocking coating layer solution 2 gliadin 54.4g, glycerin 12.8g, 75% ethanol 252.8g.
  • Hydrophilic coating layer solution 110g pectin, 2090g water.
  • Stop the extrusion motor adjust the spheronization speed to 400rpm, start the spheronization motor for spheronization for 100s; the extruded strip soft material is poured into the spheronization cylinder at one time.
  • the pellets are dried in a fluidized bed at a drying temperature of 45-50°C. Get a pill core.
  • the fluidized bed spray granulation method is adopted: the fluidized bed inlet air temperature is set to 55°C, the air volume is 32, and the atomization pressure is 2.5.
  • microcapsules obtained in this example are three-layered microcapsules, the amount of viable bacteria in the microcapsule reaches 1.3 ⁇ 10 10 cfu/g, the amount of viable bacteria outside the microcapsule reaches 7.8 ⁇ 10 3 cfu/g, the particle size is 180-270 ⁇ m, and the particle size Uniform, khaki and shiny.
  • the amount of viable bacteria in the microcapsules decreased to 1.2 ⁇ 10 10 cfu/g, after 60 days, the amount of viable bacteria in the microcapsules decreased to 1.15 ⁇ 10 10 cfu/g, and after 120 days, the amount of viable bacteria in the microcapsules decreased to 1.05 ⁇ 10 10 cfu/g, and the bacterial residue on the outer surface of the capsule was 4.5 ⁇ 10 3 cfu/g.
  • the amount of viable bacteria contained in the microcapsules was reduced to 1.1 ⁇ 10 10 cfu/g after 2 hours of incubation in the simulated gastric juice.
  • Pill core 200g of Bacillus coagulans, 800g of microcrystalline cellulose, 1000g of water.
  • Oil layer MCT 200g.
  • Water blocking coating layer solution 1 Gliadin 288g, oleic acid 112g, 75% ethanol 1200g.
  • Water blocking coating layer solution 2 gliadin 54.4g, glycerin 12.8g, 75% ethanol 252.8g.
  • Hydrophilic coating layer solution 110g pectin, 2090g water.
  • Stop the extrusion motor adjust the spheronization speed to 400rpm, start the spheronization motor for spheronization for 100s; the extruded strip soft material is poured into the spheronization cylinder at one time.
  • the pellets are dried in a fluidized bed at a drying temperature of 45-50°C. Get a pill core.
  • the fluidized bed spray granulation method is adopted: the fluidized bed inlet air temperature is set to 55°C, the air volume is 32, and the atomization pressure is 2.5.
  • the microcapsules obtained in this example are four-layered microcapsules.
  • the amount of viable bacteria in the microcapsule is 1.23 ⁇ 10 10 cfu/g, and the amount of viable bacteria outside the microcapsule is 7. ⁇ 10 3 cfu/g, and the particle size is 180-270 ⁇ m. Uniform size, beige and shiny.
  • the amount of viable bacteria in the microcapsules decreased to 1.09 ⁇ 10 10 cfu/g, after 60 days, the amount of viable bacteria in the microcapsules decreased to 1.02 ⁇ 10 10 cfu/g, and after 120 days, the amount of viable bacteria in the microcapsules decreased to 9.8 ⁇ 10 9 cfu/g, and the residual bacteria on the outer surface of the capsule was 3.9 ⁇ 10 3 cfu/g.
  • the amount of viable bacteria contained in the microcapsules was reduced to 1.1 ⁇ 10 10 cfu/g after 2 hours of incubation in the simulated gastric juice.
  • Pill core 200g of Bacillus coagulans, 800g of microcrystalline cellulose, 1000g of water.
  • Water blocking coating layer solution 1 Gliadin 260g, oleic acid 140g, 75% ethanol 1200g.
  • Water blocking coating layer solution 2 gliadin 54.4g, glycerin 12.8g, 75% ethanol 252.8g.
  • Hydrophilic coating layer solution 110g pectin, 2090g water.
  • Stop the extrusion motor adjust the spheronization speed to 400rpm, start the spheronization motor for spheronization for 100s; the extruded strip soft material is poured into the spheronization cylinder at one time.
  • the pellets are dried in a fluidized bed at a drying temperature of 45-50°C. Get a pill core.
  • the fluidized bed spray granulation method is adopted: the fluidized bed inlet air temperature is set to 55°C, the air volume is 32, and the atomization pressure is 2.5.
  • microcapsules obtained in this example are three-layered microcapsules, the amount of viable bacteria in the microcapsule reaches 1.22 ⁇ 10 10 cfu/g, the amount of viable bacteria outside the microcapsule reaches 7.3 ⁇ 10 3 cfu/g, the particle size is 180-270 ⁇ m, and the particle size Uniform, beige and shiny.
  • the amount of viable bacteria in the microcapsules decreased to 1.18 ⁇ 10 10 cfu/g, after 60 days, the amount of viable bacteria in the microcapsules decreased to 1.15 ⁇ 10 10 cfu/g, and after 120 days, the amount of viable bacteria in the microcapsules decreased to 1.05 ⁇ 10 10 cfu/g, and the residual bacteria on the outer surface of the capsule was 3.9 ⁇ 10 3 cfu/g.
  • the amount of viable bacteria contained in the microcapsules was reduced to 1.1 ⁇ 10 10 cfu/g after 2 hours of incubation in the simulated gastric juice.
  • Pill core 200g of Bacillus coagulans, 800g of microcrystalline cellulose, 1000g of water.
  • Water blocking coating layer solution 1 Gliadin 288g, oleic acid 112g, 75% ethanol 1200g.
  • Water blocking coating layer solution 2 gliadin 54.4g, glycerin 12.8g, 75% ethanol 252.8g.
  • Hydrophilic coating layer solution 110g pectin, 2090g water.
  • Stop the extrusion motor adjust the spheronization speed to 400rpm, start the spheronization motor for spheronization for 100s; the extruded strip soft material is poured into the spheronization cylinder at one time.
  • the pellets are dried in a fluidized bed at a drying temperature of 45-50°C. Get a pill core.
  • Adopting fluidized bed spray granulation method fluidized bed inlet air temperature is set to 59°C, air volume is 32, and atomization pressure is 2.5.
  • microcapsules obtained in this example are three-layered microcapsules, the amount of viable bacteria in the microcapsule reaches 1.27 ⁇ 10 10 cfu/g, the amount of viable bacteria outside the microcapsule reaches 7.8 ⁇ 10 3 cfu/g, the particle size is 180-270 ⁇ m, and the particle size Uniform, beige and shiny.
  • the amount of viable bacteria in the microcapsules decreased to 1.2 ⁇ 10 10 cfu/g, after 60 days, the amount of viable bacteria in the microcapsules decreased to 1.15 ⁇ 10 10 cfu/g, and after 120 days, the amount of viable bacteria in the microcapsules decreased to 1.05 ⁇ 10 10 cfu/g, and the bacterial residue on the outer surface of the capsule was 4.5 ⁇ 10 3 cfu/g.
  • the amount of viable bacteria contained in the microcapsules was reduced to 9.7 ⁇ 10 9 cfu/g after 2 hours of incubation in the simulated gastric juice.
  • Pill core 400g of Bacillus coagulans, 600g of microcrystalline cellulose, 1000g of water.
  • Water blocking coating layer solution 1 Gliadin 288g, oleic acid 112g, 75% ethanol 1200g.
  • Water blocking coating layer solution 2 gliadin 54.4g, glycerin 12.8g, 75% ethanol 252.8g.
  • Hydrophilic coating layer solution 110g pectin, 2090g water.
  • Stop the extrusion motor adjust the spheronization speed to 400rpm, start the spheronization motor for spheronization for 100s; the extruded strip soft material is poured into the spheronization cylinder at one time.
  • the pellets are dried in a fluidized bed at a drying temperature of 45-50°C. Get a pill core.
  • the fluidized bed spray granulation method is adopted: the fluidized bed inlet air temperature is set to 55°C, the air volume is 32, and the atomization pressure is 2.5.
  • the primary pellet core obtained in this example was not formed.
  • Pill core 200g of Bacillus coagulans, 800g of microcrystalline cellulose, 1000g of water.
  • Water blocking coating layer solution 1 Gliadin 48.8g, oleic acid 31.2g, 75% ethanol 1200g.
  • Water blocking coating layer solution 2 Gliadin 127.68g, glycerin 40.32g, 75% ethanol 632g.
  • Hydrophilic coating layer solution 110g pectin, 2090g water.
  • Stop the extrusion motor adjust the spheronization speed to 400rpm, start the spheronization motor for spheronization for 100s; the extruded strip soft material is poured into the spheronization cylinder at one time.
  • the pellets are dried in a fluidized bed at a drying temperature of 45-50°C. Get a pill core.
  • the fluidized bed spray granulation method is adopted: the fluidized bed inlet air temperature is set to 55°C, the air volume is 32, and the atomization pressure is 2.5.
  • the amount of viable bacteria in the microcapsules decreased to 4.8 ⁇ 10 8 cfu/g, after 60 days, the amount of viable bacteria in the microcapsules decreased to 8.0 ⁇ 10 7 cfu/g, and after 120 days, the amount of viable bacteria in the microcapsules decreased to 2.2 ⁇ 10 7 cfu/g, and the bacterial residue on the outer surface of the capsule was 9.4 ⁇ 10 5 cfu/g.
  • the amount of viable bacteria contained in the microcapsules was reduced to 3.0 ⁇ 10 8 cfu/g after being incubated in simulated gastric juice for 2 hours.
  • Pill core 200g of Bacillus coagulans, 800g of microcrystalline cellulose, 1000g of water.
  • Water blocking coating layer solution 1 Gliadin 48.8g, oleic acid 31.2g, 75% ethanol 1200g.
  • Water blocking coating layer solution 2 Gliadin 127.68g, glycerin 40.32g, 75% ethanol 632g.
  • Hydrophilic coating layer solution 110g pectin, 2090g water.
  • Stop the extrusion motor adjust the spheronization speed to 400rpm, start the spheronization motor for spheronization for 100s; the extruded strip soft material is poured into the spheronization cylinder at one time.
  • the pellets are dried in a fluidized bed at a drying temperature of 45-50°C. Get a pill core.
  • the fluidized bed spray granulation method is adopted: the fluidized bed inlet air temperature is set to 70°C, the air volume is 32, and the atomization pressure is 2.5.
  • the microcapsules obtained in this example are three-layer microcapsules.
  • the amount of viable bacteria in the microcapsules reached 2.3 ⁇ 10 8 cfu/g, and the amount of viable bacteria outside the microcapsules reached 2.8 ⁇ 10 2 cfu/g, with a particle size of 180-270 ⁇ m, uniform particle size, beige and shiny.
  • the amount of viable bacteria in the microcapsules decreased to 1.3 ⁇ 10 8 cfu/g, after 60 days, the amount of viable bacteria in the microcapsules decreased to 9.8 ⁇ 10 7 cfu/g, and after 120 days, the amount of viable bacteria in the microcapsules decreased to 5.8 ⁇ 10 7 cfu/g, and the residual bacteria on the outer surface of the capsule is 1.2 ⁇ 10 3 cfu/g.
  • the amount of viable bacteria contained in the microcapsules was reduced to 1.0 ⁇ 10 8 cfu/g after incubating for 2 hours in the simulated gastric juice.
  • microcapsules whey protein peptide microcapsules

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Cell Biology (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Mycology (AREA)
  • Biomedical Technology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Hematology (AREA)
  • Virology (AREA)
  • Nutrition Science (AREA)
  • Alternative & Traditional Medicine (AREA)
  • Botany (AREA)
  • Medical Informatics (AREA)
  • Microbiology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Medicinal Preparation (AREA)
  • General Preparation And Processing Of Foods (AREA)

Abstract

一种微胶囊及其制备方法,特别是一种包含活性物质的多层微胶囊及其制备方法,所述微胶囊具有一层或多层包埋结构。一种益生菌微胶囊及其制备方法,所述益生菌微胶囊具有一层或多层包埋结构。一种含益生菌微胶囊的食品或保健品(包括含益生菌微胶囊的乳制品、发酵风味食品、饮料、巧克力、糖果、烘焙食品、果蔬汁食品等)及其制备方法。一种益生菌微胶囊软颗粒及其制备方法,所述益生菌微胶囊软颗粒包括益生菌微胶囊椰纤果软颗粒和益生菌微胶囊凝胶球软颗粒。

Description

微胶囊及其制备方法和应用 技术领域
本申请属于食品生物技术领域。更具体地,本申请涉及一种微胶囊及其制备方法,特别涉及一种包含活性物质的多层微胶囊及其制备方法。本申请还涉及一种益生菌微胶囊及其制备方法,所述益生菌微胶囊具有一层或多层包埋结构。并且,本申请涉及一种用于益生菌微胶囊的复合壁材、益生菌微胶囊及其制备方法。本申请还涉及一种含益生菌微胶囊的食品或保健品,包括含益生菌微胶囊的乳制品、发酵风味食品、饮料、巧克力、糖果、烘焙食品、果蔬汁食品等,还涉及所述含益生菌微胶囊的食品或保健品的制备方法。本申请还涉及一种益生菌微胶囊软颗粒及其制备方法,所述益生菌微胶囊软颗粒包括益生菌微胶囊椰纤果软颗粒和益生菌微胶囊凝胶球软颗粒。
背景技术
除了可以给人们提供能量、满足人们的嗜好以及提供人体的各种成分之外,很多食品成分还具有生理活性,可以调节人体的功能,例如包括增强免疫力、预防疾病等功能特性。许多国家的食品科学家和食品企业越来越重视这种功能性食品的研究和开发。
功能性食品是对于提高身体素质和慢性病营养干预非常重要,其涵盖营养食品、特殊医学用途配方食品、特殊膳食食品以及保健食品和功能性普通食品等,是健康产业中最具市场需求和发展潜力的黄金板块。大健康背景下,功能性食品产业重构融合将为广大消费者提供完善的全流程健康解决方案。
功能性食品中包含的功能性成分包括:功能性多糖(包括壳聚糖、茶多糖、膳食纤维等);功能性脂类(包括如DHA等多不饱和脂肪酸等);功能性蛋白/肽/氨基酸(如牛磺酸、乳铁蛋白、免疫球蛋白等);微生态调节剂(包括益生菌、益生元、合生素);以及维生素及矿物质等。
在功能性食品的制备工艺中,微胶囊技术作为一种有效并且有前景的方法,通过在被包埋的活性物质周围形成一层或多层类似胶囊的保护膜,能显著提高活性物质在不利环境中的存活率,并且,能部分掩盖被包埋物质的不良风味。其中,制备工艺中包被材料、包埋方式、造粒方式及干燥方式等对 微胶囊作用的发挥至关重要。
现有的微胶囊包被材料多为明胶、果胶、海藻酸钠等食用胶材料,经常大量食用,对婴幼儿、老年人等特殊人群有一定副作用。单层微胶囊是微胶囊最常用的形式,然而,无论颗粒表面菌含量还是阻水阻气性能,单层的微胶囊都比双层或多层微胶囊弱,从而使其稳定性相对较低。
针对现有技术存在的不足,本申请的目的包括提供一种安全无毒无副作用、粒径小、富含活性物质的微胶囊,并且,其在常温条件下稳定性较好,具有缓释作用;而且,可以添加到水分活度高的产品中。
其中,益生菌作为一类对宿主健康有一定促进作用的微生物活体,在治疗保健等方面具有多重生理功能。但是普通益生菌如双岐杆菌等自身比较脆弱且易受周围环境因素的影响,芽孢类益生菌直接添加到产品中又容易对产品的状态、质量、货架期产生影响,因此目前的益生菌产品大多数需要低温冷藏保存,这样才能最大限度的保证其中活性益生菌的数量,且随时间增大菌落数量减少。在食品乃至乳制品领域中益生菌的应用中,在乳制品领域添加益生菌的产品,例如,常温酸奶中由于经过巴氏杀菌,产品中的各类益生菌已经被杀灭,已经不具备乳酸菌和益生菌的益生功能;另外在低温酸奶产品中,由于乳酸菌和其他益生菌的抗逆性差,受到胃酸和酶作用影响,导致最终进入肠道内的益生菌数量急剧减少而不能有效发挥其益生作用。
因此,如何有效提高益生菌活菌数量已成为当前亟待解决的课题。基于以上的问题,本申请采用微胶囊技术对益生菌进行包埋,通过在益生菌活菌体周围形成一层、双层或多层类似胶囊的保护膜,能显著提高益生菌在不利环境中的存活率,其中,壁材的选择、包埋方式、造粒方式及干燥方式对微胶囊保护作用的发挥至关重要。
另外,将益生菌微胶囊添加到食品或保健品中,可以保护益生菌的活性,有效阻止环境对益生菌的存活影响,同时还可以极大降低胃酸和酶作用影响,使益生菌到达人体肠道时保持相对较高的数量和活性。
发明内容
为了解决现有技术中存在的所述缺陷,本申请涉及一种的微胶囊及其制备方法,特别涉及一种包含被包埋活性物质的多层微胶囊及其制备方法。
一种微胶囊,所述微胶囊具有一层或多层包埋结构,其包括:丸芯和任选的至少一层包覆所述丸芯的外壳;其中,所述丸芯包括被包埋物质和微胶囊芯材,以及所述至少一层包覆所述丸芯的外壳包括一层、两层或更多层壁材。
所述微胶囊的丸芯的外径为约50-500μm(优选约50~约300μm),单层或多层包覆的微胶囊的外径为约200~约1000μm(优选约100~约500μm)。
其中,被包埋物质包括具有功能性的活性物质,所述活性物质选自功能性多糖、功能性脂类、功能性蛋白/肽/氨基酸、微生态调节剂、维生素和矿物质中的一种或多种。
其中,所述功能性多糖选自壳聚糖、茶多糖、膳食纤维、葡聚糖中的一种或多种;优选地,所述功能性脂类选自卵磷脂、EPA和DHA中的一种或多种;优选地,所述功能性蛋白/肽/氨基酸选自牛磺酸、乳铁蛋白、免疫球蛋白、乳清蛋白肽中的一种或多种;优选地,所述微生态调节剂选自益生菌、益生元、合生素中的一种或多种。
上述微胶囊的制备方法,包括以下步骤:
(1)一次丸芯制备:将被包埋物质和微胶囊芯材均匀混合并任选经固化、过滤收集湿粒,然后进行干燥得到一次丸芯干粒;和任选的
(2)多层微胶囊制备:将上述单层微胶囊干粒作为丸芯颗粒,在丸芯颗粒外均匀涂布一层壁材,并任选喷涂固化液使胶囊壁固化,将所制微胶囊干燥,收集双层微胶囊干粒或者将其继续再次或多次包衣。
其中,所述步骤(1)是通过优选挤出滚圆制粒法、离心制粒法、锐角挤压造粒法、或者流化床喷雾造粒法(优选挤出滚圆制粒法或者离心制粒法)来制备丸芯,将得到的丸芯干燥并收集。
所述步骤(2)是优选采用流化床喷雾的方式来涂布壁材。
例如,具体的实施方式包括通过挤出滚圆制芯(离心造粒制芯)与流化喷雾包衣相结合的方法来制备微胶囊颗粒;这样,既可以制出圆整度好的球形颗粒,也可以使得颗粒外层达到阻水阻味的效果而保护被包埋的活性物质,并且,将这样制得的颗粒后续添加到水性产品中而不受影响。挤出滚圆制粒法或离心造粒法,用于制出圆润球形的一次丸芯,后续将阻水包衣层材料和亲水包衣层材料均匀流化到球形丸芯表面。后续流化阻水包衣层,使得微胶 囊颗粒遇水不崩解,且保护内部被包埋物质不易与外界(如水或其他溶剂)接触,从而延长微胶囊颗粒在水性产品中的货架期。
本申请的目的之一包括提供一种可常温条件下长期保存的固态干粒微胶囊,采用一层、双层或多层壁材将益生菌包埋制成50-500μm的固体颗粒,应用及保存条件受环境的影响较小,可应用到药品、保健品及食品领域。本申请所得的微胶囊尤其是双层和多层包衣的微胶囊,其微胶囊内的活菌量显著升高,颗粒大小均匀、有光泽。常温条件下能够长期储存,例如存放30天后、60天或120天后微胶囊内活菌量下降较小,仍然保持了较高的活菌量。而且,上述微胶囊能够耐酸,使得最终进入肠道内的益生菌数量增多。此外,所述微胶囊还具有良好的疏水性,颗粒表面菌残留更低,从而减小了益生菌泄漏的发生几率。
本申请的另一目的是提供一种益生菌微胶囊的制备方法,所述益生菌微胶囊具有一层或多层包埋结构,包括以下步骤:
(1)单层微胶囊制备:将菌粉或菌泥与第一壁材等材料均匀混合并任选经固化、过滤收集湿粒进行干燥得到单层微胶囊干粒;和任选的
(2)多层微胶囊制备:将上述单层微胶囊干粒作为菌芯颗粒,在菌芯颗粒外均匀涂布一层壁材(优选通过流化床喷雾造粒法),并任选喷涂固化液使胶囊壁固化,将所制微胶囊干燥(优选于流化床中干燥),收集双层微胶囊干粒或者将其继续再次或多次包衣。
优选的,上述的双层或多层益生菌微胶囊,其中第一层包衣后得到的菌芯颗粒外径为约50-500μm(优选约50~约300μm),双层或多层微胶囊外径为约约200~约1000μm(优选约100~约500μm)。
在一方面,本申请还涉及上述益生菌微胶囊的制备方法中的壁材的预处理方法,其包括:将壁材与水混合,充分溶解后进行冷热交替处理形成稳定凝胶。
优选的,将所述壁材与水混匀,于低温约2至8℃搅拌4至16小时,更优选进一步对乳清蛋白溶液进行约75至96℃,约30至180分钟的热处理,;再优选立即冷却,冷却温度-20至4℃;4℃存放10-60小时以上得到乳清蛋白的凝胶溶液。更优选的,所述壁材为乳清蛋白。
在一方面,本申请还涉及一种益生菌微胶囊,所述益生菌微胶囊具有一 层或多层包埋结构,其根据上述的益生菌微胶囊的制备方法制备得到。
在一方面,本申请的益生菌微胶囊可运用于食品和保健品行业例如膳食补充剂中。本申请还涉及益生菌微胶囊作为食品添加剂的应用,例如用于热加工食品或冷冻食品中,优选用于发酵风味食品、饮料、巧克力、糖果如口香糖、烘焙食品例如布丁、果蔬汁食品等。
优选的,本申请的益生菌微胶囊为乳制品添加剂,更优选为添加到牛奶、酸奶、奶酪、冰激凌、奶粉、乳制品饮料中。
优选的,含有益生菌的微胶囊的添加量为0.03~0.15%。
本申请的另一个目的是提供所述益生菌微胶囊的制备方法。本申请所采用的是挤压造粒与流化床喷雾造粒相结合的办法,相比现在使用的普通造粒法,所制得的益生菌微胶囊颗粒更致密,疏水性更好,颗粒表面菌残留更低,从而减小了益生菌泄漏发生的几率,相同保质期内活菌数更多,且扩大了微胶囊的使用范围。
本申请的另一目的是提供一种益生菌微胶囊的制备方法,所述益生菌微胶囊具有一层或多层包埋结构,包括:菌芯颗粒和任选的至少一层包覆所述菌芯颗粒的外壳,其中,所述菌芯颗粒包括芯材和第一层壁材,所述芯材包括一种或多种益生菌粉或菌泥,所述芯材被所述第一层壁材所包覆,以及所述至少一层包覆所述菌芯颗粒的外壳包括一层、两层或更多层壁材,分别为第二层壁材、第三层壁材或者更多层壁材,其中,包括以下步骤:
(1)单层微胶囊制备:任选的将菌粉或菌泥与粘合剂混合造粒,而后与第一壁材均匀混合(优选锐角挤压造粒法)并任选经固化、过滤收集湿粒进行干燥得到单层微胶囊干粒;和任选的
(2)多层微胶囊制备:将上述单层微胶囊干粒作为菌芯颗粒,在菌芯颗粒外均匀涂布一层壁材(优选通过流化床喷雾造粒法),并任选喷涂固化液使胶囊壁固化而不溶于水,将所制微胶囊干燥(优选于流化床中干燥),收集双层微胶囊干粒或者将其继续再次或多次包衣。
本申请的另一目的是提供一种益生菌微胶囊的制备方法,该方法以流化床造粒和喷雾流化作为微胶囊的主要造粒和微胶囊多次包埋的方法:其以粉末状或者颗粒状可以食用的固相组分如益生菌,以粘合剂溶液作为液相组分, 通过流化造粒的方式制成芯材,然后再通过流化床喷雾包衣的方式将一层或多层壁材均匀包裹芯材得到具有一层或多层包埋结构的益生菌微胶囊。
本申请使用流化床工艺进行益生菌微胶囊的制备,可以极大地降低微胶囊生产过程中水分和水分活度,特别适合对水分敏感的组分进行微胶囊制备。尤其是其使用独特的多层包埋结构,微胶囊的中间层壁材可以有效地保护和隔离芯材与水分和空气的接触,即使微胶囊投放在水基液体中时也可以有效防止水分浸入微胶囊核心;外层壁材可以有效包裹和稳定微胶囊的整体结构,在微胶囊投放在水基液体中,可以帮助微胶囊悬浮在液体中。
本申请的目的之一是提供一种含有益生菌微胶囊的产品,包括含益生菌微胶囊的食品或保健品,例如含益生菌微胶囊的乳及乳制品、发酵风味食品、饮料、巧克力、糖果、烘焙食品、果蔬汁食品等。此外,本申请的食品或保健品还包括但不局限于下列产品:肉,鱼,家禽和野味;肉汁;腌渍、冷冻、干制及煮熟的水果和蔬菜;果冻,果酱,蜜饯;蛋;奶和奶制品;食用油和油脂。
所述微胶囊是可常温条件下长期保存的固态干粒微胶囊,采用一层、双层或多层壁材将益生菌包埋制成50-500μm的固体颗粒,应用及保存条件受环境的影响较小,可应用到药品、保健品及食品领域。本申请所得的微胶囊尤其是双层和多层包衣的微胶囊,其微胶囊内的活菌量显著升高,颗粒大小均匀、有光泽。常温条件下能够长期储存,例如存放30天后、60天或120天后微胶囊内活菌量下降较小,仍然保持了较高的活菌量。而且,上述微胶囊能够耐酸,使得最终进入肠道内的益生菌数量增多。此外,所述微胶囊还具有良好的疏水性,颗粒表面菌残留更低,从而减小了益生菌泄漏的发生几率。
本申请的另一目的是提供一种含有益生菌微胶囊的食品或保健品的制备方法,包括以下步骤:
(1)益生菌微胶囊的制备;
(2)将益生菌微胶囊添加到食品或或保健品中,所述食品或或保健品包括但不限于含益生菌微胶囊的乳制品、发酵风味食品、饮料、巧克力、糖果、烘焙食品、果蔬汁食品,优选为添加到牛奶、酸奶、奶酪、冰激凌、奶粉、乳制品饮料中;
优选的,含有益生菌的微胶囊的添加量为0.02~1%。
本申请的目的之一是提供一种益生菌微胶囊软颗粒,其包括益生菌微胶囊椰纤果软颗粒和益生菌微胶囊凝胶球软颗粒,其中益生菌微胶囊椰纤果软颗粒包括:椰子水、椰浆、椰果酱、蔗糖、白砂糖、果葡糖浆、木醋杆菌、酸度调节剂、益生菌微胶囊、乙醇和纯净水中的一种或多种,优选地,其中蔗糖含量为约5-10%、白砂糖含量为约3-5%、果葡糖浆含量为约0-5%、磷酸二氢铵含量为约0.3-0.8%、木醋杆菌含量为约0.1-0.5%、酸度调节剂含量为约1-5%。其中益生菌微胶囊凝胶球软颗粒包括:白砂糖、海藻酸钠、黄原胶、魔芋胶、卡拉胶、固化液(含乳酸钙、氯化钙)、益生菌微胶囊、色素、纯净水中的一种或多种,优选地,其中白砂糖含量为约10-15%、海藻酸钠约0.5-1%、黄原胶约0.1-0.3%、魔芋胶约0.1-0.2%,固化液中乳酸钙浓度约1-3%。
所述益生菌微胶囊是可常温条件下长期保存的固态干粒微胶囊,采用一层、双层或多层壁材将益生菌包埋制成50~500μm的固体颗粒,应用及保存条件受环境的影响较小,可应用到药品、保健品及食品领域。所述的微胶囊尤其是双层和多层包衣的微胶囊,其微胶囊内的活菌量显著升高,颗粒大小均匀、有光泽。常温条件下能够长期储存,例如存放30天后、60天或120天后微胶囊内活菌量下降较小,仍然保持了较高的活菌量。而且,上述微胶囊能够耐酸,使得最终进入肠道内的益生菌数量增多。此外,所述微胶囊还具有良好的疏水性,颗粒表面菌残留更低,从而减小了益生菌泄漏的发生几率。
本申请所述的益生菌微胶囊软颗粒既具有椰果功能性又具有益生菌的益生特性,具有丰富的营养、极佳的风味、良好的咀嚼口感和较强益生菌存活性和功能。相比现有的含椰果软颗粒的产品,该产品不但能在至少6个月的常温货架储存条件下保持较高稳定性,且益生菌数量及菌活力更高,充分保证了产品食用后抵达人类肠道的益生菌数量,真正发挥更好的益生作用。
本产品添加的微胶囊采用的是椰果包埋微胶囊的方式。相比直接添加微胶囊,该产品不但增加了椰果的功能特性,并且对于益生菌进行了二次保护,使得益生菌菌数存活率比直接添加微胶囊更高,效果更好。同时,爽脆的椰果口感充分保证了终产品的口感口味。此外,本产品添加的微胶囊还采用将其加入至海藻酸钠溶液,滴入固化液中形成海藻酸钙包裹益生菌微胶囊的小球的方式。
定义
除非另有说明,本文使用的所有技术和科学术语具有与本申请所属领域的技术人员通常理解相同的含义,但如有冲突,则以本说明书中的定义为准。
如说明书和权利要求书中所用,单数形式“一”、“一个”和“该(所述)”包括复数形式,除非上下文另有明确说明。
如无特殊说明,本说明书中的百分比(%)均为重量百分比(重量%)。
在说明书和权利要求书中使用的涉及组分量、工艺条件等的所有数值或表述在所有情形中均应理解被“约”修饰。术语“约”当指数量或数值范围时,意思是所指数量或者数值范围是试验变异性内(或统计学实验误差内)的近似值,因此该数量或者数值范围可以在所述数量或数值范围的例如±5之间变化。
涉及相同组分或性质的所有范围均包括端点,该端点可独立地组合。由于这些范围是连续的,因此它们包括在最小值与最大值之间的每一数值。还应理解的是,本申请引用的任何数值范围预期包括该范围内的所有子范围。
当本申请针对物理性质例如分子量或者针对化学性质范围时,应包括范围的所有组合和亚组合以及其内的具体实施方式。术语“包含”(以及相关术语例如“含有”或“含”或“具有”或“包括”)包括这样一些实施方式,该实施方式为例如,物质、组合物、方法或过程等的任何组合,其“由所描述的特征组成”或者“基本上由所描述的特征组成”。
本说明书和权利要求中使用的“和/或”,应当理解为相关联的组分“二者择一或二者”,即组分在一些情况中联合存在而在另一些情况中分开存在。多个用“和/或”列出的组分应当以同样的方式理解,即“一种或多种”相关联的组分。除了“和/或”从句具体确定的组分,其它组分可任选地存在,无论与那些具体确定的组分相关还是不相关。因此,作为非限制性实例,提及“A和/或B”,当用于连接开放式结尾的文字如“包括”,在一个实施方案中,可仅指A(任选地包括除B外的组分);在另一实施方案,可仅指B(任选地包括除A外的组分);在再一实施方案中,指A和B(任选的包括其它组分)等。
本说明书和权利要求书中所用的“或”,应当理解为和上述定义的“和/或”具有相同的含义。例如,当在列表中分隔项目时,“或”或“和/或”应当译为包括在内的,即,包括多个或列表组分中的至少一个,但也包括多于一个,和 任选的其它未列出的项目。只有术语明确地指向对立面,如“仅一个”或“正好一个”,或在权利要求书中使用的“由…组成”应当指的是包括多个或列表组分中的正好一个。通常,本文所用的术语“或”仅仅当有排他性的先行词如“要么”“之一”“仅一个”或“正好一个”时才被认为指向排他性的选择(即,一个或另一个但不是两者)。
应当理解,除非明确地相反指示,否则在本文要求保护的包括多于一步或一个行为的任何方法中,该方法的步骤和行为的顺序不必限制于所叙及的方法的步骤和行为的顺序。
本申请使用的缩写具有在食品、生物学和化学领域的通常含义。
益生菌:本申请的益生菌微胶囊内的益生菌类型,使用国家批准的任何益生菌作为微胶囊包埋芯材的保护对象。包括:青春双歧杆菌、动物双歧杆菌(乳双歧杆菌)、两歧双歧杆菌、短双歧杆菌、婴儿双歧杆菌、长双歧杆菌、嗜酸乳杆菌、干酪乳杆菌、卷曲乳杆菌、德氏乳杆菌保加利亚亚种、德氏乳杆菌乳亚种、发酵乳杆菌、格氏乳杆菌、瑞士乳杆菌、约氏乳杆菌、副干酪乳杆菌、植物乳杆菌、罗伊氏乳杆菌、鼠李糖乳杆菌、唾液乳杆菌、嗜热链球菌、凝结芽孢杆菌等益生菌中一种或多种。具体如附表A-D所示。
A.可用于食品的菌种名单
Figure PCTCN2020088467-appb-000001
Figure PCTCN2020088467-appb-000002
B.可用于保健食品的益生菌菌种名单
序号 名称 拉丁学名 备注
双歧杆菌属 Bifidobacterium  
1 两歧双歧杆菌 Bifidobacterium bifidum  
2 婴儿双歧杆菌 Bifidobacterium infantis  
3 长双歧杆菌 Bifidobacterium longum  
4 短双歧杆菌 Bifidobacterium breve  
5 青春双歧杆菌 Bifidobacterium adolescentis  
乳杆菌属 Lactobacillus  
1 保加利亚乳杆菌 Lactobacillus bulgaricus  
2 嗜酸乳杆菌 Lactobacillus acidophilus  
3 干酪乳杆菌干酪亚种 Lactobacillus casei subsp.Casei  
4 罗伊氏乳杆菌 Lactobacillus reuteri  
5 鼠李糖乳杆菌 Lactobacillus rhamnosus  
链球菌属 Streptococcus  
1 嗜热链球菌 Streptococcus thermophilus  
C.可用于婴幼儿食品的菌种名单
Figure PCTCN2020088467-appb-000003
Figure PCTCN2020088467-appb-000004
D.可用于保健食品的真菌菌种名单
序号 中文名 英文名
1 酿酒酵母 Saccharomyces cerevisiae
2 产朊假丝酵母 Cadida atilis
3 乳酸克鲁维酵母 Kluyveromyces lactis
4 卡氏酵母 Saccharomyces carlsbergensis
5 蝠蛾拟青霉 Paecilomyces hepiali Chen et Dai,sp.Nov
6 蝙蝠蛾被毛孢 Hirsutella hepiali Chen et Shen
7 灵芝 Ganoderma lucidum
8 紫芝 Ganoderma sinensis
9 松杉灵芝 Ganoderma tsugae
10 红曲霉 Monacus anka
11 紫红曲霉 Monacus purpureus
壁材:用来包覆、保护或控制释放芯材的成囊物质称为微胶囊的壁材、囊壁或囊壳。壁材是构成微胶囊外壳的材料,也可以称为包衣或包材。
在选择壁材时要考虑壁材本身的性能,如渗透性、稳定性、机械强度、溶解性、可聚合性、电性能、吸湿性及成膜性等,对于生物活性物质的芯材,还要着重考虑壁材的毒性,与芯材的相容性。在本申请中选择具有无毒、成膜性或成球性较好、免疫原性低、生物相容性好、可降解且产物无毒副作用的壁材。
在本申请中,优选与活菌具有很好的生物相容性的成膜材料、食品中可选用的肠溶材料、具有阻湿性的成膜材料、具有阻氧性的成膜材料。
优选的,具体的实例包括下列的一种或多种的组合:
(1)可食用蛋白类:包括动物蛋白如乳蛋白、卵蛋白、酪蛋白,植物蛋白如谷类蛋白等;
优选的,本申请的益生菌微胶囊的壁材选自乳清蛋白:
包括浓缩乳清蛋白(WPC)、分离乳清蛋白(WPI)或乳清蛋白肽,尤其优选分离乳清蛋白(WPI);其中,WPI是在浓缩乳清蛋白(WPC)的基础上经过进一步工艺处理得到的高纯度乳清蛋白,纯度可达90%以上,且更易消化吸收,安全无毒无副作用;
乳蛋白:包括酪蛋白或乳清蛋白。乳清蛋白质是指溶解分散在乳清中的蛋白,约占乳蛋白质的18%~20%,可分为热稳定和热不稳定乳清蛋白两部分。
浓缩乳清蛋白(WPC)
将乳清直接烘干后,可得到乳清粉末,其中的乳清蛋白极低,一般为百分之十几,不超过百分之三十。乳清经过澄清、超滤、干燥等过程后得到的产物就是浓缩乳清蛋白。过滤程度的不同可以得到蛋白浓度从34-80%不等的产品。
分离乳清蛋白(WPI)
分离乳清蛋白是在浓缩乳清蛋白的基础上经过进一步的工艺处理得到的高纯度乳清蛋白,纯度可达90%以上。其价格昂贵,是浓缩乳清蛋白的2-3倍,但是它也更容易消化吸收。分离乳清蛋白的真正妙处在于它的营养价值,它拥有高含量的优质蛋白,能为某些特定需要的人群比如婴儿和住院病人提供所需优质蛋白。此外,分离乳清蛋白所含有的生物活性化合物如α-乳白蛋白和β-乳球蛋白、乳铁蛋白以及免疫球蛋白,都为市场注入了新鲜的活力。
乳清蛋白肽
乳清蛋白肽是乳清蛋白的水解产物,是乳清蛋白的精华,它在机体中能更快地参与肌肉合成的过程。
优选的,本申请的益生菌微胶囊的壁材选自下列中的一种或者多种的组合:
植物蛋白:包括油料种子蛋白、豆类蛋白质、谷类蛋白等,
其中,油料种子蛋白包括:花生蛋白、芝麻蛋白、油菜子蛋白、向日葵蛋白、棉子蛋白、红花蛋白、椰子蛋白等;
其中,豆类蛋白包括:大豆蛋白、蚕豆蛋白、豌豆蛋白、绿豆蛋白、红小豆蛋白、芸豆蛋白等;
其中,谷类蛋白包括:稻类(籼稻、粳稻、糯稻)蛋白、麦类(小麦、大麦、燕麦、黑麦)蛋白、玉米蛋白、高粱蛋白、粟蛋白、黍蛋白、黄米蛋白、荞麦蛋白等,以及薯类蛋白:包括甘薯蛋白、马铃薯蛋白、山药蛋白、芋蛋白、木薯蛋白等;
其中,玉米蛋白包括玉米醇溶蛋白、玉米胚蛋白等;
优选的,本申请的益生菌微胶囊的壁材选自玉米蛋白,包括玉米醇溶蛋白、玉米胚蛋白,尤其优选玉米醇溶蛋白。
(2)油脂类:
本申请中,油脂是油和脂肪的统称,是脂肪族羧酸与甘油所形成的酯,在室温下呈液态的称为油,呈固态或半固态的的称为脂肪。天然油脂大都是混合甘油酯。从植物种子中得到的大多为油,来自动物的大多为脂肪。
本申请中,根据脂肪酸的种类,各种天然脂肪酸分子是由不同碳链(4~24C)所组成的直链脂肪酸。除个别例外,碳原子均为双数。此类脂肪酸有两种分类法:一种是根据碳原子数将脂肪酸分为短链(4-6C)、中链(8-12C)及长链(12C以上)脂肪酸。另一种是将脂肪酸分为饱和及不饱和脂肪酸。饱和脂肪酸的一般分子式为C nH 2nO 2,而不饱和脂肪酸带有1、2、3个以至更多的双键,其一般分子式为C nH 2n-2O 2、CnH 2n-4O 2、CnH 2n-6O 2。其中有两个以上双键的亚油酸、亚麻酸及花生四烯酸称为多不饱和脂肪酸。除直接脂肪酸外,还有环状脂肪酸,大枫子油中的大枫子油酸与亚大枫子油酸。
本申请中的油脂中的脂肪酸大多是含偶数碳原子的饱和的或不饱和的脂肪酸,常见的有肉豆蔻酸(C14)、软脂酸(C16)、硬脂酸(C18)等饱和酸和棕榈油酸(C16,单烯)、油酸(C18,单烯)、亚油酸(C18,二烯)、亚麻酸(C18,三烯)等不饱和酸。某些油脂中含有若干特殊的脂肪酸,如桐油中的桐油酸,菜油中的油菜酸,蓖麻油中的蓖麻酸,椰子油中的橘酸等。
根据来源将脂肪分成动物性脂肪和植物性脂肪。动物性脂肪又有两大类,一类为水产动物脂肪,如鱼类、虾、海豹等另一类是陆生动物脂肪,其中大部分含饱和脂肪酸和较少量的不饱和脂肪酸。植物性脂肪如棉子油、花生油、菜子油、豆油等,其脂肪中主要含不饱和脂肪酸,而且多不饱和脂肪酸(亚油酸)含量很高,占脂肪总量的40~50%。但椰子油中的脂肪酸主要是饱和的脂肪酸。
中链甘油三酯(MCT):其为己酸(C6)到月桂酸(C12)组成的甘油三酯,尤其是指其组成中的脂肪酸为辛酸、癸酸等六碳链到十二碳链的脂肪酸的一种结构脂质,天然的MCT主要来源于椰子油、棕榈油等植物油中。低于己酸构成的甘油三酯为短链脂肪酸甘油三酯(SCT),高于月桂酸组成的甘油三酯称为长链脂肪酸甘油三酯(LCT)。
棕榈油:又称棕油、棕皮油,包括:毛棕榈油(CPO)、棕榈粕(PE)、毛棕榈仁油(CPKO)、棕榈仁粕(PKE)、-精炼棕榈油(RBD PO)、棕榈油色拉油(RBD PKO)、棕榈油酸(PFAD)、棕榈液油(简称OLEAN)、棕榈 硬脂(简称STEARINE或ST)等。棕榈油在常温下呈半固态,其稠度和熔点在很大程度上取决于游离脂肪酸的含量。常把低酸值的棕榈油叫做软油,高酸值的油则叫做硬油。
本申请的益生菌微胶囊的壁材优选选自棕榈油,尤其优选约33℃棕榈油、约40℃棕榈油、约44℃棕榈油、约52℃棕榈油、约58℃棕榈油,更优选熔点为约40℃以上的棕榈油,尤其是熔点为约40-50℃的棕榈油,例如熔点为约40℃的棕榈油。
优选的,本申请的益生菌微胶囊的壁材选自下列中的一种或者多种的组合:
植物油:包括代可可脂、可可脂、菜籽油、大豆油、玉米油、花生油、棉籽油、葵花籽油、棕榈油(固体棕榈油或者液体棕榈油)、棕仁油、椰子油等;或者
动物油:猪油、牛油、鱼油、乳脂、羊脂等。
优选的,本申请的益生菌微胶囊的壁材选自优选熔点为约40℃以上的油脂,尤其是熔点为约40-50℃的油脂,例如熔点为约40℃的棕榈油或MCT。
尤其优选下列中的一种或者多种的组合:中链甘油三酯(MCT)、代可可脂、棕榈油、卵磷脂、棕榈油甘油单酯、氢化油脂(如:氢化棕榈油、硬化油、氢化大豆油)等,它们的熔点优选约40℃以上,尤其优选熔点为约40-50℃。
(3)其他材料:
包括:海藻酸钠、虫胶、CMC-Na、胶凝糖、黄原胶、k-角叉菜胶、醋酸邻苯二甲酸纤维素、麦芽糊精、淀粉、糊精、蔗糖、乳糖、葡聚糖、玉米糖浆、果胶、阿拉伯胶、壳聚糖、乙酰化单双甘油脂肪酸酯、魔芋胶、卡拉胶、蜡质或明胶等的一种或者多种的组合。
肠溶性壁材:肠溶性指微胶囊顺利通过胃环境,而不被破坏或降解,最终进入肠道,壁材发生崩解、溶解或降解,导致胶囊内部的芯材被释放出来的过程。肠溶性壁材可以是某一种单独的壁材,也可是复合壁材。包括:虫胶、果胶、海藻酸钠、甘油单酯、甘油三脂、氢化油脂(如:棕榈油、氢化棕榈油,硬化油,氢化大豆油等)等。
优选的,本申请的益生菌微胶囊的壁材具备肠溶性。
复合壁材
本申请的复合壁材是指将两种或者多种前述壁材混合复配以得到更优性能的壁材。本申请的复合壁材具有良好的协同作用,有利于提高壁材中含有这些成分的微胶囊的稳定性和致密性,改善微胶囊产品的品质,进而促进微胶囊技术在各行业的应用。
亲水胶体:通常是指能溶解于水,并在一定条件下充分水化形成黏稠、滑腻或胶冻溶液的大分子物质,在食品、医药、化工及其他许多领域中广泛应用。亲水胶体按来源可分为:植物分泌物,如果胶、瓜尔豆胶、阿拉伯胶等;微生物发酵、代谢产物,如黄原胶、结冷胶等;海藻胶提取物,如卡拉胶、琼脂、海藻酸盐等。
果胶:果胶是从植物细胞壁中提取的天然多糖类高分子化合物,柑橘果皮、苹果糊、甜菜浆等是提取果胶最常见的原料。根据果胶分子中酯化的半乳糖醛酸基的比例可将其分为高甲氧基果胶(包括高甲氧基水溶性番茄果胶与高甲氧基柑橘果胶等)和低甲氧基果胶(酯化度50%为区分值)。
固化剂:本申请中的固化剂包括至少一种下列化合物:乙酸钠、冰乙酸、柠檬酸、柠檬酸钠、钙盐、表面活性剂。
固化剂优选乙酸钠、冰乙酸和表面活性剂混合液,这样可以使蛋白在非共价键和共价键(如二硫键)的可共同作用下形成不可逆的化学凝胶,并结合表面活性剂的作用,提高蛋白颗粒凝胶强度和在分散相中的稳定性。
优选地,固化剂浓度为约0.5mol/L,pH为约4.5至约5.3,并含有占固化液溶液体积约0.01%~0.1%的表面活性剂。
粘合剂:包括淀粉、变性淀粉、可压性淀粉、糊精、乳糖、动物胶如明胶、阿拉伯胶、蔗糖、西黄芪胶、液状葡萄糖、虫胶、皮胶、松香、羟甲基纤维素钠、甲基纤维素、聚维酮、羟丙基纤维素、乙基纤维素、羟丙甲基纤维素、聚乙二醇、微晶纤维素、无机盐类等。用于本申请的益生菌微胶囊的优选粘合剂为:淀粉,优选的粘合剂浓度为5%-20%。
具体实施方式
微胶囊颗粒
一种微胶囊,所述微胶囊具有一层或多层包埋结构,其包括:丸芯和任 选的至少一层包覆所述丸芯的外壳;
其中,所述丸芯包括被包埋物质和微胶囊芯材,以及
所述至少一层包覆所述丸芯的外壳包括一层、两层或更多层壁材。
在一种实施方式中,所述微胶囊的丸芯的外径为约50-500μm(优选约50~约300μm),单层或多层包覆的微胶囊的外径为约200~约1000μm(优选约100~约500μm)。
在一种实施方式中,其中,被包埋物质包括具有功能性的活性物质,所述活性物质选自功能性多糖、功能性脂类、功能性蛋白/肽/氨基酸、微生态调节剂、维生素和矿物质中的一种或多种。
优选地,被包埋物质和微胶囊芯材的重量比为1:6-1:2.5(更优选为1:5-1:4)。
在一种实施方式中,其中所述功能性多糖选自壳聚糖、茶多糖、膳食纤维、葡聚糖中的一种或多种;优选地,所述功能性脂类选自卵磷脂、EPA和DHA中的一种或多种;优选地,所述功能性蛋白/肽/氨基酸选自牛磺酸、乳铁蛋白、免疫球蛋白、乳清蛋白肽中的一种或多种;优选地,所述微生态调节剂选自益生菌、益生元、合生素中的一种或多种。
在一种实施方式中,所述壁材选自下列中的一种或者多种的组合:
植物蛋白,例如大豆蛋白、大米蛋白、小麦蛋白、玉米蛋白等;优选为玉米蛋白,或
动物蛋白,例如乳清蛋白、酪蛋白等;优选浓缩乳清蛋白(WPC)、分离乳清蛋白(WPI)或乳清蛋白肽,尤其优选分离乳清蛋白(WPI);或者
油脂,例如熔点为40℃以上的油脂,优选熔点为40-50℃的油脂,尤其优选棕榈油、中链甘油酯(MCT)、氢化油脂(如:氢化棕榈油、硬化油、氢化大豆油)、卵磷脂、代可可脂、棕榈油甘油单酯、椰子油、豆油、花生油、葵花籽油,或者
其他材料,例如甘油、油酸、海藻酸钠、虫胶、CMC-Na、胶凝糖、黄原胶、k-角叉菜胶、醋酸邻苯二甲酸纤维素、麦芽糊精、淀粉、糊精、蔗糖、乳糖、葡聚糖、玉米糖浆、果胶、阿拉伯胶、壳聚糖、乙酰化单双甘油脂肪酸酯、魔芋胶、卡拉胶、蜡质或明胶等。
优选地,所述壁材选自乳清蛋白或者油脂,尤其优选WPI或者MCT。
在一种实施方式中,所述所述微胶囊芯材包括下述的的一种或者多种的组合:
植物蛋白,例如大豆蛋白、大米蛋白、小麦蛋白、玉米蛋白等;优选为玉米蛋白,或
动物蛋白,例如乳清蛋白、酪蛋白等;优选浓缩乳清蛋白(WPC)、分离乳清蛋白(WPI)或乳清蛋白肽,尤其优选分离乳清蛋白(WPI);或者
油脂,例如熔点为40℃以上的油脂,优选熔点为40-50℃的油脂,尤其优选棕榈油、中链甘油酯(MCT)、氢化油脂(如:氢化棕榈油、硬化油、氢化大豆油)、卵磷脂、代可可脂、棕榈油甘油单酯、椰子油、豆油、花生油、葵花籽油,或者
其他材料,例如微晶纤维素(MCC)、甘油、油酸、海藻酸钠、虫胶、CMC-Na、胶凝糖、黄原胶、k-角叉菜胶、醋酸邻苯二甲酸纤维素、麦芽糊精、淀粉、糊精、蔗糖、乳糖、葡聚糖、玉米糖浆、果胶、阿拉伯胶、壳聚糖、乙酰化单双甘油脂肪酸酯、魔芋胶、卡拉胶、蜡质或明胶等。
更优选地,所述微胶囊芯材包括微晶纤维素(MCC)。
在一种实施方式中,其中,被包埋物质包括益生菌;
优选地,所述益生菌选自青春双歧杆菌、动物双歧杆菌(乳双歧杆菌)、两歧双歧杆菌、短双歧杆菌、婴儿双歧杆菌、长双歧杆菌、嗜酸乳杆菌干酪乳杆菌、卷曲乳杆菌、德氏乳杆菌保加利亚亚种、德氏乳杆菌乳亚种、发酵乳杆菌、格氏乳杆菌、瑞士乳杆菌、约氏乳杆菌、副干酪乳杆菌、植物乳杆菌、罗伊氏乳杆菌、鼠李糖乳杆菌、唾液乳杆菌、嗜热链球菌、凝结芽孢杆菌等益生菌中的一种或多种。
优选地,本申请的微胶囊颗粒为(淡)黄色300-500微米粒径的圆球形颗粒。其主要由三部分构成:一次丸芯、阻水包衣层及亲水包衣层。其中阻水包衣层可根据被包埋物质的特性选择包埋层数,最少一层。多层包埋的微胶囊颗粒主要为了被包埋物质在产品中添加时不受产品环境影响,且不对产品进行影响。同时,对于某些在人体小肠内产生作用的功能性物质(如益生菌)可以达到微胶囊促进其缓释的作用。
一次丸芯,主要由被包埋的具有功能性的(活性)物质及微胶囊芯材构成。该结构的主要作用为将被包埋物质制成圆球形颗粒,以便后续阻水包衣 层及亲水包衣层能够更好地包覆在丸芯外,形成均匀的球状颗粒。其中,被包埋物质可为亲水性或疏水性的具有功能性的成分(例如:功能蛋白、功能油脂、维生素、益生菌等)。被包埋物质根据其特性(如粘度等)与微胶囊芯材以比例为(1:3—4:1)进行混合。微胶囊芯材主要为微晶纤维素(MCC),可选择性添加或替换为蔗糖、乳糖、壳聚糖等。被包埋物质与微胶囊芯材进行均匀混合后制成250-450微米的一次丸芯。
阻水包衣层的主要作用为将被包埋物质与产品(或环境)中的水分阻隔开来,以及具有保护被包埋物质不被胃酸影响而到达人体肠道的作用。阻水包衣层主要以醇溶蛋白为基础,以3%-10%的添加比例添加能够增加醇溶蛋白塑性和韧性的物质来提升阻水包衣层的性能,其中包括甘油、油酸等物质。包衣时,醇溶蛋白可通过50-75%的乙醇溶解,具体比例受被包埋物质对乙醇的耐受性所影响。阻水包衣层的层数可根据被包埋物质受水影响的大小来决定。
微胶囊最外层为亲水包衣层。该层的主要作用为微胶囊颗粒能够均匀的添加到水性产品过程中而不聚集,从而保证了产品中微胶囊颗粒添加的均匀性。该层主要为具有成膜性的亲水多糖为包埋壁材,例如果胶、大豆多糖或分离乳清蛋白。
微胶囊颗粒的制备方法
一种微胶囊的制备方法,所述微胶囊具有一层或多层包埋结构,包括以下步骤:
(1)一次丸芯制备:将被包埋物质和微胶囊芯材均匀混合并任选经固化、过滤收集湿粒,然后进行干燥得到一次丸芯;和任选的
(2)多层微胶囊制备:将上述丸芯颗粒外均匀涂布一层壁材,并任选喷涂固化液使胶囊壁固化,将所制微胶囊干燥,收集微胶囊干粒或者将其继续再次或多次包衣。
在一种实施方式中,其中,所述步骤(1)是通过挤出滚圆制粒法、离心制粒法、锐角挤压造粒法、或者流化床喷雾造粒法(优选挤出滚圆制粒法或者离心制粒法)来制备丸芯,将得到的丸芯干燥并收集。
优选地,所述步骤(2)是采用流化床喷雾的方式来涂布壁材。
关于益生菌微胶囊颗粒的制备,为实现上述发明的目的,优选采用的技术方案是:
一种益生菌微胶囊的制备方法,包括以下步骤:一次制芯;二次流化。
其中,一次制芯的方案如以下1或1’所述。二次流化的方案如2所述。
1、一次制芯(挤出滚圆制粒)方案
原料包括(以1000重量份微胶囊干粒为基准):益生菌菌泥或菌粉10至30重量份,微晶纤维素(MCC)90-70重量份,水100重量份(或水和乙醇混合液),可选择添加蔗糖、乳糖、壳聚糖等。
制备方法:
菌粉/菌泥与微晶纤维素混合均匀加入到湿法制粒锅中预混10min;
打开切割刀,打开蠕动泵20-30r/min,用水量13.5-14kg,时间约30mins;
得到含水量49.7%的软材;
启动造粒机,调节挤出转数,加入软材,条形软料经孔板挤出,收集到收料拖盘。停止挤出电机,调节滚圆转数,启动滚圆电机,挤出条状软料一次性倒入滚圆筒内滚圆;
滚圆结束,成球在流化床或烘箱中进行干燥,干燥温度在45-50℃。
在上述步骤中,如果菌粉和微晶纤维素没有充分混合,之后制出的丸芯菌的分布不均匀,之后制成的微胶囊颗粒菌数差异过大。如果给料转速,挤出转速不匹配,无法挤出合适的条状物,则无法进行后续制粒。如果滚圆转速不合适,则无法形成规则球状丸芯,可能会制成柱状或椭圆状丸芯,不利于后续阻水层的流化于产品的添加。
1’、一次制芯(离心制粒)方案
原料:益生菌菌泥或菌粉10至30重量份,微晶纤维素(MCC)90-70重量份,水27-21重量份(或羟丙基甲基纤维素(HPMC)),可选择添加,蔗糖、乳糖、壳聚糖等。
制备方法:
开启离心制粒机转盘,将菌粉和微晶纤维素预混投入其中,转速:300转/min;
添加水或HPMC,打开喷浆;
待颗粒涨至100-200微米后,撒菌粉和MCC混合粉,使颗粒涨至300um左右,停止喷浆,将转盘速度调制700转/min,将颗粒滚圆;
滚圆结束,成球在流化床中进行干燥,干燥温度在45-50℃。
在上述步骤中,如果制粒前菌粉未能和微晶纤维素混合均匀,成品微胶囊颗粒的菌数会不均匀导致颗粒达不到标准化。如果菌粉和微晶纤维素的比例不合适,则在离心制粒机中无法滚出球状颗粒,会保持粉末状态或聚集成团。如果粘合剂与干物质比例不合适,同样在离心制粒机中无法滚出球状颗粒,颗粒会聚集成团。如果离心转盘转速不合适,则无法形成合适大小的一次丸芯,丸芯可能过大或过小,不利于后续流化及产品添加。
2、二次流化基本方案:
原料:阻水包衣层溶液1:75%酒精600-800重量份,醇溶蛋白150-180重量份,油酸70-100重量份;阻水包衣层溶液2:75%酒精600-800重量份,醇溶蛋白150-180重量份,油酸30-50重量份;可选择阻水包衣层3:颗粒质量1.8%的中链甘油三酯(MCT);亲水包衣层溶液:水95-97重量份,果胶3-5重量份(可用其他具有成膜性多糖所替代)。
阻水包衣的包衣顺序不固定;亲水包衣层流化于颗粒最外层。
制备方法:
MCT层:将颗粒在MCT中浸润16小时。
其他包衣层:
采用流化床喷雾造粒法,包衣溶液升温至25至75℃,流化床进风温度为60至80℃,风量20-100之间。
通过喷枪雾化阻水包衣溶液喷射到流化床中,使液滴均匀包裹一次制芯后的菌芯颗粒,于流化床中进行干燥,形成单层阻水颗粒。
在此基础上可在在单层阻水颗粒外均匀喷涂阻水包衣层溶液形成双层或多层阻水包衣颗粒。
最后在双层或多层微胶囊颗粒外喷涂亲水包衣层溶液。
制得的微胶囊于流化床中干燥,每次流化50kg左右干燥出来的颗粒,根据颗粒之间粘连程度,每流化15-20分钟后,使用40目筛网的整粒机整粒后对筛子下的颗粒继续流化,筛子上的颗粒丢弃。
收集多层微胶囊干粒。
关键步骤包括:每流化400mL的包衣溶液后过50-80目筛网,大于50目及小于80目的颗粒丢弃。
在上述步骤中,流化床进风温度过高,会使被包埋物质失去活性。流化床进风温度过低,会使颗粒之间互相粘连。流化床风量过低,颗粒无法在流化床中被吹起而无法均匀包裹流化壁材。流化床风量过高,颗粒被吹倒滤袋上粘连无法继续进行流化。雾化压力不合适,壁材无法均匀在丸芯上进行包裹。一批次流化大于400mL,会造成流化床内粘连的颗粒持续粘连而影响最终的出成率。所以每流化400ml后通过筛网及时将粘连的颗粒分离。
关于乳清蛋白肽微胶囊颗粒的制备,为实现上述发明的目的,优选采用的技术方案是:
原料:乳清蛋白粉:200-400重量份;微晶纤维素:600-800重量份;阻水包衣层溶液1:75%酒精600-800重量份,醇溶蛋白150-180重量份,油酸70-100重量份;阻水包衣层溶液2:75%酒精600-800重量份,醇溶蛋白150-180重量份,油酸30-50重量份。可选择阻水包衣层3:颗粒质量1.8%的中链甘油三酯(MCT)。
亲水包衣层溶液:水95-97重量份,果胶3-5重量份(可用其他具有成膜性多糖所替代)。
制备方法:
乳清蛋白肽粉与微晶纤维素混合均匀加入到湿法制粒锅中预混10min。
打开切割刀,打开蠕动泵20-30r/min,用水量13.5-14kg,时间约30mins。
得到含水量49.7%的软材。
启动造粒机,调节挤出转数,加入软材,条形软料经孔板挤出,收集到收料拖盘。停止挤出电机,调节滚圆转数,启动滚圆电机,挤出条状软料一次性倒入滚圆筒内滚圆。
滚圆结束,成球在流化床或烘箱中进行干燥,干燥温度在45-50℃。
MCT层:将颗粒在MCT中浸润16小时。
其他包衣层:
采用流化床喷雾造粒法,包衣溶液升温至25至75℃,流化床进风温度 为60至80℃,风量20-100之间。
通过喷枪雾化阻水包衣溶液喷射到流化床中,使液滴均匀包裹一次制芯后的菌芯颗粒,于流化床中进行干燥,形成单层阻水颗粒。
在此基础上,可在在单层阻水颗粒外均匀喷涂阻水包衣层溶液形成双层或多层阻水包衣颗粒。
最后在双层或多层微胶囊颗粒外喷涂亲水包衣层溶液。
制得的微胶囊于流化床中干燥,每次流化50kg左右干燥出来的颗粒,根据颗粒之间粘连程度,每流化15-20分钟后,使用40目筛网的整粒机整粒后对筛子下的颗粒继续流化,筛子上的颗粒丢弃。
收集多层微胶囊干粒。
益生菌微胶囊及其制备方法
本申请涉及一种益生菌微胶囊,所述益生菌微胶囊具有一层或多层包埋结构,包括:菌芯颗粒和任选的至少一层包覆所述菌芯颗粒的外壳,其中,所述菌芯颗粒包括芯材和第一层壁材,所述芯材包括一种或多种益生菌粉或菌泥,所述芯材被所述第一层壁材所包覆;
所述至少一层包覆所述菌芯颗粒的外壳包括一层、两层或更多层壁材,分别为第二层壁材、第三层壁材或者更多层壁材。
任选的,上述菌芯颗粒中还包括粘合剂。
优选的,以1000重量份的干粒微胶囊为基准,上述微胶囊的组成的重量比例为:菌泥或菌粉为约50至500重量份;第一层壁材为约150至950重量份;第二层壁材为约0至350重量份;第三层壁材约为0至350重量份;第四层壁材约为0至260重量份。
优选的,上述益生菌微胶囊的制备方法中,以1000重量份微胶囊干粒为基准,
益生菌菌泥或菌粉为约50至约500重量份,更优选:约100重量份、约150重量份、约200重量份、约250重量份、约300重量份、约350重量份、约400重量份、约450重量份或其间的任意范围,尤其优选约250~约400重量份;
第一层壁材为约150至约950重量份,更优选:约200重量份、约250 重量份、约300重量份、约350重量份、约400重量份、约450重量份、约500重量份、约550重量份、约600重量份、约650重量份、约700重量份、约750重量份、约800重量份、约850重量份、约900重量份或其间的任意范围,尤其优选约450~约750重量份;
任选的第二层壁材为约0至约350重量份,更优选:约100重量份、约150重量份、约200重量份、约250重量份、约300重量份或其间的任意范围,尤其优选约200~约300重量份;
任选的第三层约0至约350重量份,更优选:约100重量份、约150重量份、约200重量份、约250重量份、约260重量份、约300重量份或其间的任意范围,尤其优选约200~约300重量份;
任选的第四层约0至约250重量份,更优选:约100重量份、约150重量份、约200重量份、约250重量份、约260重量份、约250重量份或其间的任意范围,尤其优选约100~约250重量份。
优选的,上述益生菌选自青春双歧杆菌、动物双歧杆菌(乳双歧杆菌)、两歧双歧杆菌、短双歧杆菌、婴儿双歧杆菌、长双歧杆菌、嗜酸乳杆菌干酪乳杆菌、卷曲乳杆菌、德氏乳杆菌保加利亚亚种、德氏乳杆菌乳亚种、发酵乳杆菌、格氏乳杆菌、瑞士乳杆菌、约氏乳杆菌、副干酪乳杆菌、植物乳杆菌、罗伊氏乳杆菌、鼠李糖乳杆菌、唾液乳杆菌、嗜热链球菌、凝结芽孢杆菌等益生菌中的一种或多种。
在一个实施方案中,上述益生菌微胶囊的壁材选自食用蛋白、油脂或者其他材料中的一种或多种组合。
优选的,上述可食用蛋白选自动物蛋白或者植物蛋白中的一种或多种组合:
其中,动物蛋白为适用于本申请的益生菌微胶囊的任意动物蛋白,例如本申请中定义的任意动物蛋白中的一种或多种组合,优选乳蛋白、卵蛋白、酪蛋白等,更优选乳清蛋白,包括浓缩乳清蛋白(WPC)、分离乳清蛋白(WPI)或乳清蛋白肽,尤其优选分离乳清蛋白(WPI);
其中,植物蛋白为适用于本申请的益生菌微胶囊的任意植物蛋白,例如本申请中定义的任意植物蛋白中的一种或多种组合,包括油料种子蛋白、豆类蛋白质、谷类蛋白等,
其中,油料种子蛋白优选:花生蛋白、芝麻蛋白、油菜子蛋白、向日葵蛋白、棉子蛋白、红花蛋白、椰子蛋白等;
其中,豆类蛋白优选:大豆蛋白、蚕豆蛋白、豌豆蛋白、绿豆蛋白、红小豆蛋白、芸豆蛋白等;
其中,谷类蛋白优选:稻类(籼稻、粳稻、糯稻)蛋白、麦类(小麦、大麦、燕麦、黑麦)蛋白、玉米蛋白、高粱蛋白、粟蛋白、黍蛋白、黄米蛋白、荞麦蛋白等,以及薯类蛋白:包括甘薯蛋白、马铃薯蛋白、山药蛋白、芋蛋白、木薯蛋白等;
其中,玉米蛋白优选玉米醇溶蛋白、玉米胚蛋白等。
优选的,上述油脂为适用于本申请的益生菌微胶囊的任意油脂,例如本申请中定义的油脂中的一种或多种组合,优选选自下列中的一种或者多种的组合:
优选的,本申请的益生菌微胶囊的壁材选自下列中的一种或者多种的组合:
植物油:包括代可可脂、可可脂、菜籽油、大豆油、玉米油、花生油、棉籽油、葵花籽油、棕榈油(固体棕榈油或者液体棕榈油)、棕仁油、椰子油等;或者
动物油:猪油、牛油、鱼油、乳脂、羊脂等。
优选的,本申请的益生菌微胶囊的壁材选自优选熔点为40℃以上的油脂,尤其是熔点为40-50℃的油脂,例如熔点为40℃的棕榈油或MCT。
尤其优选下列中的一种或者多种的组合:中链甘油三酯(MCT)、代可可脂、棕榈油、卵磷脂、棕榈油甘油单酯、氢化油脂(如:氢化棕榈油、硬化油、氢化大豆油)等,它们的熔点优选40℃以上,尤其优选熔点为40-50℃。
更优选:熔点为40℃以上的棕榈油,尤其是熔点为40-50℃的棕榈油,例如熔点为40℃的棕榈油。
优选的,上述其他材料选自海藻酸钠、虫胶、CMC-Na、胶凝糖、黄原胶、k-角叉菜胶、醋酸邻苯二甲酸纤维素、麦芽糊精、淀粉、糊精、蔗糖、乳糖、葡聚糖、玉米糖浆、果胶、阿拉伯胶、壳聚糖、乙酰化单双甘油脂肪酸酯、魔芋胶、卡拉胶、蜡质或明胶等的一种或者多种的组合。
在一个实施方案中,上述益生菌微胶囊具有一层或多层包埋结构,包括: 菌芯颗粒和一层包覆所述菌芯颗粒的外壳,其中,所述菌芯颗粒包括芯材和第一层壁材,所述芯材包括一种或多种益生菌粉或菌泥,所述芯材被所述第一层壁材所包覆,以及所述一层包覆所述菌芯颗粒的外壳包括第二层壁材,任选的第三层壁材和任选的第四层壁材;任选的,上述菌芯颗粒还包括粘合剂。
其中,上述第一层壁材为油脂或者乳清蛋白(WPI)或其组合。
在一个实施方案中,上述的益生菌微胶囊具有一层或多层包埋结构,其中所述第二层壁材为WPI或油脂或其组合。
在一个实施方案中,上述的益生菌微胶囊具有一层或多层包埋结构,其中所述第一层壁材为WPI,优选为约150至约950重量份,更优选:约300~750重量份;
任选的第二层壁材为WPI,优选为约0~350重量份,更优选约300~350重量份;或者
任选的第二层壁材为油脂,优选熔点为40-50℃的油脂,尤其是棕榈油或者MCT,优选的,其为为约0~350重量份,更优选约150、200或300重量份;
任选的第三层壁材为WPI,优选为约0~350重量份,更优选约250、260重量份;或者
任选的第三层壁材为油脂,优选熔点为40-50℃的油脂,尤其是棕榈油或MCT,优选的,其为为约0~350重量份,更优选约150、200或300重量份;
任选的第四层壁材为WPI,优选为约0~250重量份,更优选约300~350重量份。
在一个实施方案中,上述益生菌微胶囊的壁材是选自多种材料组合的复合壁材。
在本申请的一方面,本申请还涉及一种益生菌微胶囊的制备方法,所述益生菌微胶囊具有一层或多层包埋结构,包括:菌芯颗粒和任选的至少一层包覆所述菌芯颗粒的外壳,其中,所述菌芯颗粒包括芯材和第一层壁材,所述芯材包括一种或多种益生菌粉或菌泥,所述芯材被所述第一层壁材所包覆,以及所述至少一层包覆所述菌芯颗粒的外壳包括一层、两层或更多层壁材, 分别为第二层壁材、第三层壁材或者更多层壁材;
任选的,上述菌芯颗粒还包括粘合剂;
上述益生菌微胶囊的制备包括以下步骤:
(1)单层微胶囊制备:任选的将菌粉或菌泥与第一壁材均匀混合并任选经固化、过滤收集湿粒进行干燥得到单层微胶囊干粒;和任选的
(2)多层微胶囊制备:将上述单层微胶囊干粒作为菌芯颗粒,在菌芯颗粒外均匀涂布一层壁材(优选通过流化床喷雾造粒法),并任选喷涂固化液使胶囊壁固化,将所制微胶囊干燥(优选于流化床中干燥),收集双层微胶囊干粒或者将其继续再次或多次包衣。
在一个实施方案中,上述益生菌微胶囊的制备方法中,以上述方法所得的益生菌微胶囊以1000重量份微胶囊干粒为基准,
益生菌菌泥或菌粉为约50至约500重量份,更优选:约50重量份、约100重量份、约150重量份、约200重量份、约250重量份、约300重量份、约350重量份、约400重量份、约450重量份、约500重量份或其间的任意范围,尤其优选约250~约400重量份;
第一层壁材为约150至约950重量份,更优选:约200重量份、约250重量份、约300重量份、约350重量份、约400重量份、约450重量份、约500重量份、约550重量份、约600重量份、约650重量份、约700重量份、约750重量份、约800重量份、约850重量份、约900重量份、约950重量份或其间的任意范围,尤其优选约450~约750重量份;
任选的第二层壁材为约0至约350重量份,更优选:约100重量份、约150重量份、约200重量份、约250重量份、约300重量份、约350重量份或其间的任意范围,尤其优选约200-300重量份;
任选的第三层约0至约350重量份,更优选:约100重量份、约150重量份、约200重量份、约250重量份、约260重量份、约300重量份、约350重量份或其间的任意范围,尤其优选约200~约300重量份。
在一个实施方案中,上述益生菌微胶囊的制备方法中,菌粉或菌泥和第一层壁材的比例为:约1:1~约1:19,优选为:约1:1、约1:2、约1:3、约1:4、约1:5、约1:6、约1:7、约1:8、约1:9、约1:10、约1:11、约1:12、约1:13、约1:14、约1:15、约1:16、约1:17、约1:18、约1:19或其间的任意范围,尤 其优选为约1:3~4:6。
在一个实施方案中,本申请还涉及一种益生菌微胶囊的制备方法,所述益生菌微胶囊具有一层或多层包埋结构,包括以下步骤:
(1)第一层微胶囊的包被:
a.任选的,向菌泥或菌粉中添加粘合剂进行造粒;
b.任选的,对第一壁材进行预处理:
将第一壁材与水混合,充分溶解后进行冷热交替处理形成稳定凝胶:
(i)优选的,将所述第一壁材与水混匀,于低温约2至8℃搅拌约约4至16小时,优选的转速约170至240每分钟;
(ii)更优选进一步对第一壁材进行约75至约96℃(优选约75℃、约76℃、约77℃、约78℃、约79℃、约80℃、约81℃、约82℃、约83℃、约84℃、约85℃、约86℃、约87℃、约88℃、约89℃、约90℃、约91℃、约92℃、约93℃、约94℃、约95℃、约96℃,或其间的任意范围),约30至约180分钟的热处理(优选约35、约40、约45、约50、约55、约60、约65、约70、约75、约80、约85、约90、约95、约100、约105、约110、约115、约120、约125、约130、约135、约140、约145、约150、约155、约160、约165、约170、约175分钟,或其间的任意范围),优选的转速85至115rpm/每分钟;
(iii)再优选立即冷却,冷却温度约-20至约4℃;约4℃存放约12~约60小时(优选约12、约13、约14、约15、约16、约17、约18、约19、约20、约21、约22、约23、约24、约25、约26、约27、约28、约29、约30、约31、约32、约33、约34、约35、约36、约37、约38、约39、约40、约41、约约42、约43、约44、约45、约46、约47、约48、约49、约50、约51、约约52、约53、约54、约55、约56、约57、约58、约59、约60小时,或其间的任意范围)得到第一壁材的凝胶溶液;
优选的,上述第一壁材为WPI,优选为约150至约950重量份,更优选:约300~750重量份;
c.将第一壁材液滴均匀包裹到菌粉、菌泥,或者上述步骤a中所得的颗粒上;
d.固化:使固化液液滴均匀包裹上述步骤c中所得的颗粒;
e.干燥;
优选的,菌粉或菌泥和第一层壁材的比例为:2-10:8-16;
(2)任选的第二层微胶囊的包被:
f.将步骤(1)得到的单层微胶囊干粒作为菌芯颗粒与第二层壁材混合制备双层微胶囊,所述第二壁材优选为油脂(优选熔点为40-50℃的油脂,尤其是棕榈油或者MCT)或着乳清蛋白,优选为约0~350重量份;
g.将步骤f所制微胶囊干燥并收集双层微胶囊干粒;
(3)任选第三次或更多次包衣:
j.将步骤(2)得到的双层微胶囊按照前述方法继续进行第三次或更多次包衣;
所述第三壁材优选为油脂(优选熔点为40-50℃的油脂,尤其是棕榈油或者MCT)或着乳清蛋白,优选为约0~350重量份。
优选的,上述益生菌微胶囊的制备方法,其中,第(1)第一层微胶囊的包被的步骤中制得的湿颗粒经干燥后粒径≤400um,优选为50-300um。
优选的,上述第(1)第一层微胶囊的包被的步骤中,使用挤压造粒法。
优选的,上述第(1)第一层微胶囊的包被的步骤中,使用使用流化床造粒法。
优选的,上述益生菌微胶囊的制备方法,其中,第(1)第一层微胶囊的包被的步骤中的固化剂选自乙酸钠、柠檬酸、柠檬酸钠、钙盐、冰乙酸和表面活性剂中的一种或几种的混合物。优选的,固化剂为乙酸-乙酸钠缓冲液,添加占固化剂溶液体积约0.01%至约0.1%的吐温-20。优选的,固化剂溶液浓度为约0.5mol/L,pH约4.5至约5.3。
益生菌微胶囊的制备方法(A)
本发明还涉及一种益生菌微胶囊的制备方法,所述益生菌微胶囊具有一层或多层包埋结构,包括:菌芯颗粒和任选的至少一层包覆所述菌芯颗粒的外壳,其中,所述菌芯颗粒包括芯材和第一层壁材,所述芯材包括一种或多种益生菌粉或菌泥,所述芯材被所述第一层壁材所包覆,以及所述至少一层包覆所述菌芯颗粒的外壳包括两层或更多层壁材,分别为第二层壁材、第三层壁材或者更多层壁材,其中,包括以下步骤:
(1)单层微胶囊制备:任选的将菌粉或菌泥与粘合剂混合造粒,而后与第一壁材均匀混合(优选锐角挤压造粒法)并任选经固化、过滤收集湿粒进行干燥得到单层微胶囊干粒;和任选的
(2)多层微胶囊制备:将上述单层微胶囊干粒作为菌芯颗粒,在菌芯颗粒外均匀涂布一层壁材(优选通过流化床喷雾造粒法),并任选喷涂固化液使胶囊壁固化而不溶于水,将所制微胶囊干燥(优选于流化床中干燥),收集双层微胶囊干粒或者将其继续再次或多次包衣。
本发明还涉及一种益生菌微胶囊的制备方法,所述益生菌微胶囊具有一层或多层包埋结构,包括以下步骤:
(1)第一层微胶囊的包被:将第一壁材与益生菌菌粉或菌泥充分混匀后造粒,任选滴入固化剂溶液中固化,过滤收集微胶囊颗粒并任选将所得微胶囊进行干燥得到菌芯颗粒;和任选的
(2)第二层微胶囊的包被:将步骤(1)得到的微胶囊与第二壁材混匀,通过流化床喷雾法制备微胶囊,将所制微胶囊干燥并收集双层微胶囊干粒;
(3)任选将步骤(2)得到的微胶囊继续于流化床中进行第三次或更多次包衣。
在一个实施方案中,上述益生菌微胶囊的制备方法中,所述第一壁材为乳清蛋白,将所述乳清蛋白进行预变性处理:将乳清蛋白与水混合,充分溶解后进行冷热交替处理形成稳定凝胶。
优选的,将所述乳清蛋白与水混匀,于低温2至8℃搅拌4至16小时,转速170至240每分钟;
更优选进一步对乳清蛋白溶液进行约75至约96℃(优选约75℃、约76℃、约77℃、约78℃、约79℃、约80℃、约81℃、约82℃、约83℃、约84℃、约85℃、约86℃、约87℃、约88℃、约89℃、约90℃、约91℃、约92℃、约93℃、约94℃、约95℃、约96℃,或其间的任意范围),约30至约180分钟的热处理(优选约35、约40、约45、约50、约55、约60、约65、约70、约75、约80、约85、约90、约95、约100、约105、约110、约115、约120、约125、约130、约135、约140、约145、约150、约155、约160、约165、约170、约175分钟,或其间的任意范围),转速85至115rpm/每分钟;
再优选立即冷却,冷却温度约-20至约4℃;约4℃存放约12~约60小时(优选约12、约13、约14、约15、约16、约17、约18、约19、约20、约21、约22、约23、约24、约25、约26、约27、约28、约29、约30、约31、约32、约33、约34、约35、约36、约37、约38、约39、约40、约41、约约42、约43、约44、约45、约46、约47、约48、约49、约50、约51、约约52、约53、约54、约55、约56、约57、约58、约59、约60小时,或其间的任意范围)得到乳清蛋白的凝胶溶液。
优选的,上述第(1)第一层微胶囊的包被的步骤中,使用挤压造粒法。
优选的,上述第(1)第一层微胶囊的包被的步骤中,使用锐角挤压造粒法造粒得到乳清蛋白包被的微胶囊。
优选参数为:挤压喷头孔径为约150~约750μm(优选约150、约200、约250、约300、约350、约400、约450、约500、约550、约600、约650、约700、约750μm或其间的任意范围),优选喷头约150至约200μm与约300至约500μm组合,电压约1500至约1800mv(优选约1300、约1400、约1500、约1600、约1700、约1800mv或其间的任意范围),频率约1300至约1500Hz(优选约1300、约1400、约1500或其间的任意范围),气压约290至约330mbar。
优选的,上述益生菌微胶囊的制备方法,其中,第(1)第一层微胶囊的包被的步骤中的固化剂选自乙酸钠、柠檬酸、柠檬酸钠、钙盐、冰乙酸和表面活性剂中的一种或几种的混合物。优选的,固化剂为乙酸-乙酸钠缓冲液,添加占固化剂溶液体积约0.01%至约0.1%的吐温-20。优选的,固化剂溶液浓度为约0.5mol/L,pH约4.5至约5.3。
优选的,上述益生菌微胶囊的制备方法,其中,第(2)第二层微胶囊的包被的步骤中,所述第二层壁材为WPI或油脂(优选为棕榈油或者MCT)或者其组合物。
优选的,上述益生菌微胶囊的制备方法,其中,第(3)第二层微胶囊的包被的步骤中,采用流化床法进行第二次包衣,优选采用升温至25至75℃乳清蛋白凝胶液,优选流化床进风温度为30至80摄氏。
优选的,上述益生菌微胶囊的制备方法,其中,第(2)第二层微胶囊的包被的步骤中,所述第二层壁材为油脂,油脂优选为棕榈油或者中链甘油三 酯(MCT),并将步骤(2)得到的微胶囊用WPI进一步进行第三次包衣。
优选的,上述的双层或多层益生菌微胶囊,其中第一层包衣后得到的菌芯颗粒外径为约50-500μm(优选约50~约300μm),双层或多层微胶囊外径为约约200~约1000μm(优选约100~约500μm)。
益生菌微胶囊的制备方法(B)
本发明涉及一种益生菌微胶囊的制备方法,所述益生菌微胶囊具有一层或多层包埋结构,包括:菌芯颗粒和任选的至少一层包覆所述菌芯颗粒的外壳,其中,所述菌芯颗粒包括芯材和第一层壁材,所述芯材包括一种或多种益生菌粉或菌泥,所述芯材被所述第一层壁材所包覆,以及所述至少一层包覆所述菌芯颗粒的外壳包括一层、两层或更多层壁材,分别为第二层壁材、第三层壁材或者更多层壁材,其中,包括以下步骤:
(1)单层微胶囊制备:任选的将菌粉或菌泥与粘合剂混合造粒,而后通过流化床喷雾造粒法与第一壁材均匀混合并任选经固化、过滤收集湿粒进行干燥得到单层微胶囊干粒;和任选的
(2)多层微胶囊制备:将上述单层微胶囊干粒作为菌芯颗粒,通过流化床喷雾造粒法在菌芯颗粒外均匀涂布一层壁材,并任选喷涂固化液使胶囊壁固化而不溶于水,将所制微胶囊干燥(优选于流化床中干燥),收集双层微胶囊干粒或者将其继续再次或多次包衣。
本发明还涉及一种益生菌微胶囊的制备方法,所述益生菌微胶囊具有一层或多层包埋结构,包括以下步骤:
1、微胶囊芯材制粒:将菌粉或菌泥与粘合溶液混合,经由流化床喷雾造粒制成颗粒,所述颗粒占微胶囊成品重量的百分比约为5~95%;
优选的,所述粘合溶液如下配制:
将粘合剂溶解于温水中,充分溶解后在约80摄氏度下保温约1小时,并且不间断搅拌,浓度为约5~25%,优选约5%、约6%、约7%、约8%、约9%、约10%、约11%、约12%、约13%、约14%、约15%、约16%、约17%、约约18%、约19%、约20%、约21%、约22%、约23%、约24%、约25%,或期间的任意范围;
优选的,粘合剂的温度为:约30~80℃。
2、过筛:选取所需目数的标准筛,优选粒径为约50~400微米之间颗粒;通过自动或者手动筛分出所粒径分布范围的颗粒作为微胶囊的核心颗粒,进行下一步的包衣处理;
优选的,筛下物可以回到流化床中继续进行制粒,筛上物可以经过研磨,制成细粉后回添到流化床中继续进行制粒;
3、单层微胶囊制备:将经筛分所得颗粒投入流化床用第一层壁材溶液进行喷涂包衣;和任选的,
4、多层微胶囊制备:优选通过流化床喷雾造粒法,在上述单层微胶囊外均匀涂布第二层壁材,并喷涂固化液使胶囊壁固化而不溶于水,所制微胶囊继续于流化床中干燥,收集双层微胶囊干粒或者继续于流化床中再次涂布第三层壁材或更涂布更多次壁材。
优选的,上述益生菌微胶囊的制备方法中,以1000重量份微胶囊干粒为基准,
益生菌菌泥或菌粉为约50至约500重量份,更优选:约100重量份、约150重量份、约200重量份、约250重量份、约300重量份、约350重量份、约400重量份、约450重量份或其间的任意范围,尤其优选约250~约400重量份;
第一层壁材为约150至约950重量份,更优选:约200重量份、约250重量份、约300重量份、约350重量份、约400重量份、约450重量份、约500重量份、约550重量份、约600重量份、约650重量份、约700重量份、约750重量份、约800重量份、约850重量份、约900重量份或其间的任意范围,尤其优选约450~约750重量份;
任选的第二层壁材为约0至约350重量份,更优选:约100重量份、约150重量份、约200重量份、约250重量份、约300重量份或其间的任意范围,尤其优选约200~约300重量份;
任选的第三层约0至约350重量份,更优选:约100重量份、约150重量份、约200重量份、约250重量份、约260重量份、约300重量份或其间的任意范围,尤其优选约200~约300重量份;
任选的第四层约0至约250重量份,更优选:约100重量份、约150重量份、约200重量份、约250重量份、约260重量份、约250重量份或其间 的任意范围,尤其优选约100~约250重量份。
优选的,上述益生菌为适用于本发明的益生菌微胶囊的任意益生菌,例如本发明中定义的益生菌,尤其优选:青春双歧杆菌、动物双歧杆菌(乳双歧杆菌)、两歧双歧杆菌、短双歧杆菌、婴儿双歧杆菌、长双歧杆菌、嗜酸乳杆菌干酪乳杆菌、卷曲乳杆菌、德氏乳杆菌保加利亚亚种、德氏乳杆菌乳亚种、发酵乳杆菌、格氏乳杆菌、瑞士乳杆菌、约氏乳杆菌、副干酪乳杆菌、植物乳杆菌、罗伊氏乳杆菌、鼠李糖乳杆菌、唾液乳杆菌、嗜热链球菌、凝结芽孢杆菌等益生菌中的一种或多种。
在一个实施方案中,上述益生菌微胶囊的制备方法中,上述第一层壁材为蛋白质(优选WPI),第二层壁材为蛋白质(优选WPI),任选的第三层壁材为蛋白质(优选WPI)或者油脂;
优选的,上述油脂为熔点为40-50℃的油脂;
尤其优选下列中的一种或者多种的组合:中链甘油三酯(MCT)、代可可脂、可可脂、棕榈油、卵磷脂、棕榈油甘油单酯、氢化油脂(如:氢化棕榈油、硬化油、氢化大豆油)等;
优选的,用油脂进行包衣,油脂选自本发明中涉及的任意油脂,上述益生菌制备方法中的油脂所占微胶囊成品重量的百分比为0.25%~50%。
本发明涉及一种益生菌微胶囊的制备方法,所述益生菌微胶囊具有一层或多层包埋结构,包括下列步骤:
(1)流化床造粒:
a.配制粘合溶液:
将粘合剂(优选淀粉)溶解于温水中,充分溶解后在约30~80℃下保温约1小时,并且不间断搅拌,优选的,在30℃、35℃、40℃、45℃、50℃、55℃、60℃、70℃、75℃、80℃或期间的任意范围的温度下保温;
优选的浓度为约5~25%,优选5%、6%、7%、8%、9%、10%、11%、12%、13%、14%、15%、16%、17%、18%、19%、20%、21%、22%、23%、24%、25%,或期间的任意范围;
b.流化床喷雾造粒:
将益生菌菌粉投入到流化床中,并启动进风使粉体循环流动,将粘合溶液通过喷枪雾化喷射到流化床中,液滴与粉体结合制成颗粒;
其中:
益生菌菌粉为约50至约500重量份,更优选约250~约400重量份;
流化床进风温度优选为约30~80℃;
(2)颗粒筛分:
c.过筛:将流化床内内粉体取出,取50~400微米之间颗粒;
(3)第一次包衣:
d.将所取颗粒投入到流化床中,并启动进风使粉体循环流动,取第一壁材优选为油脂通过喷枪雾化喷射到流化床中,使壁材均匀包裹颗粒;
其中:优选的,油脂为棕榈油或者MCT,为约200至约350重量份;
(4)任选的第二次包衣:
e.取第二壁材通过喷枪雾化喷射到流化床中,使液滴均匀包裹上述步骤中所得的颗粒;
其中:优选的,第二壁材为乳清蛋白,优选为150~950重量份;更优选300~750重量份;
将所述乳清蛋白进行预变性处理:将乳清蛋白与水混合,充分溶解后进行冷热交替处理形成稳定凝胶;
优选的,将所述乳清蛋白与水混匀,于低温约2至8℃搅拌约4至16小时,优选的转速170至240每分钟;
更优选进一步对乳清蛋白溶液进行约75至约96℃(优选约75℃、约76℃、约77℃、约78℃、约79℃、约80℃、约81℃、约82℃、约83℃、约84℃、约85℃、约86℃、约87℃、约88℃、约89℃、约90℃、约91℃、约92℃、约93℃、约94℃、约95℃、约96℃,或其间的任意范围),约30至约180分钟的热处理(优选约35、约40、约45、约50、约55、约60、约65、约70、约75、约80、约85、约90、约95、约100、约105、约110、约115、约120、约125、约130、约135、约140、约145、约150、约155、约160、约165、约170、约175分钟,或其间的任意范围),优选的转速85至115rpm/每分钟;
再优选立即冷却,冷却温度约-20至约4℃;约4℃存放约12~约60小时(优选约12、约13、约14、约15、约16、约17、约18、约19、约20、约21、约22、约23、约24、约25、约26、约27、约28、约29、约30、约31、 约32、约33、约34、约35、约36、约37、约38、约39、约40、约41、约约42、约43、约44、约45、约46、约47、约48、约49、约50、约51、约约52、约53、约54、约55、约56、约57、约58、约59、约60小时,或其间的任意范围)得到乳清蛋白的凝胶溶液;
然后,将所得的乳清蛋白凝胶溶液升温至约25~75℃(优选的约25℃、约30℃、约35℃、约40℃、约45℃、约50℃、约60℃、约65℃、约70℃、约75℃,或其间的任意范围),通过喷枪雾化喷射到流化床中,使液滴均匀包裹上述步骤d中所得的颗粒;
f.固化:取固化液,通过喷枪雾化喷射到流化床中,使液滴均匀包裹上述步骤e中所得的颗粒;
g.干燥:将步骤f中制备的微胶囊在流化床中继续干燥约1-30min,颗粒水分含量达到<8%时取出;
(5)任选的第三次或更多次包衣:
h.收集上述双层微胶囊干粒或者继续于流化床中再次涂布第三层壁材或更涂布更多次壁材。
益生菌微胶囊软颗粒及其制备方法
一种益生菌微胶囊软颗粒,其包含根据上述方案中所述的益生菌微胶囊,其包括益生菌微胶囊椰纤果软颗粒和益生菌微胶囊凝胶球软颗粒。
在一个实施方式中,基于所述的益生菌微胶囊软颗粒的总重量,含有重量百分比为约0.2~0.5%的益生菌微胶囊。
在一个实施方式中,益生菌微胶囊软颗粒还含有椰子水、椰浆、椰果酱、蔗糖、白砂糖、果葡糖浆、木醋杆菌、酸度调节剂、乙醇和水中的一种或多种,优选地,其中蔗糖含量为约5-10%、白砂糖含量为约3-5%、果葡糖浆含量为约0-5%、磷酸二氢铵含量为约0.3-0.8%、木醋杆菌含量为约0.1-0.5%、酸度调节剂含量为约1-5%。
或者,根据上述方案所述的益生菌微胶囊凝胶球软颗粒,还含有白砂糖、海藻酸钠、黄原胶、魔芋胶、卡拉胶、固化液(含乳酸钙、氯化钙)、益生菌微胶囊、色素、纯净水中的一种或多种;优选地,其中白砂糖含量为约10-15%、海藻酸钠约0.5-1%、黄原胶约0.1-0.3%、魔芋胶约0.1-0.2%,固化液中乳酸 钙浓度约1-3%。
在一个实施方案中,本发明还涉及一种益生菌微胶囊椰纤果软颗粒,其包含本文中记载的上述的益生菌微胶囊,其中,基于所述含益生菌微胶囊的椰纤果软颗粒的总重量,含有重量百分比为约0.2~0.5%的益生菌微胶囊,还含有椰子水、椰浆、椰果酱、蔗糖、白砂糖、果葡糖浆、木醋杆菌、酸度调节剂、乙醇和水中的一种或多种,优选地,其中蔗糖含量为约5-10%、白砂糖含量为约3-5%、果葡糖浆含量为约0-5%、磷酸二氢铵含量为约0.3-0.8%、木醋杆菌含量为约0.1-0.5%、酸度调节剂含量为约1-5%。
在另一个实施方案中,本发明还涉及一种益生菌微胶囊凝胶球软颗粒,其包含本文中记载的上述的益生菌微胶囊,其中,基于所述含益生菌微胶囊凝胶球软颗粒的总重量,含有重量百分比为约0.2~0.5%的益生菌微胶囊,优选地,其中,还含有白砂糖、海藻酸钠、黄原胶、魔芋胶、卡拉胶、固化液(含乳酸钙、氯化钙)、益生菌微胶囊、色素、纯净水中的一种或多种;优选地,其中白砂糖含量为约10-15%、海藻酸钠约0.5-1%、黄原胶约0.1-0.3%、魔芋胶约0.1-0.2%,固化液中乳酸钙浓度约1-3%。
含益生菌微胶囊的食品或保健品
在一个实施方案中,本申请还涉及一种含益生菌微胶囊的食品或保健品,其包含本文中记载的上述的益生菌微胶囊。
优选的,所述食品或保健品选自乳制品、发酵风味食品、饮料、巧克力、糖果、烘焙食品或果蔬汁食品中的一种或多种。
优选的,上述含益生菌微胶囊的食品或保健品中,基于所述含益生菌微胶囊的食品或保健品的总重量,含有重量百分比为0.02~1%的益生菌微胶囊,优选为0.04~0.5%,更优选0.06~0.15%;
优选的,所述含益生菌微胶囊的食品或保健品还含有蜂蜜,所述蜂蜜具备添加微胶囊的载体功能,优选的,基于微胶囊蜂蜜混合液的总重量,含有重量百分比为约80%-99.9%的蜂蜜。
本申请还涉及一种含益生菌微胶囊的食品或保健品,其中,所述含益生菌微胶囊的食品或保健品为酸奶,优选的,所述酸奶还包括生牛乳和/或复原乳、稳定剂、酸度调节剂、发酵剂。更优选的,所述酸奶包括:基于所述的 含益生菌微胶囊的酸奶的总重量,生牛乳/复乳约89-94%,白砂糖约5.5-10.9%、稳定剂约0.1-0.5%、发酵剂约30-100U/吨和益生菌微胶囊约0.02~0.5%(优选0.06~0.15%)。
在一个实施方案中,本申请还涉及一种含益生菌微胶囊的食品或保健品,其中,所述含益生菌微胶囊的食品或保健品为奶酪,优选的,所述奶酪还包括生牛乳,食用盐,发酵剂或凝乳酶;更优选的,所述奶酪包含:食用盐约0.8-1.8%,和发酵剂约0.001-0.005%、凝乳酶约0.001-0.005%、益生菌微胶囊约0.02~0.5%(优选约0.06~0.15%),其余为生牛乳。
在一个实施方案中,本申请还涉及一种制备含益生菌微胶囊的食品或保健品的方法,包括以下步骤:
(1)根据上述益生菌微胶囊的制备方法制备益生菌微胶囊;
(2)将所述益生菌微胶囊添加到食品或或保健品中,优选的,含有益生菌的微胶囊的添加量为约0.02~1%,优选为约0.04~0.5%,更优选0.06~0.15%。
在一个实施方案中,本申请涉及一种制备含益生菌微胶囊的食品或保健品的方法,所述含益生菌微胶囊的食品或保健品为酸奶,所述酸奶根据常规方式制备,其中,在最后一次巴氏灭菌前,将所述益生菌微胶囊添加到制备的产品中,或者在最后一次巴氏灭菌后,将益生菌微胶囊进行无菌化处理后添加到制备的产品中。
优选的,所述无菌化处理的步骤包括:
(1)将微胶囊颗粒和蜂蜜混合,优选的,微胶囊与蜂蜜比例为约1:1000~1:10,更优选约1:500~1:10、约1:100~1:10或约1:50~1:10。
(2)将上述混合后的微胶囊颗粒采用紫外杀菌处理或者双氧水处理,优选的,紫外线处理强度为约1000~20000J/L,更优选约5000~~20000J/L、约10000~20000J/L、约15000~20000J/L。
在一个实施方案中,本申请涉及一种制备含益生菌微胶囊的食品或保健品的方法,所述含益生菌微胶囊的食品或保健品为酸奶,所述酸奶如下制备:
a.任选的,执行发酵乳国家标准制备工艺;
b.将除发酵菌种和微胶囊、蜂蜜以外的原料进行混合配料,制备发酵乳的混合料液,配料温度优选约40~80℃,然后冷却优选至约20℃以下;
c.搅拌,均质(均质压力优选为约150-200bar),然后执行高温长时间灭菌(优选为杀菌温度95℃,杀菌时间300秒),杀菌后冷却到41-43℃;
d.接菌,并进行温度41-43℃的发酵;
e.破乳,翻罐,然后冷却至25℃以下;
f.巴氏灭菌,灭菌温度74℃,灭菌时间30秒;
g.冷却到15-30℃,进入无菌罐内;
h.无菌灌装;
其中,在e步骤之后且f步骤之前,将e步骤所得的产品转序到待装罐中并投入益生菌微胶囊颗粒,并进行搅拌15分钟;或者
其中,在步骤h之前且g步骤之后,添加无菌化处理过的益生菌微胶囊;或者,
在步骤h之后且i步骤之前,添加无菌化处理过的益生菌微胶囊。
在一个实施方案中,本申请涉及一种制备含益生菌微胶囊的食品或保健品的方法,所述含益生菌微胶囊的食品或保健品为奶酪,所述奶酪根据常规方式制备,包括:
a.将生牛乳进行净乳、标准化、巴氏杀菌处理;
b.将巴氏杀菌后的生牛乳降温至约32~43℃,添加发酵剂,保温约50~60min进行预酸化;
c.然后再添加凝乳酶,保温约40~50min,搅拌后保温静置;
d.将静置90~180min后的混合物进行切割成小块,静置5~10min;
e.逐渐搅拌升温至约36~45℃,至pH值为约5.8~6.3时进行排乳清处理;
f.将经过排乳清处理的混合物进行堆酿处理,至凝块pH值为约5.5~5.9时进行入模处理,
g.将入模的混合物成型后进行脱模处理,之后立即进行冷冻处理得到所述奶酪。
其中,在步骤b的巴氏杀菌后的生牛乳降温至约32~43℃后,添加无菌化处理过的益生菌微胶囊;或者
在步骤d之后且步骤e之前,添加无菌化处理过的益生菌微胶囊。
在一个实施方案中,本申请涉及一种制备含益生菌微胶囊的食品或保健品的方法,所述含益生菌微胶囊的食品或保健品为再制奶酪,所述再制奶酪 根据常规方式制备,包括:
a.将脱脂粉,乳化盐与部分白砂糖混匀,45℃搅拌水合30min;
b.将预混的胶体和白砂糖加入水中,充分搅拌至完全溶解;
c.熔化马苏里拉奶酪、稀奶油和黄油;
d.将胶体溶液升温至95℃,保持3分钟后,加入脱脂粉溶液,再保温搅拌2分钟;
e.将溶液加入熔化的奶酪中,定容至1000kg。
f.均质15MPa,65-70℃;
g.杀菌:90~95℃/300s;
h.降温到75℃灌装,降温冷藏;
其中,在步骤g的巴氏杀菌后和h步骤前,添加无菌化处理过的益生菌微胶囊;或者
在步骤g之前和f步骤之后,添加益生菌微胶囊。
在一个实施方案中,本申请涉及一种制备含益生菌微胶囊的食品或保健品的方法,所述含益生菌微胶囊的食品或保健品为乳饮料,所述乳饮料根据常规方式制备,包括:
Figure PCTCN2020088467-appb-000005
Figure PCTCN2020088467-appb-000006
其中,在最后杀菌前添加益生菌胶囊,或者在最后杀菌后添加无菌化处理过的益生菌微胶囊。
在一个实施方案中,本申请涉及一种制备含益生菌微胶囊的食品或保健品的方法,所述含益生菌微胶囊的食品或保健品为乳饮料,所述乳饮料根据常规方式制备,包括:
Figure PCTCN2020088467-appb-000007
Figure PCTCN2020088467-appb-000008
其中,在最后均质后添加无菌化处理过的益生菌微胶囊
在一个实施方案中,本申请涉及一种制备含益生菌微胶囊的食品或保健品的方法,所述含益生菌微胶囊的食品或保健品为固体乳制品,所述固体乳
Figure PCTCN2020088467-appb-000009
制品常规方式制备,包括:
Figure PCTCN2020088467-appb-000010
Figure PCTCN2020088467-appb-000011
其中,在流化床的步骤前添加益生菌微胶囊。
在一个实施方案中,本申请涉及一种制备含益生菌微胶囊的食品或保健品的方法,所述含益生菌微胶囊的食品或保健品为固体饮料,所述固体饮料常规方式制备,包括:
Figure PCTCN2020088467-appb-000012
Figure PCTCN2020088467-appb-000013
其中,在流化床的步骤后添加益生菌微胶囊。
在一个实施方案中,本申请涉及一种制备含益生菌微胶囊的食品或保健品的方法,所述含益生菌微胶囊的食品或保健品为冰淇淋,所述冰淇淋常规方式制备,包括:
Figure PCTCN2020088467-appb-000014
其中,在老化的步骤后添加益生菌胶囊。
总之,在上述添加益生菌微胶囊的技术方式方面,可以“前添加”,也可以采用“后添加”的方式实现:
应该理解,实质上并不影响本申请各种实施方案的作用的修改也包括在本申请提供的发明的定义中。因此,以下实施例旨在阐述而不是限制本申请。
实施例
A.益生菌微胶囊的制备(I)
实施例A1~A3及其对比例
实施例A1
1、原料(以1000g微胶囊干粒为基准)
WPI 750g(浓度11%);
水6068g;
凝结芽孢杆菌菌粉250g;
固化剂溶液6818ml,浓度0.5mol/L,其中:固化剂为乙酸钠、冰乙酸和吐温-20的混合液。乙酸钠为137g、冰乙酸为100ml、吐温-20为2.9g,水6718g。
2、制备方法
a.将乳清蛋白与水混匀,于4℃下180rpm/分钟搅拌16小时;
b.对乳清蛋白溶液进行78℃、95rpm/分钟、45分钟的热处理;
c.0℃下立即冷却;4℃存放12小时;
d.将乙酸钠137g、冰乙酸100ml和6718g水混匀配成固化剂溶液,调整pH至4.6,加入吐温-20 2.9g,充分混匀后待用。
e.造粒:将上述预处理过的WPI与所述益生菌菌粉均匀混合造粒;
f.固化:使上述造粒所得的液滴或颗粒在固化液中形成湿粒,固化时间至少10分钟;
g.过滤收集固化湿粒,至于鼓风干燥箱中70℃烘干。
本实施例所得的微胶囊为单层微胶囊,微胶囊内活菌量达1.3×10 10cfu/g,粒径300um,颗粒大小均匀、有光泽。常温条件下存放30天后,微胶囊内活菌量下降为9.2×10 9cfu/g;60天后微胶囊内活菌量下降为7.7×10 9cfu/g;120天后微胶囊内活菌量下降为4.8×10 9cfu/g;胶囊外表面菌残留为2.3×10 6cfu/g。该单层微胶囊在模拟胃液中孵育2h后所含活菌量降低为8.8×10 9cfu/g,微胶囊干粒吸水48h后增重19%。
对比例A1
1、原料(以1000g微胶囊干粒为基准)
WPI 750g(浓度11%);
水6068g;
凝结芽孢杆菌菌粉250g;
固化剂溶液6818ml,浓度0.5mol/L,其中固化剂为乙酸钠、冰乙酸和吐温-20的混合液。乙酸钠137g、冰乙酸100ml、吐温-20为2.9g,水6818g。
2、制备方法
a.将乳清蛋白与水混匀,于4℃下180rpm/分钟搅拌16小时;
b.对乳清蛋白溶液进行78℃、95rpm/分钟、45分钟的热处理;
c.0℃下立即冷却;4℃存放4小时;
d.将乙酸钠137g、冰乙酸100ml和6718g水混匀配成固化剂溶液,调整pH至4.6,加入吐温-20 2.9g,充分混匀后待用。
e.造粒:将上述预处理过的WPI与所述益生菌菌粉均匀混合造粒;
f.固化:使上述造粒所得的液滴或颗粒在固化液中形成湿粒,固化时间至少10分钟;
g.过滤收集固化湿粒,至于鼓风干燥箱中70℃烘干。
本对比例所得的微胶囊为单层微胶囊,微胶囊内活菌量达4.8×10 9cfu/g,粒径330um,颗粒大小不均匀、有拖尾、光泽度欠佳。常温条件下存放30天 后,微胶囊内活菌量下降为8.2×10 8cfu/g,60天后微胶囊内活菌量下降为6.1×10 7cfu/g,120天后微胶囊内活菌量下降为3.8×10 6cfu/g,胶囊外表面菌残留为3.6×10 6cfu/g。该单层微胶囊在模拟胃液中孵育2h后所含活菌量降低为4.1×10 7cfu/g,微胶囊干粒吸水48h后增重65%。
实施例A2
1、原料(以1000g微胶囊干粒为基准)
WPI(第一层壁材)450g(浓度11%);
WPI(第二层壁材)300g(浓度11%);
水6068g,包括第一层壁材所用水3641g,第二层壁材所用水2427g;
凝结芽孢杆菌菌粉250g;
固化剂溶液6818ml,浓度0.5mol/L,其中固化剂为乙酸钠、冰乙酸和吐温-20的混合液。乙酸钠137g、冰乙酸100ml、吐温-20 2.9g,水6718g。
2、制备方法
a.将乳清蛋白与水混匀,于4℃下180rpm/分钟搅拌16小时;
b.对乳清蛋白溶液进行78℃、95rpm/分钟、45分钟的热处理;
c.0℃下立即冷却;4℃存放12小时;
d.将乙酸钠137g、冰乙酸100ml和6718g水混匀配成固化剂溶液,调整pH至4.6,加入吐温-20 2.9g,充分混匀后待用。
e.造粒:将上述预处理过的WPI与所述益生菌菌粉均匀混合造粒;
f.固化:使上述造粒所得的液滴或颗粒在固化液中形成湿粒,固化时间至少10分钟;
g.过滤收集固化湿粒,至于鼓风干燥箱中70℃烘干。
h.流化床喷雾造粒法:将300gWPI按照上述预处理后得到乳清蛋白溶液或者凝胶液,将其升温至50℃,与所述步骤g中的颗粒混合,均匀包裹步骤g中颗粒,流化床进风温度为65℃,风量根据WPI的批重量和流化状态设定,颗粒固化后在流化床中干燥。
本实施例所得微胶囊为双层微胶囊,微胶囊内活菌量达1.3×10 10cfu/g,粒径330um,颗粒大小均匀、有光泽。常温条件下存放30天后,微胶囊内活菌量下降为9.8×10 9cfu/g,60天后微胶囊内活菌下降为8.8×10 9cfu/g,120天 后微胶囊内活菌量下降为7.2×10 9cfu/g,胶囊外表面菌残留为2.2×10 4cfu/g。该单层微胶囊在模拟胃液中孵育2h后所含活菌量降低为9.0×10 9cfu/g,微胶囊干粒吸水48h后增重9%。
实施例A3
1、原料(以1000g微胶囊干粒为基准)
WPI(第一层壁材)300g(浓度11%);
MCT(第二层壁材)200g(浓度100%);
WPI(第三层壁材)250g(浓度11%);
水4450g,包括第一层壁材所用水2427g,第三层壁材所用水2023g;
凝结芽孢杆菌菌粉250g;
固化剂溶液5000ml,浓度0.5mol/L,其中固化剂为乙酸钠、冰乙酸和吐温-20的混合液。乙酸钠101g、冰乙酸74ml、吐温-20 2g,水4926g。
2、制备方法
a.将乳清蛋白与水混匀,于4℃下180rpm/分钟搅拌16小时;
b.对乳清蛋白溶液进行78℃、95rpm/分钟、45分钟的热处理;
c.0℃下立即冷却;4℃存放12小时;
d.将乙酸钠101g、冰乙酸74ml和4926g水混匀配成固化剂溶液,调整pH至4.6,加入吐温-20 2g,充分混匀后待用。
e.造粒:将上述预处理过的WPI与所述益生菌菌粉均匀混合造粒;
f.固化:使上述造粒所得的液滴或颗粒在固化液中形成湿粒,固化时间至少10分钟;
g.过滤收集固化湿粒,至于鼓风干燥箱中70℃烘干。
h.流化床喷雾造粒法:
二层油膜喷涂:将200g液态MCT油脂升温至55℃,流化床进风温度为40℃,风量根据MCT溶液的批重量和流化状态设定,流化床中干燥得到双层油粒;
三层WPI喷涂:将250gWPI与2023g水混匀制成乳清蛋白溶液(必要时也可以是凝胶液),将该溶液升温至50℃,流化床进风温度为40℃,风量根据WPI溶液的批重量和流化状态设定,颗粒固化后与流化床中干燥。
本实施例所得的微胶囊为三层微胶囊,微胶囊内活菌量达1.3×10 10cfu/g,粒径330um,颗粒大小均匀、有光泽。常温条件下存放30天后,微胶囊内活菌量下降为1.3×10 10cfu/g,60天后微胶囊内活菌下降为9.8×10 9cfu/g,120天后微胶囊内活菌量下降为8.8×10 9cfu/g,胶囊外表面菌残留为1.2×10 3cfu/g。该单层微胶囊在模拟胃液中孵育2h后所含活菌量降低为1.0×10 10cfu/g,微胶囊干粒吸水48h后增重1%。
实施例A4~A8以及对比例
实施例A4
1、原料(以1000g微胶囊干粒为基准)
WPI:550g,浓度11%;
凝结芽孢杆菌菌粉:250g;
固化剂溶液:0.5mol/L,pH-4.6
MCT:200g
淀粉:浓度5%
2、制备方法
a.将乳清蛋白与水混匀,于4℃下180rpm/分钟搅拌16小时;
b.对乳清蛋白溶液进行78℃、95rpm/分钟、45分钟的热处理;
c.0℃下立即冷却;4℃存放12小时;
d.将乙酸钠137g、冰乙酸100ml和6718g水混匀配成固化剂溶液,调整pH至4.6,加入吐温-20 2.9g,充分混匀后待用。
e.造粒:将益生菌菌粉、粘合剂溶液和MCT混合均匀,使油滴均匀包裹颗粒;
f.加入乳清蛋白溶液,使液滴均匀包裹步骤e中所得的颗粒;
g.固化:使固化液液滴均匀包裹步骤f中所得的颗粒;
h.将步骤g中所制微胶囊干燥。
本实施例所得的微胶囊为双层微胶囊,微胶囊内活菌量达1.3×10 10cfu/g,粒径150-250μm,颗粒大小均匀、有光泽。常温条件下存放30天后,微胶囊内活菌量下降为9.3×10 9cfu/g;60天后微胶囊内活菌量下降为7.5×10 9cfu/g;120天后微胶囊内活菌量下降为4.8×10 9cfu/g;胶囊外表面菌残留为2.3×10 6 cfu/g。该双层微胶囊在模拟胃液中孵育2h后所含活菌量降低为8.8×10 9cfu/g,微胶囊干粒吸水48h后增重15%。
对比例A2
1、原料(以1000g微胶囊干粒为基准)
WPI:550g,浓度11%;
凝结芽孢杆菌菌粉250g;
固化剂溶液:0.5mol/L,pH-4.6
MCT:200g
淀粉:浓度10%
2、制备方法
a.将乳清蛋白与水混匀,于4℃下180rpm/分钟搅拌16小时;
b.对乳清蛋白溶液进行78℃、95rpm/分钟、45分钟的热处理;
c.0℃下立即冷却;4℃存放8小时;
d.将乙酸钠137g、冰乙酸100ml和6718g水混匀配成固化剂溶液,调整pH至4.6,加入吐温-20 2.9g,充分混匀后待用。
e.造粒:将益生菌菌粉、粘合剂溶液和MCT混合均匀,使油滴均匀包裹颗粒;
f.加入乳清蛋白溶液,使液滴均匀包裹步骤e中所得的颗粒;
g.固化:使固化液液滴均匀包裹步骤f中所得的颗粒;
h.将步骤g中所制微胶囊干燥。
本对比例所得的微胶囊为双层微胶囊,微胶囊内活菌量达4.8×10 9cfu/g,粒径150-250μm,颗粒大小不均匀、有拖尾、光泽度欠佳。常温条件下存放30天后,微胶囊内活菌量下降为8.2×10 8cfu/g,60天后微胶囊内活菌量下降为6.1×10 7cfu/g,120天后微胶囊内活菌量下降为3.8×10 6cfu/g,胶囊外表面菌残留为3.6×10 6cfu/g。该双层微胶囊在模拟胃液中孵育2h后所含活菌量降低为4.1×10 7cfu/g,微胶囊干粒吸水48h后增重50%。
对比例A3
1、原料(以1000g微胶囊干粒为基准)
WPI:550g,浓度11%;
凝结芽孢杆菌菌粉250g;
固化剂溶液:0.5mol/L,pH-4.6
MCT:200g
淀粉:温度60℃,浓度25%
2、制备方法
a.将乳清蛋白与水混匀,于4℃下180rpm/分钟搅拌16小时;
b.对乳清蛋白溶液进行78℃、95rpm/分钟、45分钟的热处理;
c.0℃下立即冷却;4℃存放40小时;
d.将乙酸钠137g、冰乙酸100ml和6718g水混匀配成固化剂溶液,调整pH至4.6,加入吐温-20 2.9g,充分混匀后待用。
e.造粒:将益生菌菌粉、粘合剂溶液和MCT混合均匀,使油滴均匀包裹颗粒;
f.加入乳清蛋白溶液,使液滴均匀包裹步骤e中所得的颗粒;
g.固化:使固化液液滴均匀包裹步骤f中所得的颗粒;
h.将步骤g中所制微胶囊干燥。
本对比例所得的微胶囊为单层微胶囊,微胶囊内活菌量达5.4×10 9cfu/g,粒径150-250μm,颗粒大小不均匀、有拖尾佳。常温条件下存放30天后,微胶囊内活菌量下降为5.2×10 8cfu/g,60天后微胶囊内活菌量下降为3.0×10 7cfu/g,120天后微胶囊内活菌量下降为2.2×10 6cfu/g,胶囊外表面菌残留为1.6×10 6cfu/g。该双层微胶囊在模拟胃液中孵育2h后所含活菌量降低为3.1×10 7cfu/g,微胶囊干粒吸水48h后增重50%。
实施例A5
1、原料(以1000g微胶囊干粒为基准)
MCT(第一层壁材)200g(浓度100%);
WPI(第二层壁材)350g(浓度11%);
MCT(第三层壁材)200g(浓度100%);
凝结芽孢杆菌菌粉250g;
固化剂溶液:0.5mol/L,pH-4.6
淀粉:浓度10%
2、制备方法
a.将乳清蛋白与水混匀,于4℃下180rpm/分钟搅拌16小时;
b.对乳清蛋白溶液进行78℃、95rpm/分钟、45分钟的热处理;
c.0℃下立即冷却;4℃存放16小时;
d.将乙酸钠137g、冰乙酸100ml和6718g水混匀配成固化剂溶液,调整pH至4.6,加入吐温-20 2.9g,充分混匀后待用。
e.造粒:将益生菌菌粉、粘合剂溶液和MCT混合均匀,使油滴均匀包裹颗粒;
f.加入乳清蛋白溶液,使液滴均匀包裹步骤e中所得的颗粒;
g.固化:使固化液液滴均匀包裹步骤f中所得的颗粒;
h.将步骤g中所制微胶囊干燥;
k.按照前述步骤采用MCT对步骤h中所得到的颗粒进行第三次包衣,其中MCT为200g。
本实施例所得微胶囊为三层微胶囊,微胶囊内活菌量达1.3×10 10cfu/g,粒径150-250μm,颗粒大小均匀、有光泽。常温条件下存放30天后,微胶囊内活菌量下降为9.9×10 9cfu/g,60天后微胶囊内活菌下降为8.9×10 9cfu/g,120天后微胶囊内活菌量下降为7.2×10 9cfu/g,胶囊外表面菌残留为0cfu/g。该单层微胶囊在模拟胃液中孵育2h后所含活菌量降低为9.0×10 9cfu/g,微胶囊干粒吸水48h后增重5%。
实施例A6
1、原料(以1000g微胶囊干粒为基准)
MCT(第一层壁材)200g(浓度100%);
WPI(第二层壁材)300g(浓度11%);
MCT(第三层壁材)150g(浓度100%);
WPI(第四层壁材)100g(浓度11%);
凝结芽孢杆菌菌粉250g;
固化剂溶液:0.5mol/L,pH-4.6
淀粉:浓度10%
2、制备方法
a.将乳清蛋白与水混匀,于4℃下180rpm/分钟搅拌16小时;
b.对乳清蛋白溶液进行78℃、95rpm/分钟、45分钟的热处理;
c.0℃下立即冷却;4℃存放16小时;
d.将乙酸钠137g、冰乙酸100ml和6718g水混匀配成固化剂溶液,调整pH至4.6,加入吐温-20 2.9g,充分混匀后待用。
e.造粒:将益生菌菌粉、粘合剂溶液和MCT混合均匀,使油滴均匀包裹颗粒;
f.加入乳清蛋白溶液,使液滴均匀包裹步骤e中所得的颗粒;
g.固化:使固化液液滴均匀包裹步骤f中所得的颗粒;
h.将步骤g中所制微胶囊干燥;
k.按照前述步骤采用MCT对步骤j中所得到的颗粒进行第三次包衣;
l.按照前述步骤采用WPI对步骤k中所得到的颗粒进行第四次包衣。
本实施例所得的微胶囊为四层微胶囊,微胶囊内活菌量达1.3×10 10cfu/g,粒径150-400μm,颗粒大小均匀、有光泽。常温条件下存放30天后,微胶囊内活菌量保持为1.3×10 10cfu/g,60天后微胶囊内活菌下降为9.8×10 9cfu/g,120天后微胶囊内活菌量下降为9.0×10 9cfu/g,胶囊外表面菌残留为0cfu/g。该四层微胶囊在模拟胃液中孵育2h后所含活菌量降低为1.0×10 10cfu/g,微胶囊干粒吸水48h后增重1%。
实施例A7
1、原料(以1000g微胶囊干粒为基准)
WPI:750g,浓度11%;
凝结芽孢杆菌菌粉250g;
固化剂溶液:0.5mol/L,pH-4.6
MCT:0g
淀粉:温度50℃,浓度15%
2、制备方法
a.将乳清蛋白与水混匀,于4℃下180rpm/分钟搅拌16小时;
b.对乳清蛋白溶液进行78℃、95rpm/分钟、45分钟的热处理;
c.0℃下立即冷却;4℃存放30小时;
d.将乙酸钠137g、冰乙酸100ml和6718g水混匀配成固化剂溶液,调整pH至4.6,加入吐温-20 2.9g,充分混匀后待用。
e.造粒:将益生菌菌粉、粘合剂溶液和WPI混合均匀,使WPI均匀包裹颗粒;
f.固化:使固化液液滴均匀包裹步骤e中所得的颗粒;
g.将步骤f中所制微胶囊干燥。
本实施例所得的微胶囊为双层微胶囊,微胶囊内活菌量达1.0×10 10cfu/g,粒径150-250μm,颗粒大小均匀、有光泽。常温条件下存放30天后,微胶囊内活菌量下降为8.9×10 9cfu/g,60天后微胶囊内活菌量下降为7.0×10 9cfu/g,120天后微胶囊内活菌量下降为4.5×10 9cfu/g,胶囊外表面菌残留为3.8×10 6cfu/g。该双层微胶囊在模拟胃液中孵育2h后所含活菌量降低为8.2×10 9cfu/g,微胶囊干粒吸水48h后增重10%。
对比例A4
1、原料(以1000g微胶囊干粒为基准)
WPI:750g,浓度11%;
凝结芽孢杆菌菌粉250g;
固化剂溶液:0.5mol/L,pH-4.6
MCT:0g
淀粉:温度60℃,浓度5%
2、制备方法
a.将乳清蛋白与水混匀,于4℃下180rpm/分钟搅拌16小时;
b.对乳清蛋白溶液进行78℃、95rpm/分钟、45分钟的热处理;
c.0℃下立即冷却;4℃存放65小时;
d.将乙酸钠137g、冰乙酸100ml和6718g水混匀配成固化剂溶液,调整pH至4.6,加入吐温-20 2.9g,充分混匀后待用。
e.造粒:将益生菌菌粉、粘合剂溶液和WPI混合均匀,使WPI均匀包裹颗粒;
f.固化:使固化液液滴均匀包裹步骤e中所得的颗粒;
g.将步骤f中所制微胶囊干燥。
本对比例双层微胶囊颗粒不成形,固化液中多为絮状。
实施例A8:
1、原料(以1000g微胶囊干粒为基准)
WPI:550g,浓度11%;
凝结芽孢杆菌菌粉250g;
固化剂溶液:0.5mol/L,pH-4.6
MCT:200g
淀粉:温度70℃,浓度20%
2、制备方法
a.将乳清蛋白与水混匀,于4℃下180rpm/分钟搅拌16小时;
b.对乳清蛋白溶液进行78℃、95rpm/分钟、45分钟的热处理;
c.0℃下立即冷却;4℃存放50小时;
d.将乙酸钠137g、冰乙酸100ml和6718g水混匀配成固化剂溶液,调整pH至4.6,加入吐温-20 2.9g,充分混匀后待用。
e.造粒:将益生菌菌粉、粘合剂溶液和MCT混合均匀,使油滴均匀包裹颗粒;
f.加入乳清蛋白溶液,使液滴均匀包裹步骤e中所得的颗粒;
g.固化:使固化液液滴均匀包裹步骤f中所得的颗粒;
h.将步骤g中所制微胶囊干燥。
本实施例所得的微胶囊为双层微胶囊,微胶囊内活菌量达1.2×10 10cfu/g,粒径150-250μm,颗粒大小不均匀、有拖尾佳。常温条件下存放30天后,微胶囊内活菌量下降为9.0×10 9cfu/g,60天后微胶囊内活菌量下降为7.4×10 9cfu/g,120天后微胶囊内活菌量下降为4.6×10 9cfu/g,胶囊外表面菌残留为4.2×10 6cfu/g。该双层微胶囊在模拟胃液中孵育2h后所含活菌量降低为8.0×10 9cfu/g,微胶囊干粒吸水48h后增重15%。
上述实施例的制备工艺和微胶囊颗粒检测结果如下表总结:
Figure PCTCN2020088467-appb-000015
Figure PCTCN2020088467-appb-000016
Figure PCTCN2020088467-appb-000017
2、本实施例A1-A8、对比例A1-A4微胶囊颗粒检测结果如下:
Figure PCTCN2020088467-appb-000018
Figure PCTCN2020088467-appb-000019
B.酸奶的制备
实施例B1~B5、对比例B1-B2
本申请的实施例B1~B5、对比例B1-B2的具体操作如下:
1.依据发酵乳国家标准制备工艺制备发酵乳
a.将除发酵菌种和微胶囊、蜂蜜以外的原料进行混合配料,制备发酵乳的混合料液,配料温度优选约40~80℃,然后冷却优选至约20℃以下;
b.搅拌,均质(均质压力优选为约150-200bar),然后执行高温长时间 灭菌(优选为杀菌温度95℃,杀菌时间300秒),杀菌后冷却到41-43℃;
c.接菌,并进行温度41-43℃的发酵;
d.破乳,翻罐,然后冷却至25℃以下;
e.巴氏灭菌,灭菌温度74℃,灭菌时间30秒;
f.冷却到15-30℃,进入无菌罐内;
g.无菌灌装;
2.加入益生菌微胶囊颗粒
其中,在e步骤之后且f步骤之前,将e步骤所得的产品转序到待装罐中并直接投入益生菌微胶囊颗粒,并进行搅拌15分钟。
采用在基础制备方法,在巴氏杀菌前,直接加入益生菌微胶囊:
Figure PCTCN2020088467-appb-000020
实施例B6~B10、对比例B3-B4
本申请的实施例B6~B10、对比例B3-B4的具体操作如下:
1.依据发酵乳国家标准制备工艺制备发酵乳
a.将除发酵菌种和微胶囊、蜂蜜以外的原料进行混合配料,制备发酵乳的混合料液,配料温度优选约40~80℃,然后冷却优选至约20℃以下;
b.搅拌,均质(均质压力优选为约150-200bar),然后执行高温长时间灭菌(优选为杀菌温度95℃,杀菌时间300秒),杀菌后冷却到41-43℃;
c.接菌,并进行温度41-43℃的发酵;
d.破乳,翻罐,然后冷却至25℃以下;
e.巴氏灭菌,灭菌温度75℃,灭菌时间25秒;
f.冷却到15-30℃,进入无菌罐内;
g.无菌灌装;
2.加入益生菌微胶囊颗粒
在步骤g之前且f步骤之后,添加无菌化处理过的益生菌微胶囊。其中,利用蜂蜜作为载体,实施益生菌微胶囊无菌化,用无菌在线添加方式,实施 例及对比例如下:
Figure PCTCN2020088467-appb-000021
本申请中实施例B1-B5、对比例B1-B2产品结果及评价如下:
Figure PCTCN2020088467-appb-000022
本申请中实施例B6-B10、对比例B3-B4产品结果及评价如下:
Figure PCTCN2020088467-appb-000023
Figure PCTCN2020088467-appb-000024
L.微胶囊(益生菌微胶囊)的制备(II)
以下实施例中使用的:
凝结芽孢杆菌的规格为900亿CFU/g。
醇溶蛋白为玉米醇溶蛋白,在75-92%乙醇中易溶。
挤出滚圆造粒机由湿法混合制粒机和低剪切立式挤出滚圆机组成。湿法混合制粒机是干粉的混合及干粉与水的混合将原料制成湿料。低剪切立式挤出滚圆机是将湿料进行挤条、切割、整形得到规则圆球型的一次丸芯。
实施例L1~3及其对比例
实施例L1
原料(以150kg微胶囊干粒为基准):
丸芯:凝结芽孢杆菌200g,微晶纤维素800g,水1000g。
阻水包衣层溶液1:醇溶蛋白288g,油酸112g,75%乙醇1200g。
阻水包衣层溶液2:醇溶蛋白54.4g,甘油12.8g,75%乙醇252.8g。
亲水包衣层溶液:果胶110g,水2090g。
制备方法:
将凝结芽孢杆菌菌粉与微晶纤维素混合均匀加入到湿法制粒锅中预混10min。
打开切割刀,打开蠕动泵20-30r/min,用水量1000kg,时间30mins。得到含水量49.7%的软材。
启动造粒机,给料转速30rpm,调节挤出转数50rpm,60min,加入软材,条形软料经孔板挤出,收集到收料拖盘,温度保持在45℃内。
停止挤出电机,调节滚圆转数400rpm,启动滚圆电机进行滚圆100s;挤出条状软料一次性倒入滚圆筒内滚圆。
滚圆结束,成球在流化床进行干燥,干燥温度在45-50℃。得到一次丸芯。
采用流化床喷雾造粒法:流化床进风温度设为55℃,风量为32,雾化压力为2.5。
通过喷枪雾化将1600g阻水包衣溶液1喷射到流化床中,使液滴均匀包裹丸芯。每流化400mL的包衣溶液后过50-80目筛网,大于50目及小于80目的颗粒丢弃。
通过喷枪雾化将320g阻水包衣溶液2喷射到流化床中,保留50-80目筛后颗粒。形成双层阻水颗粒。
通过喷枪雾化将220g亲水包衣溶液喷射到流化床中,保留50-80目筛后颗粒,得到最终颗粒。
本实施例所得微胶囊为三层微胶囊,微胶囊内活菌量达1.3×10 10cfu/g,微胶囊外活菌量达7.8×10 3cfu/g,粒径180-270μm,颗粒大小均匀、米黄色有光泽。常温条件下存放30天后,微胶囊内活菌量下降为1.2×10 10cfu/g,60天后微胶囊内活菌下降为1.15×10 10cfu/g,120天后微胶囊内活菌量下降为1.05×10 10cfu/g,胶囊外表面菌残留为4.5×10 3cfu/g。该微胶囊在模拟胃液中孵育2h后所含活菌量降低为1.1×10 10cfu/g。
实施例L2
原料(以150kg微胶囊干粒为基准):
丸芯:凝结芽孢杆菌200g,微晶纤维素800g,水1000g。
阻水包衣层溶液1:醇溶蛋白270g,油酸105g,75%乙醇1125g。
阻水包衣层溶液2:醇溶蛋白54.4g,甘油12.8g,75%乙醇252.8g。
亲水包衣层溶液:果胶110g,水2090g。
制备方法:
将凝结芽孢杆菌菌粉与微晶纤维素混合均匀加入到湿法制粒锅中预混10min。
打开切割刀,打开蠕动泵20-30r/min,用水量1000kg,时间30mins。得到含水量49.7%的软材。
启动造粒机,给料转速30rpm,调节挤出转数50rpm,60min,加入软材,条形软料经孔板挤出,收集到收料拖盘,温度保持在45℃内。
停止挤出电机,调节滚圆转数400rpm,启动滚圆电机进行滚圆100s;挤出条状软料一次性倒入滚圆筒内滚圆。
滚圆结束,成球在流化床进行干燥,干燥温度在45-50℃。得到一次丸芯。
采用流化床喷雾造粒法:流化床进风温度设为55℃,风量为32,雾化压力为2.5。
通过喷枪雾化将1600g阻水包衣溶液1喷射到流化床中,使液滴均匀包裹丸芯。每流化400mL的包衣溶液后过50-80目筛网,大于50目及小于80目的颗粒丢弃。
通过喷枪雾化将320g阻水包衣溶液2喷射到流化床中,保留50-80目筛后颗粒。形成双层阻水颗粒。
通过喷枪雾化将220g亲水包衣溶液喷射到流化床中,保留50-80目筛后颗粒,得到最终颗粒。
本实施例所得微胶囊为三层微胶囊,微胶囊内活菌量达1.35×10 10cfu/g,微胶囊外活菌量达8.2×10 3cfu/g,粒径180-270μm,颗粒大小均匀、米黄色有光泽。常温条件下存放30天后,微胶囊内活菌量下降为1.28×10 10cfu/g,60天后微胶囊内活菌下降为1.14×10 10cfu/g,120天后微胶囊内活菌量下降为1.0×10 10cfu/g,胶囊外表面菌残留为4.0×10 3cfu/g。该微胶囊在模拟胃液中孵育2h后所含活菌量降低为1.05×10 10cfu/g。
实施例L3
原料(以1500g微胶囊干粒为基准):
丸芯:凝结芽孢杆菌200g,微晶纤维素800g,水1000g。
阻水包衣层溶液1:醇溶蛋白292.5g,油酸157.5g,75%乙醇1200g。
阻水包衣层溶液2:醇溶蛋白54.4g,甘油12.8g,75%乙醇252.8g。
亲水包衣层溶液:果胶110g,水2090g。
制备方法:
将凝结芽孢杆菌菌粉与微晶纤维素混合均匀加入到湿法制粒锅中预混10min。
打开切割刀,打开蠕动泵20-30r/min,用水量1000g,时间30mins。得到含水量49.7%的软材。
启动造粒机,给料转速30rpm,调节挤出转数50rpm,60min,加入软材,条形软料经孔板挤出,收集到收料拖盘,温度保持在45℃内。
停止挤出电机,调节滚圆转数420rpm,启动滚圆电机进行滚圆100s;挤出条状软料一次性倒入滚圆筒内滚圆。
滚圆结束,成球在流化床进行干燥,干燥温度在45-50℃。得到一次丸芯。
采用流化床喷雾造粒法:流化床进风温度设为55℃,风量为32,雾化压力为2.5。
通过喷枪雾化将1800g阻水包衣溶液1喷射到流化床中,使液滴均匀包裹丸芯。每流化400mL的包衣溶液后过50-80目筛网,大于50目及小于80目的颗粒丢弃。
通过喷枪雾化将320g阻水包衣溶液2喷射到流化床中,保留50-80目筛后颗粒。形成双层阻水颗粒。
通过喷枪雾化将220g亲水包衣溶液喷射到流化床中,保留50-80目筛后颗粒,得到最终颗粒。
本实施例所得微胶囊为三层微胶囊,微胶囊内活菌量达1.2×10 10cfu/g,微胶囊外活菌量达7.5×10 3cfu/g,粒径180-270μm,颗粒大小均匀、米黄色有光泽。常温条件下存放30天后,微胶囊内活菌量下降为1.1×10 10cfu/g,60天后微胶囊内活菌下降为9.8×10 9cfu/g,120天后微胶囊内活菌量下降为1.0×10 10cfu/g,胶囊外表面菌残留为7×10 3cfu/g。该微胶囊在模拟胃液中孵育2h后所含活菌量降低为1.15×10 10cfu/g。
实施例L4
原料(以150kg微胶囊干粒为基准):
丸芯:凝结芽孢杆菌180g,微晶纤维素820g,水1000g。
阻水包衣层溶液1:醇溶蛋白288g,油酸112g,75%乙醇1200g。
阻水包衣层溶液2:醇溶蛋白54.4g,甘油12.8g,75%乙醇252.8g。
亲水包衣层溶液:果胶110g,水2090g。
制备方法:
将凝结芽孢杆菌菌粉与微晶纤维素混合均匀加入到湿法制粒锅中预混10min。
打开切割刀,打开蠕动泵20-30r/min,用水量1000g,时间30mins。得到含水量49.7%的软材。
启动造粒机,给料转速30rpm,调节挤出转数50rpm,60min,加入软材,条形软料经孔板挤出,收集到收料拖盘,温度保持在45℃内。
停止挤出电机,调节滚圆转数420rpm,启动滚圆电机进行滚圆100s;挤出条状软料一次性倒入滚圆筒内滚圆。
滚圆结束,成球在流化床进行干燥,干燥温度在45-50℃。得到一次丸芯。
采用流化床喷雾造粒法:流化床进风温度设为55℃,风量为32,雾化压力为2.5。
通过喷枪雾化将1600g阻水包衣溶液1喷射到流化床中,使液滴均匀包裹丸芯。每流化400mL的包衣溶液后过50-80目筛网,大于50目及小于80目的颗粒丢弃。
通过喷枪雾化将320g阻水包衣溶液2喷射到流化床中,保留50-80目筛后颗粒。形成双层阻水颗粒。
通过喷枪雾化将220g亲水包衣溶液喷射到流化床中,保留50-80目筛后颗粒,得到最终颗粒。
本实施例所得微胶囊为三层微胶囊,微胶囊内活菌量达1.25×10 10cfu/g,微胶囊外活菌量达7.5×10 3cfu/g,粒径180-270μm,颗粒大小均匀、米黄色有光泽。常温条件下存放30天后,微胶囊内活菌量下降为1.13×10 10cfu/g,60天后微胶囊内活菌下降为1.0×10 10cfu/g,120天后微胶囊内活菌量下降为9.9×109cfu/g,胶囊外表面菌残留为4.5×10 3cfu/g。该微胶囊在模拟胃液中孵育2h后所含活菌量降低为1.0×10 10cfu/g。
实施例L5
原料(以150kg微胶囊干粒为基准):
丸芯:凝结芽孢杆菌200g,微晶纤维素800g,水1000g。
阻水包衣层溶液1:醇溶蛋白288g,油酸112g,75%乙醇1200g。
阻水包衣层溶液2:醇溶蛋白54.4g,甘油12.8g,75%乙醇252.8g。
亲水包衣层溶液:果胶110g,水2090g。
制备方法:
将凝结芽孢杆菌菌粉与微晶纤维素混合均匀加入到湿法制粒锅中预混10min。
打开切割刀,打开蠕动泵20-30r/min,用水量1000g,时间30mins。得到含水量49.7%的软材。
启动造粒机,给料转速30rpm,调节挤出转数47rpm,60min,加入软材,条形软料经孔板挤出,收集到收料拖盘,温度保持在45℃内。
停止挤出电机,调节滚圆转数400rpm,启动滚圆电机进行滚圆100s;挤出条状软料一次性倒入滚圆筒内滚圆。
滚圆结束,成球在流化床进行干燥,干燥温度在45-50℃。得到一次丸芯。
采用流化床喷雾造粒法:流化床进风温度设为55℃,风量为32,雾化压力为2.5。
通过喷枪雾化将320g阻水包衣溶液2喷射到流化床中,保留50-80目筛后颗粒。形成双层阻水颗粒。
通过喷枪雾化将1600g阻水包衣溶液1喷射到流化床中,使液滴均匀包裹丸芯。每流化400mL的包衣溶液后过50-80目筛网,大于50目及小于80目的颗粒丢弃。
通过喷枪雾化将220g亲水包衣溶液喷射到流化床中,保留50-80目筛后颗粒,得到最终颗粒。
本实施例所得微胶囊为三层微胶囊,微胶囊内活菌量达1.3×10 10cfu/g,微胶囊外活菌量达7.8×10 3cfu/g,粒径180-270μm,颗粒大小均匀、土黄色有光泽。常温条件下存放30天后,微胶囊内活菌量下降为1.2×10 10cfu/g,60天后微胶囊内活菌下降为1.15×10 10cfu/g,120天后微胶囊内活菌量下降为1.05×10 10cfu/g,胶囊外表面菌残留为4.5×10 3cfu/g。该微胶囊在模拟胃液中孵育2h后所含活菌量降低为1.1×10 10cfu/g。
实施例L6
原料(以150kg微胶囊干粒为基准):
丸芯:凝结芽孢杆菌200g,微晶纤维素800g,水1000g。
油层:MCT 200g。
阻水包衣层溶液1:醇溶蛋白288g,油酸112g,75%乙醇1200g。
阻水包衣层溶液2:醇溶蛋白54.4g,甘油12.8g,75%乙醇252.8g。
亲水包衣层溶液:果胶110g,水2090g。
制备方法:
将凝结芽孢杆菌菌粉与微晶纤维素混合均匀加入到湿法制粒锅中预混10min。
打开切割刀,打开蠕动泵20-30r/min,用水量1000g,时间30mins。得到含水量49.7%的软材。
启动造粒机,给料转速30rpm,调节挤出转数50rpm,60min,加入软材,条形软料经孔板挤出,收集到收料拖盘,温度保持在45℃内。
停止挤出电机,调节滚圆转数400rpm,启动滚圆电机进行滚圆100s;挤出条状软料一次性倒入滚圆筒内滚圆。
滚圆结束,成球在流化床进行干燥,干燥温度在45-50℃。得到一次丸芯。
将1000g一次丸芯与200g MCT进行混合,浸润12小时。
采用流化床喷雾造粒法:流化床进风温度设为55℃,风量为32,雾化压力为2.5。
通过喷枪雾化将1600g阻水包衣溶液1喷射到流化床中,使液滴均匀包裹丸芯。每流化400mL的包衣溶液后过50-80目筛网,大于50目及小于80目的颗粒丢弃。
通过喷枪雾化将320g阻水包衣溶液2喷射到流化床中,保留50-80目筛后颗粒。形成双层阻水颗粒。
通过喷枪雾化将220g亲水包衣溶液喷射到流化床中,保留50-80目筛后颗粒,得到最终颗粒。
本实施例所得微胶囊为四层微胶囊,微胶囊内活菌量达1.23×10 10cfu/g,微胶囊外活菌量达7.×10 3cfu/g,粒径180-270μm,颗粒大小均匀、米黄色 有光泽。常温条件下存放30天后,微胶囊内活菌量下降为1.09×10 10cfu/g,60天后微胶囊内活菌下降为1.02×10 10cfu/g,120天后微胶囊内活菌量下降为9.8×10 9cfu/g,胶囊外表面菌残留为3.9×10 3cfu/g。该微胶囊在模拟胃液中孵育2h后所含活菌量降低为1.1×10 10cfu/g。
实施例L7
原料(以150kg微胶囊干粒为基准):
丸芯:凝结芽孢杆菌200g,微晶纤维素800g,水1000g。
阻水包衣层溶液1:醇溶蛋白260g,油酸140g,75%乙醇1200g。
阻水包衣层溶液2:醇溶蛋白54.4g,甘油12.8g,75%乙醇252.8g。
亲水包衣层溶液:果胶110g,水2090g。
制备方法:
将凝结芽孢杆菌菌粉与微晶纤维素混合均匀加入到湿法制粒锅中预混10min。
打开切割刀,打开蠕动泵20-30r/min,用水量1000g,时间30mins。得到含水量49.7%的软材。
启动造粒机,给料转速30rpm,调节挤出转数50rpm,60min,加入软材,条形软料经孔板挤出,收集到收料拖盘,温度保持在45℃内。
停止挤出电机,调节滚圆转数400rpm,启动滚圆电机进行滚圆100s;挤出条状软料一次性倒入滚圆筒内滚圆。
滚圆结束,成球在流化床进行干燥,干燥温度在45-50℃。得到一次丸芯。
将1000g一次丸芯与200g MCT进行混合,浸润12小时。
采用流化床喷雾造粒法:流化床进风温度设为55℃,风量为32,雾化压力为2.5。
通过喷枪雾化将1600g阻水包衣溶液1喷射到流化床中,使液滴均匀包裹丸芯。每流化400mL的包衣溶液后过50-80目筛网,大于50目及小于80目的颗粒丢弃。
通过喷枪雾化将320g阻水包衣溶液2喷射到流化床中,保留50-80目筛后颗粒。形成双层阻水颗粒。
通过喷枪雾化将220g亲水包衣溶液喷射到流化床中,保留50-80目筛后 颗粒,得到最终颗粒。
本实施例所得微胶囊为三层微胶囊,微胶囊内活菌量达1.22×10 10cfu/g,微胶囊外活菌量达7.3×10 3cfu/g,粒径180-270μm,颗粒大小均匀、米黄色有光泽。常温条件下存放30天后,微胶囊内活菌量下降为1.18×10 10cfu/g,60天后微胶囊内活菌下降为1.15×10 10cfu/g,120天后微胶囊内活菌量下降为1.05×10 10cfu/g,胶囊外表面菌残留为3.9×10 3cfu/g。该微胶囊在模拟胃液中孵育2h后所含活菌量降低为1.1×10 10cfu/g。
实施例L8
原料(以150kg微胶囊干粒为基准):
丸芯:凝结芽孢杆菌200g,微晶纤维素800g,水1000g。
阻水包衣层溶液1:醇溶蛋白288g,油酸112g,75%乙醇1200g。
阻水包衣层溶液2:醇溶蛋白54.4g,甘油12.8g,75%乙醇252.8g。
亲水包衣层溶液:果胶110g,水2090g。
制备方法:
将凝结芽孢杆菌菌粉与微晶纤维素混合均匀加入到湿法制粒锅中预混10min。
打开切割刀,打开蠕动泵20-30r/min,用水量1000g,时间30mins。得到含水量49.7%的软材。
启动造粒机,给料转速30rpm,调节挤出转数50rpm,60min,加入软材,条形软料经孔板挤出,收集到收料拖盘,温度保持在45℃内。
停止挤出电机,调节滚圆转数400rpm,启动滚圆电机进行滚圆100s;挤出条状软料一次性倒入滚圆筒内滚圆。
滚圆结束,成球在流化床进行干燥,干燥温度在45-50℃。得到一次丸芯。
采用流化床喷雾造粒法:流化床进风温度设为59℃,风量为32,雾化压力为2.5。
通过喷枪雾化将1600g阻水包衣溶液1喷射到流化床中,使液滴均匀包裹丸芯。每流化400mL的包衣溶液后过50-80目筛网,大于50目及小于80目的颗粒丢弃。
通过喷枪雾化将320g阻水包衣溶液2喷射到流化床中,保留50-80目筛 后颗粒。形成双层阻水颗粒。
通过喷枪雾化将220g亲水包衣溶液喷射到流化床中,保留50-80目筛后颗粒,得到最终颗粒。
本实施例所得微胶囊为三层微胶囊,微胶囊内活菌量达1.27×10 10cfu/g,微胶囊外活菌量达7.8×10 3cfu/g,粒径180-270μm,颗粒大小均匀、米黄色有光泽。常温条件下存放30天后,微胶囊内活菌量下降为1.2×10 10cfu/g,60天后微胶囊内活菌下降为1.15×10 10cfu/g,120天后微胶囊内活菌量下降为1.05×10 10cfu/g,胶囊外表面菌残留为4.5×10 3cfu/g。该微胶囊在模拟胃液中孵育2h后所含活菌量降低为9.7×10 9cfu/g。
对比例L1
原料(以150kg微胶囊干粒为基准):
丸芯:凝结芽孢杆菌400g,微晶纤维素600g,水1000g。
阻水包衣层溶液1:醇溶蛋白288g,油酸112g,75%乙醇1200g。
阻水包衣层溶液2:醇溶蛋白54.4g,甘油12.8g,75%乙醇252.8g。
亲水包衣层溶液:果胶110g,水2090g。
制备方法:
将凝结芽孢杆菌菌粉与微晶纤维素混合均匀加入到湿法制粒锅中预混10min。
打开切割刀,打开蠕动泵20-30r/min,用水量1000g,时间30mins。得到含水量49.7%的软材。
启动造粒机,给料转速30rpm,调节挤出转数50rpm,60min,加入软材,条形软料经孔板挤出,收集到收料拖盘,温度保持在45℃内。
停止挤出电机,调节滚圆转数400rpm,启动滚圆电机进行滚圆100s;挤出条状软料一次性倒入滚圆筒内滚圆。
滚圆结束,成球在流化床进行干燥,干燥温度在45-50℃。得到一次丸芯。
采用流化床喷雾造粒法:流化床进风温度设为55℃,风量为32,雾化压力为2.5。
通过喷枪雾化将1600g阻水包衣溶液1喷射到流化床中,使液滴均匀包裹丸芯。每流化400mL的包衣溶液后过50-80目筛网,大于50目及小于80 目的颗粒丢弃。
通过喷枪雾化将320g阻水包衣溶液2喷射到流化床中,保留50-80目筛后颗粒。形成双层阻水颗粒。
通过喷枪雾化将220g亲水包衣溶液喷射到流化床中,保留50-80目筛后颗粒,得到最终颗粒。
本实施例所得一次丸芯不成型。
对比例L2
原料(以150kg微胶囊干粒为基准):
丸芯:凝结芽孢杆菌200g,微晶纤维素800g,水1000g。
阻水包衣层溶液1:醇溶蛋白48.8g,油酸31.2g,75%乙醇1200g。
阻水包衣层溶液2:醇溶蛋白127.68g,甘油40.32g,75%乙醇632g。
亲水包衣层溶液:果胶110g,水2090g。
制备方法:
将凝结芽孢杆菌菌粉与微晶纤维素混合均匀加入到湿法制粒锅中预混10min。
打开切割刀,打开蠕动泵20-30r/min,用水量1000g,时间30mins。得到含水量49.7%的软材。
启动造粒机,给料转速30rpm,调节挤出转数50rpm,60min,加入软材,条形软料经孔板挤出,收集到收料拖盘,温度保持在45℃内。
停止挤出电机,调节滚圆转数400rpm,启动滚圆电机进行滚圆100s;挤出条状软料一次性倒入滚圆筒内滚圆。
滚圆结束,成球在流化床进行干燥,干燥温度在45-50℃。得到一次丸芯。
采用流化床喷雾造粒法:流化床进风温度设为55℃,风量为32,雾化压力为2.5。
通过喷枪雾化将1600g阻水包衣溶液1喷射到流化床中,使液滴均匀包裹丸芯。每流化400mL的包衣溶液后过50-80目筛网,大于50目及小于80目的颗粒丢弃。
通过喷枪雾化将320g阻水包衣溶液2喷射到流化床中,保留50-80目筛后颗粒。形成双层阻水颗粒。
通过喷枪雾化将220g亲水包衣溶液喷射到流化床中,保留50-80目筛后颗粒,得到最终颗粒。
本实施例所得大小不一,无规则形状的小块状物。微胶囊内活菌量达6.8×10 8cfu/g,微胶囊外活菌量达4.2×10 6cfu/g,粒径180-270μm。常温条件下存放30天后,微胶囊内活菌量下降为4.8×10 8cfu/g,60天后微胶囊内活菌下降为8.0×10 7cfu/g,120天后微胶囊内活菌量下降为2.2×10 7cfu/g,胶囊外表面菌残留为9.4×10 5cfu/g。该微胶囊在模拟胃液中孵育2h后所含活菌量降低为3.0×10 8cfu/g。
对比例L3
原料(以150kg微胶囊干粒为基准):
丸芯:凝结芽孢杆菌200g,微晶纤维素800g,水1000g。
阻水包衣层溶液1:醇溶蛋白48.8g,油酸31.2g,75%乙醇1200g。
阻水包衣层溶液2:醇溶蛋白127.68g,甘油40.32g,75%乙醇632g。
亲水包衣层溶液:果胶110g,水2090g。
制备方法:
将凝结芽孢杆菌菌粉与微晶纤维素混合均匀加入到湿法制粒锅中预混10min。
打开切割刀,打开蠕动泵20-30r/min,用水量1000g,时间30mins。得到含水量49.7%的软材。
启动造粒机,给料转速30rpm,调节挤出转数50rpm,60min,加入软材,条形软料经孔板挤出,收集到收料拖盘,温度保持在45℃内。
停止挤出电机,调节滚圆转数400rpm,启动滚圆电机进行滚圆100s;挤出条状软料一次性倒入滚圆筒内滚圆。
滚圆结束,成球在流化床进行干燥,干燥温度在45-50℃。得到一次丸芯。
采用流化床喷雾造粒法:流化床进风温度设为70℃,风量为32,雾化压力为2.5。
通过喷枪雾化将1600g阻水包衣溶液1喷射到流化床中,使液滴均匀包裹丸芯。每流化400mL的包衣溶液后过50-80目筛网,大于50目及小于80目的颗粒丢弃。
通过喷枪雾化将320g阻水包衣溶液2喷射到流化床中,保留50-80目筛后颗粒。形成双层阻水颗粒。
通过喷枪雾化将220g亲水包衣溶液喷射到流化床中,保留50-80目筛后颗粒,得到最终颗粒。
本实施例所得微胶囊为三层微胶囊。微胶囊内活菌量达2.3×10 8cfu/g,微胶囊外活菌量达2.8×10 2cfu/g,粒径180-270μm,颗粒大小均匀、米黄色有光泽。常温条件下存放30天后,微胶囊内活菌量下降为1.3×10 8cfu/g,60天后微胶囊内活菌下降为9.8×10 7cfu/g,120天后微胶囊内活菌量下降为5.8×10 7cfu/g,胶囊外表面菌残留为1.2×10 3cfu/g。该微胶囊在模拟胃液中孵育2h后所含活菌量降低为1.0×10 8cfu/g。
上述实施例的制备工艺和微胶囊颗粒检测结果如下表总结:
Figure PCTCN2020088467-appb-000025
Figure PCTCN2020088467-appb-000026
Figure PCTCN2020088467-appb-000027
Figure PCTCN2020088467-appb-000028
Figure PCTCN2020088467-appb-000029
M.微胶囊(乳清蛋白肽微胶囊)的制备
实施例M1-6,对比例M1-2
乳清蛋白肽微胶囊制备的基本过程与益生菌微胶囊制备类似。具体参数差异见下表:
Figure PCTCN2020088467-appb-000030
Figure PCTCN2020088467-appb-000031
Figure PCTCN2020088467-appb-000032
Figure PCTCN2020088467-appb-000033

Claims (50)

  1. 一种微胶囊,所述微胶囊具有一层或多层包埋结构,其包括:丸芯和任选的至少一层包覆所述丸芯的外壳;
    其中,所述丸芯包括被包埋物质和微胶囊芯材,以及
    所述至少一层包覆所述丸芯的外壳包括一层、两层或更多层壁材。
  2. 根据权利要求1所述的微胶囊,所述微胶囊的丸芯的外径为约50-500μm(优选约50~约300μm),单层或多层包覆的微胶囊的外径为约200~约1000μm(优选约100~约500μm)。
  3. 根据权利要求1或2所述的微胶囊,其中,被包埋物质包括具有功能性的活性物质,所述活性物质选自功能性多糖、功能性脂类、功能性蛋白/肽/氨基酸、微生态调节剂、维生素和矿物质中的一种或多种;
    优选地,被包埋物质和微胶囊芯材的重量比为1:6-1:2.5(更优选为1:5-1:4)。
  4. 根据权利要求3所述的微胶囊,其中所述功能性多糖选自壳聚糖、茶多糖、膳食纤维、葡聚糖中的一种或多种;优选地,所述功能性脂类选自卵磷脂、EPA和DHA中的一种或多种;优选地,所述功能性蛋白/肽/氨基酸选自牛磺酸、乳铁蛋白、免疫球蛋白、乳清蛋白肽中的一种或多种;优选地,所述微生态调节剂选自益生菌、益生元、合生素中的一种或多种。
  5. 根据权利要求1~4中任一项所述的微胶囊,所述壁材选自下列中的一种或者多种的组合:
    植物蛋白,例如大豆蛋白、大米蛋白、小麦蛋白、玉米蛋白等;优选为玉米蛋白,或
    动物蛋白,例如乳清蛋白、酪蛋白等;优选浓缩乳清蛋白(WPC)、分离乳清蛋白(WPI)或乳清蛋白肽,尤其优选分离乳清蛋白(WPI);或者
    油脂,例如熔点为40℃以上的油脂,优选熔点为40-50℃的油脂,尤其优选棕榈油、中链甘油酯(MCT)、氢化油脂(如:氢化棕榈油、硬化油、氢化大豆油)、卵磷脂、代可可脂、棕榈油甘油单酯、椰子油、豆油、花生油、葵花籽油,或者
    其他材料,例如甘油、油酸、海藻酸钠、虫胶、CMC-Na、胶凝糖、黄 原胶、k-角叉菜胶、醋酸邻苯二甲酸纤维素、麦芽糊精、淀粉、糊精、蔗糖、乳糖、葡聚糖、玉米糖浆、果胶、阿拉伯胶、壳聚糖、乙酰化单双甘油脂肪酸酯、魔芋胶、卡拉胶、蜡质或明胶等;
    优选地,所述壁材选自乳清蛋白或者油脂,尤其优选WPI或者MCT。
  6. 根据权利要求1~5中任一项所述的微胶囊,所述所述微胶囊芯材包括下述的的一种或者多种的组合:
    植物蛋白,例如大豆蛋白、大米蛋白、小麦蛋白、玉米蛋白等;优选为玉米蛋白,或
    动物蛋白,例如乳清蛋白、酪蛋白等;优选浓缩乳清蛋白(WPC)、分离乳清蛋白(WPI)或乳清蛋白肽,尤其优选分离乳清蛋白(WPI);或者
    油脂,例如熔点为40℃以上的油脂,优选熔点为40-50℃的油脂,尤其优选棕榈油、中链甘油酯(MCT)、氢化油脂(如:氢化棕榈油、硬化油、氢化大豆油)、卵磷脂、代可可脂、棕榈油甘油单酯、椰子油、豆油、花生油、葵花籽油,或者
    其他材料,例如微晶纤维素(MCC)、甘油、油酸、海藻酸钠、虫胶、CMC-Na、胶凝糖、黄原胶、k-角叉菜胶、醋酸邻苯二甲酸纤维素、麦芽糊精、淀粉、糊精、蔗糖、乳糖、葡聚糖、玉米糖浆、果胶、阿拉伯胶、壳聚糖、乙酰化单双甘油脂肪酸酯、魔芋胶、卡拉胶、蜡质或明胶等;
    更优选地,所述微胶囊芯材包括微晶纤维素(MCC)。
  7. 根据权利要求1~6的任一项所述的微胶囊,其中,被包埋物质包括益生菌;
    优选地,所述益生菌选自青春双歧杆菌、动物双歧杆菌(乳双歧杆菌)、两歧双歧杆菌、短双歧杆菌、婴儿双歧杆菌、长双歧杆菌、嗜酸乳杆菌干酪乳杆菌、卷曲乳杆菌、德氏乳杆菌保加利亚亚种、德氏乳杆菌乳亚种、发酵乳杆菌、格氏乳杆菌、瑞士乳杆菌、约氏乳杆菌、副干酪乳杆菌、植物乳杆菌、罗伊氏乳杆菌、鼠李糖乳杆菌、唾液乳杆菌、嗜热链球菌、凝结芽孢杆菌等益生菌中的一种或多种。
  8. 一种微胶囊的制备方法,所述微胶囊具有一层或多层包埋结构,包括以下步骤:
    (1)一次丸芯制备:将被包埋物质和微胶囊芯材均匀混合并任选经固化、 过滤收集湿粒,然后进行干燥得到一次丸芯;和任选的
    (2)多层微胶囊制备:将上述丸芯颗粒外均匀涂布一层壁材,并任选喷涂固化液使胶囊壁固化,将所制微胶囊干燥,收集微胶囊干粒或者将其继续再次或多次包衣。
  9. 根据权利要求8所述的制备方法,其中,所述步骤(1)是通过挤出滚圆制粒法、离心制粒法、锐角挤压造粒法、或者流化床喷雾造粒法(优选挤出滚圆制粒法或者离心制粒法)来制备丸芯,将得到的丸芯干燥并收集;
    优选地,所述步骤(2)是采用流化床喷雾的方式来涂布壁材。
  10. 前述权利要求中任一项所述的微胶囊作为食品和保健品行业的应用(例如,用作膳食补充剂),例如用于热加工食品或冷冻食品中;优选地,用于发酵风味食品、饮料、巧克力、糖果如口香糖、烘焙食品例如布丁、果蔬汁食品;更优选地,微胶囊作为乳制品添加剂,添加到牛奶、酸奶、奶酪、冰激凌、奶粉、或乳制品饮料(最优选酸奶)中。
  11. 一种益生菌微胶囊,所述益生菌微胶囊具有一层或多层包埋结构,包括:菌芯颗粒和任选的至少一层包覆所述菌芯颗粒的外壳,
    其中,所述菌芯颗粒包括芯材和第一层壁材,所述芯材包括一种或多种益生菌粉或菌泥,所述芯材被所述第一层壁材所包覆,以及
    所述至少一层包覆所述菌芯颗粒的外壳包括一层、两层或更多层壁材,分别为第二层壁材、第三层壁材或者更多层壁材。
  12. 根据权利要求11所述的益生菌微胶囊,其中,以1000重量份的干粒微胶囊为基准,上述微胶囊的组成的重量比例为:菌泥或菌粉50至500重量份;第一层壁材为约0~950重量份优选约150至950重量份或0~350重量份;第二层壁材为约约0~950重量份优选约150至950重量份或0~350重量份;第三层壁材为约0至350重量份;第四层壁材为约0至250重量份。
  13. 根据权利要求11或12所述的益生菌微胶囊,第一层包衣后得到的菌芯颗粒外径为约50-500μm(优选约50~约300μm),双层或多层微胶囊外径为约200~约1000μm(优选约100~约500μm)。
  14. 根据权利要求11~13的任一项所述的益生菌微胶囊,所述壁材选自下列中的一种或者多种的组合:
    植物蛋白,例如大豆蛋白、大米蛋白、小麦蛋白、玉米蛋白等;优选为 玉米蛋白,或
    动物蛋白,例如乳清蛋白、酪蛋白等;优选浓缩乳清蛋白(WPC)、分离乳清蛋白(WPI)或乳清蛋白肽,尤其优选分离乳清蛋白(WPI);或者
    油脂,例如熔点为40℃以上的油脂,优选熔点为40-50℃的油脂,尤其优选棕榈油、中链甘油酯(MCT)、氢化油脂(如:氢化棕榈油、硬化油、氢化大豆油)、卵磷脂、代可可脂、棕榈油甘油单酯、椰子油、豆油、花生油、葵花籽油,或者
    其他材料,例如甘油、油酸、海藻酸钠、虫胶、CMC-Na、胶凝糖、黄原胶、k-角叉菜胶、醋酸邻苯二甲酸纤维素、麦芽糊精、淀粉、糊精、蔗糖、乳糖、葡聚糖、玉米糖浆、果胶、阿拉伯胶、壳聚糖、乙酰化单双甘油脂肪酸酯、魔芋胶、卡拉胶、蜡质或明胶等。
  15. 根据权利要求11~14的任一项所述的益生菌微胶囊,所述壁材选自乳清蛋白或者油脂,尤其优选WPI或者MCT。
  16. 根据权利要求11~15的任一项所述的益生菌微胶囊,所述益生菌选自青春双歧杆菌、动物双歧杆菌(乳双歧杆菌)、两歧双歧杆菌、短双歧杆菌、婴儿双歧杆菌、长双歧杆菌、嗜酸乳杆菌干酪乳杆菌、卷曲乳杆菌、德氏乳杆菌保加利亚亚种、德氏乳杆菌乳亚种、发酵乳杆菌、格氏乳杆菌、瑞士乳杆菌、约氏乳杆菌、副干酪乳杆菌、植物乳杆菌、罗伊氏乳杆菌、鼠李糖乳杆菌、唾液乳杆菌、嗜热链球菌、凝结芽孢杆菌等益生菌中的一种或多种。
  17. 一种益生菌微胶囊的制备方法,所述益生菌微胶囊具有一层或多层包埋结构,包括以下步骤:
    (1)单层微胶囊制备:将菌粉或菌泥与第一壁材等材料均匀混合并任选经固化、过滤收集湿粒,然后进行干燥得到单层微胶囊干粒;和任选的
    (2)多层微胶囊制备:将上述单层微胶囊干粒作为菌芯颗粒,在菌芯颗粒外均匀涂布一层壁材,并任选喷涂固化液使胶囊壁固化,将所制微胶囊干燥,收集双层微胶囊干粒或者将其继续再次或多次包衣。
  18. 一种益生菌微胶囊的制备方法,所述益生菌微胶囊具有一层或多层包埋结构,包括以下步骤:
    (1)第一层微胶囊的包被:
    a.任选的,向菌泥或菌粉中添加粘合剂进行造粒;
    b.任选的,对第一壁材进行预处理:
    将第一壁材与水混合,充分溶解后进行冷热交替处理形成稳定凝胶:
    (i)优选的,将所述第一壁材与水混匀,于低温约2至8℃搅拌约4至16小时;
    (ii)更优选进一步对第一壁材进行约75至约96℃,约30至约180分钟的热处理;
    (iii)再优选立即冷却,冷却温度约-20至约4℃;约4℃存放约12~约60小时得到第一壁材的凝胶溶液;
    优选的,上述第一壁材为WPI,优选为约150至约950重量份,更优选约300~750重量份;
    c.将第一壁材液滴均匀包裹到菌粉、菌泥,或者上述步骤a中所得的颗粒上;
    d.固化:使固化液液滴均匀包裹上述步骤c中所得的颗粒;
    e.干燥;
    (2)任选的第二层微胶囊的包被:
    f.将步骤(1)得到的单层微胶囊干粒作为菌芯颗粒与第二层壁材混合制备双层微胶囊,所述第二壁材优选为油脂(优选熔点为40-50℃的油脂,尤其是棕榈油或MCT)或着乳清蛋白,优选为约0~350重量份;
    g.将步骤f所制微胶囊干燥并收集双层微胶囊干粒;
    (3)任选第三次或更多次包衣:
    j.将步骤(2)得到的双层微胶囊按照前述方法继续进行第三次或更多次包衣;
    所述第三壁材优选为油脂(优选熔点为40-50℃的油脂,尤其是棕榈油或MCT)或者乳清蛋白,优选为约0~350重量份。
  19. 一种益生菌微胶囊,所述益生菌微胶囊具有一层或多层包埋结构,其根据权利要求17~18任一项的益生菌微胶囊的制备方法制备得到。
  20. 前述权利要求中任一项所述的益生菌微胶囊作为食品和保健品行业(例如膳食补充剂)的应用,例如用于热加工食品或冷冻食品中,优选用于发酵风味食品、饮料、巧克力、糖果如口香糖、烘焙食品例如布丁、果蔬汁食品;更优选的,本发明的益生菌微胶囊为乳制品添加剂,如添加到牛奶、 酸奶、奶酪、冰激凌、奶粉、乳制品饮料中。
  21. 一种益生菌微胶囊的制备方法,所述益生菌微胶囊具有一层或多层包埋结构,包括以下步骤:
    (1)第一层微胶囊的包被:将第一壁材与益生菌菌粉或菌泥充分混匀后造粒(优选挤压造粒法、或流化床喷雾造粒法),任选滴入固化剂溶液中固化,过滤收集微胶囊颗粒并任选将所得微胶囊进行干燥得到单层微胶囊干粒;和任选的
    (2)第二层微胶囊的包被:将步骤(1)得到的微胶囊与第二壁材混匀,通过流化床喷雾法制备微胶囊,将所制微胶囊干燥并收集双层微胶囊干粒;
    (3)任选将步骤(2)得到的微胶囊继续于流化床中进行第三次或更多次包衣。
  22. 根据权利要求21的益生菌微胶囊的制备方法,其中,以1000重量份微胶囊干粒为基准,益生菌菌泥或菌粉为约50至500重量份,优选为约250-400重量份;第一层壁材为约150至约950重量份,优选为约450-750重量份,第二层壁材为约0至约350重量份,优选为约200-300重量份,第三层壁材为约0至350重量份;第四层壁材为约0至约260重量份。
  23. 根据权利要求21~22的任一项的益生菌微胶囊的制备方法,其中,所述第一壁材为乳清蛋白,
    优选的,将所述乳清蛋白进行预变性处理:将乳清蛋白与水混合,充分溶解后进行冷热交替处理形成稳定凝胶;
    优选的,将所述乳清蛋白与水混匀,于低温约2至8℃搅拌约4至16小时;更优选进一步对乳清蛋白溶液进行约75至约96℃,约30至约180分钟的热处理;再优选立即冷却,冷却温度约-20至约4℃;约4℃存放约10-60小时以上得到乳清蛋白的凝胶溶液。
  24. 根据权利要求21~23任一项的益生菌微胶囊的制备方法,其中,第(2)第二层微胶囊的包被的步骤中,采用流化床法进行第二次包衣,优选采用升温至约25至75℃的第二壁材水溶液、乳浊液或凝胶液,优选流化床进风温度为30至80摄氏度。
  25. 根据权利要求21~24任一项的益生菌微胶囊的制备方法,其中,第(2)第二层微胶囊的包被的步骤中,所述第二壁材为蛋白,优选为WPI。
  26. 一种含益生菌微胶囊的食品或保健品,其中,基于所述含益生菌微胶囊的食品或保健品的总重量,含有重量百分比为约0.02~1%,优选为约0.04~0.5%,更优选约0.06~0.15%的益生菌微胶囊;
    优选地,其中,所述含益生菌微胶囊的食品或保健品还含有蜂蜜、糖浆、果汁,优选的蜂蜜,优选的,基于微胶囊蜂蜜混合液的总重量,含有重量百分比为约80%-99.9%的蜂蜜;
    尤其优选的,所述微胶囊与蜂蜜的比例为1:1000~1:10,优选1:500~1:50,更优选:1:100。
  27. 根据权利要求26所述的含益生菌微胶囊的食品或保健品,其中,所述益生菌微胶囊具有一层或多层包埋结构,包括:菌芯颗粒和任选的至少一层包覆所述菌芯颗粒的外壳;
    其中,所述菌芯颗粒包括芯材和第一层壁材,所述芯材包括一种或多种益生菌粉或菌泥,所述芯材被所述第一层壁材所包覆,以及
    所述至少一层包覆所述菌芯颗粒的外壳包括一层、两层或更多层壁材,分别为第二层壁材、第三层壁材或者更多层壁材;
    优选的,以1000重量份的干粒微胶囊为基准,上述微胶囊的组成的重量比例为:菌泥或菌粉50至500重量份;第一层壁材为约0~950重量份优选约150至950重量份或0~350重量份;第二层壁材为约0~950重量份优选约150至950重量份或0~350重量份;第三层壁材为约0至350重量份;第四层壁材为约0至250重量份。
  28. 根据权利要求26或27所述的含益生菌微胶囊的食品或保健品,所述食品或保健品选自乳及乳制品、发酵风味食品、饮料、巧克力、糖果、烘焙食品或果蔬汁食品中的一种或多种;
    优选地,其中,所述含益生菌微胶囊的食品或保健品为酸奶,优选的,所述酸奶包括:基于所述的含益生菌微胶囊的酸奶的总重量,生牛乳/复原乳约为89-94%,白砂糖约为5.5-10.9%、稳定剂约为0.1-0.5%、发酵剂约为30-100U/吨,和益生菌微胶囊约为0.02~0.5%,优选的益生菌微胶囊约为0.06~0.15%;
    优选地,其中,所述含益生菌微胶囊的食品或保健品为原生奶酪或再制奶酪,优选的,所述原生奶酪还包括生牛乳,食用盐,发酵剂或凝乳酶;更 优选的,所述奶酪包含:食用盐约0.8-1.8%,和发酵剂约0.001-0.005%、凝乳酶约0.001-0.005%、益生菌微胶囊约0.02~0.5%(优选约0.06~0.15%),其余为生牛乳;
    优选地,其中,所述含益生菌微胶囊的食品或保健品为乳饮料,优选的,所述乳饮料包含约0.02~1%的益生菌微胶囊(优选约0.04~0.5%),
    还优选的,所述含益生菌微胶囊的食品或保健品还含有蜂蜜,更优选的,所述微胶囊与蜂蜜的比例为1:1000~1:10,优选1:500~1:50,更优选:1:100;
    优选地,其中,所述含益生菌微胶囊的食品或保健品为固体乳制品,优选的,所述固体乳制品包含约0.02~1%的益生菌微胶囊;
    优选地,其中,所述含益生菌微胶囊的食品或保健品为固体饮料,优选的,所述固体饮料包含约0.02~1%的益生菌微胶囊;
    优选地,其中,所述含益生菌微胶囊的食品或保健品为冰淇淋,优选的,所述冰淇淋包含约0.02~1%的益生菌微胶囊(优选约0.04~0.5%)。
  29. 一种制备权利要求26~28的含益生菌微胶囊的食品或保健品的方法,包括以下步骤:
    将所述益生菌微胶囊添加到食品或保健品中,优选的,含有益生菌的微胶囊的添加量为约0.02~1%,优选为约0.04~0.5%,更优选约0.06~0.15%;
    优选的,在最后一次巴氏灭菌前,将所述益生菌微胶囊添加到制备的产品中,
    或者
    优选的,在最后一次巴氏灭菌后,将益生菌微胶囊进行无菌化处理后添加到制备的产品中。
  30. 根据权利要求29的制备含益生菌微胶囊的食品或保健品的方法,所述无菌化处理的步骤包括:
    (1)将微胶囊颗粒和蜂蜜混合,优选的,微胶囊和蜂蜜比例为约1:1000~1:10,更优选约1:500~1:10、约1:100~1:10或约1:50~1:10;
    (2)将上述混合后的微胶囊颗粒采用紫外杀菌处理,优选的,紫外线处理强度为约1000~20000J/L,更优选约5000~~20000J/L、约10000~20000J/L、约15000~20000J/L。
  31. 根据权利要求29~30任一项的制备含益生菌微胶囊的食品或保健品的方法,其中所述食品或保健品为酸奶,制备如下:
    a.将除发酵菌种和微胶囊以外的原料进行混合配料,制备发酵乳的混合料液,配料温度优选约40~80℃,然后冷却优选至约20℃以下;
    b.搅拌,均质(均质压力优选为约150-200bar),然后执行高温长时间灭菌(优选为杀菌温度95℃,杀菌时间300秒),杀菌后冷却到约41-43℃;
    c.接菌,并进行温度41-43℃的发酵;
    d.破乳,翻罐,然后冷却至约25℃以下;
    e.巴氏灭菌,灭菌温度约74℃,灭菌时间约30秒;
    f.冷却到15-30℃,进入无菌罐内;
    g.无菌灌装;
    其中,在步骤f之前且e步骤之后,添加无菌化处理过的益生菌微胶囊;或者,
    在步骤d之后且e步骤之前,添加益生菌微胶囊。
  32. 一种益生菌微胶囊软颗粒,其中,上述权利要求中任一项的益生菌微胶囊包埋在软颗粒中。
  33. 一种微胶囊颗粒的制备方法,其包括以下步骤:
    1)一次制芯:
    1.1)将被包埋物质和微胶囊芯材混合均匀,然后加入至容器中预混;
    1.2)通过挤出滚圆制粒法或者离心制粒法制备丸芯,将得到的丸芯干燥并收集;
    2)二次流化:
    2.1)准备阻水包衣层溶液和亲水包衣层溶液;
    2.2)采用流化床喷雾造粒法,使阻水包衣溶液包裹一次制芯后制备的丸芯,并在流化床中进行干燥,形成阻水包衣颗粒;
    2.3)在阻水包衣颗粒外喷涂亲水包衣层溶液,将制备得到的微胶囊颗粒干燥并收集。
  34. 根据权利要求33所述的制备方法,其中,步骤1)中,被包埋物质为具有功能性的活性物质,所述活性物质选自功能性多糖、功能性脂类、功能性蛋白/肽/氨基酸、微生态调节剂、维生素和矿物质中的一种或多种;
    优选地,被包埋物质和微胶囊芯材的重量比为1:6-1:2.5(更优选为
    1:5-1:4);
    优选地,步骤1)中,加入一定量的水与干粉;更优选地,加水量与干粉的重量比为1:1.5-1.5:1(更优选为1:1.2-1.2:1)。
  35. 根据权利要求34所述的制备方法,其中所述功能性多糖选自壳聚糖、茶多糖、膳食纤维、葡聚糖中的一种或多种;优选地,所述功能性脂类选自卵磷脂、EPA和DHA中的一种或多种;优选地,所述功能性蛋白/肽/氨基酸选自牛磺酸、乳铁蛋白、免疫球蛋白、乳清蛋白肽中的一种或多种;优选地,所述微生态调节剂选自益生菌、益生元、合生素中的一种或多种。
  36. 根据权利要求33-35中任一项所述的制备方法,其中,步骤2)中所述阻水包衣层溶液包括两种或两种以上的阻水包衣层溶液(优选地,将所述两种或两种以上的阻水包衣层溶液依次包裹一次制芯后制备的丸芯);优选地,所述阻水包衣层溶液的主要成分包括醇溶蛋白;优选地,所述阻水包衣层溶液的主要成分为醇溶蛋白和油酸,或者醇溶蛋白和甘油(优选地,醇溶蛋白和油酸的重量比为3:1至1:1,更优选为2.5:1-1.2:1;优选地,醇溶蛋白和甘油的重量比为4.5:1-5:1,更优选4.5:1-4.8:1)。
  37. 根据权利要求33-35中任一项所述的制备方法,在步骤2.2)和2.3)之间,还包括将阻水包衣颗粒在中链甘油三酯(MCT)中浸润的步骤,从而形成可选择阻水包衣层;优选地,所述浸润的时间为12-24小时(优选16小时)。
  38. 根据权利要求33-35中任一项所述的制备方法,其中,步骤2.2)包括:采用流化床喷雾造粒法,使阻水包衣层溶液升温,流化床进风温度为50-80℃,风量为20-100m 3/h;优选地,通过喷枪雾化阻水包衣溶液后喷射到流化床中,使液滴均匀包裹一次制芯后的丸芯颗粒,并在流化床中进行干燥,形成单层阻水颗粒;
    优选地,流化床进风温度为50-70℃(更优选55-60℃),风量为50-90m 3/h(更优选60-80m 3/h);
    更优选地,每流化400mL的包衣溶液后过50-80目筛网,大于50目及小于80目的颗粒丢弃;
    优选地,步骤2.2)还包括:形成单层阻水颗粒后,采用流化床喷雾造粒 法均匀喷涂其它的阻水包衣层溶液形成双层或多层阻水包衣颗粒。
  39. 根据权利要求33-35中任一项所述的制备方法,其中,步骤2.3)中还包括:将制备得到的微胶囊颗粒在流化床中干燥,并经过多次流化后,收集微胶囊颗粒。
  40. 根据权利要求33-35中任一项所述的制备方法,当步骤1.2)中的制粒法为所述挤出滚圆制粒法时,将被包埋物质和微胶囊芯材混合均匀,并加入到湿法制粒锅中预混(优选地,预混时间为8-15min(更优选10min));
    优选地,滚圆制粒后,成粒在流化床或烘箱中进行干燥(优选地,干燥温度为45-65℃(更优选45-50℃));
    优选地,给料转速为25-35RPM(更优选为28-32RPM);优选地,挤出转速为40-50RPM(更优选为45-50 RPM);优选地,滚圆转速为350-420RPM(更优选为380-420 RPM)。
  41. 根据权利要求33-35中任一项所述的制备方法,当步骤1.2)中的制粒法为所述离心制粒法时,将被包埋物质和微胶囊芯材混合均匀;优选地,采用离心制粒机转盘,将被包埋物质和微胶囊芯材投入其中预混;
    优选地,滚圆制粒后,成粒在流化床中进行干燥(干燥温度为40-60℃(更优选45-50℃));
    优选地,其中离心机转盘转速为600-800RPM(更优选为700-750RPM);优选地,粘合剂占干物质的比例为25-38RPM(更优选为30-35RPM)。
  42. 根据权利要求33-41中任一项所述的制备方法所制得的微胶囊颗粒。
  43. 一种微胶囊颗粒,其包括丸芯、阻水包衣层和亲水包衣层三部分;其中,所述丸芯包括被包埋物质和微胶囊芯材;所述阻水包衣层为一层或多层的包衣层,其包括醇溶蛋白;所述亲水包衣层为一层或多层的包衣层,其包括亲水性多糖。
  44. 根据权利要求43所述的微胶囊颗粒,其中所述被包埋的物质为具有功能性的活性物质,所述活性物质选自功能性多糖、功能性脂类、功能性蛋白/肽/氨基酸、微生态调节剂、维生素和矿物质中的一种或多种(优选功能性蛋白肽、微生态调节剂和功能性油脂中的一种或多种,更优选功能性蛋白肽、多不饱和脂肪酸、和/或微生态调节剂)。
  45. 根据权利要求44所述的微胶囊颗粒,其中所述功能性多糖选自壳聚 糖、茶多糖、膳食纤维、葡聚糖中的一种或多种;优选地,所述功能性脂类选自卵磷脂、EPA和DHA中的一种或多种;优选地,所述功能性蛋白/肽/氨基酸选自牛磺酸、乳铁蛋白、免疫球蛋白、乳清蛋白肽中的一种或多种;优选地,所述微生态调节剂选自益生菌、益生元、合生素中的一种或多种。
  46. 根据权利要求43或44所述的微胶囊颗粒,其中所述微胶囊芯材包括下述的的一种或者多种的组合:
    植物蛋白,例如大豆蛋白、大米蛋白、小麦蛋白、玉米蛋白等;优选为玉米蛋白,或
    动物蛋白,例如乳清蛋白、酪蛋白等;优选浓缩乳清蛋白(WPC)、分离乳清蛋白(WPI)或乳清蛋白肽,尤其优选分离乳清蛋白(WPI);或者
    油脂,例如熔点为40℃以上的油脂,优选熔点为40-50℃的油脂,尤其优选棕榈油、中链甘油酯(MCT)、氢化油脂(如:氢化棕榈油、硬化油、氢化大豆油)、卵磷脂、代可可脂、棕榈油甘油单酯、椰子油、豆油、花生油、葵花籽油,或者
    其他材料,例如微晶纤维素(MCC)、甘油、油酸、海藻酸钠、虫胶、CMC-Na、胶凝糖、黄原胶、k-角叉菜胶、醋酸邻苯二甲酸纤维素、麦芽糊精、淀粉、糊精、蔗糖、乳糖、葡聚糖、玉米糖浆、果胶、阿拉伯胶、壳聚糖、乙酰化单双甘油脂肪酸酯、魔芋胶、卡拉胶、蜡质或明胶等;
    (优选地,所述微胶囊芯材的主要成分为微晶纤维素(MCC))。
  47. 根据权利要求43或44所述的微胶囊颗粒,其中所述阻水包衣层还包括所述所述微胶囊芯材包括下述的的一种或者多种的组合:
    植物蛋白,例如大豆蛋白、大米蛋白、小麦蛋白、玉米蛋白等;优选为玉米蛋白,或
    动物蛋白,例如乳清蛋白、酪蛋白等;优选浓缩乳清蛋白(WPC)、分离乳清蛋白(WPI)或乳清蛋白肽,尤其优选分离乳清蛋白(WPI);或者
    油脂,例如熔点为40℃以上的油脂,优选熔点为40-50℃的油脂,尤其优选棕榈油、中链甘油酯(MCT)、氢化油脂(如:氢化棕榈油、硬化油、氢化大豆油)、卵磷脂、代可可脂、棕榈油甘油单酯、椰子油、豆油、花生油、葵花籽油,或者
    其他材料,例如甘油、油酸、海藻酸钠、虫胶、CMC-Na、胶凝糖、黄 原胶、k-角叉菜胶、醋酸邻苯二甲酸纤维素、麦芽糊精、淀粉、糊精、蔗糖、乳糖、葡聚糖、玉米糖浆、果胶、阿拉伯胶、壳聚糖、乙酰化单双甘油脂肪酸酯、魔芋胶、卡拉胶、蜡质或明胶等的一种或多种;优选地,所述醇溶蛋白选自玉米醇溶蛋白、和/或糯米醇溶蛋白中的一种或多种;优选地,所述阻水包衣层为一层或多层(更优选为2-4层,最优选为2-3层)。
  48. 根据权利要求43或44所述的微胶囊颗粒,其中所述亲水包衣层的主要成分包括果胶、大豆多糖、和/或乳清分离蛋白;优选地,所述亲水包衣层为一层。
  49. 根据权利要求43所述的微胶囊颗粒,其中所述被包埋物质和微胶囊芯材的重量比为1:6-1:2.5(更优选为1:5-1:4)。
  50. 权利要求42-49中任一项所述微胶囊颗粒的应用,作为食品和保健品,例如用于热加工食品或冷冻食品中(优选用于乳制品(如牛奶、酸奶、奶酪、冰激凌、奶粉、乳制品饮料)、发酵风味食品、饮料、巧克力、糖果如口香糖、烘焙食品例如布丁、或果蔬汁中)。
PCT/CN2020/088467 2018-11-06 2020-04-30 微胶囊及其制备方法和应用 WO2021082382A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CA3156603A CA3156603A1 (en) 2018-11-06 2020-04-30 Microcapsule, preparation method and application thereof
AU2020373489A AU2020373489B2 (en) 2018-11-06 2020-04-30 Microcapsule, preparation method and application thereof
US17/773,437 US20220395466A1 (en) 2018-11-06 2020-04-30 Microcapsule, preparation method and application thereof
EP20883408.5A EP4042881A4 (en) 2018-11-06 2020-04-30 MICROCAPSULE, PREPARATION METHOD AND ASSOCIATED APPLICATION

Applications Claiming Priority (16)

Application Number Priority Date Filing Date Title
CN201811314763 2018-11-06
CN201811314765 2018-11-06
CN201811314766 2018-11-06
CN201811314761 2018-11-06
CN201911036790.8A CN111134330A (zh) 2018-11-06 2019-10-29 一种挤压造粒法制备益生菌微胶囊的方法及其产品
CN201911036807.X 2019-10-29
CN201911036790.8 2019-10-29
CN201911036807.XA CN111134331A (zh) 2018-11-06 2019-10-29 一种益生菌微胶囊及其制备方法
CN201911043504.0A CN111134332A (zh) 2018-11-06 2019-10-30 一种通过流化床喷雾造粒法制备益生菌微胶囊的方法及其产品
CN201911043477.7A CN111150068A (zh) 2018-11-06 2019-10-30 一种以复合材料为壁材的益生菌微胶囊及其制备方法
CN201911043504.0 2019-10-30
CN201911043477.7 2019-10-30
CN201911062990.0A CN111134333A (zh) 2018-11-06 2019-10-31 含益生菌微胶囊的食品或保健品及其制备方法
CN201911062990.0 2019-10-31
CN201911069119.3 2019-11-05
CN201911069119.3A CN111134334B (zh) 2018-11-06 2019-11-05 一种益生菌微胶囊软颗粒及制备方法

Publications (1)

Publication Number Publication Date
WO2021082382A1 true WO2021082382A1 (zh) 2021-05-06

Family

ID=70516957

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/088467 WO2021082382A1 (zh) 2018-11-06 2020-04-30 微胶囊及其制备方法和应用

Country Status (6)

Country Link
US (1) US20220395466A1 (zh)
EP (1) EP4042881A4 (zh)
CN (2) CN111134333A (zh)
AU (1) AU2020373489B2 (zh)
CA (1) CA3156603A1 (zh)
WO (1) WO2021082382A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113812441A (zh) * 2021-08-26 2021-12-21 成都英凯谱斯健康科技有限公司 一种具有多相释放特性的微胶囊食品添加剂及其制备方法
CN114521656A (zh) * 2022-02-14 2022-05-24 浙江大学 一种多层包覆热敏性营养素微胶囊及其制备方法
WO2023225390A1 (en) * 2022-05-20 2023-11-23 Starbucks Corporation Boba with improved flavor and color features and methods of making and using same
CN117297100A (zh) * 2023-11-28 2023-12-29 南昌大学 多流体同轴喷雾制备的益生菌微胶囊及其制备方法和应用
CN117660125A (zh) * 2023-10-20 2024-03-08 广东星帮尼科技股份有限公司 一种季铵盐衣物清洁消毒液及其制备方法

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB202011598D0 (en) * 2020-07-27 2020-09-09 Anabio Tech Limited A pharmaceutical composition in oral dosage form
CN112568057B (zh) * 2020-12-09 2024-10-22 林上煜 一种高抗逆性优良双孢蘑菇选育设备及方法
CN112956698B (zh) * 2021-03-26 2023-06-16 四川农业大学 包埋益生菌微胶囊的爆爆珠及其制备方法
CN113854569A (zh) * 2021-08-25 2021-12-31 河北天烨食品科技有限公司 益生营养物及其制备方法和提升食用益生菌存活率的方法
CN113812623A (zh) * 2021-09-27 2021-12-21 东阿阿胶股份有限公司 一种复合阿胶爆趣珠、复合阿胶爆趣珠燕窝饮品及制备方法
CN113854361B (zh) * 2021-10-08 2023-12-22 福建技术师范学院 一种核壳结构的冻干草莓益生菌奶豆及其制备方法
CN114027479A (zh) * 2021-11-18 2022-02-11 武汉自然萃创新科技有限公司 一种微胶囊化益生菌蜂蜜的制备方法
CN115486542A (zh) * 2022-09-14 2022-12-20 上海菌小宝健康科技有限公司 一种有助于降脂代谢的复合益生菌粉剂及其制备方法
CN115590200A (zh) * 2022-11-02 2023-01-13 北京逯博士行为医学科技研究院有限公司(Cn) 一种基于代餐粉的有效成分包埋方法
CN115997934A (zh) * 2022-12-02 2023-04-25 安徽中微微元生物科技有限公司 一种益生菌纳米颗粒缓释制备方法
WO2024140764A1 (zh) * 2022-12-30 2024-07-04 内蒙古伊利实业集团股份有限公司 耐热耐剪切的微胶囊、其制备方法及应用
CN116478857B (zh) * 2023-02-10 2023-12-15 宁波希诺亚海洋生物科技有限公司 一株可产多糖的长双歧杆菌变种及其多糖在晶球益生菌制剂中的应用
CN116268421A (zh) * 2023-03-21 2023-06-23 新希望乳业股份有限公司 一种益生菌凝胶颗粒及制备方法
GB202304892D0 (en) * 2023-03-31 2023-05-17 Anabio Tech Limited A self-stable packed beverage
CN116473238A (zh) * 2023-04-04 2023-07-25 浙江省农业科学院 一种提高植物乳杆菌胃肠抵抗能力及耐湿性的菌粉制备方法
CN117297028A (zh) * 2023-10-16 2023-12-29 北京幸福能量健康科技有限公司 一种低热量高饱腹感的蛋白质代餐营养棒及其制备方法
CN117179318B (zh) * 2023-11-06 2024-02-02 内蒙古蒙牛乳业(集团)股份有限公司 一种活性成分包埋颗粒及其制备方法与应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101028020A (zh) * 2006-02-27 2007-09-05 内蒙古蒙牛乳业(集团)股份有限公司 含有益生菌微胶囊的酸奶及其生产方法
CN101724623A (zh) * 2009-12-14 2010-06-09 内蒙古农业大学 干酪乳杆菌Zhang微胶囊及其制备方法与它们的用途
CN101816418A (zh) * 2009-11-24 2010-09-01 北京三元食品股份有限公司 一种益生菌微胶囊及其制备方法
CN104431370A (zh) * 2014-12-15 2015-03-25 南京优帆生物科技有限公司 一种高效益生菌微胶囊及其制备方法和应用
WO2017137496A1 (en) * 2016-02-10 2017-08-17 Fundacion Tecnalia Research & Innovation Multilayer probiotic microcapsules
CN108669565A (zh) * 2018-04-25 2018-10-19 广东石油化工学院 一种微胶囊的制备方法
CN109619593A (zh) * 2018-11-08 2019-04-16 淮阴工学院 一种益生菌双层微胶囊及其制备方法
CN110367542A (zh) * 2019-07-09 2019-10-25 华中农业大学 一种在肠道中缓慢释放的益生菌微胶囊及其制备方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5835110A (ja) * 1981-08-28 1983-03-01 Tetsuo Kato 徐放性マイクロカプセル
DE10012199A1 (de) * 2000-03-13 2001-09-20 Haarmann & Reimer Gmbh Eingekapselte Substanzen mit kontrollierter Freisetzung
CN1613455A (zh) * 2003-11-04 2005-05-11 北京东方百信生物技术有限公司 靶向益生菌微胶囊及其制备方法
EP2104434A1 (en) * 2006-09-19 2009-09-30 Technion Research and Development Foundation Ltd. Probiotic compositions and methods of making same
CN101066072B (zh) * 2007-05-31 2012-03-21 内蒙古伊利实业集团股份有限公司 一种含果胶颗粒的含乳饮料及其生产方法
IL199781A0 (en) * 2009-07-09 2010-05-17 Yohai Zorea Heat resistant probiotic compositions and healthy food comprising them
CA2844474C (en) * 2010-08-09 2020-03-31 Degama Smart Ltd. Probiotic liquid food products
ES2597038T3 (es) * 2010-12-06 2017-01-13 Degama Berrier Ltd. Composición y método para mejorar la estabilidad y extender la vida útil de bacterias probióticas y productos alimenticios de las mismas
US9788563B2 (en) * 2011-04-15 2017-10-17 Pepsico, Inc. Encapsulation system for protection of probiotics during processing
TWI425092B (zh) * 2011-06-02 2014-02-01 Food Industry Res & Dev Inst 內部包埋有膠球之細菌纖維素複合材及其製備方法
CN102550673A (zh) * 2012-02-18 2012-07-11 安徽曦强乳业集团有限公司 一种均衡营养的果料酸牛奶及其生产方法
CN103652891B (zh) * 2013-11-28 2015-04-08 浙江省农业科学院 一种包埋干酪乳杆菌的微胶囊及其制备方法
EP3107529A1 (en) * 2014-02-17 2016-12-28 Evonik Röhm GmbH Pharmaceutical or nutraceutical composition with sustained release characteristic and with resistance against the influence of ethanol
CN106148450B (zh) * 2015-03-27 2019-12-20 海南椰国食品有限公司 一种高产量富锌生物纤维素凝胶产品
CN106148451B (zh) * 2015-03-27 2019-10-25 海南椰国食品有限公司 生物纤维素凝胶培养基及用其制备的生物纤维素凝胶产品
CN105053767A (zh) * 2015-08-30 2015-11-18 陈爱梅 一种椰奶营养果粒的制备方法
CN106689394B (zh) * 2017-01-08 2020-10-20 东北农业大学 含有微胶囊化降胆固醇植物乳杆菌的white-brined干酪及其制备方法
CN108719566A (zh) * 2018-05-14 2018-11-02 中玺(天津)枣业技术工程中心 红枣夹心软糖及加工方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101028020A (zh) * 2006-02-27 2007-09-05 内蒙古蒙牛乳业(集团)股份有限公司 含有益生菌微胶囊的酸奶及其生产方法
CN101816418A (zh) * 2009-11-24 2010-09-01 北京三元食品股份有限公司 一种益生菌微胶囊及其制备方法
CN101724623A (zh) * 2009-12-14 2010-06-09 内蒙古农业大学 干酪乳杆菌Zhang微胶囊及其制备方法与它们的用途
CN104431370A (zh) * 2014-12-15 2015-03-25 南京优帆生物科技有限公司 一种高效益生菌微胶囊及其制备方法和应用
WO2017137496A1 (en) * 2016-02-10 2017-08-17 Fundacion Tecnalia Research & Innovation Multilayer probiotic microcapsules
CN108669565A (zh) * 2018-04-25 2018-10-19 广东石油化工学院 一种微胶囊的制备方法
CN109619593A (zh) * 2018-11-08 2019-04-16 淮阴工学院 一种益生菌双层微胶囊及其制备方法
CN110367542A (zh) * 2019-07-09 2019-10-25 华中农业大学 一种在肠道中缓慢释放的益生菌微胶囊及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4042881A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113812441A (zh) * 2021-08-26 2021-12-21 成都英凯谱斯健康科技有限公司 一种具有多相释放特性的微胶囊食品添加剂及其制备方法
CN113812441B (zh) * 2021-08-26 2024-02-09 成都英凯谱斯健康科技有限公司 一种具有多相释放特性的微胶囊食品添加剂及其制备方法
CN114521656A (zh) * 2022-02-14 2022-05-24 浙江大学 一种多层包覆热敏性营养素微胶囊及其制备方法
CN114521656B (zh) * 2022-02-14 2023-02-21 浙江大学 一种多层包覆热敏性营养素微胶囊及其制备方法
WO2023225390A1 (en) * 2022-05-20 2023-11-23 Starbucks Corporation Boba with improved flavor and color features and methods of making and using same
CN117660125A (zh) * 2023-10-20 2024-03-08 广东星帮尼科技股份有限公司 一种季铵盐衣物清洁消毒液及其制备方法
CN117660125B (zh) * 2023-10-20 2024-05-28 广东星帮尼科技股份有限公司 一种季铵盐衣物清洁消毒液及其制备方法
CN117297100A (zh) * 2023-11-28 2023-12-29 南昌大学 多流体同轴喷雾制备的益生菌微胶囊及其制备方法和应用
CN117297100B (zh) * 2023-11-28 2024-04-26 南昌大学 多流体同轴喷雾制备的益生菌微胶囊及其制备方法和应用

Also Published As

Publication number Publication date
EP4042881A4 (en) 2024-05-15
CN111134333A (zh) 2020-05-12
AU2020373489B2 (en) 2024-05-02
CN111134334B (zh) 2023-08-29
CA3156603A1 (en) 2021-05-06
EP4042881A1 (en) 2022-08-17
CN111134334A (zh) 2020-05-12
AU2020373489A1 (en) 2022-05-19
US20220395466A1 (en) 2022-12-15

Similar Documents

Publication Publication Date Title
AU2020373489B2 (en) Microcapsule, preparation method and application thereof
Martín et al. Microencapsulation of bacteria: A review of different technologies and their impact on the probiotic effects
Rashidinejad et al. Co-encapsulation of probiotics with prebiotics and their application in functional/synbiotic dairy products
Solanki et al. Development of microencapsulation delivery system for long‐term preservation of probiotics as biotherapeutics agent
Tolve et al. Encapsulation of health-promoting ingredients: applications in foodstuffs
CN111150068A (zh) 一种以复合材料为壁材的益生菌微胶囊及其制备方法
CN111134331A (zh) 一种益生菌微胶囊及其制备方法
US9480276B2 (en) Dry food product containing live probiotic
CN111134332A (zh) 一种通过流化床喷雾造粒法制备益生菌微胶囊的方法及其产品
EP3205216B1 (en) Multilayer probiotic microcapsules
CN111134330A (zh) 一种挤压造粒法制备益生菌微胶囊的方法及其产品
Sultana et al. Advances in extrusion-dripping encapsulation of probiotics and omega-3 rich oils
CN106387967A (zh) 一种含有益生菌和不饱和脂肪酸组合物的制备方法及该组合物的应用
Soto et al. Recent developments on wall materials for the microencapsulation of probiotics: a review
Kailasapathy Biopolymers for administration and gastrointestinal delivery of functional food ingredients and probiotic bacteria
Rodrigues et al. High protein microparticles produced by ionic gelation containing Lactobacillus acidophilus for feeding pacu larvae
CN113875870A (zh) 一种活性益生菌软糖及其制备方法
Soto et al. Recent developments on wall materials for the microencapsulation of probiotics: A review: Desarrollos recientes en materiales de pared para la microencapsulación de probióticos: Una revisión
Aghajania et al. Microencapsulation of probiotics in yogurt: A Review
Shoaei Food Health with Increased Probiotic Survival During Storage
KR102607143B1 (ko) 기능성 요거트 및 이의 제조방법
Shamil et al. Microencapsulated bioactive compounds for fortification of dairy products: A review
WO2010056957A1 (en) Controlled release food formulations
Paula et al. Microencapsulation: An Alternative for the Application of Probiotic Cells in the Food and Nutraceuticals Industries
Zaidel et al. Bioencapsulation for probiotics

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20883408

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3156603

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 787684

Country of ref document: NZ

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020883408

Country of ref document: EP

Effective date: 20220427

ENP Entry into the national phase

Ref document number: 2020373489

Country of ref document: AU

Date of ref document: 20200430

Kind code of ref document: A