WO2021082362A1 - 恒流控制电源电路及场致发射电子源 - Google Patents

恒流控制电源电路及场致发射电子源 Download PDF

Info

Publication number
WO2021082362A1
WO2021082362A1 PCT/CN2020/085325 CN2020085325W WO2021082362A1 WO 2021082362 A1 WO2021082362 A1 WO 2021082362A1 CN 2020085325 W CN2020085325 W CN 2020085325W WO 2021082362 A1 WO2021082362 A1 WO 2021082362A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
supply circuit
source
voltage
gate
Prior art date
Application number
PCT/CN2020/085325
Other languages
English (en)
French (fr)
Inventor
唐华平
尹翔宇
秦占峰
潘劲松
张庆辉
占杨炜
Original Assignee
新鸿电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新鸿电子有限公司 filed Critical 新鸿电子有限公司
Priority to JP2021560184A priority Critical patent/JP7254207B2/ja
Priority to US17/772,568 priority patent/US11830698B2/en
Publication of WO2021082362A1 publication Critical patent/WO2021082362A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/06Cathodes
    • H01J35/065Field emission, photo emission or secondary emission cathodes
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • G05F1/565Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices sensing a condition of the system or its load in addition to means responsive to deviations in the output of the system, e.g. current, voltage, power factor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G1/00X-ray apparatus involving X-ray tubes; Circuits therefor
    • H05G1/08Electrical details
    • H05G1/26Measuring, controlling or protecting
    • H05G1/30Controlling
    • H05G1/34Anode current, heater current or heater voltage of X-ray tube
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2235/00X-ray tubes
    • H01J2235/06Cathode assembly
    • H01J2235/062Cold cathodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present disclosure relates to the field of electron source emission technology, and more specifically, to a power supply circuit and a field emission electron source using the power supply circuit.
  • the performance of the power circuit is critical to the performance of electronic equipment. For example, in a field emission electron source product, when the current applied to the field emission electron source circuit changes, the performance of the field emission electron source will decrease.
  • the tunneling effect of electrons starts to work, and the free electrons can be smooth Penetrate the surface barrier into the vacuum.
  • This phenomenon of using a strong external electric field to pull electrons out of the solid surface is a field emission phenomenon.
  • This type of electron source is called a field emission electron source. Studies have shown that when the field strength of the external electric field reaches the 6th power of 10, there is already a very obvious phenomenon of electron emission. There is no time delay in the field emission, and the response speed reaches the microsecond level, that is, the field emission electron source can realize instantaneous startup and shutdown.
  • the circuit applied to the field emission electron source is required to maintain a stable current and be able to respond instantaneously.
  • the present disclosure proposes a power supply circuit and a field emission electron source using the power supply circuit.
  • a power supply circuit including: a field effect transistor S i connected in series via a drain and a source, 1 ⁇ i ⁇ n, i and n are natural numbers, n ⁇ 2, where S The source of 1 is connected to the negative electrode of the voltage source, and the drain of S n is used as the output terminal of the power circuit to connect to the load; the first group of diodes D 1i connected in series, 1 ⁇ i ⁇ n, i and n are natural numbers, n ⁇ 2, where D 11 connected in parallel between the negative electrode of the voltage source S and the gate 2, connected between the drain and the gate of S n, S n, D 1n connected in parallel, when n> 2, the remaining D 1i connected in parallel between the gate of S i and S i + 1, the first group of resistors R 1j, 2 ⁇ j ⁇ n, where S i is connected in parallel with the R 1j gate and the source, Wherein j corresponds to the value of i; i and j are natural
  • the field effect transistors S i, 2 ⁇ i ⁇ n N-channel enhancement type field effect transistor are provided.
  • the voltage control module includes: a detection unit connected in series with a load connected to the output terminal of the power supply circuit to detect a current passing through the load; and a control signal generating unit that generates control according to the current passing through the load Signal and apply the control signal to the voltage source.
  • control signal generating unit is configured to: compare the current through the load with a current setting value; when the current through the load is less than the current setting value, increase the output of the voltage source Voltage; when the current through the load is greater than the current setting value, reduce the output voltage of the voltage source.
  • a second set of parallel-connected diode D 2k, 2 ⁇ k ⁇ n wherein the source connected to the gate of the anode and the cathode of D 2k of S i, S i and D 2k is connected, Among them, k corresponds to the value of i, k is a natural number and n is a natural number greater than or equal to 2.
  • a third set of diodes D 3t, 2 ⁇ t ⁇ n wherein the gate is connected to the cathode of D 3t S i, where t i is the value corresponding to the anode of the received D 3t the voltage control module outputs a control signal for controlling the field effect transistor is turned on or off S i, where t is a natural number and n is a natural number of 2 or greater.
  • the current detection unit includes a resistance element, an inductance element or a Hall sensor element.
  • control unit includes an operational amplifier, a microcontroller, an FPGA or a single-chip microcomputer.
  • the power supply circuit is configured to replace the first group of diodes D 1i connected in series with a parallel structure of resistors and capacitors connected in series, 1 ⁇ i ⁇ n, i and n are natural numbers, and n ⁇ 2.
  • end of the fourth diode is connected to the drain of the field effect transistor S n, the anode of the fourth diode and the second resistor Connected; a second resistor, the other end of the second resistor is connected to ground.
  • a multipoint field emission electron source including: at least one power supply circuit according to the above-mentioned embodiment; and a grid assembly and at least one cathode, the grid assembly and the The positive pole of the voltage source in the power supply circuit is connected, and the positive pole of the voltage source is connected to the ground, the at least one cathode corresponds to at least one power supply circuit one to one, and the at least one cathode corresponds to the at least one power supply circuit.
  • the output terminal is connected, the plurality of cathodes are arranged in parallel with the gate assembly, and a field emission electric field is formed between each of the cathodes and the gate assembly.
  • a power supply circuit in which the high voltage required by the cathode field emission is shared by the cascade of multiple field effect tubes, which solves the problem of insufficient withstand voltage of a single field effect tube and increases the circuit
  • the working reliability also reduces the production cost of the field emission electron source control system, and realizes the instantaneous start and shutdown of the field emission electron source.
  • Fig. 1 shows a circuit diagram of a power supply circuit according to an embodiment of the present disclosure
  • Figure 2 shows a circuit diagram of a single-channel field emission electron source according to an embodiment of the present disclosure
  • Fig. 3 shows a circuit diagram of a single-channel field emission electron source according to another embodiment of the present disclosure.
  • Fig. 4 shows a circuit diagram of a multipoint field emission electron source according to an embodiment of the present disclosure.
  • connection to may mean that two components are directly connected, or that two components are connected via one or more other components.
  • these two components can be connected or coupled by wired or wireless means.
  • the existing field emission X-ray source uses a field emission electron source to generate an electron beam by means of field electron emission, including a part (called a cathode) that generates an electron beam and a part that generates a control electric field.
  • Solid field emission requires a strong electric field, which is also an essential element of a field emission cathode.
  • the cathode material Through the improvement of the cathode material, the field emission voltage threshold is greatly reduced, reaching the level of several volts per micron (V/um). Therefore, the gate control voltage of the field emission electron source is directly related to the distance between the cathode and the gate. Different process methods may be controlled in the order of tens of micrometers (um) to millimeters (mm). Therefore, the operating voltage of the field emission electron source is Several thousand volts (kV).
  • the embodiment of the present disclosure first proposes a power supply circuit, which can be used as the power supply required by the above-mentioned field emission electron source.
  • the power circuit in the embodiments of the present disclosure can also be applied to other occasions, such as the field of electric vacuum.
  • Fig. 1 shows a circuit diagram of a power supply circuit according to an embodiment of the present disclosure.
  • the power supply circuit according to an embodiment of the present disclosure mainly includes field effect transistors S i connected in series via a drain and a source, 1 ⁇ i ⁇ n, n ⁇ 2, where i and n are natural numbers.
  • a negative electrode is connected to a positive voltage source and the source S of the voltage source as an output terminal of a power supply circuit
  • the drain and the source S 1 S 2 is connected, is connected to the drain electrode 2 S. 3 S source, and so on, S n-1 S n connected to the drain of the source and the drain of S n as the other output terminal of the power supply circuit
  • a load may be connected between two output terminals of the power supply circuit.
  • the power supply circuit also includes diodes (first group of diodes) D 1i connected in series, 1 ⁇ i ⁇ n, n ⁇ 2, where i and n are natural numbers.
  • the diode D is connected between the negative voltage source S and the gate 11 of the second parallel, 1N D connected in parallel between the gate and the drain of S n of S n, when n> 2 when, with the rest of the diode D 1i correspond FET S i, i.e., the remaining D 1i connected in parallel between the gate of S i and S i + 1 is.
  • the diode D 12 is connected in parallel between the gate of S 2 and the gate of S 3
  • the diode D 13 is connected in parallel between the gate of S 3 and the gate of S 4 , and so on.
  • the power supply circuit also includes a voltage control module, which can adjust the output voltage of the voltage source to make the current through the load constant.
  • the power supply circuit may further include a diode (second group of diodes) D 2k and a resistor (first group of resistance) R 1j connected in parallel, 2 ⁇ k ⁇ n, 2 ⁇ j ⁇ n, where k, j and n are all natural numbers greater than or equal to 2.
  • the diode (the second group of diodes) D 2k is included in the dashed frame, indicating that it is an optional element.
  • the gate is connected to the anode of the diode D 2k S i of the FET
  • the source and the cathode of the diode D 2k FET S i is connected.
  • diode D 22 and resistor R 12 are connected in parallel between the gate and source of S 2
  • the cathode of D 22 is connected to the gate of S 2
  • the anode of D 22 is connected to the source of S 2, and so on .
  • the current feedback module may further include a detection unit and a control signal generation unit, wherein the detection unit is connected in series with the load connected to the output terminal of the power supply circuit to detect the current passing through the load.
  • the control signal generating unit generates a control signal according to the current passing through the load, and applies the control signal to the voltage source, which will be described in detail later in conjunction with a specific example.
  • the detection unit may be a resistance element, an inductance element, or a Hall sensor element, and the embodiments of the present disclosure are not limited thereto.
  • the control signal generating unit may be an operational amplifier, a microcontroller, an FPGA or a single-chip microcomputer, and the embodiments of the present disclosure are not limited thereto.
  • control signal generating unit is configured to compare the current passing through the load with a current setting value, and when the current passing through the load is less than the current setting value, increase the output voltage of the voltage source, and when passing the load When the current is greater than the current setting value, reduce the output voltage of the voltage source.
  • the field effect transistors S i, 1 ⁇ i ⁇ n are N-channel enhancement type field effect transistor, which can significantly simplify the circuit configuration.
  • all the field effect transistors S i , 1 ⁇ i ⁇ n can be turned on or off according to the control signal applied to the gate.
  • S i field effect transistor when turned 1 ⁇ i ⁇ n, field effect transistors S i operate in the variable resistance region, the field effect transistors S i, 1 ⁇ i ⁇ n turned off when the field effect transistor S i located at a pinch-off Area.
  • the control gate circuit of the field effect transistor S i may be realized by the voltage control module control signal generation unit.
  • the control signal D 3t anode voltage control module receiving an output to control the field effect transistor is turned on or off S i, where i, t is a natural number and n is a natural number of 2 or greater.
  • the constant output current of the power supply circuit is achieved by adjusting the output voltage of the voltage source, and at the same time, high voltage and fast response are achieved by controlling the simultaneous turn-on and turn-off of multiple field effect transistors connected in series. .
  • the power supply circuit will be described in more detail below in conjunction with specific examples.
  • Fig. 2 shows a circuit diagram of a single-channel field emission electron source according to an embodiment of the present disclosure.
  • the circuit includes n field effect transistors S 1 , S 2 ,..., S n connected in series in sequence.
  • Transient suppression diode (TVS tube) or Zener diode (or regulator tube) D 11 , D 12 ,..., D 1n , D 22 ,..., D 2n , D4.
  • the resistors R 2 , R 12 ... R 1n , wherein R 12 ... R 1n are connected in parallel with the two ends of the Zener diodes D 22 ... D 2n respectively.
  • FET source S 1 is connected to the detection means for detecting a current through the load.
  • the parallel circuit of zener tube D 23 and resistor R 13 is connected between the gate and source of field effect tube S 3 ,..., the parallel circuit of zener tube D 2n and resistor R 1n is connected to the gate of field effect tube S n Between the source.
  • the parallel circuit formed by the voltage regulator tube and the resistor makes the gate-source voltage Ugs of the field effect tube not exceed the upper limit of the gate-source voltage of the field effect tube.
  • the voltage source can be a negative high voltage source, the negative electrode of which outputs a negative high voltage, and the positive electrode of which is connected to the ground.
  • the anode of D 11 is connected to the source of the field effect tube S 1 , the cathode of D 11 is connected to the gate of the field effect tube S 2 , the anode of D 1n is connected to the gate of the field effect tube S n , and the cathode of D 1n is field emission
  • the cathode of the electron source is connected.
  • the anode of D 12 is connected to the gate of S 2 and the cathode of D 12 is connected to the gate of S 3.
  • D 13 ,..., D 1n-1 are similar to the above D 12 and S 2 and S 3 are connected in a one-to-one correspondence with the field effect transistors S 2 ,..., S n.
  • the withstand voltage of a single field effect tube is relatively low, and the high voltage can be shared by connecting multiple field effect tubes in series.
  • the maximum voltage value between the source and drain of each field effect transistor is determined by the electrical characteristics of its corresponding D 1n.
  • Zener tube In addition to using a Zener tube to balance the source and drain voltages of the field effect tube, it can also be implemented in parallel with a resistor and a capacitor. As shown in FIG. 3, the parallel network formed by the resistor R 31 and the capacitor C 11 replaces the voltage regulator tube D 11 in FIG. 2.
  • One end of the resistor R 2 is connected to the ground GND, the other end is connected to the anode of the Zener tube D 4 , and the cathode of the diode D 4 is connected to the cathode of the field emission electron source. Its function is to discharge the charge accumulated at the cathode through the loop constructed by the Zener tube D 4 and the resistor R 2 when the field emission electron source is not working.
  • the anodes of the diodes D 32 ,..., D 3n are all connected to the control signal generating unit, can receive the control signal from the control signal generating unit, and are turned on or off under the control of the control signal.
  • the cathodes of the diodes D 32 ,..., D 3n are connected to the gates of the corresponding field effect transistors.
  • the cathode of D 32 is connected to the gate of field effect tube S 2
  • the cathode of D 33 is connected to the gate of field effect tube S 3
  • the cathode of diode D 3n is connected to the gate of field effect tube S n.
  • the combination of the diode D 3n and the field effect tube protects the control signal generating unit and prevents the control signal generating unit from being reversed by the gate voltage of the field effect tube.
  • the voltage source After the system is started, the voltage source outputs a negative high voltage, and the control signal generation unit controls the gate signal of the field effect transistor, for example, controls S 1 , ..., S n to be turned on or off uniformly.
  • the control signal generation unit controls the gate signal of the field effect transistor, for example, controls S 1 , ..., S n to be turned on or off uniformly.
  • the field effect tubes S 1 ,..., S n are turned on, the potential of the cathode of the field emission electron source reaches the output voltage of the voltage source, and the potential difference between the cathode and the gate of the field emission electron source is greater than the critical value of field emission , The cathode emits electrons to the grid.
  • the grid, the cathode, S n ,..., S 1 , the detection unit, the voltage source and the ground constitute a current loop.
  • the control signal generating unit adjusts the negative high voltage output by the voltage source based on the result of comparing the current passing through the load with the current setting value, and the adjustment range can reach 0v to-several Kv.
  • the detection unit detects the magnitude of the current passing through the field emission electron source, and feeds back the current detection value to the control signal generation unit.
  • the most common ones such as current sampling resistors, induction coils, or Hall sensors, can all realize the current collection function.
  • the control signal generating unit receives the current detection value, and adjusts the negative voltage output by the voltage source by comparing the current detection value with the current setting value, so as to achieve a constant current in the loop.
  • the control signal generating unit receives the current detection value, and adjusts the negative voltage output by the voltage source by comparing the current detection value with the current setting value, so as to achieve a constant current in the loop.
  • There are many ways to build the control signal generating unit such as using an operational amplifier, or using an MCU with DA and AD.
  • the power supply circuit provided by the embodiments of the present disclosure is easy to expand. By controlling the field effect transistors S1 to Sn to work in the variable resistance area or the pinch-off area respectively, the power supply circuit can be controlled to be turned on or off. Therefore, it can be combined with a field emission electron source to form multiple points The field emission electron source facilitates control between different channels.
  • Fig. 4 shows a circuit diagram of a multipoint field emission electron source according to an embodiment of the present disclosure.
  • the multipoint field emission electron source includes at least one power supply circuit of the embodiment described with reference to FIG. 1 to FIG. 3.
  • Each power supply circuit constitutes a channel, and the power supply circuits are connected in parallel. Work relatively independently, and can be turned on and off independently.
  • the multipoint field emission electron source further includes a grid assembly and at least one cathode, the grid assembly is connected to the ground, at least one cathode corresponds to at least one power supply circuit, and at least one cathode corresponds to at least one The output terminal of the power supply circuit is connected, a plurality of cathodes are arranged in parallel with the grid assembly, and a field emission electric field is formed between each cathode and the grid assembly.
  • the cathode assembly of the multi-point distributed field emission electron source is composed of multiple cathodes, and each cathode transmits a high-voltage electric field corresponding to its own channel.
  • the transmission of each high-voltage electric field has an independent control signal, and only one high-voltage electric field can be transmitted at the same time.
  • the present disclosure provides a field emission electron source with a high-voltage constant current control system, which shares the high voltage required for cathode field emission through a cascade of multiple field-effect tubes, and solves the problem of insufficient voltage resistance of a single field-effect tube.
  • the reliability of the circuit is increased, and the production cost of the field emission electron source control system is also reduced.
  • the field emission electron source with the high-voltage constant current control system can realize the functions of instantaneous startup and shutdown, and feedback through current closed loop detection
  • the mechanism makes the working current emission of each field emission cathode constant, and realizes the constant current working mode of the field emission electron source.

Abstract

一种电源电路及场致发射电子源。电源电路包括:经由漏极和源极依次串联连接的场效应晶体管Si,1≤i≤n,i、n为自然数,n≥2,其中S1的源极与电压源的负极连接,Sn的漏极作为电源电路的输出端,用于连接负载;串联连接的第一组二极管D1i,1≤i≤n,i、n为自然数,n≥2;并联连接的第一组电阻R1j,2≤j≤n,i、j为自然数;以及电压控制模块,调整电压源的输出电压,以使通过负载的电流恒定。场效应晶体管Si工作在可变电阻区。

Description

恒流控制电源电路及场致发射电子源
本申请要求于2019年10月30日提交的、申请号为201911047324.X的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及电子源发射技术领域,更具体地,涉及一种电源电路及应用该电源电路的场致发射电子源。
背景技术
电源电路的性能对电子设备的性能至关重要。例如,在场致发射电子源产品中,当施加到场致发射电子源回路的电流发生变化时,将导致场致发射电子源性能下降。
在固体中含有大量的电子,这些电子由于受到原子核的吸引而被束缚在固体内部,在常态下这些电子所具有的能量都不足以逸出物体表面,只有在一定的外界能量作用下或通过消除电子束缚的方法,才能使电子从固体内部通过表面向真空逸出。我们称能在真空中定向产生大量电子的系统为电子源。一种方法是依靠外部电场压抑材料的表面势垒,使势垒降低、变窄,当势垒的宽度窄到可与电子波长相比拟时,电子的隧道效应开始起作用,自由电子就可以顺利穿透表面势垒进入真空中。这种利用外界强电场,把电子拉出固体表面的现象就是场致发射现象,这种类型的电子源称为场发射电子源。研究表明,当外电场场强达到10的6次方时,已经有很明显的电子发射现象了。场致电子发射不存在时间延迟性,响应速度达到微秒级,即场致发射电子源可以实现瞬时性启动和关闭。
因此,要求应用于对场致发射电子源的电路能够保持稳定的电流并且能够瞬时响应。
发明内容
为了至少部分地解决上述技术问题,本公开提出了一种电源电路及应用该电源电路的场致发射电子源。
根据本公开的一个方面,提出了一种电源电路,包括:经由漏极和源极依次串联连接的场效应晶体管S i,1≤i≤n,i、n为自然数,n≥2,其中S 1的源极与电压源的负极连 接,S n的漏极作为电源电路的输出端,用于连接负载;串联连接的第一组二极管D 1i,1≤i≤n,i、n为自然数,n≥2,其中D 11并联连接在S 2的栅极与所述电压源的负极之间,D 1n并联连接在S n的栅极与S n的漏极之间,当n>2时,其余的D 1i并联连接在S i的栅极与S i+1的栅极之间,第一组电阻R 1j,2≤j≤n,其中R 1j并联连接S i的栅极和源极,其中j与i的取值相对应;i、j为自然数;以及电压控制模块,调整所述电压源的输出电压,以使通过负载的电流恒定;其中,所述场效应晶体管S i,1≤i≤n工作在可变电阻区。
在一些实施例中,场效应晶体管S i,2≤i≤n为N沟道增强型场效应管。
在一些实施例中,所述电压控制模块包括:检测单元,与连接到所述电源电路的输出端的负载串联连接,以检测通过负载的电流;以及控制信号生成单元,根据通过负载的电流生成控制信号,并将所述控制信号施加到所述电压源。
在一些实施例中,所述控制信号生成单元被配置为:将通过负载的电流与电流设定值进行比较;当通过负载的电流小于所述电流设定值时,增加所述电压源的输出电压;当通过负载的电流大于所述电流设定值时,减小所述电压源的输出电压。
在一些实施例中,还包括:并联连接的第二组二极管D 2k,2≤k≤n,其中D 2k的阴极与S i的栅极连接,D 2k的阳极与S i的源极连接,其中k与i的取值相对应,k为自然数且n为大于等于2的自然数。
在一些实施例中,还包括:第三组二极管D 3t,2≤t≤n,其中D 3t的阴极与S i的栅极连接,其中t与i的取值相对应,D 3t的阳极接收所述电压控制模块输出的控制信号,以控制所述场效应晶体管S i导通或关闭,其中t为自然数且n为大于等于2的自然数。
在一些实施例中,所述电流检测单元包括电阻元件、电感元件或霍尔传感器元件。
在一些实施例中,所述控制单元包括运算放大器、微控制器、FPGA或单片机。
在一些实施例中,所述电源电路被构造为利用串联连接的电阻和电容的并联结构替代所述串联连接的第一组二极管D 1i,1≤i≤n,i、n为自然数,n≥2。
在一些实施例中,还包括:第四二极管,所述第四二极管的阴极与场效应晶体管S n的漏极连接,所述第四二极管的阳极与第二电阻的一端连接;第二电阻,所述第二电阻的另一端与地连接。
根据本公开的另一方面,提供了一种多点场致发射电子源,包括:至少一个根据上述实施例所述的电源电路;以及栅极组件和至少一个阴极,所述栅极组件与所述电源电路中的电压源的正极连接,且所述电压源的正极与地连接,所述至少一个阴极与至少一 个电源电路一一对应,且所述至少一个阴极与所述至少一个电源电路的输出端连接,所述多个阴极与所述栅极组件平行布置,在每个所述阴极与所述栅极组件之间形成场致发射电场。
根据公开实施例的技术方案,提供了一种电源电路,其中,通过多个场效应管级联方式分担阴极场致发射所需高压,解决了单个场效应管耐压不足的问题,增加了电路工作可靠性,也降低了场致发射电子源控制系统的生产成本,并且实现了场致发射电子源的瞬时启动和关闭。
附图说明
通过下面结合附图说明本公开实施例,将使本公开实施例的上述及其它目的、特征和优点更加清楚。应注意,贯穿附图,相同的元素由相同或相近的附图标记来表示。在附图中:
图1示出了根据本公开实施例的电源电路的电路图;
图2示出了根据本公开实施例的单通道场致发射电子源的电路图;
图3示出了根据本公开另一实施例的单通道场致发射电子源的电路图;以及
图4示出了根据本公开实施例的多点场致发射电子源的电路图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整的描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部。基于所描述的本公开实施例,本领域普通技术人员在无需创造性劳动的前提下获得的所有其他实施例都属于本公开保护的范围。在以下描述中,一些具体实施例仅用于描述目的,而不应该理解为对本公开有任何限制,而只是本公开实施例的示例。在可能导致对本公开的理解造成混淆时,将省略常规结构或构造。应注意,图中各部件的形状和尺寸不反映真实大小和比例,而仅示意本公开实施例的内容。
除非另外定义,本公开实施例使用的技术术语或科学术语应当是本领域技术人员所理解的通常意义。本公开实施例中使用的“第一”、“第二”以及类似词语并不表示任何顺序、数量或重要性,而只是用于区分不同的组成部分。
此外,在本公开实施例的描述中,术语“连接至”或“相连”可以是指两个组件直接连接,也可以是指两个组件之间经由一个或多个其他组件相连。此外,这两个组件可以通过有线或无线方式相连或相耦合。
现有的已经开发的场致发射X射线源采用场致发射电子源,通过场致电子发射的方式产生电子束,包括产生电子束的部分(称为阴极)和产生控制电场的部分。固体发生场致发射需要很强的电场,这也是场发射阴极的必备要素,通过对阴极材料的改进,场致发射电压阈值大大降低,达到了每微米数伏(V/um)的水平,因此场致发射电子源的栅极控制电压与阴栅的间距直接相关,不同的工艺方法可能控制在几十微米(um)到毫米(mm)量级,因此场致发射电子源的工作电压在几千伏(kV)。
本公开的实施例首先提出了一种电源电路,可以作为上述场致发射电子源所需的电源使用。但应理解,本公开实施例中的电源电路也可以应用于其他场合,例如电真空领域。
图1示出了根据本公开实施例的电源电路的电路图,如图1所示,根据本公开实施例的电源电路主要包括经由漏极和源极依次串联连接的场效应晶体管S i,1≤i≤n,n≥2,其中i、n为自然数。在图1中,S 1的源极与电压源的负极连接,电压源的正极作为电源电路的一个输出端,S 1的漏极与S 2的源极连接,S 2的漏极连接S 3的源极,依次类推,S n-1的漏极连接S n的源极,S n的漏极作为电源电路的另一个输出端,可以在电源电路的两个输出端之间连接负载。
如图1所示,电源电路还包括串联连接的二极管(第一组二极管)D 1i,1≤i≤n,n≥2,其中i、n为自然数。在图1中可以看出,二极管D 11并联连接在S 2的栅极与电压源的负极之间,D 1n并联连接在S n的栅极与S n的漏极之间,当n>2时,其余二极管D 1i与场效应管S i一一对应,即其余的D 1i并联连接在S i的栅极与S i+1的栅极之间。例如,二极管D 12并联连接在S 2的栅极与S 3的栅极之间,二极管D 13并联连接在S 3的栅极与S 4的栅极之间,依次类推。
如图1所示,电源电路还包括电压控制模块,电压控制模块可以调整电压源的输出电压,以使通过负载的电流恒定。
根据本公开的实施例,如图1所示,电源电路还可以包括并联连接的二极管(第二组二极管)D 2k和电阻(第一组电阻)R 1j,2≤k≤n,2≤j≤n,其中k、j和n均为大于等于2的自然数。在图1中,将二极管(第二组二极管)D 2k包括在虚线框中,表示该 是可选元件。
在图1中可以看出,k与j的取值相对应,对应的二极管D 2k与电阻R 1j并联连接,再整体并联连接在场效应管S i的栅极和源极之间。其中二极管D 2k的阳极与场效应管S i的栅极连接,二极管D 2k的阴极与场效应管S i的源极连接。例如,二极管D 22和电阻R 12并联连接在S 2的栅极和源极之间,且D 22的阴极与S 2的栅极连接,D 22的阳极与S 2的源极连接,依次类推。
根据本公开的实施例,电流反馈模块可以进一步包括检测单元和控制信号生成单元,其中检测单元与连接到电源电路的输出端的负载串联连接,以检测通过负载的电流。控制信号生成单元根据通过负载的电流生成控制信号,并将控制信号施加到电压源,后面将结合具体的示例详细说明。
检测单元可以是电阻元件、电感元件或霍尔传感器元件,本公开的实施例不限于此。控制信号生成单元可以是运算放大器、微控制器、FPGA或单片机,本公开的实施例不限于此。
根据本公开的实施例,控制信号生成单元被配置为将通过负载的电流与电流设定值进行比较,并且当通过负载的电流小于电流设定值时,增加电压源的输出电压,当通过负载的电流大于电流设定值时,减小电压源的输出电压。
根据本公开的实施例,场效应晶体管S i,1≤i≤n为N沟道增强型场效应管,这可以显著地简化电路结构。并且,所有场效应晶体管S i,1≤i≤n可以根据施加到栅极的控制信号导通或关断。当场效应晶体管S i,1≤i≤n导通时,场效应晶体管S i工作在可变电阻区,当场效应晶体管S i,1≤i≤n关断时,场效应晶体管S i位于夹断区。
对场效应晶体管S i的栅极电路的控制也可以通过电压控制模块中的控制信号生成单元实现。在如图1所示的电源电路中,还包括第三组二极管D 3t,2≤t≤n,其中D 3t的阴极与S i的栅极连接,其中t与i的取值相对应。D 3t的阳极接收电压控制模块输出的控制信号,以控制场效应晶体管S i导通或关闭,其中i、t为自然数且n为大于等于2的自然数。
在本公开的实施例中,通过调节电压源的输出电压实现了电源电路输出电流的恒定,并同时通过控制串联连接的多个场效应晶体管的同时导通和关断,实现了高压与快速响应。
下面结合具体的示例更详细地对该电源电路进行说明。
图2示出了根据本公开实施例的单通道场致发射电子源的电路图。
如图2所示,电路包括依次串联的n个场效应管S 1,S 2,…,S n。瞬态抑制二极管(TVS管)或齐纳二极管(或稳压管)D 11,D 12,…,D 1n,D 22,…,D 2n,D4。二极管D 32,…,D 3n。电阻R 2,R 12…R 1n,其中R 12…R 1n分别并联在齐纳二极管D 22…D 2n的两端。场效应管S 1的源极与检测单元相连,用于检测通过负载的电流。场效应管S 1的漏极与场效应管S 2的源极相连,场效应管S 2的漏极与场效应管S 3的源极相连,…,场效应管S n-1的漏极与场效应管S n的源极相连,场效应管S n的漏极与场致发射电子源的阴极相连。稳压管D 22的阴极连接场效应管S 2的栅极,稳压管D 22的阳极连接场效应管S 2的源极,电阻R 12并联在稳压管D 22的两端,依次类推。稳压管D 23和电阻R 13的并联电路连接在场效应管S 3的栅极和源极之间,…,稳压管D 2n和电阻R 1n的并联电路连接在场效应管S n的栅极源极之间。稳压管和电阻构成的并联电路使得场效应管的栅源电压Ugs不超过场效应管栅源极电压上限。电压源可以是负高压源,其负极输出负高压,其正极与地连接。
D 11的阳极与场效应管S 1的源极相连,D 11阴极与场效应管S 2的栅极相连,D 1n的阳极与场效应管S n的栅极相连,D 1n阴极场致发射电子源阴极相连,当n≥2时,D 12的阳极与S 2的栅极相连,D 12的阴极与S 3的栅极相连,D 13,…,D 1n-1采用类似上述D 12与S 2和S 3连接的方式分别与场效应管S 2,…,S n一一对应连接。单个场效应管耐压较低,通过多个场效应管串联,可以分担高压。每个场效应管的源极与漏极之间承受的最大电压值由其对应的D 1n的电气特性决定。
除采用稳压管均衡场效应管源极和漏极电压外,也可以采用电阻和电容并联的方式实现。如图3所示,电阻R 31与电容C 11构成的并联网络替代了图2中的稳压管D 11
电阻R 2一端连接地GND,另一端连接稳压管D 4的阳极,二极管D 4的阴极与场致发射电子源的阴极连接。其作用是当场致发射电子源不工作时,通过稳压管D 4和电阻R 2构建的回路泄放阴极积累的电荷。
二极管D 32,…,D 3n的阳极均与控制信号生成单元连接,可以接收来自控制信号生成单元的控制信号,并在控制信号的控制下导通或关断。二极管D 32,…,D 3n的阴极连接对应场效应晶体管的栅极。例如,D 32的阴极与场效应管S 2栅极相连,D 33的阴极与场效应管S 3栅极相连,以此类推,二极管D 3n的阴极与场效应管S n的栅极相连。二极管D 3n和场效应管组合起到保护控制信号生成单元的作用,防止控制信号生成单元被场效 应管栅极电压反向击穿。
系统启动后,电压源输出负高压,控制信号生成单元控制场效应管的栅极信号,例如,控制S 1,…,S n统一导通或关断。当场效应管S 1,…,S n导通时,场致发射电子源的阴极的电位达到电压源的输出电压,场致发射电子源的阴极与栅极的电位差大于场致发射的临界值,阴极向栅极发射电子。此时,栅极、阴极、S n,…,S 1,检测单元、电压源及地构成电流回路。
控制信号生成单元基于将通过负载的电流与电流设定值进行比较的结果对电压源输出的负高压进行调整,调整范围可以达0v~-几Kv。
检测单元检测通过场致发射电子源的电流大小,并将电流检测值反馈给控制信号生成单元。检测单元有多种实现方法,最常见的如电流采样电阻、感应线圈或者用霍尔感应器等都可以实现电流采集功能。
控制信号生成单元接收电流检测值,通过比较电流检测值与电流设定值,调节电压源输出的负电压,从而实现回路内电流恒定。控制信号生成单元的搭建方式有多种,例如使用运算放大器,或者使用带DA、AD的MCU等。
本公开实施例提供的电源电路易于扩展,通过控制场效应晶体管S1至Sn分别工作在可变电阻区或夹断区,可以控制电源电路开启或关闭,因此可以结合场致发射电子源构成多点场致发射电子源,从而有利在不同的通道之间进行控制。
图4示出了根据本公开实施例的多点场致发射电子源的电路图。如图4所示,该多点场致发射电子源包括至少一个参考图1至图3所述实施例的电源电路,每个电源电路构成一个通道,各电源电路之间并联,相互之间可以相对独立地工作,并且可以独立开启和关闭。
如图4所示,该多点场致发射电子源还包括栅极组件和至少一个阴极,栅极组件与地连接,至少一个阴极与至少一个电源电路一一对应,且至少一个阴极与至少一个电源电路的输出端连接,多个阴极与栅极组件平行布置,在每个阴极与栅极组件之间形成场致发射电场。
如图4所示,多点分布场致发射电子源的阴极组件由多个阴极组成,每个阴极对应各自的通道传送高压电场。每个高压电场的传送都有独立的控制信号,在同一时刻可以只有一个高压电场进行传送。
根据本公开的实施例,有利于在一个管体结构内集成一个到几百个场致发射阴极, 并通过调节负高压电源输出电压的方式进行恒流控制,使电路在毫秒级内达到电流稳定状态。
本公开提供了一种带有高压恒流控制系统的场致发射电子源,通过多个场效应管级联方式分担阴极场致发射所需高压,解决了单个场效应管耐压不足的问题,增加了电路工作可靠性,也降低了场致发射电子源控制系统的生产成本。由于高压恒流控制系统中的场效应管具有快速导通关断的特性,因此带有高压恒流控制系统的场致发射电子源可实现瞬时启动和关断的功能,并通过电流闭环检测反馈机制,使得每个场致发射阴极的工作电流发射恒定,实现场致发射电子源的恒流工作模式。
至此已经结合优选实施例对本公开进行了描述。应该理解,本领域技术人员在不脱离本公开实施例的精神和范围的情况下,可以进行各种其它的改变、替换和添加。因此,本公开实施例的范围不局限于上述特定实施例,而应由所附权利要求所限定。

Claims (11)

  1. 一种电源电路,包括:
    经由漏极和源极依次串联连接的场效应晶体管S i,1≤i≤n,i、n为自然数,n≥2,其中S 1的源极与电压源的负极连接,S n的漏极作为电源电路的输出端,用于连接负载;
    串联连接的第一组二极管D 1i,1≤i≤n,i、n为自然数,n≥2,其中D 11并联连接在S 2的栅极与所述电压源的负极之间,D 1n并联连接在S n的栅极与S n的漏极之间,当n>2时,其余的D 1i并联连接在S i的栅极与S i+1的栅极之间;
    第一组电阻R 1j,2≤j≤n,其中R 1j并联连接S i的栅极和源极,其中j与i的取值相对应;i、j为自然数;以及
    电压控制模块,调整所述电压源的输出电压,以使通过负载的电流恒定;
    其中,所述场效应晶体管S i,1≤i≤n工作在可变电阻区。
  2. 根据权利要求1所述的电源电路,其中,场效应晶体管S i,1≤i≤n为N沟道增强型场效应管。
  3. 根据权利要求1所述的电源电路,其中,所述电压控制模块包括:
    检测单元,与连接到所述电源电路的输出端的负载串联连接,以检测通过负载的电流;以及
    控制信号生成单元,根据通过负载的电流生成控制信号,并将所述控制信号施加到所述电压源。
  4. 根据权利要求3所述的电源电路,其中,所述控制信号生成单元被配置为:
    将通过负载的电流与电流设定值进行比较;
    当通过负载的电流小于所述电流设定值时,增加所述电压源的输出电压;
    当通过负载的电流大于所述电流设定值时,减小所述电压源的输出电压。
  5. 根据权利要求1所述的电源电路,还包括:并联连接的第二组二极管D 2k,2≤k≤n,其中D 2k的阴极与S i的栅极连接,D 2k的阳极与S i的源极连接,其中k、i的取值相对应,k、n为自然数,n≥2。
  6. 根据权利要求1所述的电源电路,还包括:
    第三组二极管D 3t,2≤t≤n,其中D 3t的阴极与S i的栅极连接,其中t与i的取值相对应,D 3t的阳极接收所述电压控制模块输出的控制信号,以控制所述场效应晶体管 S i导通或关闭,其中t为自然数且n为大于等于2的自然数。
  7. 根据权利要求3或4所述的电源电路,其中,所述电流检测单元包括电阻元件、电感元件或霍尔传感器元件。
  8. 根据权利要求3或4所述的电源电路,其中,所述控制单元包括运算放大器、微控制器、FPGA或单片机。
  9. 根据权利要求1所述的电源电路,其中,所述电源电路被构造为利用串联连接的电阻和电容的并联结构替代所述串联连接的第一组二极管D 1i,1≤i≤n,i、n为自然数,n≥2。
  10. 根据权利要求1至9所述的电源电路,还包括:
    第四二极管,所述第四二极管的阴极与场效应晶体管S n的漏极连接,所述第四二极管的阳极与第二电阻的一端连接;
    第二电阻,所述第二电阻的另一端与地连接。
  11. 一种多点场致发射电子源,包括:
    至少一个如权利要求1至10中任一项所述的电源电路;以及
    栅极组件和至少一个阴极,所述栅极组件与所述电源电路中的电压源的正极连接,且所述电压源的正极与地连接,所述至少一个阴极与至少一个电源电路一一对应,且所述至少一个阴极与所述至少一个电源电路的输出端连接,所述多个阴极与所述栅极组件平行布置,在每个所述阴极与所述栅极组件之间形成场致发射电场。
PCT/CN2020/085325 2019-10-30 2020-04-17 恒流控制电源电路及场致发射电子源 WO2021082362A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021560184A JP7254207B2 (ja) 2019-10-30 2020-04-17 定電流制御電源回路および電界放出電子源
US17/772,568 US11830698B2 (en) 2019-10-30 2020-04-17 Constant current-controlled power supply circuit and field emission electron source

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911047324.X 2019-10-30
CN201911047324.XA CN110825148B (zh) 2019-10-30 2019-10-30 恒流控制电源电路及场致发射电子源

Publications (1)

Publication Number Publication Date
WO2021082362A1 true WO2021082362A1 (zh) 2021-05-06

Family

ID=69551595

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/085325 WO2021082362A1 (zh) 2019-10-30 2020-04-17 恒流控制电源电路及场致发射电子源

Country Status (4)

Country Link
US (1) US11830698B2 (zh)
JP (1) JP7254207B2 (zh)
CN (1) CN110825148B (zh)
WO (1) WO2021082362A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110825148B (zh) 2019-10-30 2021-06-04 新鸿电子有限公司 恒流控制电源电路及场致发射电子源

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090189643A1 (en) * 2006-06-26 2009-07-30 St Wireless Sa Constant voltage generating device
CN201928017U (zh) * 2010-12-20 2011-08-10 青岛艾诺智能仪器有限公司 一种直流高压放电模块
CN102566732A (zh) * 2010-12-22 2012-07-11 鸿富锦精密工业(深圳)有限公司 降压式变换电路的输出电流监测装置
CN102830784A (zh) * 2011-06-17 2012-12-19 鸿富锦精密工业(深圳)有限公司 电源检测电路及具有该电源检测电路的电源电路
CN105811750A (zh) * 2016-04-25 2016-07-27 优利德科技(中国)有限公司 一种抗雷击可超宽电压输入的稳压电源及其限流稳压方法
CN110825148A (zh) * 2019-10-30 2020-02-21 新鸿电子有限公司 恒流控制电源电路及场致发射电子源

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE792285A (fr) * 1971-12-06 1973-06-05 Xerox Corp Circuits de regulation de courant
CN1043829A (zh) * 1989-12-29 1990-07-11 谭金发 耐高电压的场效应功率晶体固体组件
US5847515A (en) * 1996-11-01 1998-12-08 Micron Technology, Inc. Field emission display having multiple brightness display modes
JP3053778B2 (ja) 1996-11-29 2000-06-19 株式会社ベルニクス 直列トランジスタ回路
JP2002033648A (ja) 2000-07-14 2002-01-31 Origin Electric Co Ltd 縦続接続回路
JP3701573B2 (ja) 2001-03-28 2005-09-28 株式会社オートネットワーク技術研究所 負荷駆動回路
JP2004126112A (ja) 2002-10-01 2004-04-22 Mitsubishi Electric Corp 駆動回路及び表示装置
DE102004039620B4 (de) * 2004-08-06 2006-10-12 Atmel Germany Gmbh Integrierte Schaltung, die eine vorgegebene Spannungsfestigkeit besitzt
JP4429874B2 (ja) 2004-11-02 2010-03-10 三菱電機株式会社 ホローカソードキーパ電源
JP2009245672A (ja) * 2008-03-31 2009-10-22 Univ Of Tokyo フィールドエミッション装置、ならびに、その製造方法
CN202551464U (zh) * 2012-05-04 2012-11-21 广州南科集成电子有限公司 一种宽电压led灯控制电路
CN103021759B (zh) * 2013-01-06 2016-05-04 电子科技大学 一种恒流发射的场致发射电子源
US9264032B2 (en) 2013-06-20 2016-02-16 Broadcom Corporation Voltage protection scheme for semiconductor devices
CN105356753A (zh) * 2015-11-11 2016-02-24 中国电子科技集团公司第二十九研究所 一种高压电子模拟负载电路
CN108566080A (zh) * 2018-05-24 2018-09-21 广州金升阳科技有限公司 一种高压恒流启动电路

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090189643A1 (en) * 2006-06-26 2009-07-30 St Wireless Sa Constant voltage generating device
CN201928017U (zh) * 2010-12-20 2011-08-10 青岛艾诺智能仪器有限公司 一种直流高压放电模块
CN102566732A (zh) * 2010-12-22 2012-07-11 鸿富锦精密工业(深圳)有限公司 降压式变换电路的输出电流监测装置
CN102830784A (zh) * 2011-06-17 2012-12-19 鸿富锦精密工业(深圳)有限公司 电源检测电路及具有该电源检测电路的电源电路
CN105811750A (zh) * 2016-04-25 2016-07-27 优利德科技(中国)有限公司 一种抗雷击可超宽电压输入的稳压电源及其限流稳压方法
CN110825148A (zh) * 2019-10-30 2020-02-21 新鸿电子有限公司 恒流控制电源电路及场致发射电子源

Also Published As

Publication number Publication date
JP7254207B2 (ja) 2023-04-07
US11830698B2 (en) 2023-11-28
CN110825148A (zh) 2020-02-21
JP2022527019A (ja) 2022-05-27
US20220375710A1 (en) 2022-11-24
CN110825148B (zh) 2021-06-04

Similar Documents

Publication Publication Date Title
JP5158585B2 (ja) 電源装置及び高周波回路システム
CN111224540B (zh) 开关电容变换器及其驱动电路
US10312812B2 (en) Wide-range positive-negative adjustable high-voltage DC power supply and the control method thereof
WO2021082362A1 (zh) 恒流控制电源电路及场致发射电子源
JP5136892B2 (ja) 電圧制御装置、電源装置、電子管及び高周波回路システム
WO2021082363A1 (zh) 电源电路及场致发射电子源
WO2019085544A1 (zh) 一种开关电源输出软启动电路
US8044704B2 (en) Current controller and method therefor
US20190348836A1 (en) Protection circuit and display panel
CN107124090B (zh) 应用于高压固态开关中的快速驱动电路、高压固态开关
US20210044293A1 (en) High-voltage amplifier, high-voltage power supply, and mass spectrometer
JP5987609B2 (ja) 電力制御器
CN113067474A (zh) 一种开关电源与浮动轨ldo级联的混合电源及其应用
CN106026940A (zh) 一种跨阻放大器的直流偏置电路
TWI444086B (zh) Led照明驅動電路和方法
Qiang et al. The cathode control circuit design of auto-gating power supply for low-light-level image intensifier
CN112290780B (zh) 基于输入线电压补偿的功率管恒定驱动控制电路及方法
US8536795B2 (en) Apparatus for driving field emission lamp
US20230148109A1 (en) High Voltage Amplifier Circuit and Analyzer Apparatus
US6917225B2 (en) Driver circuit for driving a switching transistor
US20230387784A1 (en) Control circuit and control method for switched capacitor converter
DE102022206833A1 (de) Betreiben einer Röntgenröhre
CN107404217B (zh) 开关电源控制电路和方法及开关电源
US20200089155A1 (en) Printing apparatus and light-emitting element driving device
CN115833554A (zh) 一种负高压电源快速关断电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20881490

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021560184

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20881490

Country of ref document: EP

Kind code of ref document: A1