WO2019085544A1 - 一种开关电源输出软启动电路 - Google Patents

一种开关电源输出软启动电路 Download PDF

Info

Publication number
WO2019085544A1
WO2019085544A1 PCT/CN2018/095132 CN2018095132W WO2019085544A1 WO 2019085544 A1 WO2019085544 A1 WO 2019085544A1 CN 2018095132 W CN2018095132 W CN 2018095132W WO 2019085544 A1 WO2019085544 A1 WO 2019085544A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
switching power
resistor
capacitor
output
Prior art date
Application number
PCT/CN2018/095132
Other languages
English (en)
French (fr)
Inventor
申志鹏
宋建峰
罗皓
Original Assignee
广州金升阳科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州金升阳科技有限公司 filed Critical 广州金升阳科技有限公司
Publication of WO2019085544A1 publication Critical patent/WO2019085544A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/36Means for starting or stopping converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0083Converters characterised by their input or output configuration

Definitions

  • the invention relates to the field of switching power supplies, and in particular to an output soft start circuit for a switching power supply system to realize a slow establishment of a switching power supply output voltage.
  • the PWM control chip of the general switching power supply has its own soft-start function. During the startup process of the switching power supply, the switching device is prevented from being subjected to large current stress and damaged or the output voltage overshooting damages the electrical equipment.
  • PWM control chips Although most PWM control chips have their own soft-start function, some PWM control chips are designed to integrate the soft-start capacitor inside the chip. It is not possible to adjust the soft-start time by adjusting the soft-start capacitor size. The product design requirements cannot be met; while the other part of the PWM control chip can be freely set despite the external soft-start capacitor, it cannot be selected because the PWM control chip resumes restarting when an abnormal condition such as overcurrent or short circuit occurs in the power supply. Since the energy of the soft-start capacitor of the PWM control chip has not been discharged, it may cause a problem that the soft start time becomes shorter or the soft start fails.
  • the feedback loop of the output voltage of the switching power supply is from the beginning of the establishment to the actual primary-side response feedback, even if the loop is fast. There must also be a delay. In the process of this delay, the output voltage will overshoot. At this time, the voltage feedback loop is saturated and cut off, and the undershoot will occur.
  • the feedback loop of the power supply routes the auxiliary power supply, and the auxiliary power supply is preferentially activated, so that the existing conventional output soft start circuit
  • the soft-start capacitor is fully charged in advance, causing a problem of failure, causing undershooting after the output voltage overshoots severely, as shown in Figure 2.
  • the present invention provides a switching power supply output soft start circuit to solve the problem of soft start failure in the existing switching power supply system.
  • a switching power supply output soft start circuit includes: a first capacitor, a first resistor, and a first diode.
  • the first capacitor is connected to the output positive pole of the switching power supply, the other end is connected to one end of the first resistor and the anode of the first diode, and the other end of the first resistor is connected to the output negative pole of the switching power supply, and the cathode of the first diode is connected.
  • Switching power supply voltage feedback network input.
  • the power voltage feedback network may be a reference pin of the TL431 or an input of the operational amplifier.
  • the equivalent solution of the above technical solution is implemented by the following technical solutions, including: a first capacitor, a first resistor, and a first N-type transistor.
  • the first capacitor is connected to the output positive pole of the switching power supply, the other end is connected to one end of the first resistor and the base and the collector of the first N-type transistor, and the other end of the first resistor is connected to the output negative pole of the switching power supply, the first N-type
  • the emitter of the triode is connected to the input of the switching power supply voltage feedback network.
  • the power voltage feedback network may be a reference pin of the TL431 or an input of the operational amplifier.
  • the equivalent solution of the foregoing technical solution is implemented by the following technical solutions, including: a first capacitor, a first resistor, a second resistor, and a first N-type transistor.
  • the first capacitor is connected to the output positive pole of the switching power supply, the other end is connected to one end of the first resistor and the base of the first N-type transistor, and the other end of the first resistor is connected to the output negative pole of the switching power supply, and the first N-type triode is set.
  • the electrode is connected to one end of the second resistor, and the other end of the second resistor is connected to the output positive pole of the switching power supply.
  • the emitter of the first N-type transistor is connected to the input end of the switching power supply voltage feedback network.
  • the second resistance may be a 0 ohm resistor.
  • the power voltage feedback network may be a reference pin of the TL431 or an input of the operational amplifier.
  • the equivalent solution of the foregoing technical solution is implemented by the following technical solutions, including: a first capacitor, a first resistor, a second resistor, and a first N-type switch tube.
  • the first capacitor is connected to the output positive pole of the switching power supply, the other end is connected to one end of the first resistor and the gate of the first N-type switch tube, and the other end of the first resistor is connected to the output negative pole of the switching power supply, the first N-type switch tube
  • the drain is connected to one end of the second resistor, and the other end of the second resistor is connected to the output positive pole of the switching power supply.
  • the source of the first N-type switching transistor is connected to the input end of the switching power supply voltage feedback network.
  • the second resistance may be a 0 ohm resistor.
  • the power voltage feedback network may be a reference pin of the TL431 or an input of the operational amplifier.
  • the present invention has the following beneficial effects:
  • Figure 1 is a schematic diagram of a conventional output soft start circuit
  • FIG. 3 is a schematic circuit diagram of an application according to an embodiment of the present invention.
  • FIG. 5 is a schematic circuit diagram of an application according to Embodiment 2 of the present invention.
  • FIG. 6 is a schematic circuit diagram of an application of Embodiment 3 of the present invention.
  • FIG. 7 is a schematic circuit diagram of an application of Embodiment 4 of the present invention.
  • FIG. 3 is a block diagram showing a first embodiment of the present invention.
  • a switching power supply output soft start circuit includes a first capacitor C1, a first resistor R1, and a first diode D1.
  • the first capacitor C1 is connected to the output positive pole of the switching power supply, the other end is connected to the first resistor R1 and the anode of the first diode D1, and the other end of the first resistor R1 is connected to the output negative pole of the switching power supply, the first diode D1
  • the cathode is connected to the input of the switching power supply voltage feedback network.
  • the output voltage is charged to the soft-start capacitor C1 in the loop through the C1, D1, R3, and R4 loops, and the charging signal is introduced into the feedback loop in real time, thereby limiting the PWM from time to time.
  • the output duty cycle of the control chip is developed in the form of a soft start capacitor C1 charge index, so that the output voltage also rises to a prescribed value in the form of a capacitance charge index, as shown in FIG.
  • the output voltage will continue to charge the soft-start capacitor C1 through the small current loop of C1 and R1. Thereafter, D1 is naturally cut off and does not affect the supply voltage feedback loop operation.
  • the soft start capacitor C1 will be discharged through R1, in preparation for the soft start again.
  • the soft start capacitor can be randomly designed according to the requirements of the switching power supply product.
  • the soft start circuit is only related to the establishment of the output voltage, and is independent of the power supply mode of other tasks such as the feedback loop routing auxiliary power supply.
  • the diode D1 shown in the dotted line of FIG. 3 may also be an N-type transistor, as shown by the dotted line in FIG. 5, including: a first capacitor C1, a first resistor R1, and a first N-type transistor Q1.
  • the first capacitor C1 is connected to the output positive pole of the switching power supply, the other end is connected to the first resistor R1 and the base and collector of the first N-type transistor Q1, and the other end of the first resistor R1 is connected to the output negative pole of the switching power supply, the first N-type The emitter of transistor Q1 is connected to the input of the switching power supply voltage feedback network.
  • the operating principle of the adjusted circuit is the same as that of the first embodiment, and the same effect can be achieved.
  • FIG. 6 is a block diagram showing a third embodiment of the present invention.
  • a switching power supply output soft start circuit includes a first capacitor C1, a first resistor R1, a second resistor R2, and a first N-type transistor Q1.
  • the first capacitor C1 is connected to the output positive pole of the switching power supply, the other end is connected to the first resistor R1 and the base of the first N-type transistor Q1, and the other end of the first resistor R1 is connected to the output negative pole of the switching power supply, the first N-type transistor
  • the collector of Q1 is connected to one end of the second resistor R2, and the other end of the second resistor R2 is connected to the output positive pole of the switching power supply.
  • the emitter of the first N-type transistor Q1 is connected to the input end of the switching power supply voltage feedback network.
  • the output voltage is charged to the soft-start capacitor C1 in the loop through the be, R3, and R4 loops of C1 and Q1, and the bias signal is provided to the base of Q1 to turn Q1 on.
  • the output voltage will continue to charge the soft-start capacitor C1 through the small current loop of C1 and R1. Thereafter, Q1 is naturally cut off and does not affect the operation of the supply voltage feedback loop.
  • the soft start capacitor C1 will be discharged through R1, in preparation for the soft start again.
  • the soft start capacitor can be randomly designed according to the requirements of the switching power supply product.
  • the soft start circuit is only related to the establishment of the output voltage, and is independent of the power supply mode of other tasks such as the feedback loop routing auxiliary power supply.
  • the operating principle of the adjusted circuit is the same as that of the first embodiment, and the same effect can be achieved.
  • the N-type transistor Q1 shown in the dashed box of FIG. 6 may also be an N-type switch tube. As shown in the dotted line frame of FIG. 7, the first capacitor C1, the first resistor R1, and the first N-type are included. The switch tube Q2 and the second resistor R2.
  • the first capacitor C1 is connected to the output positive pole of the switching power supply, the other end is connected to the first resistor R1 and the gate of the first N-type switch tube Q2, and the other end of the first resistor R1 is connected to the output negative pole of the switching power supply, the first N-type switch tube
  • the drain of Q2 is connected to one end of the second resistor R2, the other end of the second resistor R2 is connected to the output positive pole of the switching power supply, and the source of the first N-type switch transistor Q2 is connected to the input end of the switching power supply voltage feedback network.
  • the operating principle of the adjusted circuit is the same as that of the third embodiment, and the same effect can be achieved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

一种开关电源输出软启动电路,用于实现开关电源输出电压的缓慢建立,电源开机后,输出电压上升,电容充电并将充电过程中的信号实时引入电压反馈环路,限制PWM控制芯片的占空比,使输出电压以电容充电指数的形式上升到规定值,反馈环路有辅助电源等供电方式的情况下,软启动电路依然能正常工作,电路简单、成本低、可靠性高。

Description

一种开关电源输出软启动电路 技术领域
本发明涉及开关电源领域,具体的,涉及一种用于开关电源系统中,实现开关电源输出电压缓慢建立的输出软启动电路。
背景技术
一般开关电源的PWM控制芯片都自带软启动功能,开关电源在开机启动的过程中,避免开关器件承受较大的电流应力而损坏或出现输出电压过冲损坏用电设备的现象。
虽然大部分PWM控制芯片都自带软启动功能,但一部分PWM控制芯片在设计的时候就将软启动电容集成在芯片的内部,无法通过调节软启动电容的大小来调节软启动时间,从而很多时候不能满足产品设计要求;而另一部分PWM控制芯片尽管软启动电容外置,可以自由设置,但也不能选的很大,因为,PWM控制芯片在电源出现过流、短路等异常情况恢复重启时,由于PWM控制芯片的软启动电容的能量还未放完,因此会造成软启动时间变短甚至软启动失效的问题。
即便,PWM控制芯片自带的软启动设置的很大,且没有失效,由于PWM控制芯片在原边,开关电源输出电压副边反馈环路从开始建立到实际原边响应反馈,哪怕环路再快也一定会有延时,在这个延时的过程中一定会使输出电压出现过冲的现象,这时电压反馈环路又处于饱和截止,往后又将出现欠冲的现象。
而在一般的系统电源中,因为一些功能的需要,比如说充电电源系统中,图1所示,电源的反馈环路由辅助电源供电,且辅助电源优先启动,从而使现有常规输出软启动电路的软启动电容提前被充满电,出现失效的问题,使输出电压过冲严重后又出现欠冲的现象,图2所示。
因此,有必要对现有技术进行改进。
发明内容
有鉴于此,为了解决上述技术问题,本发明提供一种开关电源输出软启动电路,以解决现有开关电源系统中软启动失效的问题。
本发明的目的是通过下述技术方案实现的,一种开关电源输出软启动电路,包括:第一电容、第一电阻、第一二极管。
所述第一电容连接开关电源的输出正极,另一端连接第一电阻的一端与第一二极管的阳极,第一电阻的另一端连接开关电源的输出负极,第一二极管的阴极连接开关电源电压反馈网络的输入端。
所述电源电压反馈网络,可以是TL431的参考脚,也可以是运放的输入端。
作为上述技术方案的同等方案通过下述技术方案实现的,包括:第一电容、第一电阻、第一N型三极管。
所述第一电容连接开关电源的输出正极,另一端连接第一电阻的一端与第一N型三极管的基极与集电极,第一电阻的另一端连接开关电源的输出负极,第一N型三极管的发射极连接开关电源电压反馈网络的输入端。
所述电源电压反馈网络,可以是TL431的参考脚,也可以是运放的输入端。
作为上述技术方案的同等方案通过下述技术方案实现的,包括:第一电容、第一电阻、第二电阻、第一N型三极管。
所述第一电容连接开关电源的输出正极,另一端连接第一电阻的一端与第一N型三极管的基极,第一电阻的另一端连接开关电源的输出负极,第一N型三极管的集电极连接第二电阻的一端,第二电阻的另一端连接开关电源的输出正极,第一N型三极管的发射极连接开关电源电压反馈网络的输入端。
所述第二电阻可以是0欧姆电阻。
所述电源电压反馈网络,可以是TL431的参考脚,也可以是运放的输入端。
作为上述技术方案的同等方案通过下述技术方案实现的,包括:第一电容、第一电阻、第二电阻、第一N型开关管。
所述第一电容连接开关电源的输出正极,另一端连接第一电阻的一端与第一N型开关管的栅极,第一电阻的另一端连接开关电源的输出负极,第一N型开关管的漏极连接第二电阻的一端,第二电阻的另一端连接开关电源的输出正极,第一N型开关管的源极连接开关电源电压反馈网络的输入端。
所述第二电阻可以是0欧姆电阻。
所述电源电压反馈网络,可以是TL431的参考脚,也可以是运放的输入端。
与现有技术相比,本发明具有如下有益效果:
1)本方案解决现有软启动电路失效问题;
2)本方案可靠性高,适应范围更宽;
3)本发明电路简单,成本低,易于设计;
附图说明
图1为现有输出软启动电路原理图;
图2为现有输出软启动电路相关电压波形;
图3为本发明实施例一应用的电路原理图;
图4为本发明实施例一相关电压波形;
图5为本发明实施例二应用的电路原理图;
图6为本发明实施例三应用的电路原理图;
图7为本发明实施例四应用的电路原理图。
第一实施例
图3虚线框中示出了本发明第一实施例原理框图,一种开关电源输出软启动电路,包括:第一电容C1、第一电阻R1、第一二极管D1。
所述第一电容C1连接开关电源的输出正极,另一端连接第一电阻R1与第一二极管D1的阳极,第一电阻R1的另一端连接开关电源的输出负极,第一二极管D1的阴极连接开关电源电压反馈网络的输入端。
电源开机后,在输出电压上升的过程中,输出电压通过C1、D1、R3与R4回路给回路中的软启动电容C1充电,并将该充电信号实时的引入到反馈环路,从而时时限制PWM控制芯片的输出占空比并以软启动电容C1充电指数的形式展开,使输出电压也以电容充电指数的形式上升到规定值,图4所示。
输出电压上升到规定值后,输出电压将通过C1、R1这个微小电流回路继续给软启动电容C1充电,此后D1自然截止,不影响电源电压反馈环路工作。
电源关机、过流、短路或其它异常情况,使输出关闭后,软启动电容C1将通过R1放电,以备再次输出建立实现软启动。
特别的,本发明中的一种开关电源输出软启动电路,软启动电容可以根据开关电源产品需求,随意设计。
进一步的,该软启动电路只与输出电压的建立与否有关,与反馈环路由辅助电源等其它任务供电方式无关。
第二实施例
第一实施例中,图3虚线框中所示的二极管D1也可以是N型三极管,图5虚线框中所示,包括:第一电容C1、第一电阻R1、第一N型三极管Q1。
第一电容C1连接开关电源的输出正极,另一端连接第一电阻R1与第一N型三极管Q1的基极与集电极,第一电阻R1的另一端连接开关电源的输出负极,第一N型三极管Q1的发射极连接开关电源电压反馈网络的输入端。
调整后电路的工作原理与第一实施例一样,可实现同等功效。
第三实施例
图6虚线框中示出了本发明第三实施例原理框图,一种开关电源输出软启动电路,包括:第一电容C1、第一电阻R1、第二电阻R2、第一N型三极管Q1。
所述第一电容C1连接开关电源的输出正极,另一端连接第一电阻R1与第一N型三极管Q1的基极,第一电阻R1的另一端连接开关电源的输出负极,第一N型三极管Q1的集电极连接第二电阻R2的一端,第二电阻R2的另一端连接开关电源的输出正极,第一N型三极管Q1的发射极连接开关电源电压反馈网络的输入端。
电源开机后,在输出电压上升的过程中,输出电压通过C1、Q1的be极、R3与R4回路给回路中的软启动电容C1充电,给Q1的基极提供偏置信号,让Q1导通,等效的将该充电信号实时的引入到反馈环路,从而时时限制PWM控制芯片的输出占空比以软启动电容C1充电指数的形式展开,使输出电压也以电容充电指数的形式上升到规定值。
输出电压上升到规定值后,输出电压将通过C1、R1这个微小电流回路继续给软启动电容C1充电,此后Q1自然截止,不影响电源电压反馈环路工作。
电源关机、过流、短路或其它异常情况,使输出关闭后,软启动电容C1将通过R1放电,以备再次输出建立实现软启动。
特别的,本发明中的一种开关电源输出软启动电路,软启动电容可以根据开关电源产品需求,随意设计。
进一步的,该软启动电路只与输出电压的建立与否有关,与反馈环路由辅助电源等其它任务供电方式无关。
调整后电路的工作原理与第一实施例一样,可实现同等功效。
第四实施例
第三实施例中,图6虚线框中所示的N型三极管Q1也可以是N型开关管,图7虚线框中所示,包括:第一电容C1、第一电阻R1、第一N型开关管Q2和第二电阻R2。
第一电容C1连接开关电源的输出正极,另一端连接第一电阻R1与第一N型开关管Q2的栅极,第一电阻R1的另一端连接开关电源的输出负极,第一N型开关管Q2的漏极连接第二电阻R2的一端,第二电阻R2的另一端连接开关电源的输出正极,第一N型开关管Q2的源极连接开关电源电压反馈网络的输入端。
调整后电路的工作原理与第三实施例一样,可实现同等功效。
以上仅是本发明的优选实施方式,应当指出的是,上述优选实施方式不应视为对本发明的限制,对于本技术领域的普通技术人员来说,在不脱离本发明的精神和范围内,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围,这里不再用实施例赘述,本发明的保护范围应当以权利要求所限定的范围为准。

Claims (4)

  1. 一种开关电源输出软启动电路,其特征在于:包括第一电容、第一电阻和第一二极管,所述第一电容连接开关电源的输出正极,所述第一电容的另一端连接所述第一电阻的一端与所述第一二极管的阳极,所述第一电阻的另一端连接开关电源的输出负极,所述第一二极管的阴极连接开关电源。
  2. 根据权利要求1所述的一种开关电源输出软启动电路,其特征在于:用第一N型三极管代替所述第一二极管,所述第一N型三极管的基极和集电极同时连接所述第一电容的另一端,所述第一N型三极管的发射极连接开关电源。
  3. 根据权利要求2所述的一种开关电源输出软启动电路,其特征在于:还包括第二电阻,所述第一电容的另一端连接所述第一电阻的一端与所述第一N型三极管的基极,所述第一N型三极管的集电极连接所述第二电阻的一端,所述第二电阻的另一端连接开关电源的输出正极。
  4. 根据权利要求3所述的一种开关电源输出软启动电路,其特征在于:用第一N型开关管代替所述第一N型三极管,所述第一N型开关管的栅极连接所述第一电容的另一端,所述第一N型开关管的源极连接所述第二电阻的一端,所述第一N型开关管的漏极连接开关电源。
PCT/CN2018/095132 2017-11-01 2018-07-10 一种开关电源输出软启动电路 WO2019085544A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711055165.9 2017-11-01
CN201711055165.9A CN107733219A (zh) 2017-11-01 2017-11-01 一种开关电源输出软启动电路

Publications (1)

Publication Number Publication Date
WO2019085544A1 true WO2019085544A1 (zh) 2019-05-09

Family

ID=61203687

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/095132 WO2019085544A1 (zh) 2017-11-01 2018-07-10 一种开关电源输出软启动电路

Country Status (2)

Country Link
CN (1) CN107733219A (zh)
WO (1) WO2019085544A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107733219A (zh) * 2017-11-01 2018-02-23 广州金升阳科技有限公司 一种开关电源输出软启动电路
CN110572022B (zh) * 2019-09-02 2020-10-13 广州视源电子科技股份有限公司 软启动电路、方法和用电设备
CN111509968B (zh) * 2020-04-28 2021-10-19 重庆斯微奇电子技术有限公司 一种开关电源输出电压控制电路

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201928186U (zh) * 2011-01-17 2011-08-10 南通三信塑胶装备科技有限公司 应用于电磁感应加热电源的滑频软启动电路
CN204598412U (zh) * 2015-05-13 2015-08-26 深圳市垅运照明电器有限公司 一种led驱动电源软启动电路
CN106604463A (zh) * 2016-12-14 2017-04-26 深圳Tcl数字技术有限公司 Led模拟装置
CN106685204A (zh) * 2017-01-13 2017-05-17 杭州优特电源有限公司 一种温控软启动电路
CN107733219A (zh) * 2017-11-01 2018-02-23 广州金升阳科技有限公司 一种开关电源输出软启动电路

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI326520B (en) * 2006-09-29 2010-06-21 Chimei Innolux Corp Switching power supply circuit
CN104135146B (zh) * 2014-07-29 2017-02-15 广州金升阳科技有限公司 软启动方法及电路
CN104852563A (zh) * 2015-05-20 2015-08-19 重庆大学 一种开关电源外部软启动电路
CN205356137U (zh) * 2016-01-12 2016-06-29 深圳市创维群欣安防科技股份有限公司 一种软启动电路及开关电源装置
CN206389278U (zh) * 2016-12-14 2017-08-08 广州金升阳科技有限公司 自激式开关电源电路
CN207573234U (zh) * 2017-11-01 2018-07-03 广州金升阳科技有限公司 一种开关电源输出软启动电路

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201928186U (zh) * 2011-01-17 2011-08-10 南通三信塑胶装备科技有限公司 应用于电磁感应加热电源的滑频软启动电路
CN204598412U (zh) * 2015-05-13 2015-08-26 深圳市垅运照明电器有限公司 一种led驱动电源软启动电路
CN106604463A (zh) * 2016-12-14 2017-04-26 深圳Tcl数字技术有限公司 Led模拟装置
CN106685204A (zh) * 2017-01-13 2017-05-17 杭州优特电源有限公司 一种温控软启动电路
CN107733219A (zh) * 2017-11-01 2018-02-23 广州金升阳科技有限公司 一种开关电源输出软启动电路

Also Published As

Publication number Publication date
CN107733219A (zh) 2018-02-23

Similar Documents

Publication Publication Date Title
US7477532B2 (en) Method of forming a start-up device and structure therefor
CN105652949B (zh) 具软启动电路的电压调整器
US7515442B2 (en) Secondary side controller and method therefor
WO2016015566A1 (zh) 软启动方法及电路
WO2019161710A1 (zh) 一种启动电路
WO2019085544A1 (zh) 一种开关电源输出软启动电路
WO2019161711A1 (zh) 一种低导通压降的启动电路
TWI722898B (zh) 同步整流裝置的驅動電路
WO2020062817A1 (zh) 一种抑制电源浪涌电压电流的控制电路及电源
CN104269997B (zh) 一种死区可调的变压器隔离互补驱动电路
EP4156484A1 (en) Drive circuit having energy recovery function, and switch power supply
US20130307501A1 (en) Method of forming a power supply controller and structure therefor
KR20110031395A (ko) 전력 제어 시스템 개시 방법 및 회로
KR102282142B1 (ko) 변압기 회로 및 무부하 전력 소비를 감소시키는 방법
JP2008220056A (ja) 突入電流防止回路と方法
CN211018642U (zh) 一种冲击电流可控的直流电源缓启动电路
TWI423571B (zh) 切換式電源供應器之高壓啟動裝置
CN218633695U (zh) 上电缓启动电路、芯片及激光雷达
WO2020155288A1 (zh) 升降压电路及控制方法
TWI659599B (zh) 功率開關裝置及其操作方法
CN112968425B (zh) 一种开关电源次级短路保护电路
US6081433A (en) Switching power supply apparatus
JP2009189206A (ja) 突入電流防止回路
WO2021179769A1 (zh) 驱动电路、功率电路以及投影设备
CN108683416B (zh) 一种负载开关控制电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18871970

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18871970

Country of ref document: EP

Kind code of ref document: A1