WO2021081749A1 - 凸轮轴相位器及其工作方法 - Google Patents

凸轮轴相位器及其工作方法 Download PDF

Info

Publication number
WO2021081749A1
WO2021081749A1 PCT/CN2019/113961 CN2019113961W WO2021081749A1 WO 2021081749 A1 WO2021081749 A1 WO 2021081749A1 CN 2019113961 W CN2019113961 W CN 2019113961W WO 2021081749 A1 WO2021081749 A1 WO 2021081749A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
controllable
camshaft phaser
rotor
stator
Prior art date
Application number
PCT/CN2019/113961
Other languages
English (en)
French (fr)
Inventor
王朋
Original Assignee
舍弗勒技术股份两合公司
王朋
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 舍弗勒技术股份两合公司, 王朋 filed Critical 舍弗勒技术股份两合公司
Priority to PCT/CN2019/113961 priority Critical patent/WO2021081749A1/zh
Priority to CN201980093982.4A priority patent/CN113557349B/zh
Publication of WO2021081749A1 publication Critical patent/WO2021081749A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear

Definitions

  • the invention relates to a camshaft phaser and a working method of the camshaft phaser.
  • variable valve timing system is an important part of ensuring the performance of the engine. It can adjust the opening and closing of the engine's valves as needed, so that the engine can obtain the desired power output, fuel consumption and emissions.
  • the variable valve timing system includes a camshaft phaser for adjusting the opening and closing phases of the engine valves.
  • a camshaft phaser As shown in FIGS. 1 a and 1 b, a camshaft phaser according to the prior art includes a stator 10, a rotor 20, two end covers 30, 40 and a locking assembly 50.
  • the stator 10 includes a cylindrical stator main body 101 and a plurality of (four in the figure) stator protrusions 102 protruding from the stator main body 101 toward the radially inner side.
  • the rotor 20 is provided on the radially inner side of the stator 10 and can rotate relative to the stator 10.
  • the rotor 20 includes a cylindrical rotor main body 201 and a plurality of (four in the figure) rotor blades 202 protruding from the rotor main body 201 toward the radially outer side.
  • the plurality of rotor blades 202 and the plurality of stator protrusions 102 are alternately arranged in the circumferential direction C, so that each rotor blade 202 is located between two adjacent stator protrusions 102. In this way, the space between two adjacent stator protrusions 102 is divided into two independent oil chambers (the first oil chamber A and the second oil chamber) by the rotor blade 202 located between the two stator protrusions 102. Cavity B).
  • the two end covers 30 and 40 are fixed to the stator 10 from both sides in the axial direction by a fixing member, so that the two end covers 30 and 40 together with the stator 10 and the rotor 20 enclose the aforementioned oil chambers A and B.
  • the locking assembly 50 is arranged on a stator protrusion 102 and an end cover 40.
  • the locking assembly 50 can lock the rotation of the rotor 20 relative to the stator 10, and can release the above-mentioned locking assembly 50 when the rotor 20 is required to rotate relative to the stator 10 locking.
  • an oil pump is used to pump pressurized oil to the first oil chamber A or the second oil chamber B to enable the camshaft phaser to realize the phase modulation function.
  • a motor is used to make the camshaft phaser realize the phase modulation function.
  • camshaft phaser driven by electric power has a better phase modulation function
  • the camshaft phaser has a very complicated system and a very high cost.
  • the present invention has been made based on the above-mentioned shortcomings of the prior art.
  • the object of the present invention is to provide a new type of camshaft phaser, which does not require additional fuel consumption, has a simpler structure and is lower cost compared with camshaft phasers in the prior art.
  • Another objective of the present invention is to provide a working method of the aforementioned camshaft phaser.
  • the present invention provides a camshaft phaser that utilizes the torque of a camshaft to achieve phase modulation.
  • the camshaft phaser includes a stator, a rotor and an end cover.
  • the end cover is fixed to the stator from both sides in the axial direction.
  • the rotor is arranged on the radially inner side of the stator and can rotate relative to the stator.
  • a plurality of groups of oil cavities distributed along the circumferential direction are formed between the stator, the rotor and the end cover.
  • Each of the oil chambers includes a first oil chamber and a second oil chamber separated from each other by the rotor blades of the rotor,
  • An oil storage part and a controllable oil passage are formed inside the rotor, and both the first oil chamber and the second oil chamber can realize controllable communication/closure with the oil storage part via the controllable oil passage, wherein
  • the oil pressure can only be used to allow oil to flow from the oil storage portion through the controllable oil passage into the corresponding oil cavity; when the controllable oil passage is in the second communication mode In this case, the torque of the camshaft can be used to cause oil to flow from the corresponding oil cavity into the oil reservoir via the controllable oil passage.
  • controllable oil circuit includes a first controllable oil circuit between the oil storage part and the first oil chamber and a second controllable oil circuit between the oil storage part and the second oil chamber.
  • Oil control circuit is a first controllable oil circuit between the oil storage part and the first oil chamber and a second controllable oil circuit between the oil storage part and the second oil chamber. Oil control circuit,
  • the camshaft phaser also includes a first one-way valve arranged in the first controllable oil circuit, a second one-way valve arranged in the second controllable oil circuit, and a second one-way valve for selectively opening the first controllable oil circuit.
  • a blind hole is formed in the center of the rotor
  • the camshaft phaser also includes a first partition plate, a second partition plate and a third partition plate arranged in the blind hole and fixed to the rotor, so as to divide the space in the blind hole into The first space, the second space, and the third space spaced apart in the axial direction of the camshaft phaser,
  • the first space communicates with the first oil chamber
  • the third space communicates with the second oil chamber through the first one-way valve, the second one-way valve, and the valve control part
  • the controllable communication between the first space and the third space and the second space is controlled so that each of the controllable oil passages can be in the first communication mode or in the second communication mode.
  • the first partition is formed with a first communication hole for communicating the first space and the second space, and the first check valve is provided in the first space to close the The first communication hole, and
  • the second partition plate is formed with a second communication hole for communicating the second space and the third space, and the second check valve is provided in the third space to close the second communication hole .
  • valve control unit is disposed in the second space, and the camshaft phaser further includes a driving mechanism for driving the valve control unit to perform operations,
  • the driving mechanism can drive the valve control unit to control the first check valve to be away from the first communication hole or control the second check valve to be away from the second communication hole to make the first check valve move away from the second communication hole.
  • the oil control circuit or the second controllable oil circuit is in the second communication mode.
  • the driving mechanism includes:
  • a wire frame passes through the second partition and the third partition and can move relative to the rotor along the axial direction, and the valve control part is fixed to the wire frame;
  • a first spring one end of the first spring is fixed to the first partition and the other end of the first spring is fixed to the wire frame, so as to apply a direction toward the second partition to the wire frame Spring force;
  • the solenoid valve is used to cooperate with the first spring to make the wire frame realize the relative movement.
  • the camshaft phaser further includes an oil pressure accumulation mechanism, and the oil pressure accumulation mechanism includes:
  • a sealing piston the sealing piston being arranged inside the oil hole in a manner capable of reciprocating along the oil hole;
  • a second spring the second spring is arranged in the oil hole and the second spring applies a spring force to the sealing piston to pressurize the oil in the oil hole.
  • the oil hole is a through hole extending along the radial direction of the camshaft phaser
  • the oil pressure accumulation mechanism further includes a detachable manner provided in the oil hole and fixed to the For the plunger of the stator, one end of the second spring abuts against the plunger and the other end of the second spring abuts against the sealing piston.
  • the stator includes stator protrusions protruding toward the rotor, a set of oil cavities are formed between two adjacent stator protrusions, and the oil holes are formed in the stator where the The protruding part of the stator.
  • the present invention also provides a working method of the camshaft phaser according to any one of the above technical solutions, and the working method includes:
  • the controllable oil path corresponding to the first oil chamber is set to the second communication mode and will correspond to the second oil chamber
  • the controllable oil passage is set to the first communication mode, so that the oil from the first oil chamber can enter the second oil chamber through the oil reservoir under the action of the torque of the camshaft, thereby So that the rotor rotates toward the first oil cavity relative to the stator;
  • the controllable oil path corresponding to the first oil chamber is set to the first communication mode and will correspond to the second oil chamber
  • the controllable oil passage is set to the second communication mode, so that the oil from the second oil chamber can enter the first oil chamber through the oil reservoir under the action of the torque of the camshaft, thereby So that the rotor rotates toward the second oil cavity relative to the stator;
  • controllable oil passages corresponding to the first oil chamber and the second oil chamber are set to a closed state, so that the rotor is maintained relative to all The state in which the stator does not move.
  • the present invention provides a camshaft phaser and its working method.
  • An oil storage part and a controllable oil passage are formed inside the rotor of the camshaft phaser, and each first oil cavity and each second oil chamber can realize controllable communication/closure with the oil storage part through different controllable oil passages.
  • the controllable oil circuit When the controllable oil circuit is connected, the controllable oil circuit can be in the first connection mode. At this time, the oil pressure is used to only allow oil to flow from the oil reservoir through the controllable oil circuit to the corresponding oil cavity; when the controllable oil circuit is connected, the controllable oil circuit is still It can be in the second communication mode.
  • the torque of the camshaft can be used to make oil flow from the corresponding oil cavity into the oil reservoir.
  • the torque of the camshaft can be used to achieve a desired flow of oil between the two oil chambers, so that the camshaft phaser according to the present invention can obtain a desired phase modulation function. Therefore, compared with the camshaft phaser of the prior art, the camshaft phaser according to the present invention does not need to consume additional fuel, has a simpler structure and lower cost.
  • Figure 1a is an axial sectional view of a camshaft phaser according to the prior art
  • Figure 1b is a schematic view of the structure of the camshaft phaser in Figure 1a viewed from the axial side, omitting the one on the axial side End cap.
  • Fig. 2a is a schematic diagram showing the oil circuit structure of the camshaft phaser according to the first embodiment of the present invention, wherein the camshaft phaser is in a holding state without phase modulation;
  • Fig. 2b is a diagram showing the camshaft phaser according to the present invention A schematic diagram of the oil circuit structure of the camshaft phaser of the first embodiment, wherein the camshaft phaser is in a working state of phase modulation from the first oil chamber A to the second oil chamber B;
  • Figure 2c is the cam in Figure 2a A schematic cross-sectional view of the partial structure of the shaft phaser.
  • Fig. 3a is a schematic diagram showing the oil circuit structure of a camshaft phaser according to a second embodiment of the present invention, wherein the camshaft phaser is in a holding state without phase modulation;
  • Fig. 3b is the camshaft in Fig. 3a A side view of the stator of the phaser, wherein the partial structure of the stator is shown in the form of a cross-sectional view.
  • the axial, radial and circumferential directions in the present invention refer to the axial, radial and circumferential directions of the camshaft phaser (stator and rotor), respectively.
  • the structure of the camshaft phaser according to the first embodiment of the present invention will be described with reference to the drawings of the specification.
  • the basic structure of the camshaft phaser according to the first embodiment of the present invention is substantially the same as that of the prior art camshaft phaser shown in FIGS. 1a and 1b.
  • the camshaft phaser in conjunction with the structures shown in FIGS. 1a and 1b and referring to FIGS. 2c and 3b, the camshaft phaser according to the first embodiment of the present invention includes a stator 1, a rotor 2 and an end cover.
  • the end cover is fixed to the stator 1 from both sides in the axial direction.
  • the rotor 2 is provided on the radially inner side of the stator 1 and can rotate relative to the stator 1.
  • the stator 1 includes a stator main body 11 and a stator protrusion 12 protruding from the stator main body 11 toward the radial inner side.
  • the rotor 2 includes a rotor main body and rotor blades protruding from the rotor main body toward the radial outer side.
  • Each rotor blade is located adjacent to each other. Between the two stator protrusions 12. In this way, a plurality of groups of oil cavities distributed along the circumferential direction C are formed between the stator 1, the rotor 2 and the end cover, and a group of oil cavities between two adjacent stator protrusions 12 are separated by the rotor blades.
  • the difference between the camshaft phaser according to the first embodiment of the present invention and the prior art camshaft phaser shown in FIGS. 1a and 1b includes the camshaft phaser according to the first embodiment of the present invention.
  • the oil circuit structure of the shaft phaser is different from the oil circuit structure of the camshaft phaser in the prior art.
  • the camshaft phaser (rotor 2) is formed with an oil reservoir P for storing oil and an oil reservoir between the two oil chambers A, B and the oil reservoir P.
  • Controllable oil circuit (the first controllable oil circuit P1 and the second controllable oil circuit P2).
  • the oil storage part P, the controllable oil passages P1 and P2, and the groups of oil chambers A and B form an externally closed oil passage structure.
  • the first oil chamber A and the second oil chamber B can respectively realize controllable communication/closure with the oil reservoir P via the corresponding controllable oil passages P1 and P2.
  • controllable oil passage includes a first controllable oil passage P1 between the oil storage part P and the first oil chamber A and a second controllable oil passage P2 between the oil storage part P and the second oil chamber B.
  • the camshaft phaser also includes a first one-way valve V1 arranged in the first controllable oil passage P1, a second one-way valve V2 arranged in the second controllable oil passage P2, and for selectively opening the first one-way valve V1 and the valve control part VC of the second check valve V2.
  • valve control unit VC when the camshaft phaser is in the non-phase-adjusted holding state, the valve control unit VC does not control the first check valve V1 and the second check valve V2, and the first check valve V1 makes the first controllable oil
  • the path P1 is in a closed state and the second one-way valve V2 makes the second controllable oil path P2 in a closed state.
  • the valve control unit VC can selectively control the first check valve V1 and the second check valve V2 through the action of the camshaft phaser drive mechanism DR, so that The first controllable oil passage P1 is in the first communication mode and the second controllable oil passage P2 is in the second communication mode or so that the first controllable oil passage P1 is in the second communication mode and the second controllable oil passage P2 is in the first communication mode mode.
  • FIG. 2c shows a specific structure for realizing the above-mentioned oil passage structure.
  • the rotor 2 of the camshaft phaser according to the first embodiment of the present invention includes a blind hole 2h, and three partitions (first partition 31, second partition 32) arranged in the blind hole 2h. And the third partition 33) and two check valves (the first check valve V1 and the second check valve V2) provided in the blind hole 2h, and the push pin 4 as the valve control unit VC.
  • the blind hole 2h is formed at the center of the rotor 2 and the center axis of the blind hole 2h is consistent with the center axis of the camshaft phaser.
  • the inside of the blind hole 2h forms a sufficient space and opens toward one side in the axial direction (the right side in FIG. 2c).
  • the first partition 31, the second partition 32 and the third partition 33 are located in the blind hole 2h and are preferably fixed at a predetermined position by interference fit or welding.
  • the first partition 31, the second partition 32, and the third partition 33 are arranged in this order from the other side in the axial direction toward one side in the axial direction.
  • a step structure for limiting the first partition 31 and the second partition 32 in the axial direction X is formed on the side wall of the blind hole 2h, and the end surface on the axial side of the third partition 33 is connected to the rotor 2 The end face on the axial side is flush.
  • the space in the blind hole 2h is divided into a first space S1 and a second partition spaced apart in the axial direction X.
  • the first space S1 is in communication with the first oil chamber A
  • the third space S3 is in communication with the second oil chamber B. Therefore, the first space S1 is used as a part of the first controllable oil passage P1
  • the second space S2 is used as the oil reservoir P
  • the third space S3 is used as a part of the second controllable oil passage P2.
  • a first communication hole 31h for communicating the first space S1 and the second space S2 is formed in the center of the first partition 31, and the first check valve V1 is provided in the first space S1 to unidirectionally close the first space S1.
  • a communication hole 31h, and the second partition 32 is formed with a second communication hole 32h for communicating the second space S2 and the third space S3, and the second check valve V2 is provided in the third space S3 to unidirectionally close the second communication ⁇ 32h. Controlling the first one-way valve V1 and the second one-way valve V2 through the push pin 4 can control the controllable conduction/closing of the first space S1 and the third space S3 with the second space S2.
  • the push pin 4 as the valve control part VC is provided in the second space S2, and the push pin 4 can move toward both sides in the axial direction to selectively push the first check valve V1 or the second check valve V1 or the second check valve.
  • the first check valve V2 no longer closes the first communication hole 31h or the second check valve V2 no longer closes the second communication hole 32h.
  • the camshaft phaser also includes a driving mechanism DR for driving the push pin 4 to act.
  • the driving mechanism DR can drive the push pin 4 to selectively control the opening of the first one-way valve V1 or the second one-way valve V2.
  • the driving mechanism DR includes a wire frame 52, a first spring 51 and a solenoid valve 53.
  • the wire frame 52 has three or four rods extending along the axial direction X, and these rods pass through the second partition 32 and the third partition 33, and the wire frame 52 can follow
  • the axial direction X moves relative to the rotor 2.
  • the push pin 4 is fixed to the end of the wire frame 52 on the other side in the axial direction so as to be able to move with the movement of the wire frame 52.
  • the parts of the second partition 32 and the third partition 33 through which the rod of the wire frame 52 passes are sealed.
  • the first spring 51 is a cylindrical coil spring, one end of the first spring 51 is fixed to the first partition 31 and the other end of the spring is fixed to the end of the wire frame 52 on the other side in the axial direction to align
  • the wire frame 52 applies a spring force toward the second partition plate 32 to balance the force from the solenoid valve 53.
  • the solenoid valve 53 is disposed on the outside of the rotor 2 and opposite to the end of the wire frame 52 on one side in the axial direction, so as to cooperate with the first spring 51 to make the wire frame 52 realize relative movement with respect to the rotor 2.
  • the first spring 51 Under the combined action of the solenoid valve 53, the push pin 4 opens the first one-way valve V1, so that the first controllable oil passage P1 is set to the second communication mode; at the same time, the second controllable oil passage P2 is set to The first connection mode.
  • the oil from the first oil chamber A can enter the second oil chamber B through the oil reservoir P, so that the rotor 2 rotates to the first oil chamber A relative to the stator 1.
  • the camshaft phaser according to the present invention only needs the torque of the camshaft CS during the phase adjustment process, and no additional oil pump is required, thereby reducing fuel consumption.
  • the basic structure of the camshaft phaser according to the second embodiment of the present invention is substantially the same as the basic structure of the camshaft phaser according to the first embodiment of the present invention, and the differences between the two will be described below.
  • the stator 1 of the camshaft phaser according to the second embodiment of the present invention is further provided with an oil pressure accumulation mechanism PC.
  • the oil pressure accumulation mechanism PC includes an oil hole 12 h, a stud 121, a second spring 122 and a sealing piston 123.
  • the oil hole 12h is a through hole 12h extending in the radial direction and the oil hole 12h is formed at a portion of the stator 1 where the stator protrusion 12 is formed.
  • the oil hole 12h is used to communicate with the oil reservoir P and will not affect the rotation of the rotor 2 relative to the stator 1.
  • the stud 121 is detachably arranged in the oil hole 12h and fixed to the stator 1.
  • the second spring 122 is a cylindrical coil spring, and the second spring 122 is disposed in the oil hole 12 h and located at the radial inner side of the stud 121. One end of the second spring 122 abuts against the stud 121 and the other end of the second spring 122 abuts against the sealing piston 123.
  • the sealing piston 123 is provided inside the oil hole 12h so as to be able to reciprocate along the oil hole 12h and located at the radially inner side of the second spring 122.
  • the second spring 122 applies a spring force toward the oil reservoir P to the sealing piston 123.
  • the oil hole 12h can be used to replenish the oil reservoir P oil.
  • the oil pressure accumulation mechanism PC can compensate for changes in the amount of oil that occur in the oil passage structure (for example, caused by temperature changes).
  • the above-mentioned working method of the camshaft phaser is preferably realized by the engine control unit, that is, the working method is realized by controlling the action of the solenoid valve 53.
  • the camshaft phaser is formed with a convex portion on the other axial side of the phaser, such as by interference fit or welding.
  • the boss is fixed to the camshaft CS of the engine.
  • the two phase modulation directions are more balanced, which can be achieved by arranging, for example, a coil spring.
  • the first controllable oil passage P1 not only includes the above-mentioned first space S1, but also includes a flow path from the first space S1 to the first oil chamber A.
  • the second controllable oil path P2 also includes a flow path from the second space S2 to the second oil chamber B.
  • the one-way valve preferably includes a ball and a spring for closing the communication holes 31h, 32h of the partition plates 31, 32.
  • the camshaft phaser of the present invention also has the following advantages.
  • the camshaft phaser of the present invention not only has a simple structure but also saves costs, but also reduces fuel consumption and reduces greenhouse gas (such as carbon dioxide) emissions.
  • the oil and engine lubricating oil in the oil path structure in the camshaft phaser can also be used Different types, so that the oil in the above-mentioned oil circuit structure can adapt to a wider range of operating temperatures.
  • the oil circuit structure in the camshaft phaser has an externally sealed structure, it is preferable to use a dry belt to drive the camshaft phaser.
  • the locking assembly 50 in the camshaft phaser of the prior art can be omitted, which can improve the signal obtained by the camshaft CS when the engine is at a low speed.
  • the accuracy makes it possible to adjust the rotor 2 to an appropriate target position during the engine start and stop phases.
  • camshaft phaser of the present invention is a more preferred solution.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Valve Device For Special Equipments (AREA)

Abstract

一种凸轮轴相位器及其工作方法,该凸轮轴相位器的转子(20)的内部形成有储油部(P)和可控油路(P1,P2),各第一油腔(A)和各第二油腔(B)均能够经由不同的可控油路(P1,P2)与储油部(P)实现可控的连通/封闭。当可控油路(P1,P2)连通时,可控油路(P1,P2)能够处于第一连通模式,此时利用油压仅允许油从储油部(P)经由可控油路(P1,P2)流入对应的油腔(A,B);当可控油路(P1,P2)连通时,可控油路(P1,P2)还能够处于第二连通模式,此时利用凸轮轴(CS)的扭矩能够使油从对应的油腔(A,B)流入储油部(P)。由此,仅利用凸轮轴(CS)的扭矩能够实现油在两个油腔(A,B)之间期望的流动,从而该凸轮轴相位器能够获得期望的调相功能。因此,该凸轮轴相位器与现有技术的凸轮轴相位器相比不需要耗费额外的燃料、结构更简单且成本较低。

Description

凸轮轴相位器及其工作方法 技术领域
本发明涉及凸轮轴相位器及该凸轮轴相位器的工作方法。
背景技术
可变气门正时系统是保证发动机性能的重要组成部分,其能够根据需要调节发动机的气门的开闭,从而使得发动机获得期望的动力输出、燃油消耗及排放。可变气门正时系统包括用于调整发动机气门开闭相位的凸轮轴相位器。
如图1a和图1b所示,根据现有技术的一种凸轮轴相位器包括定子10、转子20、两个端盖30、40和锁止组件50。
具体地,定子10包括圆筒状的定子主体101以及从定子主体101朝向径向内侧突出的多个(图中为四个)定子凸起102。
转子20设置于定子10的径向内侧并且能够相对于定子10转动。转子20包括圆筒状的转子主体201以及从转子主体201朝向径向外侧突出的多个(图中为四个)转子叶片202。多个转子叶片202与多个定子凸起102在周向C上交替地布置,使得每个转子叶片202均位于相邻的两个定子凸起102之间。这样,在相邻的两个定子凸起102之间的空间被位于这两个定子凸起102之间的转子叶片202分隔成两个彼此独立的油腔(第一油腔A和第二油腔B)。
两个端盖30、40通过固定件从轴向两侧固定于定子10,使得两个端盖30、40与定子10和转子20一起包围形成上述油腔A、B。
锁止组件50设置于一个定子凸起102和端盖40,锁止组件50能够锁定转子20相对于定子10的转动,当需要转子20相对于定子10转动时则能够解除锁止组件50的上述锁定。
在上述现有技术的一种凸轮轴相位器中,采用油泵将加压后的油泵送到第一油腔A或第二油腔B中来使得凸轮轴相位器实现调相功能。在未图示的现有技术的另一种凸轮轴相位器中,采用电机来使得凸轮轴相位器实现调相功能。在这些现有技术的凸轮轴相位器中存在如下的问题:
1.由于在通过液力驱动的一种凸轮轴相位器中始终需要油泵能量用于泵送加压后的油,因此在该凸轮轴相位器进行调相的过程中需要耗费额外的燃料;以及
2.虽然通过电力驱动的另一种凸轮轴相位器具有较好的调相功能,但是该凸轮轴相位器具有非常复杂的系统和非常高昂的成本。
发明内容
基于上述现有技术的缺陷而做出了本发明。本发明的目的在于提供一种新型的凸轮轴相位器,其与现有技术的凸轮轴相位器相比不需要耗费额外的燃料、结构更简单且成本较低。本发明的另一个发明目的在于提供一种上述凸轮轴相位器的工作方法。
为了实现上述发明目的,本发明采用如下的技术方案。
本发明提供了一种利用凸轮轴的扭矩实现调相的凸轮轴相位器,所述凸轮轴相位器包括定子、转子和端盖,所述端盖从轴向两侧固定于所述定子,所述转子设置于所述定子的径向内侧并且能够相对于所述定子转动,在所述定子、所述转子和所述端盖之间形成沿着周向分布的多组油腔,各组所述油腔均包括由所述转子的转子叶片彼此分隔开的第一油腔和第二油腔,
所述转子的内部形成有储油部和可控油路,所述第一油腔和所述第二油腔均能够经由可控油路与所述储油部实现可控的连通/封闭,其中在所述可控油路处于第一连通模式的情况下能够利用油压仅允许油从所述储油部经由所述可控油路流入对应的油腔;在所述可控油路处于第二连通模式的情况下 利用所述凸轮轴的扭矩能够使油从对应的油腔经由所述可控油路流入所述储油部。
优选地,所述可控油路包括在所述储油部和所述第一油腔之间的第一可控油路和在所述储油部和所述第二油腔之间的第二可控油路,
所述凸轮轴相位器还包括设置于所述第一可控油路内的第一单向阀、设置于所述第二可控油路内的第二单向阀以及用于选择性打开所述第一单向阀和所述第二单向阀的阀控制部,通过所述阀控制部能够控制所述第一单向阀和第二单向阀以使各所述可控油路处于所述第一连通模式或处于所述第二连通模式。
更优选地,所述转子的中央位置形成有盲孔,
所述凸轮轴相位器还包括设置于所述盲孔内且固定于所述转子的第一隔板、第二隔板和第三隔板,以将所述盲孔内的空间分隔成在所述凸轮轴相位器的轴向上间隔开的第一空间、第二空间和第三空间,
所述第一空间与所述第一油腔连通,所述第三空间与所述第二油腔连通,通过所述第一单向阀、所述第二单向阀和所述阀控制部控制所述第一空间和所述第三空间与所述第二空间的可控地连通以使各所述可控油路能够处于所述第一连通模式或处于所述第二连通模式。
更优选地,所述第一隔板形成有用于连通所述第一空间和所述第二空间的第一连通孔,所述第一单向阀设置于所述第一空间内以封闭所述第一连通孔,并且
所述第二隔板形成有用于连通所述第二空间和所述第三空间的第二连通孔,所述第二单向阀设置于所述第三空间内以封闭所述第二连通孔。
更优选地,所述阀控制部设置于所述第二空间内,所述凸轮轴相位器还包括用于驱动所述阀控制部进行动作的驱动机构,
所述驱动机构能够驱动所述阀控制部以控制所述第一单向阀远离所述 第一连通孔或者控制所述第二单向阀远离所述第二连通孔来使得所述第一可控油路或所述第二可控油路处于第二连通模式。
更优选地,所述驱动机构包括:
线框,所述线框穿过所述第二隔板和所述第三隔板且能够沿着轴向相对于转子进行相对运动,所述阀控制部固定于所述线框;
第一弹簧,所述第一弹簧的一端固定于所述第一隔板且所述第一弹簧的另一端固定于所述线框,以对所述线框施加朝向所述第二隔板的弹簧力;以及
电磁阀,所述电磁阀用于配合所述第一弹簧使得所述线框实现所述相对运动。
更优选地,所述凸轮轴相位器还包括油压蓄积机构,所述油压蓄积机构包括:
油孔,其形成于所述定子,所述油孔与所述储油部连通;
密封活塞,所述密封活塞以能够沿着所述油孔往复运动的方式设置于所述油孔的内部;以及
第二弹簧,所述第二弹簧设置于所述油孔内且所述第二弹簧对所述密封活塞施加对所述油孔内的油加压的弹簧力。
更优选地,所述油孔为沿着所述凸轮轴相位器的径向延伸的通孔,所述油压蓄积机构还包括以可拆卸的方式设置于所述油孔内且固定于所述定子的柱塞,所述第二弹簧的一端抵接于所述柱塞且所述第二弹簧的另一端抵接于所述密封活塞。
更优选地,所述定子包括朝向转子凸出的定子凸起,在相邻的两个所述定子凸起之间形成一组油腔,所述油孔形成于所述定子的形成有所述定子凸起的部位。
本发明还提供了一种以上技术方案中任意一项所述的凸轮轴相位器的 工作方法,所述工作方法包括:
当所述转子处于向所述第一油腔调相的工作状态下,将与所述第一油腔对应的可控油路设定为所述第二连通模式且将与所述第二油腔对应的可控油路设定为所述第一连通模式,使得在所述凸轮轴的扭矩的作用下来自所述第一油腔的油能够经由所述储油部进入所述第二油腔,从而使得所述转子相对于所述定子向所述第一油腔转动;和/或
当所述转子处于向所述第二油腔调相的工作状态下,将与所述第一油腔对应的可控油路设定为所述第一连通模式且将与所述第二油腔对应的可控油路设定为所述第二连通模式,使得在所述凸轮轴的扭矩的作用下来自所述第二油腔的油能够经由所述储油部进入所述第一油腔,从而使得所述转子相对于所述定子向所述第二油腔转动;和/或
当所述转子处于不进行调相的保持状态下,将与所述第一油腔和所述第二油腔对应的可控油路均设定为封闭状态,使得所述转子保持为相对于所述定子不动的保持状态。
通过采用上述技术方案,本发明提供了一种凸轮轴相位器及其工作方法。该凸轮轴相位器的转子的内部形成有储油部和可控油路,各第一油腔和各第二油腔均能够经由不同的可控油路与储油部实现可控的连通/封闭。当可控油路连通时,可控油路能够处于第一连通模式,此时利用油压仅允许油从储油部经由可控油路流入对应的油腔;当可控油路连通时,可控油路还能够处于第二连通模式,此时利用凸轮轴的扭矩能够使油从对应的油腔流入储油部。由此,仅利用凸轮轴的扭矩能够实现油在两个油腔之间实现期望的流动,从而根据本发明的凸轮轴相位器能够获得期望的调相功能。因此,根据本发明的凸轮轴相位器与现有技术的凸轮轴相位器相比不需要耗费额外的燃料、结构更简单且成本较低。
附图说明
图1a是根据现有技术的凸轮轴相位器的轴向剖视示意图;图1b是从轴向一侧观察的图1a中的凸轮轴相位器的结构的示意图,其省略了轴向一侧的端盖。
图2a是示出了根据本发明的第一实施方式的凸轮轴相位器的油路结构的示意图,其中该凸轮轴相位器处于不进行调相的保持状态;图2b是示出了根据本发明的第一实施方式的凸轮轴相位器的油路结构的示意图,其中该凸轮轴相位器处于由第一油腔A向第二油腔B调相的工作状态;图2c是图2a中的凸轮轴相位器的局部结构剖视示意图。
图3a是示出了根据本发明的第二实施方式的凸轮轴相位器的油路结构的示意图,其中该凸轮轴相位器处于不进行调相的保持状态;图3b是图3a中的凸轮轴相位器的定子的侧视图,其中该定子的局部结构以剖视图的形式示出。
附图标记说明
10定子 101定子主体 102定子凸起 20转子 201转子主体 202转子叶片 30、40端盖 50锁止组件
A第一油腔 B第二油腔 P储油部 P1第一可控油路 P2第二可控油路 V1第一单向阀 V2第二单向阀 VC阀控制部 DR驱动机构 PC油压蓄积机构
1定子 11定子主体 12定子凸起 12h油孔 121螺柱 122第二弹簧 123密封活塞 2转子 2h盲孔 31第一隔板 31h第一连通孔 32第二隔板 32h第二连通孔 33第三隔板 4推销 51第一弹簧 52线框 53电磁阀 S1第一空间 S2第二空间 S3第三空间
CS凸轮轴 X轴向 C周向。
具体实施方式
在本发明中,如无特殊说明,本发明的轴向、径向和周向分别是指凸轮轴相位器(定子和转子)的轴向、径向和周向。以下将首先结合说明书附图对根据本发明的第一实施方式的凸轮轴相位器的结构进行说明。
(根据本发明的第一实施方式的凸轮轴相位器的结构)
一方面,根据本发明的第一实施方式的凸轮轴相位器的基本结构与图1a和图1b中所示的现有技术的凸轮轴相位器的基本结构大致相同。
具体地,结合图1a和图1b所示的结构并参考图2c和图3b,根据本发明的第一实施方式的凸轮轴相位器包括定子1、转子2和端盖。端盖从轴向两侧固定于定子1。转子2设置于定子1的径向内侧并且能够相对于定子1转动。定子1包括定子主体11和从定子主体11朝向径向内侧凸出的定子凸起12,转子2包括转子主体和从转子主体朝向径向外侧凸出的转子叶片,每一个转子叶片均位于相邻的两个定子凸起12之间。这样,在定子1、转子2和端盖之间形成沿着周向C分布的多组油腔,在相邻的两个定子凸起12之间的一组油腔包括由转子叶片分隔开的第一油腔A和第二油腔B。
另一方面,根据本发明的第一实施方式的凸轮轴相位器与图1a和图1b中所示的现有技术的凸轮轴相位器的不同之处包括根据本发明的第一实施方式的凸轮轴相位器的油路结构与现有技术的凸轮轴相位器的油路结构不同。
具体地,如图2a和图2b所示,凸轮轴相位器(转子2)的内部形成有用于存储油的储油部P和在上述两个油腔A、B与储油部P之间的可控油路(第一可控油路P1和第二可控油路P2)。经由密封手段,该储油部P、可控油路P1和P2以及各组油腔A、B形成了对外封闭的油路结构。第一油腔A和第二油腔B能够分别经由对应的可控油路P1、P2与储油部P实现可控的连通/封闭。当可控油路P1、P2连通时,在可控油路P1、P2处于第一连通模式的情况下,利用油压仅允许油从储油部P经由可控油路P1、P2流入对应的油腔A、B;当可 控油路P1、P2连通时,在可控油路P1、P2处于第二连通模式的情况下,利用凸轮轴CS的扭矩能够使油经由可控油路P1、P2从对应的油腔A、B流入储油部P。当可控油路P1、P2封闭时,储油部P与油腔A、B不连通。
进一步地,可控油路包括在储油部P和第一油腔A之间的第一可控油路P1和在储油部P和第二油腔B之间的第二可控油路P2。凸轮轴相位器还包括设置于第一可控油路P1内的第一单向阀V1、设置于第二可控油路P2内的第二单向阀V2以及用于选择性打开第一单向阀V1和第二单向阀V2的阀控制部VC。具体地,当凸轮轴相位器处于不调相的保持状态时,阀控制部VC不对第一单向阀V1和第二单向阀V2产生控制动作,第一单向阀V1使得第一可控油路P1处于封闭状态且第二单向阀V2使得第二可控油路P2处于封闭状态。当凸轮轴相位器处于调相的工作状态时,通过凸轮轴相位器的驱动机构DR的作用,阀控制部VC能够选择性地控制第一单向阀V1和第二单向阀V2,以使第一可控油路P1处于第一连通模式并且使第二可控油路P2处于第二连通模式或者以使第一可控油路P1处于第二连通模式并且使第二可控油路P2处于第一连通模式。
在本实施方式中,图2c示出了用于实现上述油路结构的具体结构。如图2c所示,根据本发明的第一实施方式的凸轮轴相位器的转子2包括盲孔2h、设置于盲孔2h内的三个隔板(第一隔板31、第二隔板32和第三隔板33)以及设置于盲孔2h内的两个单向阀(第一单向阀V1和第二单向阀V2)和作为阀控制部VC的推销4。
具体地,在本实施方式中,盲孔2h形成于转子2的中央位置且盲孔2h的中心轴线与凸轮轴相位器的中心轴线一致。该盲孔2h的内部形成足够的空间并且朝向轴向一侧(图2c中的右侧)开口。
进一步地,在本实施方式中,第一隔板31、第二隔板32和第三隔板33位于盲孔2h内且优选通过过盈配合或焊接固定于预定位置。第一隔板31、第二 隔板32和第三隔板33从轴向另一侧朝向轴向一侧依次配置。在盲孔2h的侧壁形成用于在轴向X上对第一隔板31和第二隔板32进行限位的台阶结构,第三隔板33的轴向一侧的端面与转子2的轴向一侧的端面平齐。当第一隔板31、第二隔板32和第三隔板33在盲孔2h内固定到位之后,盲孔2h内的空间被分隔成在轴向X上间隔开的第一空间S1、第二空间S2和第三空间S3。第一空间S1与第一油腔A连通,第三空间S3与第二油腔B连通。因此,该第一空间S1作为上述第一可控油路P1的一部分,第二空间S2作为上述储油部P,第三空间S3作为上述第二可控油路P2的一部分。
进一步地,第一隔板31的中央位置形成有用于连通第一空间S1和第二空间S2的第一连通孔31h,第一单向阀V1设置于第一空间S1内以单向封闭第一连通孔31h,并且第二隔板32形成有用于连通第二空间S2和第三空间S3的第二连通孔32h,第二单向阀V2设置于第三空间S3内以单向封闭第二连通孔32h。通过推销4控制第一单向阀V1、第二单向阀V2能够控制第一空间S1和第三空间S3与第二空间S2的可控地导通/封闭。
进一步地,在本实施方式中,作为阀控制部VC的推销4设置于第二空间S2内,该推销4能够朝向轴向两侧运动以选择性地推动第一单向阀V1或第二单向阀V2,从而使得第一单向阀V1不再封闭第一连通孔31h或者使得第二单向阀V2不再封闭第二连通孔32h。
在本实施方式中,凸轮轴相位器还包括用于驱动推销4进行动作的驱动机构DR,驱动机构DR能够驱动推销4以选择性地控制第一单向阀V1或第二单向阀V2打开。具体地,驱动机构DR包括线框52、第一弹簧51和电磁阀53。
具体地,在本实施方式中,线框52具有三个或四个沿着轴向X延伸的杆,这些杆穿过第二隔板32和第三隔板33,并且线框52能够沿着轴向X相对于转子2进行相对运动。推销4固定于线框52的轴向另一侧的端部从而能够随着线框52的运动而运动。第二隔板32和第三隔板33的用于供线框52的杆穿过的部 位实现密封。
在本实施方式中,第一弹簧51为圆柱螺旋弹簧,第一弹簧51的一端固定于第一隔板31且弹簧的另一端固定于线框52的轴向另一侧的端部,以对线框52施加朝向第二隔板32的弹簧力,从而对来自电磁阀53的力进行平衡。
电磁阀53设置于转子2的外部并且与线框52的轴向一侧的端部相对,以用于配合第一弹簧51使得线框52实现相对于转子2的相对运动。
以上说明了根据本发明的第一实施方式的凸轮轴相位器的具体结构,以下将说明根据本发明的第一实施方式的凸轮轴相位器的工作方法。
如图2a所示,当转子2处于不需要进行调相的保持状态下,第一弹簧51和电磁阀53使推销4既不作用于第一单向阀V1也不作用于第二单向阀V2,使得第一单向阀V1和第二单向阀V2均设定为封闭对应的连通孔31h、32h,从而封闭可控油路P1、P2。这样,储油部P与两个油腔A、B均不连通,所述转子2保持为相对于定子不动的保持状态。在本实施方式中,由于将转子2保持为相对于定子不动的保持状态不需要如图1a和图1b中所示的锁止组件50,因而与现有技术的凸轮轴相位器相比结构更简单且成本更低。
如图2b和图2c所示,当转子2处于由第一油腔A向第二油腔B调相的工作状态下,在第一弹簧51和电磁阀53的联合作用下,推销4使第二单向阀V2打开,使得第二可控油路P2被设定为第二连通模式;与此同时,第一可控油路P1被设定为第一连通模式。这样,由于凸轮轴CS上产生的交变扭矩,在凸轮轴CS的扭矩的作用下来自第二油腔B的油能够经由储油部P进入第一油腔A,从而使得转子2相对于定子1向第二油腔B转动。
与上述由第一油腔A向第二油腔B调相的工作状态类似地,当转子2处于由第二油腔B向第一油腔A调相的工作状态下,在第一弹簧51和电磁阀53的联合作用下,推销4使第一单向阀V1打开,使第一可控油路P1被设定为第二连通模式;与此同时,第二可控油路P2被设定为第一连通模式。这样,在凸 轮轴CS的扭矩的作用下来自第一油腔A的油能够经由储油部P进入第二油腔B,从而使得转子2相对于定子1向第一油腔A转动。
这样,根据本发明的凸轮轴相位器在进行调相的过程中仅需要凸轮轴CS的扭矩,而不需要额外设置油泵,从而减少了燃料的消耗。
以上已经说明了根据本发明的第一实施方式的凸轮轴相位器的具体结构及其工作方法,以下将结合附图说明根据本发明的第二实施方式的凸轮轴相位器的具体结构。
(根据本发明的第二实施方式的凸轮轴相位器的结构)
根据本发明的第二实施方式的凸轮轴相位器的基本结构与根据本发明的第一实施方式的凸轮轴相位器的基本结构大致相同,以下将说明两者之间的不同之处。
如图3a和图3b所示,根据本发明的第二实施方式的凸轮轴相位器的定子1还设置有油压蓄积机构PC。油压蓄积机构PC包括油孔12h、螺柱121、第二弹簧122和密封活塞123。
具体地,油孔12h为沿着径向延伸的通孔12h并且油孔12h形成于定子1的形成有定子凸起12的部位。该油孔12h用于与储油部P连通并且不会影响转子2相对于定子1的转动。螺柱121以可拆卸的方式设置于油孔12h内且固定于定子1。第二弹簧122为圆柱螺旋弹簧,第二弹簧122设置于油孔12h内且位于螺柱121的径向内侧。第二弹簧122的一端抵接于螺柱121且第二弹簧122的另一端抵接于密封活塞123。密封活塞123以能够沿着油孔12h往复运动的方式设置于油孔12h的内部且位于第二弹簧122的径向内侧,第二弹簧122对密封活塞123施加朝向储油部P的弹簧力。
由此,一方面,当根据本发明的油路结构例如由于密封不良而损失部分油的情况下,在拆卸油孔12h内的各零件之后,通过该油孔12h能够向储油部P内补充油。另一方面,基于第二弹簧122的弹簧力,当储油部P内的油压升 高到大于第二弹簧122的当前弹簧力的情况下,一部分油会从储油部P进入油孔12h内;当储油部P内的油压降低到小于第二弹簧122的当前弹簧力的情况下,一部分油会从油孔12h进入储油部P内。这样,能够通过该油压蓄积机构PC补偿油路结构中(例如温度变化导致的)产生的油量变化。
虽然在以上的具体实施方式中对本发明的技术方案进行了详细地阐述,但是还需要说明的是:
i.虽然在以上的具体实施方式中没有明确说明,但是可以理解,优选地通过发动机控制单元来实现上述凸轮轴相位器的工作方法,即通过控制电磁阀53的动作来实现该工作方法。
ii.虽然在以上的具体实施方式中没有说明,但是如图2c所示,在本发明中,凸轮轴相位器的轴向另一侧面形成有凸起部,例如通过过盈配合或焊接使得该凸起部固定于发动机的凸轮轴CS。另外,虽然在以上的具体实施方式中没有明确说明,但是为了保证凸轮轴CS的交变扭矩在由第二油腔B向第一油腔A和由第一油腔A向第二油腔B两个调相方向上更平衡,可以通过设置例如螺旋弹簧的方式达到这样的目的。
iii.虽然在以上的具体实施方式中没有明确说明,但是应当理解,第一可控油路P1不仅包括上述第一空间S1,还包括从第一空间S1到第一油腔A的流路。类似地,第二可控油路P2还包括从第二空间S2到第二油腔B的流路。
iv.虽然在以上的具体实施方式中没有说明第一单向阀V1和第二单向阀V2的具体结构,但是本领域技术人员能够理解,只要能够实现上述具体实施方式中所说明的功能,可以采用任意结构的单向阀,例如该单向阀优选地包括用于封闭隔板31、32的连通孔31h、32h的球和弹簧。
v.本发明的凸轮轴相位器还具有如下优点。
本发明的凸轮轴相位器不仅结构简单而且节省了成本,而且降低了燃料消耗,减小了温室气体(例如二氧化碳)的排放。
在采用本发明的凸轮轴相位器的情况下,由于凸轮轴相位器内的油路结构具有对外密封的结构,因此还能够使得凸轮轴相位器内的油路结构中的油和发动机润滑油采用不同种类,从而使得在上述油路结构中的油能够适应更宽范围的使用温度。
在采用本发明的凸轮轴相位器的情况下,由于凸轮轴相位器内的油路结构具有对外密封的结构,优选地使用干式皮带来带动凸轮轴相位器。
在采用本发明的凸轮轴相位器的情况下,如上所述地,可以省略现有技术的凸轮轴相位器中的锁止组件50,能够改善在发动机处于低速的状态下凸轮轴CS获得信号的准确度,使得在发动机启动和停机阶段能够将转子2调整到适当的目标位置。
此外,对于未来的具有小型发动机的车辆,本发明的凸轮轴相位器是一种较优选的方案。

Claims (10)

  1. 一种利用凸轮轴的扭矩实现调相的凸轮轴相位器,所述凸轮轴相位器包括定子(1)、转子(2)和端盖,所述端盖从轴向两侧固定于所述定子(1),所述转子(2)设置于所述定子(1)的径向内侧并且能够相对于所述定子(1)转动,在所述定子(1)、所述转子(2)和所述端盖之间形成沿着周向(C)分布的多组油腔,各组所述油腔均包括由所述转子(2)的转子叶片彼此分隔开的第一油腔(A)和第二油腔(B),
    所述转子(2)的内部形成有储油部(P)和可控油路(P1、P2),所述第一油腔(A)和所述第二油腔(B)均能够经由可控油路(P1、P2)与所述储油部(P)实现可控的连通/封闭,其中在所述可控油路(P1、P2)处于第一连通模式的情况下能够利用油压仅允许油从所述储油部(P)经由所述可控油路(P1、P2)流入对应的油腔(A、B);在所述可控油路处于第二连通模式的情况下利用所述凸轮轴(CS)的扭矩能够使油从对应的油腔(A、B)经由所述可控油路(P1、P2)流入所述储油部(P)。
  2. 根据权利要求1所述的凸轮轴相位器,其特征在于,所述可控油路(P1、P2)包括在所述储油部(P)和所述第一油腔(A)之间的第一可控油路(P1)和在所述储油部(P)和所述第二油腔(B)之间的第二可控油路(P2),
    所述凸轮轴相位器还包括设置于所述第一可控油路(P1)内的第一单向阀(V1)、设置于所述第二可控油路(P2)内的第二单向阀(V2)以及用于选择性打开所述第一单向阀(V1)和所述第二单向阀(V2)的阀控制部(VC),通过所述阀控制部(VC)能够控制所述第一单向阀(V1)和第二单向阀(V2)以使各所述可控油路(P1、P2)处于所述第一连通模式或处于所述第二连通模式。
  3. 根据权利要求2所述的凸轮轴相位器,其特征在于,所述转子(2)的中央位置形成有盲孔(2h),
    所述凸轮轴相位器还包括设置于所述盲孔(2h)内且固定于所述转子(2)的第一隔板(31)、第二隔板(32)和第三隔板(33),以将所述盲孔(2h)内的空间分隔成在所述凸轮轴相位器的轴向(X)上间隔开的第一空间(S1)、第二空间(S2)和第三空间(S3),
    所述第一空间(S1)与所述第一油腔(A)连通,所述第三空间(S3)与所述第二油腔(B)连通,通过所述第一单向阀(V1)、所述第二单向阀(V2)和所述阀控制部(VC)控制所述第一空间(S1)和所述第三空间(S3)与所述第二空间(S2)的可控地连通以使各所述可控油路(P1、P2)能够处于所述第一连通模式或处于所述第二连通模式。
  4. 根据权利要求3所述的凸轮轴相位器,其特征在于,
    所述第一隔板(31)形成有用于连通所述第一空间(S1)和所述第二空间(S2)的第一连通孔(31h),所述第一单向阀(V1)设置于所述第一空间(S1)内以封闭所述第一连通孔(31h),并且
    所述第二隔板(32)形成有用于连通所述第二空间(S2)和所述第三空间(S3)的第二连通孔(32h),所述第二单向阀(V2)设置于所述第三空间(S3)内以封闭所述第二连通孔(32h)。
  5. 根据权利要求4所述的凸轮轴相位器,其特征在于,所述阀控制部(VC)设置于所述第二空间(S2)内,所述凸轮轴相位器还包括用于驱动所述阀控制部(VC)进行动作的驱动机构(DR),
    所述驱动机构(DR)能够驱动所述阀控制部(VC)以控制所述第一单向阀(V1)远离所述第一连通孔(31h)或者控制所述第二单向阀(V2)远离所述第二连通孔(32h)来使得所述第一可控油路(P1)或所述第二可控油路(P2)处于第二连通模式。
  6. 根据权利要求5所述的凸轮轴相位器,其特征在于,所述驱动机构(DR)包括:
    线框(52),所述线框(52)穿过所述第二隔板(32)和所述第三隔板(33)且能够沿着轴向(X)相对于转子(2)进行相对运动,所述阀控制部(VC)固定于所述线框(52);
    第一弹簧(51),所述第一弹簧(51)的一端固定于所述第一隔板(31)且所述第一弹簧(51)的另一端固定于所述线框(52),以对所述线框(52)施加朝向所述第二隔板(32)的弹簧力;以及
    电磁阀(53),所述电磁阀(53)用于配合所述第一弹簧(51)使得所述线框(52)实现所述相对运动。
  7. 根据权利要求1至6中任一项所述的凸轮轴相位器,其特征在于,所述凸轮轴相位器还包括油压蓄积机构(PC),所述油压蓄积机构(PC)包括:
    油孔(12h),其形成于所述定子(1),所述油孔(12h)与所述储油部(P)连通;
    密封活塞(123),所述密封活塞(123)以能够沿着所述油孔(12h)往复运动的方式设置于所述油孔(12h)的内部;以及
    第二弹簧(122),所述第二弹簧(122)设置于所述油孔(12h)内且所述第二弹簧(122)对所述密封活塞(123)施加对所述油孔(12h)内的油加压的弹簧力。
  8. 根据权利要求7所述的凸轮轴相位器,其特征在于,所述油孔(12h)为沿着所述凸轮轴相位器的径向延伸的通孔,所述油压蓄积机构(PC)还包括以可拆卸的方式设置于所述油孔(12h)内且固定于所述定子(1)的柱塞(121),所述第二弹簧(122)的一端抵接于所述柱塞(121)且所述第二弹簧(122)的另一端抵接于所述密封活塞(123)。
  9. 根据权利要求7或8所述的凸轮轴相位器,其特征在于,所述定子(1)包括朝向转子(2)凸出的定子凸起(22),在相邻的两个所述定子凸起(22)之间形成一组油腔,所述油孔(12h)形成于所述定子(1)的形成有所述定 子凸起(22)的部位。
  10. 一种权利要求1至9中任一项所述的凸轮轴相位器的工作方法,所述工作方法包括:
    当所述转子(2)处于向所述第一油腔(A)调相的工作状态下,将与所述第一油腔(A)对应的可控油路(P1)设定为所述第二连通模式且将与所述第二油腔(B)对应的可控油路(P2)设定为所述第一连通模式,使得在所述凸轮轴(CS)的扭矩的作用下来自所述第一油腔(A)的油能够经由所述储油部(P)进入所述第二油腔(B),从而使得所述转子(2)相对于所述定子(1)向所述第一油腔(A)转动;和/或
    当所述转子(2)处于向所述第二油腔(B)调相的工作状态下,将与所述第一油腔(A)对应的可控油路(P1)设定为所述第一连通模式且将与所述第二油腔(B)对应的可控油路(P2)设定为所述第二连通模式,使得在所述凸轮轴(CS)的扭矩的作用下来自所述第二油腔(B)的油能够经由所述储油部(P)进入所述第一油腔(A),从而使得所述转子(2)相对于所述定子(1)向所述第二油腔(B)转动;和/或
    当所述转子(2)处于不进行调相的保持状态下,将与所述第一油腔(A)和所述第二油腔(B)对应的可控油路(P1、P2)均设定为封闭状态,使得所述转子(2)保持为相对于所述定子(1)不动的保持状态。
PCT/CN2019/113961 2019-10-29 2019-10-29 凸轮轴相位器及其工作方法 WO2021081749A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/113961 WO2021081749A1 (zh) 2019-10-29 2019-10-29 凸轮轴相位器及其工作方法
CN201980093982.4A CN113557349B (zh) 2019-10-29 2019-10-29 凸轮轴相位器及其工作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/113961 WO2021081749A1 (zh) 2019-10-29 2019-10-29 凸轮轴相位器及其工作方法

Publications (1)

Publication Number Publication Date
WO2021081749A1 true WO2021081749A1 (zh) 2021-05-06

Family

ID=75714725

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/113961 WO2021081749A1 (zh) 2019-10-29 2019-10-29 凸轮轴相位器及其工作方法

Country Status (2)

Country Link
CN (1) CN113557349B (zh)
WO (1) WO2021081749A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1495345A (zh) * 2002-04-19 2004-05-12 �ӳɹ� 可变凸轮轴正时装置的液压定位
CN1502790A (zh) * 2002-06-14 2004-06-09 �ӳɹ� 确保叶片式相位器中锁销稳定工作的方法
US20050039713A1 (en) * 2003-05-29 2005-02-24 Delphi Technologies, Inc. Method and apparatus for actuating a cam phaser
CN1619113A (zh) * 2003-11-17 2005-05-25 博格华纳公司 凸轮扭矩致动相位器
JP2006300018A (ja) * 2005-04-25 2006-11-02 Mazda Motor Corp エンジンの可変バルブタイミング装置
CN101107428A (zh) * 2005-01-18 2008-01-16 博格华纳公司 通过快速作用凸轮轴相位器操作的气门事件减小
CN109538323A (zh) * 2019-01-21 2019-03-29 绵阳富临精工机械股份有限公司 一种凸轮轴调相器系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010038035A (ja) * 2008-08-05 2010-02-18 Toyota Motor Corp 可変バルブタイミング装置
CN207920681U (zh) * 2018-03-16 2018-09-28 博格华纳汽车零部件(宁波)有限公司 一种凸轮轴扭矩驱动式相位器
CN208106516U (zh) * 2018-04-11 2018-11-16 博格华纳汽车零部件(宁波)有限公司 中位锁止相位器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1495345A (zh) * 2002-04-19 2004-05-12 �ӳɹ� 可变凸轮轴正时装置的液压定位
CN1502790A (zh) * 2002-06-14 2004-06-09 �ӳɹ� 确保叶片式相位器中锁销稳定工作的方法
US20050039713A1 (en) * 2003-05-29 2005-02-24 Delphi Technologies, Inc. Method and apparatus for actuating a cam phaser
CN1619113A (zh) * 2003-11-17 2005-05-25 博格华纳公司 凸轮扭矩致动相位器
CN101107428A (zh) * 2005-01-18 2008-01-16 博格华纳公司 通过快速作用凸轮轴相位器操作的气门事件减小
JP2006300018A (ja) * 2005-04-25 2006-11-02 Mazda Motor Corp エンジンの可変バルブタイミング装置
CN109538323A (zh) * 2019-01-21 2019-03-29 绵阳富临精工机械股份有限公司 一种凸轮轴调相器系统

Also Published As

Publication number Publication date
CN113557349A (zh) 2021-10-26
CN113557349B (zh) 2024-04-26

Similar Documents

Publication Publication Date Title
US7243626B2 (en) Camshaft adjuster
CN110192008B (zh) 气门正时调整装置
US7182053B2 (en) Camshaft adjuster for an internal combustion engine
US6772721B1 (en) Torsional assist cam phaser for cam in block engines
JP3211713B2 (ja) 内燃機関の可変バルブタイミング機構
JP4209153B2 (ja) 位相器
US6779499B2 (en) Variable valve timing apparatus
JP4821896B2 (ja) 弁開閉時期制御装置
US20090107433A1 (en) Valve timing controller
JP2003065011A (ja) 位相器
US6745735B2 (en) Air venting mechanism for variable camshaft timing devices
JP2011196245A (ja) バルブタイミング調整装置
US6866013B2 (en) Hydraulic cushioning of a variable valve timing mechanism
JP2012149598A (ja) バルブタイミング調整装置
JP4019614B2 (ja) 内燃機関の吸気弁駆動制御装置
CN113614334A (zh) 工作油控制阀和阀正时调整装置
CN113614333A (zh) 工作油控制阀以及阀正时调整装置
CN102312689B (zh) 可变气门正时控制装置
WO2021081749A1 (zh) 凸轮轴相位器及其工作方法
JP4697547B2 (ja) バルブタイミング調整装置
JP5887842B2 (ja) 弁開閉時期制御装置
JP5152312B2 (ja) バルブタイミング調整装置
CN112211691A (zh) 凸轮轴相位器组件
JP3817065B2 (ja) 内燃機関のバルブタイミング制御装置
CN116255220A (zh) 相位器及发动机可变气门正时系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19950682

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19950682

Country of ref document: EP

Kind code of ref document: A1