WO2021080319A1 - 재생가능 수지 조성물 및 이로부터 제조된 물품 - Google Patents

재생가능 수지 조성물 및 이로부터 제조된 물품 Download PDF

Info

Publication number
WO2021080319A1
WO2021080319A1 PCT/KR2020/014415 KR2020014415W WO2021080319A1 WO 2021080319 A1 WO2021080319 A1 WO 2021080319A1 KR 2020014415 W KR2020014415 W KR 2020014415W WO 2021080319 A1 WO2021080319 A1 WO 2021080319A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
parts
resin composition
renewable resin
renewable
Prior art date
Application number
PCT/KR2020/014415
Other languages
English (en)
French (fr)
Inventor
치하 튀크 난
Original Assignee
그린웨일글로벌 주식회사
치하 튀크 난
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 그린웨일글로벌 주식회사, 치하 튀크 난 filed Critical 그린웨일글로벌 주식회사
Priority to AU2020371459A priority Critical patent/AU2020371459A1/en
Priority to CN202080073041.7A priority patent/CN114599732A/zh
Priority to JP2022522734A priority patent/JP2022552395A/ja
Priority to EP20879065.9A priority patent/EP4053207A4/en
Publication of WO2021080319A1 publication Critical patent/WO2021080319A1/ko
Priority to ZA2022/04444A priority patent/ZA202204444B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L3/00Compositions of starch, amylose or amylopectin or of their derivatives or degradation products
    • C08L3/02Starch; Degradation products thereof, e.g. dextrin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/181Acids containing aromatic rings
    • C08G63/183Terephthalic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0016Plasticisers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/05Alcohols; Metal alcoholates
    • C08K5/053Polyhydroxylic alcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2390/00Containers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/06Biodegradable
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/16Applications used for films
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/90Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in food processing or handling, e.g. food conservation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W90/00Enabling technologies or technologies with a potential or indirect contribution to greenhouse gas [GHG] emissions mitigation
    • Y02W90/10Bio-packaging, e.g. packing containers made from renewable resources or bio-plastics

Definitions

  • the present invention relates to a recyclable resin composition and an article manufactured therefrom, and more particularly, to a recyclable resin composition that is biodegradable and at the same time reprocessed to have excellent recyclability, and to an article manufactured therefrom.
  • Plastic, a ⁇ God's Gift,'' was first developed as a substitute for an ivory billiard ball in 1868 by John Haiett of the United States, and after 150 years, it became a bomb threatening the earth. It takes about 450 years for a single plastic bottle to decompose, and the overall recycling rate is only 9%.
  • PBAT polybutylene adipate-co-terephthalate
  • PHA poly(hydroxyalkanoates
  • the PBAT series has a functional and economic problem for commercial use due to its lack of distribution stability and high price, and in order to secure price competitiveness, polylactic acid (polylactic acid, which is the cheapest among biodegradable resins)
  • PLA polylactic acid, which is the cheapest among biodegradable resins
  • the use of PLA) series may be an alternative, but when it is applied as a molded product such as a film, there is a limit in mechanical properties such as the film is easily torn due to the brittleness inherent in polylactic acid.
  • the problem to be solved by the present invention is to provide a renewable resin composition that is biodegradable and is reprocessed at the same time and has excellent reproducibility.
  • Another problem to be solved by the present invention is to provide an article made from the composition.
  • Cassava starch 100 parts by weight, poly butylene succinate (PBS) or polylactic acid (PLA) 100 to 200 parts by weight, polybutylene adipate-co-terephthalate (poly butylene adipate-co- terephthalate; PBAT) 20 to 120 parts by weight, and 10 to 40 parts by weight of a plasticizer is provided a renewable resin composition comprising. It is preferable that the cassava starch has a range of 100 parts by weight to 300 parts by weight.
  • the renewable resin composition may include 100 parts by weight of cassava starch, 120 to 180 parts by weight of polybutylene succinate, 40 to 100 parts by weight of polybutylene adipate-co-terephthalate, and 15 to 35 parts by weight of a plasticizer. . It is preferable that the cassava starch has a range of 100 parts by weight to 300 parts by weight.
  • the plasticizer may include a polyhydric alcohol, a sugar alcohol, an anhydride of a sugar alcohol, a urea-based compound, a protein, an acid ester, an aliphatic acid polymer, or two or more of them.
  • the renewable resin composition may further include an impact stiffener.
  • the renewable resin composition may have a bio content of 35 to 70% according to ASTM D6866.
  • the renewable resin composition comprises 100 parts by weight of cassava starch, 120 to 180 parts by weight of polybutylene succinate, 40 to 100 parts by weight of polybutylene adipate-co-terephthalate, and 15 to 35 parts by weight of glycerin oil, It has a bio content of 35 to 70% according to ASTM D6866, and the cassava starch is used as a substitute for potato starch or corn starch, so that it has price competitiveness, and mass production is possible, easy and compostable, and low It can have carbon dioxide emissions.
  • the article may be a film, envelope, straw, container, or tray.
  • cassava starch having a large bio-content as a main material and using a small amount of polybutylene adipate-co-terephthalate, which is mainly used as a conventional biodegradable polymer, it is biodegradable and simultaneously reprocessed. It is possible to provide a recyclable resin composition excellent in reproducibility.
  • renewable resin composition according to an embodiment of the present invention has cost competitiveness by using cassava starch in place of expensive potato starch or corn starch used in the prior art, and can be mass-produced, biodegradable and compostable. It is possible and is advantageous in that it has low carbon dioxide emissions.
  • the recyclable resin composition according to an embodiment of the present invention is relatively soft and has high elasticity and viscosity because of its high viscosity, and has a low gelatinization temperature, thereby shortening the stopping time.
  • Renewable resin composition according to an embodiment of the present invention has a higher swelling power than conventional waxy corn starch, so it has high absorbency, high transparency of the composition, and less aging properties.
  • a renewable resin composition comprising 20 to 120 parts by weight of terephthalate (poly butylene adipate-co-terephthalate; PBAT), and 10 to 40 parts by weight of a plasticizer.
  • biodegradable resin proposed to solve the problem of general plastic materials causing environmental problems, refers to carbon dioxide and nitrogen because resins such as polymers or plastics can be chemically decomposed in an environment such as soil after being used. , It means a polymer that releases natural by-products such as water, biomass, and inorganic salts. Many of these biodegradable resins are obtained from fossil fuels such as petroleum, and these fossil fuels are non-renewable resources and have a large amount of carbon generated during the process, so there is a limit to environmental friendliness.
  • the term "renewable resin” refers to a resin that can be reused as a raw material for all or part of the collected objects and by-products after being discarded and used or not. At this time, it can be said that the greater the degree to which it can be reused as a raw material based on the used or discarded resin, the higher the recyclability is.
  • biocontent can mean a polymer or composition containing a polymer, at least in part, derived from a biologically based molecular unit.
  • biocontent can be determined by ASTM D6866 (a standard test method for measuring bio-based materials in solid, liquid and gaseous samples using radioactive carbon), and regeneration relative to total organic carbon in the material. It can be referred to as a mass percentage of the amount of carbon (amount of biocarbon) from a possible resource.
  • the bio content is determined by measuring the content of carbon (C14) having a mass number of 14 and carbon having a mass number of 12 (C12) and a mass number of 13 (C13) according to ASTM D6866. It can be discriminated by finding the content ratio of ).
  • the bio content (%) can be calculated by the following equation.
  • Bio content (%) [Bio (organic) carbon content in the material (C14 content)]/[Total (organic) carbon content in the material (C12 + C13 + C14 total)]*100%
  • the biologically based unit can be a biologically derived monomer.
  • Biologically based monomers can be derived from plants, for example.
  • the plant can be any plant, for example, starch-based plants, castor, palm oil, vegetable oil, sugar cane, corn, rice, switch grass, and the like.
  • renewable resin is a concept differentiated from reusable, which is used as it is or refurbished and reused for production activities.
  • the renewable resin composition according to an aspect of the present invention includes 100 parts by weight of cassava starch, 50 to 100 parts by weight of polybutylene succinate (PBS), and polybutylene adipate-co-terephthalate.
  • PBS polybutylene succinate
  • PBAT polybutylene adipate-co-terephthalate
  • the cassava starch has a range of 100 parts by weight to 300 parts by weight.
  • the cassava starch refers to the starch harvested from cassava, and this cassava is a plant native to South America, and is a root vegetable whose tuber roots are struck in all directions, similar to sweet potatoes, and the outer shell is brown and the inside is white.
  • Cassava is actively cultivated in the tropics, and the cultivation is very simple, and it is possible to harvest potatoes (roots and stems) in half a year, so cultivation is very simple.
  • Cassava is rich in calcium and vitamin C, and contains 20-25% starch.
  • Cassava starch is prepared by crushing cassava, washing the starch with water, precipitating it, and drying it.
  • Cassava is used for a variety of purposes, such as alcohol, bioethanol, feed, paper, and edible. Cassava is native to South America, but is mainly produced in Africa and Southeast Asia, and production is increasing, especially in Southeast Asia.
  • the cassava starch has the disadvantages of high water solubility and weak mechanical strength compared to traditional synthetic plastics.
  • polybutylene succinate and polybutylene adipate-co-terephthalate are blended together with cassava starch. do.
  • the polybutylene succinate has a relatively high melting point and has excellent processability and excellent biodegradability, and is being developed as an alternative material for non-biodegradable polymer synthetic resins.
  • the polybutylene succinate is a polyester-based thermoplastic polymer resin, a biodegradable aliphatic polyester having properties comparable to polypropylene, and a biodegradable, semi-crystalline thermoplastic resin.
  • the polybutylene succinate may be produced as a renewable feedstock such as glucose and sucrose through fermentation or as a petroleum-based fee feedstock.
  • the mechanical properties of the polybutylene succinate are very promising biopolymers because they can be compared with those of widely used high-density polyethylene and isotactic polypropylene.
  • the polybutylene succinate is one of the latest biopolymers and can be a cost-effective alternative to other biopolymers such as PLA, PBAT and PHB. Therefore, the polybutylene succinate can be substituted with polylactic acid (PLA) if cost efficiency is not considered.
  • PLA polylactic acid
  • Its possible applications include food packaging, mulch films, pollen, hygiene products, fishing nets and fishing lines, and can also be used as matrix polymers or in combination with other biopolymers such as polylactic acid (PLA).
  • the polybutylene succinate is a partially renewable biosource, can easily interact with starch to make a homogeneous compound, and has excellent mechanical and physical properties that can replace existing household plastic products.
  • polybutylene succinate polymer can be a linear polymer or a long chain branched polymer.
  • Long chain branched polybutylene succinate polymers can be prepared with additional polyfunctional components selected from the group consisting of trifunctional or tetrafunctional polyols, oxycarboxylic acids, and polybasic carboxylic acids.
  • Polybutylene succinate polymers are known in the art.
  • the polybutylene succinate is 100 to 200 parts by weight based on 100 parts by weight of cassava starch, and according to an embodiment of the present invention, it may be 120 to 180 parts by weight, or 130 to 165 parts by weight, and polylactic acid , PLA). It is preferable that the cassava starch has a range of 100 parts by weight to 300 parts by weight.
  • poly(butylene adipate-co-terephthalate) refers to a polymer comprising a random copolymer of butylene adipate and terephthalate.
  • Poly(butylene adipate-co-terephthalate) suitable for the composition according to an embodiment of the present invention can be prepared according to any method known in the state of the art.
  • poly(butylene adipate-co-terephthalate) can be prepared by polycondensation of 1,4-butadiene with a mixture of adipic acid and terephthalic acid.
  • the poly(butylene adipate-co-terephthalate) is raw and can be mixed with PLA to produce packaging plastic products, and has excellent printing properties.
  • the poly(butylene adipate-co-terephthalate) can be easily molded and thermoformed into a semi-aromatic, biodegradable thermoplastic copolyester. It is produced by random copolymerization of 1,4-butanediol, adipic acid and dimethyl terephthalate (DMT) monomers.
  • DMT dimethyl terephthalate
  • the poly(butylene adipate-co-terephthalate) has many useful properties similar to polyethylene.
  • the poly(butylene adipate-co-terephthalate) is very similar to polyethylene, it can be used for similar applications in food packaging and agricultural film applications, and is also biodegradable (compostable) and is conventionally used in polyethylene.
  • the blown film can be processed in the equipment.
  • the poly(butylene adipate-co-terephthalate) can be used as a reinforcing agent for poly(lactic acid) A, is a partially renewable biosource, and can easily interact with starch to make a homogeneous compound, and conventional It has excellent mechanical and physical properties that can replace plastic products for home use.
  • the polybutylene adipate-co-terephthalate may be 20 to 120 parts by weight, or 40 to 100 parts by weight, or 50 to 80 parts by weight based on 100 parts by weight of cassava starch. It is preferable that the cassava starch has a range of 100 parts by weight to 300 parts by weight.
  • the plasticizer is added to polymers of cassava starch, polybutylene succinate, and polybutylene adipate-co-terephthalate to increase flexibility, elasticity, and warpability to improve processability and moldability.
  • Cassava starch and the like have a large molecular weight and are not easily deformed, but if plasticity is given thereto, they can be easily deformed by external force.
  • the content of the plasticizer may be 10 to 40 parts by weight, or 15 to 35 parts by weight, or 20 to 30 parts by weight, based on 100 parts by weight of cassava starch. It is preferable that the cassava starch has a range of 100 parts by weight to 300 parts by weight.
  • the effect of improving physical properties may be insignificant, and when the content exceeds 20 parts by weight, the plasticizer contained in an excessive amount is manufactured from a renewable resin composition. It may be migrated to the posterior surface, and in this case, the sealing strength gradually weakens, resulting in a problem that the quality of a finally manufactured product such as a shopping bag is deteriorated.
  • plasticizer examples include polyhydric alcohol plasticizers such as sugars (e.g. glucose, sucrose, fructose, raffinose, maltodextrose, galactose, xylose, maltose, lactose, mannose, and erythrose), sugar alcohols (E.g. erythritol, xylitol, malitol, mannitol, and sorbitol), polyols (e.g. ethylene glycol, glycerol, propylene glycol, dipropylene glycol, butylene glycol, and hexanetriol), and the like.
  • sugars e.g. glucose, sucrose, fructose, raffinose, maltodextrose, galactose, xylose, maltose, lactose, mannose, and erythrose
  • sugar alcohols E.g. erythritol, xylitol, malitol
  • Hydrogen bond-forming organic compounds having no hydroxy group such as urea-based compounds (urea and urea derivatives); Anhydrides of sugar alcohols such as sorbitan; Animal proteins such as gelatin; Vegetable proteins such as sunflower protein, soybean protein, cottonseed protein; And proteins which are mixtures thereof.
  • plasticizer phthalate ester, dimethyl and diethyl succinate and related esters, glycerol triacetate, glycerol mono and diacetate, glycerol mono, di and tripropionate, butanoate, stearate, lactic acid ester, citric acid ester , Acid esters such as adipic acid ester, stearic acid ester, oleic acid ester, and other acid esters.
  • Aliphatic acid polymers can be used, examples of which are copolymers of ethylene and acrylic acid, polyethylene grafted with maleic acid, polybutadiene-acrylic acid copolymer, polybutadiene-maleic acid copolymer, polypropylene-acrylic acid copolymer, polypropylene-maleic acid Copolymers, and other hydrocarbon-based acids.
  • Low molecular weight plasticizers are preferred, such as less than about 20,000 g/mole, preferably less than about 5,000 g/mole, more preferably less than about 1,000 g/mole.
  • the renewable resin composition is 100 parts by weight of cassava starch, 120 to 180 parts by weight of polybutylene succinate, 40 to 100 parts by weight of polybutylene adipate-co-terephthalate, and a plasticizer It may contain 15 to 35 parts by weight.
  • renewable resin composition according to an embodiment of the present invention may further include an impact stiffener.
  • the content of the impact modifier may be 0.1 to 5 parts by weight, or 0.1 to 3.5 parts by weight based on 100 parts by weight of the resin mixture of the cassava starch, polybutylene succinate, and polybutylene adipate-co-terephthalate. When the content of the impact modifier satisfies this range, tear strength and mechanical strength of the recyclable article may be improved.
  • the impact modifier is polybutadiene grafted ethylene-octene copolymer, methylmethacrylate-butadine-styrene (MBS) terpolymer, acrylic copolymer, and ethylene acrylate copolymer. It may contain one or more selected from the group consisting of polymers (ethylene acrylate copolymer), and preferably, a butadiene-styrene copolymer forms a core, and methyl methacrylate is grafted on the surface of the core to form a shell. Polymers can be used.
  • the core part is made of styrene-butadiene crosslinked rubber, which is effective in absorbing impact
  • the shell part is made of methyl methacrylate to improve the kneading property with the base material. It is effective in increasing acidity. Therefore, when the MBS terpolymer is used as an impact modifier, the impact modifier can be uniformly dispersed in the biodegradable resin, and such excellent dispersibility can improve impact efficiency and surface properties, which is more preferable.
  • MBS terpolymer LG Chem's MB885, MB872 or MB802, and Mitsubishi Rayon Co., Ltd.'s METABLEN® series may be used.
  • acrylic copolymer Dow Chemical Company's Paraloid® series, such as Paraloid® BPM-520, etc., may be used, and as the ethylene acrylate copolymer, DuPont Company's BIOMAX® Strong series, such as BIOMAX ® Strong 120, etc. can be used.
  • the renewable resin composition according to an embodiment of the present invention may further include various additives such as a compatibilizer, a surfactant, an antioxidant, a coupling agent, etc., in the form of a mixture of two or more, depending on the purpose of use. .
  • the renewable resin composition according to an embodiment of the present invention may have a biocontent of 35 to 70%, or 38.5 to 50%.
  • the bio content can be determined by ASTM D6866 (a standard test method for measuring bio-based materials in solid, liquid and gaseous samples using radioactive carbon), as described above, and regeneration relative to total organic carbon in the material. It can be referred to as a mass percentage of the amount of carbon (amount of biocarbon) from a possible resource.
  • the bio content (%) can be calculated by the following equation.
  • Bio content (%) [content of biological (organic) carbon in the material (content of C14)]/[the content of total (organic) carbon in the material (total amount of C12 + C13 + C14)]*100%.
  • an article made from the above-described renewable resin composition is provided.
  • the renewable resin composition according to an aspect of the present invention may be formed into a film using, for example, an inflation method or a T-die method. It can also be coated on the surface of paper products.
  • It can also be processed by injection molding machines, vacuum molding machines, extruders, blow molding machines, and the like.
  • it can be processed into seedlings (pots), piles, pipes, wall materials, plate-shaped products, Enpla products, packaging materials, agricultural and fishery products, everyday products, and building materials.
  • renewable resin composition of the present invention etc., straws, containers (synthetic detergent containers, medicine containers, food trays, microwave food containers, insect repellent containers, soap trays, lunch boxes, Confectionery/Candy containers), golf supplies, wrap aluminum foil cut blades, bags (cultivation bags, flower cultivation bags, garbage bags, etc.), industrial trays, confectionery partition members, special packages, and other plastic products can be manufactured.
  • containers synthetic detergent containers, medicine containers, food trays, microwave food containers, insect repellent containers, soap trays, lunch boxes, Confectionery/Candy containers
  • golf supplies wrap aluminum foil cut blades
  • bags cultivation bags, flower cultivation bags, garbage bags, etc.
  • industrial trays confectionery partition members, special packages, and other plastic products
  • the preliminary resin mixture was added to the first feeder of the twin screw extruder (Changsung P&R, L/D: 48/1, diameter: 1.5 mm), and 27.3 parts by weight of cassava starch was added to the second feeder. And, as a plasticizer, 7.7 parts by weight of glycerin oil and 5 parts by weight of a coupling agent (silane coupling agent: vinyltrimethoxysilane) were added to the side liquid supply.
  • a coupling agent silane coupling agent: vinyltrimethoxysilane
  • the resin composition material introduced from the feeders was compounded and extruded through an extruder, and then cooled in a water bath at 40° C. and dried with a dryer.
  • the dried extrusion result was cut into pellets of 2.4 to 2.5 mm through a pelletizing machine to prepare a renewable resin composition in the form of pellets.
  • a renewable resin composition was prepared in a pellet form in the same manner as in Example 1, except that an elastomer (polybutadiene grafted ethylene-octene copolymer, 3 parts by weight was further added) as an impact modifier.
  • an elastomer polybutadiene grafted ethylene-octene copolymer, 3 parts by weight was further added
  • a renewable resin composition was prepared in the form of pellets in the same manner as in Example 1, except that cassava starch was not added.
  • Bio content (%) [content of biological (organic) carbon in the material (content of C14)]/[the content of total (organic) carbon in the material (total amount of C12 + C13 + C14)]*100%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

카사바 전분 100 중량부, 폴리부틸렌 숙시네이트(poly butylene succinate; PBS) 또는 폴리락트산(polylactic acid, PLA) 100 내지 200 중량부, 폴리부틸렌 아디페이트-코-테레프탈레이트(poly butylene adipate-co-terephthalate; PBAT) 20 내지 120 중량부, 및 가소제 10 내지 40 중량부를 포함하는 재생가능 수지 조성물 및 이로부터 제조된 물품이 제시된다.

Description

재생가능 수지 조성물 및 이로부터 제조된 물품
본 발명은 재생가능 수지 조성물 및 이로부터 제조된 물품에 관한 것이고, 보다 구체적으로는, 생분해 가능하면서도 동시에 재가공하여 재생가능성이 탁월한 재생가능 수지 조성물 및 이로부터 제조된 물품에 관한 것이다.
1868년 미국의 존 하이엇이 상아 당구공의 대용품으로 처음 개발한 이후 '신의 선물'이었던 플라스틱은 150년만에 지구를 위협하는 폭탄이 되고 말았다. 플라스틱 병 하나가 분해되는데 걸리는 시간은 약 450년이고, 전체 재활용률은 9%에 그치고 있다.
이러한 플라스틱에 의한 지구 환경 오염이 표면화하고 있는 현재, 환경 오염 문제를 해소하기 위한 처리, 혹은 그러한 처리가 가능한 신소재의 연구 개발이 요구되고 있다.
종래의 폐플라스틱에 의한 환경 오염 문제를 감소시킨 처리 방법은 예를 들면 열분해나 화학 분해에 의해 저분자화한 것을 소각하거나 매립하는 방법이었다. 그러나 소각 처리는 이산화탄소의 배출을 수반하기 때문에 지구 온난화의 원인이 될 수 있고, 플라스틱 중에 할로겐이나 황, 질소 원소가 포함되어 있는 경우에는 유해 기체에 의한 대기오염의 원인이 될 수도 있다. 플라스틱을 매립했을 경우, 현재 실용화되어 있는 대부분의 수지는 장기간 잔존한 채로 상태가 된다. 이 기간에 첨가물 등이 유출되어 토양오염의 원인 하나가 되고 있다.
이러한 문제에 대해서 최종 처분되었을 때 지구 환경 등에 악영향을 주지 않는 고분자 화합물로서 생분해성 고분자의 개발이 활발하게 수행되고 있다.
생분해성 고분자로는 폴리부틸렌 아디페이트-코-테레프탈레이트(poly butylene adipate-co-terephthalate, PBAT), 폴리하이드록시알카노에이트(poly(hydroxyalkanoates, PHA) 등의 고가 재료들이 주를 이루고 있으며, 특히 PBAT 계열의 경우 유통안정성이 부족하고, 가격이 고가인 관계로 상업적으로 사용하는데 기능적이고 경제적인 문제점을 가지고 있다. 또한, 가격 경쟁력을 확보하기 위해서는 생분해성 수지 중에서 가장 저렴한 폴리락트산(polylactic acid, PLA) 계열을 사용하는 것이 대안이 될 수 있으나, 필름 등의 성형품으로 적용하는 경우에, 폴리락트산 고유의 취성(brittleness)으로 인해 필름이 잘 찢어지는 등 기계적 물성에서 한계가 있다.
최근 들어, 단순히 사용 후에 분해되는 성질을 갖는 생분해성 고분자로는 분해하는데 여전히 상당한 시간이 요구되고 있고, 제한된 자원의 재사용 및 재생이 화두가 되고 있는 바, 생분해성 고분자의 단점을 극복한 바이오 플라스틱으로 그 패러다임이 바뀌고 있다.
이러한 바이오 플라스틱에서는 인체 무해성, 물성, 강도, 생산성, 가격 경쟁력, 재사용, 재생가능성 등이 얼마나 빨리 분해되어 자연으로 선순환되느냐 하는 문제보다 그 중요성이 더욱 강조되고 있다.
따라서, 종래 생분해성 고분자의 생분해성을 가지면서, 동시에 재생가능성이 탁월한 바이오 플라스틱 소재의 개발이 여전히 요구되고 있는 실정이다.
본 발명이 해결하려는 과제는 생분해 가능하면서도 동시에 재가공하여 재생가능성이 탁월한 재생가능 수지 조성물을 제공하는 것이다.
본 발명이 해결하려는 다른 과제는 상기 조성물로부터 제조된 물품을 제공하는 것이다.
이러한 과제를 해결하기 위하여, 본 발명의 일 측면에 따르면, 하기 구현예가 제공된다.
제1 구현예에 따르면,
카사바 전분 100 중량부, 폴리부틸렌 숙시네이트(poly butylene succinate; PBS) 또는 폴리락트산(polylactic acid, PLA) 100 내지 200 중량부, 폴리부틸렌 아디페이트-코-테레프탈레이트(poly butylene adipate-co-terephthalate; PBAT) 20 내지 120 중량부, 및 가소제 10 내지 40 중량부를 포함하는 재생가능 수지 조성물이 제공된다. 상기 카사바 전분은 100 중량부 내지는 300 중량부의 범위를 갖는 것이 바람직하다.
제2 구현예에 따르면, 제1 구현예에 있어서,
상기 재생가능 수지 조성물이 카사바 전분 100 중량부, 폴리부틸렌 숙시네이트 120 내지 180 중량부, 폴리부틸렌 아디페이트-코-테레프탈레이트 40 내지 100 중량부, 및 가소제 15 내지 35 중량부를 포함할 수 있다. 상기 카사바 전분은 100 중량부 내지는 300 중량부의 범위를 갖는 것이 바람직하다.
제3 구현예에 따르면, 제1 구현예 또는 제2 구현예에 있어서,
상기 가소제는 다가 알코올, 당 알코올, 당 알코올의 무수물, 우레아계 화합물, 단백질, 산 에스테르, 지방족산 고분자, 또는 이들 중 2 이상을 포함할 수 있다.
제4 구현예에 따르면, 제1 구현예 내지 제3 구현예 중 어느 한 구현예 있어서,
상기 재생가능 수지 조성물이 충격보강재를 더 포함할 수 있다.
제5 구현예에 따르면, 제1 구현예 내지 제4 구현예 중 어느 한 구현예 있어서,
상기 상기 재생가능 수지 조성물이 ASTM D6866의 규정에 의해 35 내지 70%의 바이오함량을 가질 수 있다.
제6 구현예에 따르면, 제1 구현예 내지 제5 구현예 중 어느 한 구현예 있어서,
상기 재생가능 수지 조성물이 카사바 전분 100 중량부, 폴리부틸렌 숙시네이트 120 내지 180 중량부, 폴리부틸렌 아디페이트-코-테레프탈레이트 40 내지 100 중량부, 및 글리세린 오일 15 내지 35 중량부를 포함하고, ASTM D6866의 규정에 의해 35 내지 70%의 바이오함량을 가지며, 상기 카사바 전분이 감자 전분 또는 옥수수 전분을 대체하여 사용됨으로써 가격 경쟁력을 가지면서, 대량 생산이 가능하고, 용이하고 퇴비화가 가능하며, 낮은 이산화탄소 배출량을 가질 수 있다.
본 발명의 일 측면에 따르면, 하기 구현예의 물품이 제공된다.
제7 구현예에 따르면,
제1 구현예 내지 제6 구현예 중 어느 한 구현예의 재생가능 수지 조성물로부터 제조된 물품이 제공된다.
제8 구현예에 따르면, 제7 구현예에 있어서,
상기 물품이 필름, 봉투, 빨대, 용기, 또는 트레이일 수 있다.
본 발명의 일 구현예에 따르면, 바이오함량이 큰 카사바 전분을 주재료로 사용하면서 종래 생분해성 고분자로 주로 사용된 폴리부틸렌 아디페이트-코-테레프탈레이트의 함량을 적게 사용함으로써 생분해 가능하면서도 동시에 재가공하여 재생가능성이 탁월한 재생가능 수지 조성물을 제공할 수 있다.
또한, 본 발명의 일 구현예 따른 재생가능 수지 조성물은, 종래에 사용된 고가의 감자 전분 또는 옥수수 전분을 대체하여 카사바 전분을 사용함으로써 가격 경쟁력을 가지면서, 대량 생산이 가능하고, 생분해성과 퇴비화가 가능하며, 낮은 이산화탄소 배출량을 가진다는 점에서 유리하다.
본 발명의 일 구현예 따른 재생가능 수지 조성물은 비교적 부드럽고, 점도가 높기 때문에 높은 탄력과 점성을 가지며, 호화 온도가 낮아서 끊이는 시간의 단축 효과가 있다. 본 발명의 일 구현예 따른 재생가능 수지 조성물은 종래의 찰옥수수 전분보다 팽윤력이 높기 때문에 흡수력이 높고, 조성물의 투명성이 높고, 노화되는 성질이 적다.
본 발명의 일 구현예에 따르면, 카사바 전분 100 중량부, 폴리부틸렌 숙시네이트(poly butylene succinate; PBS) 또는 폴리락트산(polylactic acid, PLA) 100 내지 200 중량부, 폴리부틸렌 아디페이트-코-테레프탈레이트(poly butylene adipate-co-terephthalate; PBAT) 20 내지 120 중량부, 및 가소제 10 내지 40 중량부를 포함하는 재생가능 수지 조성물이 제공된다.
이하, 본 발명을 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
따라서, 본 명세서에 기재된 실시예에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상에 모두 대변하는 것은 아니므로, 본 출원 시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
종래, 환경문제를 일으키는 일반적인 플라스틱 재료의 문제를 해소하기 위하여 제시된, “생분해성(biodegradable) 수지”라 함은 고분자 또는 플라스틱 등의 수지가 이용 후에 토양 등의 환경에서 화학적 분해가 가능하여 이산화탄소, 질소, 물, 바이오매스, 무기염류 등의 천연 부산물을 내놓는 고분자를 의미한다. 이러한 생분해성 수지의 다수가 석유와 같은 화석 연료로부터 얻어지고 있으며, 이러한 화석 연료는 재생이 가능하지 않은 자원이고 또한 공정 중에 발생하는 탄소량도 크므로 환경 친화성에 한계가 있다.
이와 달리, 본 발명의 일 측면에 따른 “재생가능(renewable) 수지”라 함은 사용되었거나 사용되지 아니하고 버려진 후 수거된 물건과 부산물의 전부 또는 일부를 원료물질로 다시 사용할 수 있는 수지를 의미한다. 이때, 사용되거나 버려진 수지 기준으로 원료물질로 다시 사용할 수 있는 정도가 클수록 재생가능성이 높다고 말할 수 있다.
이러한 재생가능성은 "바이오함량(biocontent)"으로 평가할 수 있으며, 상기 바이오 함량은 적어도 일부가 생물학적 기반의 분자 단위로부터 유도된 중합체를 함유하는 중합체 또는 조성물을 의미할 수 있다. 이때, "바이오함량(biocontent)"은 ASTM D6866(방사성 탄소를 사용하여 고형, 액상 및 기체형 샘플의 생물 기반 소재를 측정하기 위한 표준 시험 방법)에 의해 결정될 수 있으며, 재료 내의 총 유기 탄소 대비 재생가능한 자원으로부터의 탄소의 양(생물 탄소의 양)의 질량 퍼센트로서 지칭할 수 있다.
구체적으로, 상기 바이오함량은 ASTM D6866의 규정에 따르면 재료의 질량수 14의 탄소(C14)의 함유량, 및 질량수 12(C12)와 질량수 13(C13)의 탄소의 함유량을 측정하여 질량수 14의 탄소(C14)의 함유비율을 구함으로써 판별할 수 있다.
재료의 전체 탄소 함유량 중에서 질량수 14인 탄소(C14)의 함유비율이 증가할 수록, 카본 뉴트럴(Carbon neutral) 개념에 따라, 재료를 태웠을 경우 이산화탄소 배출량을 감소시킬 수 있다는 의미이다. 만약, 석유유래 원료만으로 재료가 이루어진 경우에는 질량수 14의 탄소가 관측되지 않는다. 이산화탄소 배출량을 감소시키는 효과를 얻기 위해서는 C14의 농도값이 클수록 바람직할 수 있다.
이때, 바이오함량(%)는 하기 식으로 계산될 수 있다.
바이오함량(%) = [재료내 생물(유기) 탄소의 함량 (C14의 함유량)]/[재료내 총 (유기) 탄소의 함량(C12 + C13 + C14의 총량)]*100%
생물학적 기반 단위는 생물학적으로 유도된 단량체일 수 있다. 생물학적 기반 단량체는 예를 들어, 식물로부터 유도될 수 있다. 식물은 어떠한 식물도 될 수 있으며, 예를 들어, 전분계 식물, 피마자, 팜 오일, 식물성 오일, 사탕 수수, 옥수수, 쌀, 스위치 그래스(switch grass) 등일 수 있다.
이러한 재생가능 수지는 모두 생분해되는 성질을 가지지 않을 수 있다. 한편, “재생가능 수지”는 사용된 물품 등을 그대로 또는 고쳐서 다시 쓰거나 생산활동에 다시 사용하는 재사용(reusable)과는 차별화된 개념이다.
본 발명의 일 측면에 따른 재생가능 수지 조성물은, 카사바 전분 100 중량부, 폴리부틸렌 숙시네이트(poly butylene succinate; PBS) 50 내지 100 중량부, 폴리부틸렌 아디페이트-코-테레프탈레이트(poly butylene adipate-co-terephthalate; PBAT) 75 내지 95 중량부, 및 가소제 1 내지 20 중량부를 포함한다. 상기 카사바 전분은 100 중량부 내지는 300 중량부의 범위를 갖는 것이 바람직하다.
상기 카사바 전분은 카사바에서 채취한 전분을 의미하고 이 카사바는 남아메리카가 원산지인 식물로 덩이 뿌리가 사방으로 쳐져 고구마와 비슷하게 굵으며 겉껍질은 갈색이고 속은 하얀색인 뿌리채소이다. 카사바는 열대 지방에서 활발히 재배되며, 재배는 매우 간단하고 꺾꽂이로 증가해 반년으로 감자(뿌리와 줄기)를 수확할 수 있으므로, 이모작도 가능하다. 카사바에는 칼슘과 비타민 C가 풍부하게 들어있고, 20~25%의 전분이 함유되어 있다.
카사바 전분은 카사바를 짓이켜 전분을 물로 씻어내어 침전시킨 후 건조시켜서 제조된다.
카사바는 주정, 바이오 에탄올, 사료, 제지, 식용 등 다양한 용도로 사용되고 있다. 카사바는 남미가 원산지이지만, 아프리카와 동남아에서 주로 생산되고 있으며, 특히 동남아에서 생산이 증대되고 있다.
식품업계에서는 감자 전분, 옥수수 전분, 고구마 전분을 대체하는 수요가 증가하고 있는 추세이다. 기후 변화 및 바이오 에탄올 수요 증가, 국제 곡물 가격 상승으로 인한 사료 가격 상승 등에 대응하여 카사바에 세계 많은 국가들이 관심을 가지고 있다. 현재 옥수수, 밀, 콩 등의 국제가격이 연일 고가를 갱신하고 있는 상황에서 카사바 전분은 종래 사용된 옥수수 전분이나 감자 전분에 비하여 가격 경쟁력이 있으며, 대량 생산이 가능하고, 용이하고 완전한 생분해성과 퇴비화가 가능하며, 낮은 이산화탄소 배출량을 가진다는 점에서 유리하다.
상기 카사바 전분은 전통적인 합성 플라스틱과 비교하여 높은 수용해도 및 약한 기계적 강도의 단점을 갖는다.
이러한 카사바 전분의 물 흡수 특성을 감소시키고, 기계적 특성을 개선시키기 위해서, 본 발명의 재생가능 수지 조성물에서는 카사바 전분과 함께, 폴리부틸렌 숙시네이트와 폴리부틸렌 아디페이트-코-테레프탈레이트를 함께 블랜딩한다.
상기 폴리부틸렌 숙시네이트는 융점이 비교적 높아 가공성이 우수할 뿐 아니라 생분해성이 뛰어나 비분해성(non-biodegradable) 고분자 합성수지의 대체 소재로 개발되고 있다. 상기 폴리부틸렌 숙시네이트는 폴리에스테르 계열의 열가소성 중합체 수지이고, 폴리프로필렌에 필적하는 특성을 갖는 생분해성 지방족 폴리에스테르이며, 생분해성, 반결정성 열가소성 수지이다. 상기 폴리부틸렌 숙시네이트는 발효를 통해 포도당 및 자당과 같은 재생 가능한 공급 원료 또는 석유 기반 수수료 원료로 생산할 수 있다. 상기 폴리부틸렌 숙시네이트의 기계적 특성은 널리 사용되는 고밀도 폴리에틸렌 및 이소택틱 폴리프로필렌의 특성과 비교할 수 있기 때문에 매우 유망한 바이오 폴리머이다. PLA와 비교할 때 훨씬 유연하여 가소제가 필요하지 않지만 융점이 낮다 (115℃ vs ~ 160℃). 상기 폴리부틸렌 숙시네이트는 최신 바이오 폴리머 중 하나이며 PLA, PBAT 및 PHB와 같은 다른 바이오 폴리머에 대한 비용 효율적인 대안이 될 수 있다. 따라서, 상기 폴리부틸렌 숙시네이트는 비용 효율을 고려하지 않는다면, 폴리락트산(PLA)로 대체가능하다. 이의 가능한 응용 분야로는 식품 포장, 멀치 필름, 화분, 위생 용품, 어망 및 낚싯줄이 포함되고, 또한, 매트릭스 폴리머로서 또는 폴리락트산 (PLA)과 같은 다른 생체 중합체와 조합하여 사용될 수 있다.
상기 폴리부틸렌 숙시네이트는 부분적으로 재생 가능한 바이오소스이고, 균질한 화합물을 만들기 위해 전분과 쉽게 상호 작용할 수 있고, 기존의 가정용 플라스틱 제품을 대체할 수 있는 우수한 기계적 및 물리적 특성을 가진다.
예컨대 1,4-부탄디올을 디카르복실산 또는 그의 산 무수물, 예컨대 숙신산과 중축합 반응시킴으로써 수득될 수 있다. 폴리부틸렌 숙시네이트 중합체는 선형 중합체 또는 장쇄 분지형 중합체일 수 있다. 장쇄 분지형 폴리부틸렌 숙시네이트 중합체는 3작용성 또는 4작용성 폴리올, 옥시카르복실산, 및 다염기 카르복실산으로 구성된 군으로부터 선택된 추가의 다작용성 성분을 이용하여 제조될 수 있다. 폴리부틸렌 숙시네이트 중합체는 관련 기술 분야에 공지되어 있다.
상기 폴리부틸렌 숙시네이트는 카사바 전분 100 중량부 기준으로 100 내지 200 중량부이고, 본 발명의 일 구현예에 따르면, 120 내지 180 중량부, 또는 130 내지 165 중량부일 수 있으며, 폴리락트산(polylactic acid, PLA)으로 대체가능하다. 상기 카사바 전분은 100 중량부 내지는 300 중량부의 범위를 갖는 것이 바람직하다.
상기 폴리부틸렌 숙시네이트의 함량이 이러한 범위를 만족하는 경우에, 상기 재생가능 수지 조성물의 바이오함량을 증가시킬 수 있다.
상기 폴리(부틸렌 아디페이트-코-테레프탈레이트)(PBAT)는 부틸렌 아디페이트 및 테레프탈레이트의 랜덤 공중합체를 포함하는 중합체를 지칭한다. 본 발명의 일 구현예에 따른 조성물에 적합한 폴리(부틸렌 아디페이트-코-테레프탈레이트)는 최신 기술에 공지된 임의의 방법에 따라 제조될 수 있다. 예를 들어, 폴리(부틸렌 아디페이트-co-테레프탈레이트)는 1,4-부타디엔과 아디프산 및 테레프탈산의 혼합물과의 중축합에 의해 제조될 수 있다.
또한, 상기 폴리(부틸렌 아디페이트-코-테레프탈레이트)는 생분해서 포장 플라스틱 제품을 생산하기 위해 PLA와 혼합하여 사용될 수 있으며, 우수한 인자물성 특성을 가지고 있다. 상기 상기 폴리(부틸렌 아디페이트-코-테레프탈레이트)는 반 방향족, 생분해성 열가소성 코폴리 에스테르로 쉽게 성형하고 열성형할 수 있다. 1,4- 부탄디올, 아디프산 및 디메틸 테레프탈레이트 (DMT) 단량체의 랜덤 공중합에 의해 생성된다. 상기 폴리(부틸렌 아디페이트-코-테레프탈레이트)는 폴리에틸렌과 유사한 많은 유용한 속성을 가지고 있다. 예를 들어, 파단시 상대적으로 높은 연신율 (30-40 %)과 중간 정도의 높은 충격 및 펑크 인성을 가지고, 다소 낮은 인장 강도와 강도를 가질 수 있다. 따라서, 상기 폴리(부틸렌 아디페이트-코-테레프탈레이트)는 폴리에틸렌과 매우 유사하므로 식품 포장 및 농업용 필름 응용 분야에서 유사한 응용 분야에 사용할 수 있고, 또한 생분해성 (퇴비화 가능)이며 폴리에틸렌에 사용되는 기존의 취입 필름 장비에서 처리할 수 있다. 상기 폴리(부틸렌 아디페이트-코-테레프탈레이트)는 폴리(락트산)A에 대한 강화제로서 사용될 수 있으며, 부분적으로 재생 가능한 바이오소스이고, 균질한 화합물을 만들기 위해 전분과 쉽게 상호작용할 수 있고, 기존의 가정용 플라스틱 제품을 대체할 수 있는 우수한 기계적 및 물리적 특성을 가진다.
상기 폴리부틸렌 아디페이트-코-테레프탈레이트는 카사바 전분 100 중량부 기준으로 20 내지 120 중량부이고, 또는 40 내지 100 중량부, 또는 50 내지 80 중량부 일 수 있다. 상기 카사바 전분은 100 중량부 내지는 300 중량부의 범위를 갖는 것이 바람직하다.
상기 폴리부틸렌 아디페이트-코-테레프탈레이트의 함량이 이러한 범위를 만족하는 경우에, 상기 재생가능 수지 조성물의 바이오함량을 증가시킬 수 있다.
상기 가소제는 카사바 전분, 폴리부틸렌 숙시네이트, 및 폴리부틸렌 아디페이트-코-테레프탈레이트의 고분자에 첨가되어 유연성, 탄성, 휨성이 증가하여 가공성, 성형성 등을 개선시킨다. 카사바 전분 등은 분자량이 커서 쉽게 변형이 되지 않지만 거기에 가소성을 부여하면 외력에 의해 쉽게 변형시킬 수 있다.
상기 가소제의 함량은 카사바 전분 100 중량부 기준으로, 가소제 10 내지 40 중량부이고, 또는 15 내지 35 중량부, 또는 20 내지 30 중량부일 수 있다. 상기 카사바 전분은 100 중량부 내지는 300 중량부의 범위를 갖는 것이 바람직하다.
상기 가소제의 함량이 카사바 전분 100 중량부 기준으로 1 중량부 미만일 경우 물성 개선의 효과가 미미할 우려가 있고, 상기 함량이 20 중량부를 초과할 경우에는 과량으로 포함된 가소제가 재생가능 수지 조성물로부터 물품 제조 후 표면으로 마이그레이션(migration)될 수 있으며, 이 경우 실링 강도가 점차 약해져 쇼핑백 등과 같은 최종적으로 제조되는 제품의 품질이 저하되는 문제가 발생할 수 있다.
상기 가소제의 예로서는, 다가 알코올 가소제, 예컨대 당(예: 글루코오스, 수크로오스, 프럭토오스, 라피노오스, 말토덱스트로오스, 갈락토오스, 자일로오스, 말토오스, 락토오스, 만노오스, 및 에리스로오스), 당 알코올(예: 에리트리톨, 자일리톨, 말리톨, 만니톨, 및 소르비톨), 폴리올(예: 에틸렌 글리콜, 글리세롤, 프로필렌 글리콜, 디프로필렌 글리콜, 부틸렌 글리콜, 및 헥산트리올) 등. 히드록시기를 갖지 않는 수소 결합 형성 유기 화합물, 예컨대 우레아계 화합물(우레아 및 우레아 유도체); 당 알코올의 무수물, 예컨대 소르비탄; 동물 단백질, 예컨대 젤라틴; 식물성 단백질, 예컨대 해바라기 단백질, 대두 단백질, 목화씨 단백질; 및 이들의 혼합물인 단백질을 들 수 있다. 또한, 상기 가소제로서는 프탈레이트 에스테르, 디메틸 및 디에틸숙시네이트 및 관련 에스테르, 글리세롤 트리아세테이트, 글리세롤 모노 및 디아세테이트, 글리세롤 모노, 디 및 트리프로피오네이트, 부타노에이트, 스테아레이트, 락트산 에스테르, 시트르산 에스테르, 아디프산 에스테르, 스테아르산 에스테르, 올레인산 에스테르, 및 기타 산 에스테르 등의 산 에스테르를 들 수 있다. 지방족 산 고분자를 사용할 수 있으며, 그 예로는 에틸렌과 아크릴산의 공중합체, 말레인산으로 그라프트된 폴리에틸렌, 폴리부타디엔-아크릴산 공중합체, 폴리부타디엔-말레인산 공중합체, 폴리프로필렌-아크릴산 공중합체, 폴리프로필렌-말레인산 공중합체, 및 기타 탄화수소계 산을 들 수 있다. 저분자량, 예컨대 약 20,000 g/몰 미만, 바람직하게는 약 5,000 g/몰 미만, 더욱 바람직하게는 약 1,000 g/몰 미만의 저분자량 가소제가 바람직하다.
본 발명의 일 구현예에 따르면, 상기 재생가능 수지 조성물이 카사바 전분 100 중량부, 폴리부틸렌 숙시네이트 120 내지 180 중량부, 폴리부틸렌 아디페이트-코-테레프탈레이트 40 내지 100 중량부, 및 가소제 15 내지 35 중량부를 포함할 수 있다.
본 발명의 일 구현예에 따른 재생가능 수지 조성물은 충격보강재를 더 포함할 수 있다.
상기 충격보강제의 함량은 상기 카사바 전분, 폴리부틸렌 숙시네이트, 및 폴리부틸렌 아디페이트-코-테레프탈레이트의 수지 혼합물 100 중량부를 기준으로 0.1 내지 5 중량부, 또는 0.1 내지 3.5 중량부일 수 있다. 상기 충격보강제의 함량이 이러한 범위를 만족하는 경우에, 재생가능 물품의 인열강도와 기계적 강도가 개선될 수 있다.
상기 충격보강제는 폴리부타디엔 그라프트된 에틸렌-옥텐 코폴리머, 메틸메타크릴레이트-부타디엔-스티렌 (methylmethacrylate-butadine-styrene; MBS) 터폴리머(terpolymer), 아크릴 코폴리머(Acrylic copolymer) 및 에틸렌아크릴레이트 코폴리머(ethylene acrylate copolymer)로 이루어진 군에서 선택된 일종 이상을 포함할 수 있으며, 바람직하게 부타디엔-스티렌 공중합체가 코어를 형성하고, 메틸메타크릴레이트가 코어의 표면에 그래프팅되어 쉘을 형성한 MBS 터폴리머가 사용될 수 있다.
구체적으로, 상기 코어-쉘 타입의 MBS 터폴리머의 경우, 코어부는 스티렌-부타디엔 가교고무로 이루어져 충격흡수에 효과적이고, 쉘부는 메틸메타크릴레이트로 이루어져 기재와의 혼련성을 향상시킴으로써 충격보강제의 분산성을 높여주는데 효과적이다. 따라서, MBS 터폴리머가 충격보강제로 사용될 경우, 상기 충격보강제가 생분해성 수지 내에 균일하게 분산될 수 있고, 이러한 우수한 분산성은 충격효율 및 표면물성을 개선시킬 수 있어 더욱 바람직하다.
예컨대, 상기 MBS 터폴리머로서는 LG화학의 MB885, MB872 또는 MB802, 그리고 미츠미시 레이온 사(Mitsubishi Rayon Co., Ltd.)의 METABLEN® 시리즈 등이 사용될 수 있다. 상기 아크릴 코폴리머로서는 다우사(Dow Chemical Company)의 Paraloid® 시리즈, 예컨대 Paraloid® BPM-520 등이 사용될 수 있으며, 상기 에틸렌아크릴레이트 코폴리머로서는 듀폰사(DuPont Company)의 BIOMAX® Strong 시리즈, 예컨대 BIOMAX® Strong 120 등이 사용될 수 있다.
이 밖에도, 본 발명의 일 구현예에 따른 재생가능 수지 조성물은 사용 목적에 따라서, 상용화제, 계면활성제, 산화방지제, 커플링제 등의 다양한 첨가제를 단독 또는 2종 이상의 혼합물 형태로 더 포함할 수 있다.
본 발명의 일 구현예에 따른 재생가능 수지 조성물은 35 내지 70%, 또는 38.5 내지 50%의 바이오함량(biocontent)을 가질 수 있다. 이때, 바이오함량은 전술한 바와 같이, ASTM D6866(방사성 탄소를 사용하여 고형, 액상 및 기체형 샘플의 생물 기반 소재를 측정하기 위한 표준 시험 방법)에 의해 결정될 수 있으며, 재료 내의 총 유기 탄소 대비 재생가능한 자원으로부터의 탄소의 양(생물 탄소의 양)의 질량 퍼센트로서 지칭할 수 있다. 이때, 바이오함량(%)는 하기 식으로 계산될 수 있다.
바이오함량(%) = [재료내 생물(유기) 탄소의 함량 (C14의 함유량)]/[재료내 총 (유기) 탄소의 함량(C12 + C13 + C14의 총량)]*100%.
본 발명의 일 측면에 따르면, 전술한 재생가능 수지 조성물로부터 제조된 물품이 제공된다.
본 발명의 일 측면에 따른 재생가능 수지 조성물은 예를 들면 인플레이션법이나 T다이법을 이용하여 필름화할 수 있다. 또한 종이제품 등의 표면에 코팅할 수도 있다.
또한 사출 성형기, 진공 성형기, 압출기, 블로우 성형기 등으로 가공할 수 있다. 예를 들면 육묘화분(포트), 말뚝, 관, 벽재, 판형 품, 엔프라 제품, 포장재, 농어업용 제품, 일상용 제품, 건축재료 등에 가공할 수 있다.
이들의 물품은 자동차 부품이나 토목용, 의료용, 스포츠용, 녹화용 등의 자재 및 부품 등에 이용할 수 있다.
또한 구체적으로는 예를 들면 본 발명의 재생가능 수지 조성물을 성형 등하여 빨대, 용기(합성세제용 용기, 약 용기, 식품용 트레이, 전자렌지용 식품용기, 방충제 용기, 비누용 트레이, 도시락 용기, 과자/사탕류 용기), 골프 용품, 랩 알루미늄 호일의 커트 날, 봉투(재배용 봉투, 꽃재배용 봉투, 쓰레기봉투 등), 공업용 트레이, 과자용 칸막이 부재, 특수 패키지 등 다양한 플라스틱 상품을 제조할 수 있다.
이하, 본 발명의 이해를 돕기 위하여 실시예를 들어 상세하게 설명하기로 한다. 그러나, 본 발명에 따른 실시예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 하기 실시예에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예들은 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해 제공되는 것이다.
실시예 1
폴리부틸렌 숙시네이트(PTT MCC Biochem Co., Ltd) 40 중량부, 및 폴리부틸렌아디페이트-코-테레프탈레이트(BASF, 상품명 Ecoflex) 20 중량부를 혼합기에 투입하여 예비 수지 혼합물을 준비하였다.
이어서, 이축 압출기(창성 P&R사 제품, L/D: 48/1, 직경: 1.5 mm)의 1번 메인 공급기(feeder)에 상기 예비 수지 혼합물을 투입하고 2번 공급기로는 카사바 전분 27.3 중량부를 투입하고, 사이드 액체 공급기로는 가소제로 글리세린 오일 7.7 중량부 및 커플링제(실란 커플링제: 비닐트리메톡시실란) 5 중량부를 투입하였다.
상기 공급기들로부터 투입된 수지 조성물 재료를 압출기를 통해 컴파운드되어 압출하고, 이어서 40℃의 수조에서 냉각한 후 드라이기로 건조하였다.
건조된 압출 결과물을 펠렛화 머신(Pelletizing Machine)을 통해 2.4 내지 2.5 mm의 펠렛으로 커팅을 진행하여서, 펠렛 형태로 재생가능수지 조성물을 제조하였다.
실시예 2
카사바 전분을 투입한 후 충격보강재로 엘라스토머 (폴리부타디엔 그라프트된 에틸렌-옥텐 코폴리머, 3 중량부를 더 투입하는 것을 제외하고는 실시예 1과 동일한 방법으로 펠렛 형태로 재생가능수지 조성물을 제조하였다.
비교예 1
카사바 전분을 투입하지 않은 점을 제외하고는, 실시예 1과 동일한 방법으로 펠렛 형태로 재생가능수지 조성물을 제조하였다.
실험예:
바이오함량 평가
실시예 1 및 2와 비교예 1에서 제조된 재생가능 수지 조성물을 이용하여 ASTM D6866에 따라서 바이오함량을 측정하였다.
이때, 바이오함량(%)는 하기 식으로 계산되었다.
바이오함량(%) = [재료내 생물(유기) 탄소의 함량 (C14의 함유량)]/[재료내 총 (유기) 탄소의 함량(C12 + C13 + C14의 총량)]*100%.
그 결과를 하기 표 1에 나타내었다.
바이오함량(%)
실시예 1 40.0
실시예 2 38.5
비교예 1 17.5
상기 표 1을 참조하면, 본 발명의 일 구현예에 따른 실시예 1 및 2의 재생가능 수지 조성물이 비교예 1에 비해서 현저히 높은 바이오함량값을 나타냄을 알 수 있었다.

Claims (9)

  1. 카사바 전분 100 중량부, 폴리부틸렌 숙시네이트(poly butylene succinate; PBS) 또는 폴리락트산(polylactic acid, PLA) 100 내지 200 중량부, 폴리부틸렌 아디페이트-코-테레프탈레이트(poly butylene adipate-co-terephthalate; PBAT) 20 내지 120 중량부, 및 가소제 10 내지 40 중량부를 포함하는 재생가능 수지 조성물.
  2. 제1항에 있어서,
    상기 재생가능 수지 조성물이 카사바 전분 100 중량부, 폴리부틸렌 숙시네이트 120 내지 180 중량부, 폴리부틸렌 아디페이트-코-테레프탈레이트 40 내지 100 중량부, 및 가소제 15 내지 35 중량부를 포함하는 것을 특징으로 하는 재생가능 수지 조성물.
  3. 제1항에 있어서,
    상기 가소제는 다가 알코올, 당 알코올, 당 알코올의 무수물, 우레아계 화합물, 단백질, 산 에스테르, 지방족산 고분자, 또는 이들 중 2 이상을 포함하는 것을 특징으로 하는 재생가능 수지 조성물.
  4. 제1항에 있어서,
    상기 재생가능 수지 조성물이 충격보강재를 더 포함하는 것을 특징으로 하는 재생가능 수지 조성물.
  5. 제1항에 있어서,
    상기 재생가능 수지 조성물이 ASTM D6866의 규정에 의해 35 내지 70%의 바이오함량을 가지는 것을 특징으로 하는 재생가능 수지 조성물.
  6. 제1항에 있어서,
    상기 재생가능 수지 조성물이 카사바 전분 100 중량부, 폴리부틸렌 숙시네이트 120 내지 180 중량부, 폴리부틸렌 아디페이트-코-테레프탈레이트 40 내지 100 중량부, 및 글리세린 오일 15 내지 35 중량부를 포함하고, ASTM D6866의 규정에 의해 35 내지 70%의 바이오함량을 가지며, 상기 카사바 전분이 감자 전분 또는 옥수수 전분을 대체하여 사용됨으로써 가격 경쟁력을 가지면서, 대량 생산이 가능하고, 용이하고 퇴비화가 가능하며, 낮은 이산화탄소 배출량을 가지는 것을 특징으로 하는 재생가능 수지 조성물.
  7. 제1항 내지 제6항 중 어느 한 항의 재생가능 수지 조성물로부터 제조된 물품.
  8. 제7항에 있어서,
    상기 물품이 필름, 봉투, 빨대, 용기, 또는 트레이인 것을 특징으로 하는 물품.
  9. 제1항에 있어서,
    상기 카사바 전분은 100 내지 300 중량부인 것을 특징으로 하는 재생가능 수지 조성물.
PCT/KR2020/014415 2019-10-21 2020-10-21 재생가능 수지 조성물 및 이로부터 제조된 물품 WO2021080319A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AU2020371459A AU2020371459A1 (en) 2019-10-21 2020-10-21 Renewable resin composition and product manufactured from the same
CN202080073041.7A CN114599732A (zh) 2019-10-21 2020-10-21 可再生树脂组合物以及由此制备的制品
JP2022522734A JP2022552395A (ja) 2019-10-21 2020-10-21 再生可能な樹脂組成物およびこれにより製造された物品
EP20879065.9A EP4053207A4 (en) 2019-10-21 2020-10-21 RENEWABLE RESIN COMPOSITION AND PRODUCT MADE THEREOF
ZA2022/04444A ZA202204444B (en) 2019-10-21 2022-04-20 Renewable resin composition and product manufactured from same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0130936 2019-10-21
KR1020190130936A KR102116694B1 (ko) 2019-10-21 2019-10-21 재생가능 수지 조성물 및 이로부터 제조된 물품

Publications (1)

Publication Number Publication Date
WO2021080319A1 true WO2021080319A1 (ko) 2021-04-29

Family

ID=70332356

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/014415 WO2021080319A1 (ko) 2019-10-21 2020-10-21 재생가능 수지 조성물 및 이로부터 제조된 물품

Country Status (8)

Country Link
US (1) US10633522B1 (ko)
EP (1) EP4053207A4 (ko)
JP (1) JP2022552395A (ko)
KR (1) KR102116694B1 (ko)
CN (1) CN114599732A (ko)
AU (1) AU2020371459A1 (ko)
WO (1) WO2021080319A1 (ko)
ZA (1) ZA202204444B (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102116694B1 (ko) * 2019-10-21 2020-06-01 그린웨일글로벌 주식회사 재생가능 수지 조성물 및 이로부터 제조된 물품
EP3991864A1 (en) * 2020-10-29 2022-05-04 Gaia Holding AB Biodegradable and compostable composition for use as an agricultural film

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040076149A (ko) * 2003-02-24 2004-08-31 대상 주식회사 생분해성 포장용 완충재 조성물, 2차원료 및 완충재의제조방법
KR20050044787A (ko) * 2005-04-21 2005-05-12 (주)에코스피어 전분을 함유하는 생분해성 조성물 및 이를 이용한 생분해성시트의 제조방법
JP2009167370A (ja) * 2008-01-21 2009-07-30 Gifu Agri Foods Kk 生分解性樹脂組成物及び生分解性樹脂フィルム
JP2014125611A (ja) * 2012-12-27 2014-07-07 Takamatsuya:Kk キャッサバ由来のでんぷんを含有する生分解性プラスチック組成物
KR20180042004A (ko) * 2016-10-17 2018-04-25 롯데정밀화학 주식회사 생분해성 수지 컴파운드 및 그 제조방법
KR102116694B1 (ko) * 2019-10-21 2020-06-01 그린웨일글로벌 주식회사 재생가능 수지 조성물 및 이로부터 제조된 물품

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004147613A (ja) * 2002-11-01 2004-05-27 Unitika Ltd 生分解性農業用マルチ
TW200914524A (en) * 2007-09-18 2009-04-01 Grace Biotech Corp Totally biodegradable starch resin, manufacturing method thereof, film product made the same and resin composition used for preparing the starch resin
CN101392073B (zh) * 2007-09-18 2012-03-21 宏力生化科技股份有限公司 全生分解性淀粉树脂及其制法与薄膜制品及用以制备该淀粉树脂的树脂组合物
JP2009155531A (ja) * 2007-12-27 2009-07-16 Mitsubishi Chemicals Corp 樹脂組成物及びその製造方法並びに該樹脂組成物からなるフィルム
KR20110095293A (ko) * 2008-11-06 2011-08-24 트리스타노 피티와이 리미티드 생분해성 폴리머 조성물
JP5589377B2 (ja) * 2008-12-26 2014-09-17 三菱化学株式会社 樹脂組成物、フィルム、袋製品、および、樹脂組成物の製造方法
JP2011074114A (ja) * 2009-09-29 2011-04-14 Yamato Esuron Kk 生分解性樹脂組成物
US20120283364A1 (en) * 2011-05-06 2012-11-08 Cerestech, Inc. Polymer blends comprising phase-encapsulated thermoplastic starch and process for making the same
CN102321249B (zh) * 2011-06-30 2013-01-16 无锡碧杰生物材料科技有限公司 一种热塑性淀粉和生物降解聚酯/淀粉复合材料及其制备
KR101467025B1 (ko) * 2012-03-14 2014-12-01 (주)엘지하우시스 생분해성 몰딩재 및 이를 포함하는 생분해성 필름
CN103627153B (zh) * 2012-08-20 2018-02-09 上海杰事杰新材料(集团)股份有限公司 一种全生物降解pla/pbat复合材料及其制备方法
CN103881145A (zh) * 2012-12-20 2014-06-25 上海杰事杰新材料(集团)股份有限公司 一种可生物降解tps/pbat复合材料及其制备方法
CN104119647B (zh) * 2013-04-27 2018-08-03 上海杰事杰新材料(集团)股份有限公司 一种高淀粉含量全生物降解组合物及其制备方法
CN104650386A (zh) * 2013-11-15 2015-05-27 中国科学院理化技术研究所 一种淀粉高填充聚酯全生物可降解材料及其制备方法
CN104479305A (zh) * 2014-12-10 2015-04-01 金发科技股份有限公司 一种全生物降解复合材料及其制备方法和应用
CN108559232A (zh) * 2017-12-11 2018-09-21 杭州鑫富科技有限公司 一种耐撕裂性能优异的淀粉基塑料薄膜及其制备方法
CN108329529A (zh) * 2018-02-10 2018-07-27 谢子栋 一种完全生物降解共聚挤出片材原料及制品生产工艺

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040076149A (ko) * 2003-02-24 2004-08-31 대상 주식회사 생분해성 포장용 완충재 조성물, 2차원료 및 완충재의제조방법
KR20050044787A (ko) * 2005-04-21 2005-05-12 (주)에코스피어 전분을 함유하는 생분해성 조성물 및 이를 이용한 생분해성시트의 제조방법
JP2009167370A (ja) * 2008-01-21 2009-07-30 Gifu Agri Foods Kk 生分解性樹脂組成物及び生分解性樹脂フィルム
JP2014125611A (ja) * 2012-12-27 2014-07-07 Takamatsuya:Kk キャッサバ由来のでんぷんを含有する生分解性プラスチック組成物
KR20180042004A (ko) * 2016-10-17 2018-04-25 롯데정밀화학 주식회사 생분해성 수지 컴파운드 및 그 제조방법
KR102116694B1 (ko) * 2019-10-21 2020-06-01 그린웨일글로벌 주식회사 재생가능 수지 조성물 및 이로부터 제조된 물품

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4053207A4 *

Also Published As

Publication number Publication date
US10633522B1 (en) 2020-04-28
JP2022552395A (ja) 2022-12-15
EP4053207A4 (en) 2022-12-07
ZA202204444B (en) 2022-12-21
AU2020371459A1 (en) 2022-05-19
CN114599732A (zh) 2022-06-07
EP4053207A1 (en) 2022-09-07
KR102116694B1 (ko) 2020-06-01

Similar Documents

Publication Publication Date Title
Zhong et al. Biodegradable polymers and green-based antimicrobial packaging materials: A mini-review
CN106519618B (zh) 一种高含量聚乳酸薄膜及其制备方法
US5594068A (en) Cellulose ester blends
CN105623214B (zh) 一种增塑可生物降解聚酯薄膜及其制备方法
CA2113521C (en) Melt processable biodegradable compositions and articles made therefrom
AU705499B2 (en) Biologically degradable polymer mixture
JP4363325B2 (ja) ポリ乳酸系重合体組成物、その成形品、および、フィルム
CN108822514B (zh) 一种完全生物降解聚乳酸基吹塑薄膜及其制备方法
KR20160081998A (ko) 열가소성 물품을 위한 조류 혼합 조성물
CN113845621B (zh) 一种增容剂及采用该增容剂的高淀粉含量全生物降解膜
CA2917356A1 (en) Heat resistant polylactic acid
WO2021080319A1 (ko) 재생가능 수지 조성물 및 이로부터 제조된 물품
CN108017887A (zh) 一种pla-pbsa吹塑薄膜及其制备方法
EP3162841B1 (en) A biodegradable biocompostable biodigestible plastic
JPH11241008A (ja) ポリ乳酸系樹脂組成物
CN112920571A (zh) 一种改性pla与pha共混材料及其制备方法
US9925707B2 (en) Process for preparation of biodegradable biocompostable biodigestible polyolefins
CN112812518A (zh) 一种热塑性生物降解塑料及其制备方法
CN114836012A (zh) 一种完全生物降解垃圾袋薄膜材料及垃圾袋薄膜的制备方法
JP2003231798A (ja) 乳酸系樹脂組成物とそのシート状物、及び袋状製品
OA20855A (en) Renewable resin composition and product manufactured from same.
AU2015249059B2 (en) A process for preparation of biodegradable biocompostable biodigestible peplene polymer
CA2910848C (en) A process for preparation of biodegradable biocompostable biodigestible peplene polymer
KR0156894B1 (ko) 생분해성 수지 조성물
CN113429763A (zh) 一种phb改性可生物降解树脂及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20879065

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022522734

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020371459

Country of ref document: AU

Date of ref document: 20201021

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020879065

Country of ref document: EP

Effective date: 20220523