WO2021079540A1 - 接着剤塗布装置及び接着剤塗布方法、回転子の製造方法 - Google Patents

接着剤塗布装置及び接着剤塗布方法、回転子の製造方法 Download PDF

Info

Publication number
WO2021079540A1
WO2021079540A1 PCT/JP2020/009679 JP2020009679W WO2021079540A1 WO 2021079540 A1 WO2021079540 A1 WO 2021079540A1 JP 2020009679 W JP2020009679 W JP 2020009679W WO 2021079540 A1 WO2021079540 A1 WO 2021079540A1
Authority
WO
WIPO (PCT)
Prior art keywords
adhesive
hole
nozzle
wall surface
coating
Prior art date
Application number
PCT/JP2020/009679
Other languages
English (en)
French (fr)
Inventor
雄治 石川
佐野 博之
五十嵐 義浩
Original Assignee
東芝産業機器システム株式会社
東芝インフラシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝産業機器システム株式会社, 東芝インフラシステムズ株式会社 filed Critical 東芝産業機器システム株式会社
Priority to CN202080073502.0A priority Critical patent/CN114585449A/zh
Priority to US17/769,959 priority patent/US20220355337A1/en
Publication of WO2021079540A1 publication Critical patent/WO2021079540A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/26Processes for applying liquids or other fluent materials performed by applying the liquid or other fluent material from an outlet device in contact with, or almost in contact with, the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C11/00Component parts, details or accessories not specifically provided for in groups B05C1/00 - B05C9/00
    • B05C11/10Storage, supply or control of liquid or other fluent material; Recovery of excess liquid or other fluent material
    • B05C11/1002Means for controlling supply, i.e. flow or pressure, of liquid or other fluent material to the applying apparatus, e.g. valves
    • B05C11/1015Means for controlling supply, i.e. flow or pressure, of liquid or other fluent material to the applying apparatus, e.g. valves responsive to a conditions of ambient medium or target, e.g. humidity, temperature ; responsive to position or movement of the coating head relative to the target
    • B05C11/1021Means for controlling supply, i.e. flow or pressure, of liquid or other fluent material to the applying apparatus, e.g. valves responsive to a conditions of ambient medium or target, e.g. humidity, temperature ; responsive to position or movement of the coating head relative to the target responsive to presence or shape of target
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C5/00Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work
    • B05C5/02Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work the liquid or other fluent material being discharged through an outlet orifice by pressure, e.g. from an outlet device in contact or almost in contact, with the work
    • B05C5/0208Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work the liquid or other fluent material being discharged through an outlet orifice by pressure, e.g. from an outlet device in contact or almost in contact, with the work for applying liquid or other fluent material to separate articles
    • B05C5/0212Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work the liquid or other fluent material being discharged through an outlet orifice by pressure, e.g. from an outlet device in contact or almost in contact, with the work for applying liquid or other fluent material to separate articles only at particular parts of the articles
    • B05C5/0216Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work the liquid or other fluent material being discharged through an outlet orifice by pressure, e.g. from an outlet device in contact or almost in contact, with the work for applying liquid or other fluent material to separate articles only at particular parts of the articles by relative movement of article and outlet according to a predetermined path
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C7/00Apparatus specially designed for applying liquid or other fluent material to the inside of hollow work
    • B05C7/02Apparatus specially designed for applying liquid or other fluent material to the inside of hollow work the liquid or other fluent material being projected
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/10Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain an adhesive surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/14Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies
    • B05D7/146Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies to metallic pipes or tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/22Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to internal surfaces, e.g. of tubes
    • B05D7/222Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to internal surfaces, e.g. of tubes of pipes
    • B05D7/225Coating inside the pipe
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C11/00Component parts, details or accessories not specifically provided for in groups B05C1/00 - B05C9/00
    • B05C11/10Storage, supply or control of liquid or other fluent material; Recovery of excess liquid or other fluent material
    • B05C11/1002Means for controlling supply, i.e. flow or pressure, of liquid or other fluent material to the applying apparatus, e.g. valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C5/00Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work
    • B05C5/02Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work the liquid or other fluent material being discharged through an outlet orifice by pressure, e.g. from an outlet device in contact or almost in contact, with the work
    • B05C5/0225Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work the liquid or other fluent material being discharged through an outlet orifice by pressure, e.g. from an outlet device in contact or almost in contact, with the work characterised by flow controlling means, e.g. valves, located proximate the outlet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C5/00Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work
    • B05C5/02Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work the liquid or other fluent material being discharged through an outlet orifice by pressure, e.g. from an outlet device in contact or almost in contact, with the work
    • B05C5/027Coating heads with several outlets, e.g. aligned transversally to the moving direction of a web to be coated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/02Processes for applying liquids or other fluent materials performed by spraying
    • B05D1/12Applying particulate materials

Definitions

  • An embodiment of the present invention relates to an adhesive coating device, an adhesive coating method, and a rotor manufacturing method.
  • the rotor of a permanent magnet type rotary electric machine is configured to embed a permanent magnet in a plurality of magnet insertion holes provided so as to penetrate the rotor core in the axial direction.
  • an adhesive is applied to the inner surface of the magnet insertion hole, and a permanent magnet is inserted into the magnet insertion hole and fixed by adhesion.
  • Patent Document 1 discloses that an adhesive is applied into a magnet insertion hole of a rotor iron core to bond a permanent magnet.
  • the adhesive is placed on the tip of the spatula, the spatula is inserted horizontally into the magnet insertion hole, and the adhesive is applied by pressing it against the inner surface of the insertion hole.
  • the thickness of the spatula is 0.8 mm, whereas the adhesive supplied to the upper surface thereof is 1 to 2 mm. It is said to be a raised form at a certain height. Therefore, it is difficult to insert a spatula into the magnet insertion hole and apply an adhesive to the thin and flat magnet insertion hole. Therefore, an adhesive is applied to the inner surface of a hole having a flat shape, and an adhesive application device and an adhesive application method, which can satisfactorily apply an adhesive even to a thin hole, are rotated. Provide a method for manufacturing a child.
  • the adhesive application device is a device that applies an adhesive to the inner wall surface of the hole with respect to the work provided with the hole, and applies a work holding portion for holding the work and a liquid adhesive.
  • a jet-type dispenser that applies adhesive in a non-contact manner by making it into fine particles and ejecting it linearly and continuously from the nozzle, and a moving mechanism that freely moves the relative position of the nozzle of the dispenser with respect to the hole of the work.
  • a control device that controls the mechanism to automatically execute the positioning of the work, the relative positioning of the nozzle with respect to the work, and the application of the adhesive including the movement of the nozzle, and the inner wall surface of the hole.
  • the adhesive is sprayed and applied in an oblique direction from the nozzle, and the diagonal direction is such that the adhesive linearly ejected from the nozzle located outside the hole does not interfere with the opening of the hole. It is an angle that can be applied to the inner wall surface of the hole having a desired depth.
  • the adhesive application method is a method for applying an adhesive to the inner wall surface of the hole with respect to the work provided with the hole, in which the liquid adhesive is made into fine particles and linearly from the nozzle.
  • a jet-type dispenser that applies the adhesive in a non-contact manner by continuously injecting the adhesive is provided, and the adhesive application step of applying the adhesive while moving the nozzle of the dispenser to the hole of the work is included.
  • the adhesive application step the adhesive is injected and applied diagonally from the nozzle to the inner wall surface of the hole, and the diagonal angle is linear from the nozzle located outside the hole. This is an angle at which the adhesive injected into the hole can be applied to the inner wall surface of the hole at a desired depth without interfering with the opening of the hole.
  • FIG. 1 is a perspective view schematically showing a configuration of an adhesive coating device according to an embodiment.
  • FIG. 2 is a front view schematically showing the configuration of the adhesive coating device according to the embodiment.
  • FIG. 3 is a top view schematically showing the configuration of the adhesive coating device according to the embodiment.
  • FIG. 4 is a side view showing the appearance of the dispenser head portion according to the embodiment.
  • FIG. 5 is a side view showing the positional relationship between the nozzle and the magnet insertion hole during the work according to the embodiment.
  • FIG. 6 is a diagram showing a nozzle movement pattern in the coating operation according to the embodiment (arrow view in the a direction of FIG. 5).
  • FIG. 7 is a block diagram schematically showing an electrical configuration according to an embodiment.
  • FIG. 8 is a perspective view schematically showing the appearance of the rotor core according to the embodiment.
  • FIG. 9 is a diagram for explaining a minimum angle and a maximum angle of the inclination angle of the nozzle according to the embodiment.
  • FIG. 8 shows the appearance configuration of the so-called double-layer type rotor core 1 as the work to which the adhesive is applied in the present embodiment.
  • the rotor core 1 is formed by punching, for example, an electromagnetic steel plate into a predetermined shape, that is, substantially a disk shape, and laminating a plurality of the punched electrical steel sheets.
  • a shaft hole 1a into which a rotating shaft (not shown) is inserted is formed in the central portion of the rotor core 1.
  • magnet insertion holes 2 and 3 as holes for inserting and adhering permanent magnets (not shown) are formed in the portion near the outer circumference of the rotor core 1 so as to penetrate in the axial direction.
  • the magnet insertion holes 2 have a flat shape, that is, an elongated shape, and the two magnet insertion holes 2 form a pair in an inverted "C" shape, and are evenly arranged in the circumferential direction, for example, eight sets. That is, 8 pairs are formed.
  • the magnet insertion holes 3 also have a flat shape, that is, an elongated shape, and are located on the outer peripheral side of the magnet insertion holes 2, and the two magnet insertion holes 3 form an inverted "C" shape, for example, eight pairs. Eight pairs are formed.
  • the magnet insertion hole 3 on the outer peripheral side is smaller than the magnet insertion hole 2 on the inner peripheral side.
  • the magnet insertion hole 2 has, for example, a width dimension of 15 mm and a height, that is, a thickness dimension of 3 mm.
  • the magnet insertion hole 3 has, for example, a width dimension of 9 mm and a height, that is, a thickness dimension of 2 mm. It goes without saying that the permanent magnets to be inserted and adhered have a size corresponding to the dimensions of the magnet insertion holes 2 and 3, for example, the size is 0.1 mm smaller in both vertical and horizontal directions.
  • the adhesive coating device 11 has an index table 13 as a work holding portion, a dispense head 14 including a jet-type dispenser, a robot 15 as a moving mechanism, and an image on a base 12 having a horizontal trapezoidal upper surface.
  • a sensor 16 and the like are provided.
  • the adhesive coating device 11 includes a control device 17 (shown only in FIG. 7) that controls each of the mechanisms 13 to 16.
  • the adhesive coating device 11 has a unique XYZ coordinate system, and in the following description, the left-right direction is the X direction, the front-back direction is the Y direction, and the vertical direction is the Z direction in the drawings of the base 12. To do.
  • the index table 13 holds the rotor core 1 so that its central axis O is vertical, and the rotor core 1 held by a rotation drive mechanism including a motor is the center. It is configured to rotate freely around the axis O.
  • the index table 13 is adapted to move the rotor core 1 so that the magnet insertion holes 2 and 3 to which the adhesive is applied are sequentially brought to the predetermined application positions.
  • the extending direction that is, the longitudinal direction of the magnet insertion holes 2 and 3 coincides with the Y direction, which is the front-rear direction.
  • the robot 15 is composed of a well-known Cartesian coordinate type robot, and includes a Z-axis moving mechanism 18 and a Y-axis moving mechanism 19.
  • the Z-axis moving mechanism 18 is such that a moving body 21 movably provided along a Z-axis rail 20 extending in the vertical direction is freely moved in the vertical direction by a drive mechanism using the Z-axis motor 22 as a drive source. It is configured in.
  • the Y-axis moving mechanism 19 movably supports the Z-axis moving mechanism 18 along a Y-axis rail 23 extending in the front-rear direction, and freely moves in the front-rear direction by a drive mechanism using the Y-axis motor 24 as a drive source.
  • the Y-axis rail 23 of the Y-axis moving mechanism 19 is supported above the base 12 via a so-called gate-shaped support portion 25.
  • the support portion of the robot 15 on the left side is supported.
  • the illustration of 25 is omitted.
  • the following dispense head 14 is attached to the moving body 21.
  • the robot 15 can freely move the dispense head 14 to any position in the Y direction, that is, the front-back direction, and the Z direction, that is, the up-down direction.
  • the robot 15 places the nozzle (described later) of the dispense head 14 above the coating position, that is, outside the predetermined magnet insertion holes 2 and 3 of the rotor core 1 held in the index table 13. To be located in.
  • the coating operation of applying the adhesive to the inner wall surfaces of the magnet insertion holes 2 and 3 from above without contact is executed.
  • the dispense head 14 is for applying an adhesive in a non-contact manner, and comprises a well-known jet-type dispenser in which a liquid adhesive is atomized and ejected linearly and continuously from a nozzle.
  • the fine particles of the adhesive are indicated by reference numeral A.
  • the dispense head 14 includes a main body 26, a syringe 27 for storing a liquid adhesive, and the like.
  • a downward nozzle 28 is provided at the lower end of the main body 26.
  • the nozzle 28 one having a very small inner diameter, for example, one having a diameter of 0.1 mm ⁇ is adopted.
  • the adhesive an adhesive having a viscosity of about 100 Pa ⁇ s is used. In order to improve visibility in the inspection process, the adhesive may be colored in a predetermined manner.
  • the main body 26 includes a liquid chamber in which an adhesive is supplied from the syringe 27 in a rectangular case.
  • the liquid chamber adhesive is made into fine particles, and a predetermined amount of droplets are extruded to be linearly and continuously ejected downward from the nozzle 28, for example, a piezo-driven valve actuator or the like is provided.
  • a piezo-driven valve actuator or the like is provided.
  • the dispense head 14 is attached to the mounting flange of the moving body 21 of the robot 15. At this time, as shown in FIG. 5, the nozzle 28 of the dispense head 14 is arranged in an inclined form with respect to the vertical axis, that is, the Z axis. As a result, as shown in FIG. 5, the adhesive A is injected and applied to the inner wall surfaces of the magnet insertion holes 2 and 3 of the rotor core 1 from the nozzle 28 in an oblique direction. Further, the inclination angle ⁇ at that time is desired so that the adhesive A linearly ejected from the nozzles 28 located outside the magnet insertion holes 2 and 3 does not interfere with the openings of the magnet insertion holes 2 and 3.
  • the angle is such that it can be applied to the inner walls of the magnet insertion holes 2 and 3 at a depth. More specifically, as described below, the tilt angle ⁇ of the nozzle 28 is within the range between the minimum angle ⁇ s and the maximum angle ⁇ m. To give a specific example, the inclination angle ⁇ is, for example, in the range of 4 ° to 10 °.
  • FIG. 9 shows the cross-sectional state of the magnet insertion holes 2 and 3 portions.
  • the minimum angle ⁇ s and the maximum angle ⁇ m are the opening height dimensions h of the magnet insertion holes 2 and 3, that is, the distance h between the inner wall surface to be coated and the inner wall surface facing the inner wall surface, and the inside of the magnet insertion holes 2 and 3. It is related to the coating depth dimension z from the opening with respect to the wall surface and the coating thickness dimension t of the adhesive A.
  • the minimum angle ⁇ s and the maximum angle ⁇ m can be expressed by the following equations.
  • Minimum angle ⁇ s DEG (ATAN (h / 2 / z))
  • Maximum angle ⁇ m DEG (ATAN ((h / 2-t) / z))
  • FIG. 9 also shows the results of calculating the minimum angle ⁇ s and the maximum angle ⁇ m for two types of holes having different opening height dimensions h.
  • the adhesive A is applied to both sides of the hole, that is, the upper and lower surfaces in the figure, 2) the coating is performed from the back side of the hole toward the opening side, and 3) the angle ⁇ is The larger the value, the easier it is to control the coating amount, that is, the coating thickness and the coating width. 4) The angle ⁇ is affected by the coating thickness of the adhesive A. Depending on the opening height dimension h, it is possible to start from one side.
  • the image sensor 16 is composed of, for example, a CCD camera or the like, is located diagonally above the index table 13, and is attached below the Y-axis rail 23. With this, the image sensor 16 can photograph the inner wall surfaces of the magnet insertion holes 2 and 3 located at the coating position of the rotor core 1. As will be described later, the control device 17 confirms from the captured image of the image sensor 16 after the adhesive has been applied whether the adhesive has been properly applied to the inner wall surfaces of the magnet insertion holes 2 and 3. Perform the inspection process.
  • FIG. 7 schematically shows an electrical configuration centered on the control device 17.
  • the control device 17 is configured to include a computer, controls the index table 13, and controls the robot 15 and the dispense head 14. Further, a signal from the image sensor 16 is input to the control device 17. A monitor for displaying the captured image of the image sensor 16 may be provided so that the operator can check the image.
  • the control device 17 controls the index table 13, the robot 15, the dispense head 14, and the like based on a control program set in advance, operation data, a sensor signal input in real time, and the like. With this, the control device 17 executes the work of applying the adhesive to the magnet insertion holes 2 and 3 of the rotor core 1. That is, each step of the adhesive application method according to the present embodiment including the positioning of the rotor core 1, the relative positioning of the nozzle 28 with respect to the rotor core 1, and the movement of the nozzle 28 is executed.
  • the following coating operation is executed by the control device 17. That is, first, the index table 13 executes a positioning step in which the rotor core 1 is moved and positioned in the rotational direction so that the magnet insertion holes 2 and 3 to be coated with the adhesive come to the coating position. In the positioning state of the rotor core 1, the extending directions of the magnet insertion holes 2 and 3 are parallel to the Y-axis direction. Next, while moving the dispense head 26 by the robot 15, fine particles A of the adhesive are continuously ejected from the nozzle 28 located diagonally upward onto the inner wall surfaces of the magnet insertion holes 2 and 3 to apply the adhesive. An adhesive coating step is performed.
  • the adhesive A is injection-coated on the inner wall surfaces of the magnet insertion holes 2 and 3 from the nozzle 28 of the dispense head 26 in an oblique direction at an inclination angle ⁇ .
  • the robot 15 executes the coating while moving the dispense head 14, that is, the nozzle 28 in parallel.
  • FIG. 6 shows the movement pattern of the nozzle 28 of the dispense head 14, that is, the locus of the adhesive A hitting the inner wall surfaces of the magnet insertion holes 2 and 3 (arrow view in the a direction of FIG. 5) with arrows. Shown.
  • the nozzle 28 is moved from the front to the rear by a predetermined length corresponding to the width dimensions of the magnet insertion holes 2 and 3 (1), and then is moved upward by a small amount, for example, 1.8 mm, and this time. Is moved from the back to the front by a predetermined length (2), and is moved upward again by a small amount.
  • the same operation is repeated in (3), (4), and (5) so that the adhesive is applied to the inner wall surfaces of the magnet insertion holes 2 and 3 in a pattern that draws, for example, five parallel lines. become.
  • the coating speed is, for example, 70 mm / s.
  • the nozzle 28 of the dispense head 14 since the extending directions of the magnet insertion holes 2 and 3 are parallel to the Y-axis direction, the nozzle 28 of the dispense head 14 does not move in the X-axis direction, but is controlled to move in the Y-axis and Z-axis directions. As a result, the adhesive is thinly supplied to the inner wall surfaces of the magnet insertion holes 2 and 3 in the quadrangular area as a whole.
  • the adhesive application step when the adhesive application step is completed, the adhesive applied to the inner wall surfaces of the magnet insertion holes 2 and 3 is photographed by the image sensor 16, and the adhesive application work is appropriately performed from the photographed image. An inspection process is performed to confirm the damage. If it is determined that the adhesive is poorly applied to the inner walls of the magnet insertion holes 2 and 3, for example, the amount of application is insufficient or not applied, an error notification or the adhesive application process is re-executed. It is said. When it is determined from the captured image that the adhesive has been properly supplied, the positioning step is executed so that the next magnet insertion holes 2 and 3 come to the coating position, and the adhesive coating step is further executed. ..
  • the coating operation including the above steps is executed by the two left and right robots 15, the dispense head 14, and the image sensor 16, for example, alternately and continuously repeatedly.
  • the rotor core 1 is sent to the next step, and the work of inserting permanent magnets into the magnet insertion holes 2 and 3 and adhering them to each other. That is, the magnet insertion step is executed and the rotor is obtained.
  • the adhesive coating device 11 and the adhesive coating method of the present embodiment as described above, the following actions and effects can be obtained. That is, in the present embodiment, as the dispense head 14, a jet-type dispenser that applies the adhesive in a non-contact manner by atomizing the adhesive into fine particles and ejecting the adhesive linearly and continuously from the nozzle 28 is adopted. .. In the dispense head 14, a nozzle 28 having a very small diameter can be adopted, and even in the small magnet insertion holes 2 and 3, it is possible to spray and apply an adhesive to the inner wall surface thereof. Become.
  • the adhesive is injected and applied to the inner wall surfaces of the magnet insertion holes 2 and 3 from an oblique direction, and the inclination angle ⁇ at that time is the minimum calculated by the above formula. It was set within the range between the angle ⁇ s and the maximum angle ⁇ m. According to the research by the present inventors, it is possible to perform the coating work with high accuracy even for the small magnet insertion holes 2 and 3 by the injection coating from such an oblique direction. Adhesive A is not applied to unnecessary parts such as around the openings of the magnet insertion holes 2 and 3, and contamination of other parts can be prevented.
  • the dispense head 14 has good responsiveness when injecting an adhesive, and although it is applied at a high speed, there is little variation in the amount of application, and it is uniformly stable in a non-contact manner with respect to a target position and range.
  • the adhesive can be applied. Incidentally, in the test for evaluating the variation in the coating amount carried out by the present inventors, an extremely excellent result was obtained that the coating amount can always be kept constant without variation.
  • an adhesive for adhering a permanent magnet is applied to the inner surfaces of the magnet insertion holes 2 and 3 having a flat shape of the rotor core 1, as in the conventional case. Unlike the one using a spatula, it has an excellent effect that the adhesive can be satisfactorily applied to the thin magnet insertion holes 2 and 3.
  • the coating operation is executed while the nozzle 28 of the dispense head 14 is translated with respect to the inner wall surfaces of the magnet insertion holes 2 and 3.
  • the adhesive can be applied linearly to the inner wall surfaces of the magnet insertion holes 2 and 3 by repeating the process while moving the nozzle 28 in parallel, so to speak, scanning and applying the adhesive in a predetermined pattern.
  • the coating work can be stably performed at high speed and stably over a wide range of the inner wall surfaces of the magnet insertion holes 2 and 3. As a result, throughput and yield can be increased.
  • the nozzle 28 is arranged above the rotor core 1, and the adhesive is applied to the vertically facing magnet insertion holes 2 and 3 from above.
  • the adhesive is applied to the inner wall surfaces of the magnet insertion holes 2 and 3 with higher accuracy than in the case of the sideways or upward direction, and it is stable.
  • the coating work can be performed.
  • an image sensor 16 is provided, the inner wall surfaces of the magnet insertion holes 2 and 3 are photographed by the image sensor 16, and it is confirmed from the photographed image whether the adhesive application work is properly performed. ..
  • the coating state of the adhesive on the inner wall surfaces of the magnet insertion holes 2 and 3, that is, the coating amount, the coating area, the coating position, and the like can be confirmed based on the captured image of the image sensor 16. Therefore, it is possible to prevent the process from proceeding to the next process while the coating state is poor, and it is possible to perform a reliable coating operation and thus a magnet bonding operation.
  • a 2-axis Cartesian coordinate robot is adopted as the moving mechanism, that is, a robot in the adhesive coating device, but the present invention is not limited to this, and an articulated robot having 3 or more axes is adopted. You may.
  • the moving mechanism a mechanism for moving the dispense head in the X direction, or a configuration for freely changing the angle of the dispense head, that is, the angle of the nozzle with respect to the hole may be added.
  • the coating work may be performed while moving the work side with respect to the nozzle of the dispense head.
  • One or three or more dispense heads and robots may be provided to perform the coating operation.
  • the rotor core 1 of the rotor of the rotary electric machine is taken as an example of the application of the adhesive, but the work is not limited to that, and the shape of the hole and the like are also various. It can be changed. Further, the confirmation process using the image sensor may be provided as needed. Furthermore, it goes without saying that the pattern of applying the adhesive to the inner wall surface of the hole, that is, the pattern of moving the nozzle, can be variously deformed. In addition, specific numerical values such as the inner diameter dimension and inclination angle of the nozzle, the hole dimension, the drive frequency of the dispense head, and the viscosity of the adhesive are only examples, and of course, they can be changed as appropriate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Power Engineering (AREA)
  • Coating Apparatus (AREA)
  • Manufacturing & Machinery (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Manufacture Of Motors, Generators (AREA)

Abstract

実施形態に係る接着剤塗布装置(11)は、穴(2、3)が設けられたワーク(11)に対し、穴の内壁面に接着剤を塗布する装置であって、ワークを保持するワーク保持部(13)と、液状の接着剤を微粒子化してノズル(28)から直線的、且つ連続的に射出することにより、接着剤を非接触で塗布するジェット式のディスペンサ(14)と、ワークの穴に対するディスペンサのノズルの相対位置を自在に移動させる移動機構(15)と、機構を制御してワークの位置決め、ワークに対するノズルの相対位置決め、及びノズルの移動を含む接着剤の塗布作業を自動で実行させる制御装置(17)とを備え、穴の内壁面に対しノズルから斜め方向に接着剤を射出塗布させ、斜め方向となる当該角度は、穴の外部に位置するノズルから直線的に射出する接着剤が穴の開口部に干渉せずに所望の深さの穴の内壁面に塗布できる角度である。

Description

接着剤塗布装置及び接着剤塗布方法、回転子の製造方法 関連出願の相互参照
 本出願は、2019年10月25日に出願された日本出願番号2019-194403号に基づくもので、ここにその記載内容を援用する。
 本発明の実施形態は、接着剤塗布装置及び接着剤塗布方法、回転子の製造方法に関する。
 例えば永久磁石式の回転電機の回転子は、回転子鉄心に軸方向に貫通するように設けられた複数の磁石挿入穴に対し、永久磁石を埋め込むように設けて構成される。この場合、前記磁石挿入穴の内面に接着剤が塗布され、永久磁石がその磁石挿入穴内に挿入されて接着により固定される。特許文献1には、回転子鉄心の磁石挿入穴内に接着剤を塗布して、永久磁石を接着することが開示されている。接着剤を塗布するにあたっては、ヘラの先端上に接着剤を載せ、ヘラを磁石挿入穴内に水平に挿入して、挿入穴の内面に押し付けて接着剤を塗布するようになっている。
特開2007-159361号公報(図2)
 ところで、近年、この種の回転子として、回転子鉄心の外周寄り部分に薄型の永久磁石を二層に配置したダブルレイヤタイプのものが開発されてきている。この場合、永久磁石を挿入する磁石挿入穴は薄型で偏平なものとなり、このような偏平形状の磁石挿入穴の内面に対して接着剤を塗布する必要が生ずる。具体的には、磁石挿入穴の高さ方向の寸法が、2.0mm以下となるものも開発されてきている。
 ところが、上記特許文献1に記載されたようなヘラを用いた接着剤の塗布方法では、ヘラの厚み寸法が0.8mmであるのに対し、その上面に供給される接着剤が、1~2mm程度の高さで盛り上がった形態とされる。そのため、薄型で偏平な磁石挿入穴に対しては、ヘラを磁石挿入穴に挿入して接着剤を塗布する作業が困難となる。
 そこで、偏平形状を有する穴の内面に接着剤を塗布するものであって、薄型の穴に対しても接着剤の塗布作業を良好に行うことができる接着剤塗布装置及び接着剤塗布方法、回転子の製造方法を提供する。
 実施形態に係る接着剤塗布装置は、穴が設けられたワークに対し、前記穴の内壁面に接着剤を塗布する装置であって、前記ワークを保持するワーク保持部と、液状の接着剤を微粒子化してノズルから直線的、且つ連続的に射出することにより、接着剤を非接触で塗布するジェット式のディスペンサと、前記ワークの穴に対する前記ディスペンサのノズルの相対位置を自在に移動させる移動機構と、前記機構を制御して前記ワークの位置決め、前記ワークに対する前記ノズルの相対位置決め、及び前記ノズルの移動を含む接着剤の塗布作業を自動で実行させる制御装置とを備え、前記穴の内壁面に対し前記ノズルから斜め方向に接着剤を射出塗布させ、斜め方向となる当該角度は、前記穴の外部に位置する前記ノズルから直線的に射出する接着剤が前記穴の開口部に干渉せずに所望の深さの前記穴の内壁面に塗布できる角度である。
 実施形態に係る接着剤塗布方法は、穴が設けられたワークに対し、前記穴の内壁面に接着剤を塗布するための方法であって、液状の接着剤を微粒子化してノズルから直線的、且つ連続的に射出することにより、接着剤を非接触で塗布するジェット式のディスペンサを備え、前記ワークの穴に対し前記ディスペンサのノズルを移動させながら接着剤を塗布させる接着剤塗布工程を含むと共に、前記接着剤塗布工程においては、前記穴の内壁面に対し前記ノズルから斜め方向に接着剤を射出塗布させると共に、斜め方向となる当該角度は、前記穴の外部に位置する前記ノズルから直線的に射出する接着剤が前記穴の開口部に干渉せずに所望の深さの前記穴の内壁面に塗布できる角度である。
図1は、一実施形態に係る接着剤塗布装置の構成を概略的に示す斜視図であり、 図2は、一実施形態に係る接着剤塗布装置の構成を概略的に示す正面図であり、 図3は、一実施形態に係る接着剤塗布装置の構成を概略的に示す上面図であり、 図4は、一実施形態に係るディスペンサヘッド部分の外観を示す側面図であり、 図5は、一実施形態に係る作業時におけるノズルと磁石挿入穴との位置関係を示す側面図であり、 図6は、一実施形態に係る塗布作業におけるノズルの移動パターンを示す図(図5のa方向矢視図)であり、 図7は、一実施形態に係る電気的構成を概略的に示すブロック図であり、 図8は、一実施形態に係る回転子鉄心の外観を概略的に示す斜視図であり、 図9は、一実施形態に係るノズルの傾斜角度の最小角度、最大角度を説明するための図である。
 以下、回転子鉄心の磁石挿入穴に対する永久磁石の接着作業に適用した一実施形態について、図面を参照しながら説明する。本実施形態では、永久磁石式の回転電機の回転子の製造に適用している。まず、図8は、本実施形態において接着剤の塗布対象となるワークとしての、いわゆるダブルレイヤタイプの回転子鉄心1の外観構成を示している。この回転子鉄心1は、例えば電磁鋼板を所定の形状即ちほぼ円板状に打抜き、その打抜いた電磁鋼板を複数枚積層して構成されている。回転子鉄心1の中心部には、図示しない回転軸が挿入される軸孔1aが形成されている。
 そして、回転子鉄心1の外周寄り部分には、図示しない永久磁石が挿入されて接着固定される穴としての磁石挿入穴2、3が、軸方向に貫通して形成されている。具体的には、磁石挿入穴2は、偏平形状、つまり細長い形状を有し、2個が逆「ハ」の字形をなすような対となって、円周方向に均等に並んで例えば8組即ち8対形成されている。磁石挿入穴3は、やはり偏平形状つまり細長い形状を有し、前記磁石挿入穴2の外周側に位置して、2個が逆「ハ」の字形をなすような対となって例えば8組即ち8対形成されている。
 このとき、外周側の磁石挿入穴3は、内周側の磁石挿入穴2よりも小さく構成されている。ちなみに、磁石挿入穴2は、例えば、幅寸法が15mm、高さ即ち厚み寸法が3mmとされている。これに対し、磁石挿入穴3は、例えば、幅寸法が9mm、高さ即ち厚み寸法が2mmとされている。挿入・接着される永久磁石は、それら磁石挿入穴2、3の寸法に対応した大きさとされることは勿論であり、例えば縦横共に0.1mmだけ小さい寸法とされる。
 次に、上記回転子鉄心1に形成された磁石挿入穴2、3の内面に対して、永久磁石を固定するための接着剤を塗布する、接着剤塗布装置11の構成について、図1~図7を参照して述べる。図1~図3は、本実施形態に係る接着剤塗布装置11の外観構成を概略的に示している。ここで、接着剤塗布装置11は、上面が水平な台状をなすベース12上に、ワーク保持部としてのインデックステーブル13、ジェット式のディスペンサからなるディスペンスヘッド14、移動機構となるロボット15、画像センサ16等を備える。
 このとき、前記ロボット15及びディスペンスヘッド14、並びに画像センサ16については、ベース12上の左右に位置して2組が対称的に設けられている。そして、この接着剤塗布装置11は、前記各機構13~16を制御する制御装置17(図7にのみ図示)を備えている。尚、接着剤塗布装置11は、固有のXYZ座標系を有しており、以下の説明においては、ベース12の図で左右方向をX方向、前後方向をY方向、上下方向をZ方向として説明する。
 前記インデックステーブル13は、図2等に示すように、前記回転子鉄心1をその中心軸Oが垂直となるように保持すると共に、モータを含む回転駆動機構により保持した回転子鉄心1を前記中心軸O周りに自在に回転させるように構成されている。この場合、インデックステーブル13は、接着剤の塗布対象となる磁石挿入穴2、3が、順次所定の塗布位置に来るように回転子鉄心1を移動させるようになっている。その塗布位置では、磁石挿入穴2、3の延びる方向即ち長手方向が、前後方向であるY方向に一致される。これにより、接着剤の塗布作業時には、磁石挿入穴2、3の接着剤が塗布される内面は、YZ平面に平行な面とされる。
 前記ロボット15は、図1等に示すように、この場合、周知の直交座標型ロボットからなり、Z軸移動機構18とY軸移動機構19とを備えている。前記Z軸移動機構18は、上下方向に延びるZ軸レール20に沿って移動可能に設けられた移動体21を、Z軸モータ22を駆動源とした駆動機構により上下方向に自在に移動させるように構成されている。Y軸移動機構19は、前記Z軸移動機構18を、前後方向に延びるY軸レール23に沿って移動可能に支持し、Y軸モータ24を駆動源とした駆動機構により前後方向に自在に移動させるように構成されている。尚、前記Y軸移動機構19のY軸レール23は、いわゆる門型の支持部25を介してベース12の上方に支持されているが、図1~図3では、左側のロボット15における支持部25の図示を省略している。
 前記移動体21には、次に述べるディスペンスヘッド14が取付けられる。これにより、ロボット15は、ディスペンスヘッド14を、Y方向即ち前後方向及びZ方向即ち上下方向の任意の位置に自在に移動させることができる。この場合、ロボット15は、ディスペンスヘッド14のノズル(後述)を、前記塗布位置の上方、即ち、インデックステーブル13に保持された回転子鉄心1の所定の磁石挿入穴2、3の外部である上方に位置させる。これにて、詳しくは後述するように、磁石挿入穴2、3の内壁面に対して、接着剤を上方から非接触で塗布する塗布作業が実行されるようになっている。
 前記ディスペンスヘッド14は、接着剤を非接触で塗布するものであり、液状の接着剤を微粒子化してノズルから直線的且つ連続的に射出する周知のジェット式のディスペンサからなる。図4では、接着剤の微粒子を符号Aで示している。図4にも示すように、ディスペンスヘッド14は、本体部26と、液状の接着剤を貯留するシリンジ27等を備えている。前記本体部26の下端部には、下向きのノズル28が設けられている。本実施形態では、前記ノズル28として、内径がごく小径のもの、例えば0.1mmφのものが採用されている。また、前記接着剤としては、粘度が100Pa・s程度のものが使用される。検査工程での視認性を良くするために、接着剤に所定の着色を行っても良い。
 詳しく図示はしないが、前記本体部26は、矩形状のケース内に、前記シリンジ27から接着剤が供給される液体チャンバを備えている。これと共に、前記液体チャンバの接着剤を微粒子化し、所定量の液滴を押出して前記ノズル28から下方に直線的且つ連続的に射出させる例えばピエゾ駆動方式のバルブアクチュエータ等を備えている。このものでは、例えば0.04mL/回、500Hz即ち500個/sで接着剤を直線的に連射することが可能である。また、使用する接着剤の粘度として、200Pa・s程度まで対応が可能である。
 このディスペンスヘッド14は、前記ロボット15の移動体21の取付フランジに取付けられる。このとき、図5に示すように、ディスペンスヘッド14のノズル28は、垂直軸即ちZ軸に対して、傾斜した形態で配置されている。これにより、図5に示すように、回転子鉄心1の磁石挿入穴2、3の内壁面に対して、前記ノズル28から斜め方向から接着剤Aを射出塗布させるようになっている。また、その際の傾斜角度θは、磁石挿入穴2、3の外部に位置するノズル28から直線的に射出する接着剤Aがそれら磁石挿入穴2、3の開口部に干渉せずに所望の深さの磁石挿入穴2、3の内壁面に塗布できる角度とされる。より詳細には、次に述べるように、ノズル28の傾斜角度θは、最小角度θsと最大角度θmとの間の範囲内とされている。具体例をあげると、傾斜角度θは、例えば、4°~10°の範囲内とされる。
 ここで、図9を参照して、ノズル28の傾斜角度θの、磁石挿入穴2、3の開口部に干渉せずに接着剤Aの射出塗布が可能な最小角度θs、最大角度θmについて述べる。図9は、磁石挿入穴2、3部分の断面の状態を示している。最小角度θs、最大角度θmは、磁石挿入穴2、3の開口高さ寸法h、つまり塗布対象となる内壁面のそれと対向する内壁面との間の距離h、磁石挿入穴2、3の内壁面に対する開口部からの塗布深さ寸法z、接着剤Aの塗布厚み寸法tに関係する。即ち、最小角度θs、最大角度θmは、次の式で表すことができる。
 最小角度θs=DEG(ATAN(h/2/z))
 最大角度θm=DEG(ATAN((h/2-t)/z))
 また、図9には、開口高さ寸法hの異なる2種類の穴について、最小角度θs、最大角度θmを計算した結果を、併せて示している。
 尚、このとき、塗布条件としては、1)接着剤Aを、穴の両面即ち図で上下面に塗布する、2)塗布は穴の奥側から開口側に向けて行う、3)角度θは大きい方が塗布量即ち塗布厚や塗布幅を制御しやすい、4)角度θは接着剤Aの塗布厚みの影響を受ける、5)穴の両側の開口から塗布を行うとは限らず、鉄心厚みや開口高さ寸法hによっては片側からで済ませる、ものとしている。
 また、図2等に示すように、前記画像センサ16は、例えばCCDカメラ等からなり、前記インデックステーブル13の斜め上方に位置して、前記Y軸レール23の下方に取付けられている。これにて、画像センサ16により、前記回転子鉄心1の塗布位置に位置している磁石挿入穴2、3の内壁面を撮影することが可能とされている。後述するように、前記制御装置17は、接着剤の塗布後の前記画像センサ16の撮影画像から、磁石挿入穴2、3の内壁面に対する接着剤の塗布作業が適切に行われたかを確認する検査工程を実行する。
 図7は、前記制御装置17を中心とした電気的構成を概略的に示している。ここで、前記制御装置17は、コンピュータを含んで構成され、前記インデックステーブル13を制御すると共に、前記ロボット15、ディスペンスヘッド14を制御する。また、制御装置17には、前記画像センサ16からの信号が入力される。尚、画像センサ16の撮影画像を表示するモニタを設け、作業者により確認できる構成としても良い。制御装置17は、予め入力設定された制御プログラムや動作用データ、リアルタイムで入力されるセンサ信号等に基づいて、インデックステーブル13、ロボット15、ディスペンスヘッド14等を制御する。これにて、制御装置17は、回転子鉄心1の磁石挿入穴2、3に対する接着剤塗布の作業を実行させる。即ち、前記回転子鉄心1の位置決め、前記回転子鉄心1に対する前記ノズル28の相対位置決め、及び前記ノズル28の移動を含む本実施形態に係る接着剤塗布方法の各工程を実行させる。
 本実施形態の接着剤塗布装置11においては、制御装置17により、以下のような塗布作業が実行される。即ち、まず、インデックステーブル13により、接着剤の塗布対象となる磁石挿入穴2、3が塗布位置に来るように回転子鉄心1が回転方向に移動され位置決めされる位置決め工程が実行される。この回転子鉄心1の位置決め状態では、磁石挿入穴2、3の延びる方向がY軸方向に平行とされる。次いで、ロボット15によりディスペンスヘッド26を移動させながら、磁石挿入穴2、3の内壁面に対し、斜め上方に位置されるノズル28から連続的に接着剤の微粒子Aを射出させて接着剤を塗布させる接着剤塗布工程が実行される。
 このとき、本実施形態では、上記したように、磁石挿入穴2、3の内壁面に対し、ディスペンスヘッド26のノズル28から傾斜角度θで斜め方向に接着剤Aを射出塗布させる。そして、前記ロボット15により、ディスペンスヘッド14即ちノズル28を平行移動させながら塗布を実行させる。具体的には、図6にディスペンスヘッド14のノズル28の移動パターン、即ち磁石挿入穴2、3の内壁面に対して接着剤Aが当たる軌跡(図5のa方向矢視図)を矢印で示す。例えば、ノズル28は、前から後方に向けて、磁石挿入穴2、3の幅寸法に対応して所定長さ移動され(1)、次いで、上方に若干量例えば1.8mmだけ移動され、今度は後ろから前方に向けて所定長さ移動され(2)、再び上方に若干量だけ移動される。
 同様の動作を、(3)、(4)、(5)と繰返して、磁石挿入穴2、3の内壁面に、例えば5本の平行線を描くようなパターンで接着剤が塗布されるようになる。塗布速度は、例えば70mm/sとされている。この場合、磁石挿入穴2、3の延びる方向はY軸方向に平行なので、ディスペンスヘッド14のノズル28は、X軸方向には移動せず、Y軸及びZ軸方向に移動制御される。これにより、磁石挿入穴2、3の内壁面には、接着剤が四角形の範囲に全体として薄く供給されるようになる。
 また本実施形態では、接着剤塗布工程が終了すると、磁石挿入穴2、3の内壁面に塗布された接着剤を画像センサ16で撮影し、その撮影画像から接着剤の塗布作業が適切に行われたかを確認する検査工程が実行される。もし、磁石挿入穴2、3の内壁面に対する接着剤の塗布不良、例えば塗布量の不足や未塗布等が発生したと判定された場合には、エラー報知或いは接着剤塗布工程の再実行が行われる。撮影画像から接着剤の供給が適切に行われたと判定された場合には、次の磁石挿入穴2、3が塗布位置に来るように位置決め工程が実行され、更に接着剤塗布工程が実行される。
 以上のような工程からなる塗布作業は、左右2台のロボット15及びディスペンスヘッド14並びに画像センサ16により、例えば交互に連続的に繰り返して実行される。全ての磁石挿入穴2、3に対する接着剤の塗布作業が終了すると、回転子鉄心1は、次の工程に送られ、各磁石挿入穴2、3に夫々永久磁石を挿入して接着する作業、即ち磁石挿入工程が実行され、回転子が得られる。
 このような本実施形態の接着剤塗布装置11及び接着剤塗布方法によれば、次のような作用、効果を得ることができる。即ち、本実施形態では、ディスペンスヘッド14として、接着剤を微粒子化してノズル28から直線的、且つ連続的に射出することにより、接着剤を非接触で塗布するジェット式のディスペンサを採用している。このディスペンスヘッド14にあっては、ノズル28として、ごく細径のものを採用することができ、小さい磁石挿入穴2、3内でも、その内壁面に、接着剤を噴射塗布することが可能となる。
 このとき、ノズル28の相対位置の制御により、磁石挿入穴2、3の内壁面に対し斜め方向から接着剤を射出塗布させると共に、その際の傾斜角度θを、上記した計算式で求められる最小角度θsと最大角度θmとの間の範囲内とした。本発明者らの研究によれば、そのような斜め方向からの射出塗布によって、小さな磁石挿入穴2、3に対しても高精度で塗布作業を行うことができる。磁石挿入穴2、3の開口部の周囲といった不要な部位に接着剤Aが塗布されることもなく、他の部分への汚染を防止することができる。
 また、ディスペンスヘッド14は、接着剤を射出する際の応答性が良く、高速での塗布でありながら、塗布量のばらつきは少なく、目的とする位置や範囲に対して非接触で均一に安定して接着剤を塗布することができる。ちなみに、本発明者らの実施した塗布量のばらつき評価の試験において、塗布量を常にばらつきなく一定にすることができるという極めて優れた結果が得られた。
 従って、本実施形態によれば、回転子鉄心1の偏平形状を有する各磁石挿入穴2、3の内面に、永久磁石を接着するための接着剤を塗布するものにあって、従来のようなヘラを用いるものと異なり、薄型の磁石挿入穴2、3に対しても接着剤の塗布作業を良好に行うことができるという優れた効果を奏する。
 このとき、本実施形態では、磁石挿入穴2、3の内壁面に対し、ディスペンスヘッド14のノズル28を平行移動させながら塗布作業を実行させるように構成した。これにより、磁石挿入穴2、3の内壁面に接着剤を線状に塗布することを、ノズル28を平行移動させながら繰り返し、いわばスキャンして所定のパターンで接着剤を塗布することができる。この結果、磁石挿入穴2、3の内壁面の広い範囲に、塗布精度良く、高速で安定して塗布作業を行うことができる。ひいては、スループットや歩留まりを高めることができる。
 また本実施形態では、ノズル28を回転子鉄心1の上方に配置して、上下向きの磁石挿入穴2、3に対して上方から接着剤の塗布作業を行う構成とした。これにより、ノズル28により上方から接着剤を射出塗布することにより、横向き或いは上向きの場合と比較して、磁石挿入穴2、3の内壁面に対し、精度良く接着剤を当てることができ、安定して塗布作業を行うことができる。
 特に本実施形態では、画像センサ16を設け、磁石挿入穴2、3の内壁面を画像センサ16により撮影し、その撮影画像から接着剤の塗布作業が適切に行われたかを確認する構成とした。これにより、画像センサ16の撮影画像に基づいて磁石挿入穴2、3の内壁面に対する接着剤の塗布状況、即ち塗布量、塗布面積、塗布位置等を確認することができる。従って、塗布状態が不良のまま次工程に進むことを防止でき、確実な塗布作業ひいては磁石の接着作業を行うことができる。
 尚、上記実施形態では、接着剤塗布装置における移動機構即ちロボットとして、2軸の直交座標型ロボットを採用したが、それに限定されるものではなく、3軸以上の多関節形ロボット等を採用しても良い。また、移動機構として、ディスペンスヘッドをX方向に移動させる機構、或いは、ディスペンスヘッドの角度、つまり穴に対するノズルの角度を自在に変更する構成を付加するようにしても良い。ディスペンスヘッドのノズルに対してワーク側を移動させながら塗布作業を行う構成としても良い。1台或いは3台以上ディスペンスヘッド及びロボットを設けて、塗布作業を行うようにしても良い。
 上記実施形態においては、接着剤の塗布の対象として回転電機の回転子の回転子鉄心1を例にあげたが、ワークとしてはそれに限定されるものではなく、穴の形状などについても、様々な変更が可能である。また、画像センサを用いた確認の工程は必要に応じて設ければ良い。更には、穴の内壁面に対して、接着剤を塗布するパターンつまりノズルを移動させるパターンについても、様々な変形が可能であることは勿論である。その他、ノズルの内径寸法や傾斜角度、穴の寸法やディスペンスヘッドの駆動周波数、接着剤の粘度等の具体的数値についても一例をあげたものに過ぎず、適宜変更できることは勿論である。
 以上説明した実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
 

Claims (11)

  1.  穴(2、3)が設けられたワーク(1)に対し、前記穴の内壁面に接着剤を塗布する装置(11)であって、
     前記ワークを保持するワーク保持部(13)と、
     液状の接着剤を微粒子化してノズル(28)から直線的、且つ連続的に射出することにより、接着剤を非接触で塗布するジェット式のディスペンサ(14)と、
     前記ワークの穴に対する前記ディスペンサのノズルの相対位置を自在に移動させる移動機構(15)と、
     前記機構を制御して前記ワークの位置決め、前記ワークに対する前記ノズルの相対位置決め、及び前記ノズルの移動を含む接着剤の塗布作業を自動で実行させる制御装置(17)とを備え、
     前記穴の内壁面に対し前記ノズルから斜め方向に接着剤を射出塗布させ、斜め方向となる当該角度は、前記穴の外部に位置する前記ノズルから直線的に射出する接着剤が前記穴の開口部に干渉せずに所望の深さの前記穴の内壁面に塗布できる角度である接着剤塗布装置。
  2.  前記ノズルから前記穴の内壁面に斜め方向に接着剤を射出する傾斜角度θは、
     前記穴の開口高さ寸法をh、前記穴の開口部からの塗布深さ寸法をz、接着剤の塗布厚み寸法をtとしたときに、
     最小角度θs=DEG(ATAN(h/2/z))と、
     最大角度θm=DEG(ATAN((h/2-t)/z))と
    の間の範囲内とされている請求項1記載の接着剤塗布装置。
  3.  前記制御装置は、前記穴の内壁面に対し前記ノズルを平行移動させながら塗布を実行させる請求項1又は2記載の接着剤塗布装置。
  4.  前記制御装置は、前記ノズルを前記ワークの上方に配置して、前記穴に対して上方から接着剤の塗布作業を行う請求項1から3のいずれか一項に記載の接着剤塗布装置。
  5.  前記穴の内壁面を撮影する画像センサ(16)を備え、
     前記制御装置は、前記接着剤の塗布後の前記画像センサの撮影画像から、接着剤の塗布作業が適切に行われたかを確認する請求項1から4のいずれか一項に記載の接着剤塗布装置。
  6.  穴(2、3)が設けられたワーク(1)に対し、前記穴の内壁面に接着剤を塗布するための方法であって、
     液状の接着剤を微粒子化してノズル(28)から直線的、且つ連続的に射出することにより、接着剤を非接触で塗布するジェット式のディスペンサ(14)を備え、前記ワークの穴に対し前記ディスペンサのノズルを移動させながら接着剤を塗布させる接着剤塗布工程を含むと共に、
     前記接着剤塗布工程においては、前記穴の内壁面に対し前記ノズルから斜め方向に接着剤を射出塗布させると共に、斜め方向となる当該角度は、前記穴の外部に位置する前記ノズルから直線的に射出する接着剤が前記穴の開口部に干渉せずに所望の深さの前記穴の内壁面に塗布できる角度である接着剤塗布方法。
  7.  前記ノズルから前記穴の内壁面に斜め方向に接着剤を射出する傾斜角度θは、
     前記穴の開口高さ寸法をh、前記穴の開口部からの塗布深さ寸法をz、接着剤の塗布厚み寸法をtとしたときに、
     最小角度θs=DEG(ATAN(h/2/z))と、
     最大角度θm=DEG(ATAN((h/2-t)/z))と
    の間の範囲内とされている請求項6記載の接着剤塗布方法。
  8.  前記接着剤塗布工程においては、前記穴の内壁面に対し前記ノズルを平行移動させながら塗布を実行させる請求項6又は7記載の接着剤塗布方法。
  9.  前記接着剤塗布工程においては、前記ノズルを前記ワークの上方に配置し、前記穴に対して上方から接着剤の塗布作業を行う請求項6から8のいずれか一項に記載の接着剤塗布方法。
  10.  前記穴の内壁面を画像センサ(16)により撮影し、その撮影画像から接着剤の塗布作業が適切に行われたかを確認する検査工程を実行する請求項6から9のいずれか一項に記載の接着剤塗布方法。
  11.  回転子鉄心(11)に軸方向に貫通するように設けられた複数の穴(2、3)に対し、永久磁石を埋め込むように設けて構成される回転子を製造する方法であって、
     前記回転子鉄心の穴に対し、ジェット式のディスペンサ(14)により液状の接着剤を微粒子化してノズル(28)から直線的、且つ連続的に射出することにより、前記穴の内壁面に接着剤を非接触で塗布する接着剤塗布工程と、
     内面に接着剤が塗布された前記穴内に前記永久磁石を挿入して接着固定する磁石挿入工程とを含み、
     前記接着剤塗布工程においては、前記穴の内壁面に対し前記ノズルから斜め方向に接着剤を射出塗布させると共に、
     前記ノズルから前記穴の内壁面に斜め方向に接着剤を射出する傾斜角度θは、
     前記穴の開口高さ寸法をh、前記穴の開口部からの塗布深さ寸法をz、接着剤の塗布厚み寸法をtとしたときに、
     最小角度θs=DEG(ATAN(h/2/z))と、
     最大角度θm=DEG(ATAN((h/2-t)/z))と
    の間の範囲内とされている回転子の製造方法。
PCT/JP2020/009679 2019-10-25 2020-03-06 接着剤塗布装置及び接着剤塗布方法、回転子の製造方法 WO2021079540A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080073502.0A CN114585449A (zh) 2019-10-25 2020-03-06 粘接剂涂布装置以及粘接剂涂布方法、转子的制造方法
US17/769,959 US20220355337A1 (en) 2019-10-25 2020-03-06 Adhesive coating device, adhesive coating method, and rotor manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-194403 2019-10-25
JP2019194403A JP7465648B2 (ja) 2019-10-25 2019-10-25 接着剤塗布装置及び接着剤塗布方法、回転子の製造方法

Publications (1)

Publication Number Publication Date
WO2021079540A1 true WO2021079540A1 (ja) 2021-04-29

Family

ID=75620422

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/009679 WO2021079540A1 (ja) 2019-10-25 2020-03-06 接着剤塗布装置及び接着剤塗布方法、回転子の製造方法

Country Status (4)

Country Link
US (1) US20220355337A1 (ja)
JP (1) JP7465648B2 (ja)
CN (1) CN114585449A (ja)
WO (1) WO2021079540A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7292453B1 (ja) 2022-02-25 2023-06-16 田中精密工業株式会社 接着剤塗布設備

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015204693A (ja) * 2014-04-14 2015-11-16 株式会社三井ハイテック 回転子積層鉄心及び回転子積層鉄心の製造方法
JP2018008210A (ja) * 2016-07-13 2018-01-18 株式会社エナテック 塗布装置及び塗布方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3797456A (en) * 1970-03-05 1974-03-19 Nordson Corp Apparatus for coating the interiors of hollow bodies
US4025664A (en) * 1974-01-02 1977-05-24 Eppco Container coating method
US4515187A (en) * 1982-05-07 1985-05-07 Gnb Batteries Inc. Compound dispensing method and apparatus
US4963391A (en) * 1989-06-10 1990-10-16 General Electric Company Method of operating apparatus
US5078313A (en) * 1990-07-11 1992-01-07 Sweetheart Cup Company Inc. Wax-coated paperboard containers
US5474799A (en) * 1992-10-13 1995-12-12 Reliance Electric Industrial Company Apparatus and method for coating an electromagnetic coil
JP3455985B2 (ja) * 1993-02-25 2003-10-14 ソニー株式会社 液体供給装置
JP4451005B2 (ja) * 2001-03-02 2010-04-14 株式会社リコー 接着剤塗布装置
JP3796162B2 (ja) * 2001-10-30 2006-07-12 大喜工業株式会社 壁体貫通孔の充填用治具及び充填方法
EP1610445A4 (en) * 2003-09-10 2006-01-04 Aisin Aw Co DEVICE AND METHOD FOR PRODUCING A ROTATING ELECTRICAL MACHINE
JP5338071B2 (ja) * 2007-12-27 2013-11-13 東レ株式会社 塗布方法および塗布装置並びに液晶ディスプレイ用部材の製造方法
JP2011172347A (ja) 2010-02-17 2011-09-01 Mitsubishi Electric Corp ロータまたは回転電機の製造方法
EA022794B1 (ru) * 2010-08-31 2016-03-31 Ниппон Стил Энд Сумитомо Метал Корпорейшн Устройство для нанесения покрытия для нанесения уф-отверждаемой смолы на резьбовой конец стальной трубы
JP5435308B2 (ja) * 2011-08-02 2014-03-05 株式会社安川電機 接着剤塗布装置
US9962728B2 (en) * 2012-09-20 2018-05-08 Te Connectivity Corporation Fluid dispensing machine and method of dispensing fluid
JP6185345B2 (ja) 2013-09-17 2017-08-23 東芝産業機器システム株式会社 回転子の製造装置及び製造方法
JP6238731B2 (ja) * 2013-12-25 2017-11-29 株式会社荒井製作所 潤滑剤の塗布装置および塗布方法
US9833019B2 (en) * 2014-02-13 2017-12-05 Rai Strategic Holdings, Inc. Method for assembling a cartridge for a smoking article
DE102015105680A1 (de) * 2015-04-14 2016-10-20 EOS-Holding GmbH Beschichtungsvorrichtung zur Innenbeschichtung von Rohrleitungen
JP7128730B2 (ja) 2018-11-30 2022-08-31 東芝産業機器システム株式会社 接着剤塗布装置及び接着剤塗布方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015204693A (ja) * 2014-04-14 2015-11-16 株式会社三井ハイテック 回転子積層鉄心及び回転子積層鉄心の製造方法
JP2018008210A (ja) * 2016-07-13 2018-01-18 株式会社エナテック 塗布装置及び塗布方法

Also Published As

Publication number Publication date
JP2021065854A (ja) 2021-04-30
JP7465648B2 (ja) 2024-04-11
US20220355337A1 (en) 2022-11-10
CN114585449A (zh) 2022-06-03

Similar Documents

Publication Publication Date Title
WO2019088237A1 (ja) 液体材料塗布装置および塗布方法
WO2014069498A1 (ja) 位置補正機能を有する作業装置および作業方法
WO2015087898A1 (ja) 塗布部材、塗布装置および塗布方法
JP5439451B2 (ja) 塗布装置及び塗布方法
WO2021079540A1 (ja) 接着剤塗布装置及び接着剤塗布方法、回転子の製造方法
JP2014140789A (ja) 塗布システム及び塗布方法
JP2013065742A (ja) 部品実装装置
TWI686242B (zh) 塗佈裝置
JP5789389B2 (ja) ダイボンダ及び半導体製造方法
KR100753336B1 (ko) 부품 실장장치 및 부품 위치결정장치
JP5873320B2 (ja) 部品実装装置
JP3414050B2 (ja) 塗布装置及び塗布方法
KR20170080980A (ko) 페이스트 디스펜서
JP6050624B2 (ja) 塗布具、塗布機構、塗布装置および塗布方法
WO2023140264A1 (ja) 液体材料塗布方法および塗布装置
CN115214251B (zh) 一种喷墨打印方法及喷墨打印装置
JP6716654B2 (ja) 塗布部材、塗布装置および塗布方法
US20230036260A1 (en) Control method for robot system and robot system
JP6722539B2 (ja) スピンドル塗装方法及びスピンドル塗装装置
JPH09131631A (ja) Xyテーブル付き加工機
JP6001438B2 (ja) 部品実装装置
JP2004008871A (ja) ペースト塗布機
CN115674902A (zh) 机器人系统的控制方法以及机器人系统
JP2008119574A (ja) 塗布装置および塗布方法
JPH09136227A (ja) Xyテーブル

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20878616

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20878616

Country of ref document: EP

Kind code of ref document: A1